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Abstract

Resonant x-ray scattering is a powerful technique for the determination of electronic structure

at the nanoscale. In common practice, the optical properties of the constituent components of a

material must be known prior to modeling of the scattered intensity. We present a means of refining

electronic structure, in the form of optical properties, simultaneous to physical structure, in a

Kramers-Kronig consistent manner. This approach constitutes a sensitive and powerful extension

of resonant x-ray scattering to materials where the optical properties are not sufficiently well known.

The application of this approach to specular reflectivity from a single crystal of SrTiO3 is presented

as an example case, wherein we find evidence for both a non-resonant surface contaminant layer

and a modified SrTiO3 surface region. Extrapolating from this study we comment on the potential

utility of this approach to resonant scattering studies in general.

1



DISCLAIMER

This document was prepared as an account of work sponsored by the United States Gov-

ernment. While this document is believed to contain correct information, neither the United

States Government nor any agency thereof, nor the Regents of the University of California,

nor any of their employees, makes any warranty, express or implied, or assumes any legal

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product, process, or service by its trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof, or the Regents of the University of California. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the United States Government
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I. INTRODUCTION

Resonant x-ray scattering extends anomolous scattering1 across atomic core levels to

combine the element and state specific electronic structure available from absorption mea-

surements with information on spatial correlations available from angle resolved scattering.

Such an approach can elucidate aspects of the spatial distribution of electronic or chemi-

cal structure not available away from resonance2–7. It constitutes a growing application of

tunable synchrotron radiation and promises access to ultrafast electron dynamics at short

length scales in x-ray free-electron laser sources. Strong, sharp absorption features at the

soft x-ray core levels makes resonant x-ray scattering an attractive tool to study important

aspects in magnetic, correlated electron, and even polymeric systems with nanometer-scale

resolution and greater penetrating power than powerful electron spectroscopies.

In the near-visible spectral region several methods are widely used to obtain absolute

optical constants, including their spectral and depth dependence, from reflectance data8–10.

Such methods include reflectometry, ellipsometry, and polarimetry, and generally aim to

determine the real and imaginary parts of a complex index of refraction through measure-

ments of reflected intensity, phase change, and/or polarization. At discrete photon energies,
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modeling angle-resolved data is common and may or may not yield results consistent with

the Kramers-Kronig (KK) dispersion relation. Full spectroscopic determinations require

energy-resolved measurements and their analysis in a manner ensuring KK consistency. The

same approaches and challenges apply in the soft x-ray range, although here it is much easier

to measure scattered intensity than polarization or phase.

Resonant x-ray scattering intensities are generally described as the modulus squared of

a complex optical contrast involving one or more complex refractive indices, n = 1− δ− iβ.

Applications often require accurate resonant x-ray absorption spectra (commonly referred

to as XAS, NEXAFS, or XANES) to interpret results. Such spectra are obtained either

from measurement or some form of model calculation, and are often adequate for the prob-

lem at hand11,12. However, as resonant x-ray scattering applications become more refined,

cases are encountered in which the spatial distribution of electronic structure itself is to be

determined, and in such cases it is not obvious that measured or model optical spectra are

sufficient. Rather, obtaining the spatial distribution of resonant optical properties directly

by simultaneously modeling spectroscopy and structure in fitting experimental data would

provide a useful alternative. Fixed-energy determinations of optical constants are common

in the x-ray region (generally through fitting of angular resolved reflectivity, R(Q))13–21.

While this approach has been extended to fitting fixed energy reflectivity data at a number

of energies spanning the atomic core level as a means of spectroscopy22, full spectroscopic

analysis is not generally applied to reflectivity data.

Here we present a flexible approach to model spectra and structure on equal footing in fit-

ting reflected intensities, using a variational algorithm23 to efficiently ensure KK consistency

between δ and β as they refine along with structural parameters to yield a self-consistent

model of the spatial distribution of electronic structure. This variational approach is de-

signed to model spectra of arbitrary shape to provide accurate absolute values for optical

spectra within the assumptions of the structural model, which may also be refined in the

modeling process. This is an extension of an earlier approach to reflectivity modeling that

used a small number of Lorentzian peaks to describe the absorption spectra24. The current

approach is similar, but allows for much greater flexibility to fit the fine details of a measured

reflectivity spectrum.

To illustrate this approach we apply it to determine the resonant optical properties across

the Ti L2,3 and O K edges in a single crystal of SrTiO3 (001) (STO). This material was
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chosen because STO remains technologically important and because its near surface region

is known to exhibit subtle and complex behavior which remains a topic of active study24–27.

We find evidence that two surface layers, a contamination layer atop an STO-like layer

departing from bulk properties, are needed to explain the specific set of experimental data

that we model. Below, the variational approach and fitting strategy are described, followed

by its systematic application to reflected intensity spectra measured at several fixed incidence

angles. Comments on its potential utility are given in the conclusion.

II. REFLECTIVITY MODELING

Our goal is to measure specular reflectivity as a function of x-ray energy across the

resonant absorption edges of a material and then fit this with a model of both physical and

electronic structure. The electronic structure is, for our purposes, that projected by resonant

dipole transitions onto the optical properties as represented by the complex refractive index,

n = 1− δ − iβ. The real and imaginary parts of the index of refraction are directly related

to the complex atomic scattering factors, f(hν) = f0 − f ′(hν)− if ′′(hν), through

n(hν) = 1− δ(hν)− iβ(hν) = 1− rec
2NA

2πν2

∑
i

Zi

Ai

ρifi(hν), (1)

where re is the classical electron radius, ρi is the density due to atom i such that
∑

ρi = ρ, NA

is Avogadro’s number, Zi and Ai are the atomic number and weight of atom i, respectively,

and f0 = Z − ( Z
82.5

)2.37. We wish to determine the values of fi(hν) which give the best

agreement to the measured reflectivity. The KK relation allows us to determine the real

part of the atomic scattering factor from the imaginary part, or vice versa. We work with

the imaginary part of the atomic scattering factor, as its features are generally well localized

and necessarily positive, as opposed to the dispersive nature of the real part, which may

also change sign near resonance. The relevant KK relation is then given by

f ′(hν) =
2

π

∞∮
0

hν ′

(hν)2 − (hν ′)2
f ′′(hν ′) dhν ′. (2)

Having measured the reflectivity at a discreet set of energies {hνj}, it is natural to then

determine f ′′ at these same energies. We use the KK relation to obtain f ′ at these discrete

energies to calculate the reflectivity for comparison with measurement. Unfortunately, the
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formula for specular reflectivity cannot, in general, be inverted to directly solve for the

atomic scattering factors, so we must resort to iterative methods to solve for the values of f ′′.

Thus repeated KK transformations are required. This can be efficiently achieved using KK

consistent functions to represent f ′′ and f ′, such as symmetrized Lorentzians or Gaussians for

absorption lines28 as we recently demonstrated for resonant reflectivity24. However arbitrary

f ′′ shapes are not generally compatible with the extended tails of Lorentzian absorption

lines. Here we implement a much more flexible and general approach to avoid repeated KK

evaluations, namely the variational approach of Kuzmenko23.

A. The Variational Approach

In the variational approach, we write f ′′ as a sum of basis functions

f ′′(hν) =
∑
j

Cjf
basis
j (hν). (3)

In this way, we can uniquely define an arbitrary spectral shape through the set of coefficients

Cj and the appropriate basis function. We assume the shape of f ′′ to be smooth within the

resolution of our measurement. To ensure that our refined spectra has this feature, we select

a basis function that includes point to point correlations. Namely, we choose a triangle

function that extends to the next nearest neighbor, see Figure 1,

f basis
j (hν) = ∆j(hν) =


(hν−hνj−2)

(hνj−hνj−2)
hνj−2 < hν < hνj

(hνj+2−hν)

(hνj+2−hνj)
hνj < hν < hνj+2

0 otherwise

(4)

Thus each point will depend on its nearest neighbors,

f ′′(hνj) = Cj−1∆j−1(hνj) + Cj∆j(hνj) + Cj+1∆j+1(hνj), (5)

so that there is an inherent point to point correlation in any result, ensuring local smoothness.

While we have chosen this particular basis function for its convenience, there are many

others that would also be suitable, as detailed more thoroughly in the work by Kuzmenko23.

However, this ensemble of triangle functions allows for a locally smooth, continuous result

from a large number of nearly independent parameters, avoiding the issue of overlap that

would arise from any function with extended tails, such as Gaussian or Lorentzian functions.
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The primary benefit to expressing f ′′ in this manner is that we can write an analytical

expression for the KK transform of our basis function,

KK[∆j(hν)] =
1

π

[
g(hν, hνj−2)

hνj − hνj−2

− (hνj+2 − hνj−2)g(hν, hνj)

(hνj − hνj−2)(hνj+2 − hνj)
+

g(hν, hνj+2)

hνj+2 − hνj

]
(6)

with

g(x, y) ≡ (x+ y) ln |x+ y|+ (x− y) ln |x− y| (7)

which allows us to write f ′ as the linear combination

f ′(hν) =
∑
j

CjKK{∆j(hν)}. (8)

Evidently, as both f ′(hν) and f ′′(hν) depend on the same set of coefficients Cj, changing

a single point in f ′′(hν) does not require the full KK transformation to update f ′(hν),

instead a single term of the above sum is simply adjusted to update the previous spectrum

and maintain KK consistency. This variational approach greatly reduces the computational

burden while maximizing the flexibility to represent arbitrary spectral shapes.

B. Maximum Entropy

One drawback to the variational approach to modeling reflectivity data is the large num-

ber of free parameters needed to define a spectral and physical model. Parameterizing the

absorption spectra at each measured x-ray energy implies a roughly equal number of re-

finable parameters as data points, making the problem underconstrained. As a result, we

cannot be certain to refine towards a stable solution representing the global minimum, nor

that any such solution will be unique. We find a solution to this problem in the field of

information theory, namely the principle of maximum entropy29. We define an entropy as

S =
∑
j

Cj −mj − Cj ln
Cj

mj

(9)

where mj are the default values for our parameters and represent the solution we would

prefer in the absence of any data, which for practical purposes is our set of starting values.

We consider the entropy as a constraint in our fit to the data which helps to stabilize the

least-squares fitting for a free-form solution. Instead of considering just the set of parameters

which give the best fit to the measured data, we will search for the set of parameters that
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give sufficient agreement with the data and simultaneously maximize the entropy. This can

be accomplished through the use of a Lagrange multiplier, λ, in maximizing

λS − χ2

2
, (10)

where χ2 represents the least-squares metric, or other appropriate figure of merit.

The maximum entropy solution is unique, and will deviate as little as necessary from

the starting model while still fitting the data. While there are many ways of solving the

maximum entropy equation (10)30–32, they will all, in general, maintain positivity for the

refined parameters. As all of the parameters should be positive (representing things such

as layer thickness, roughness, density, composition, or absorption, all of which may be

refined33), this is an advantageous feature which helps to ensure a physically meaningful

result.

III. THE SrTiO3 (001) SURFACE - AN EXAMPLE CASE

As an example of the method, we consider the Ti L-edge and O K-edge of a SrTiO3 (100)

single crystal measured using specular reflectivity data, R(hν), at several discrete incidence

angles, θ. SrTiO3 (STO) is a common substrate for thin film growth and an important

dielectric material in its own right. STO represents an interesting test case which has been

well studied and is suitably complex so as not to be trivial. In fact, the large number of

studies on the STO surface are not all in agreement, possibly due to the dynamic nature of

the surface. While this makes comparison of our results to those in the literature difficult,

it also presents an opportunity for a unique look at this complex system.

The data presented here were measured on a commercially obtained (100) oriented sub-

strate roughly 5mm square, treated with HF to ensure a Ti terminated surface. Prior to

these measurements, this sample had been exposed to vacuum and x-rays in earlier mea-

surements, and stored for extended periods in atmosphere. Data were collected at Beamline

6.3.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory at incidence

angles of 14◦, 15◦, 16◦, 17◦, and 30◦ in a single session and are considered internally self-

consistent. Care was taken to correctly normalize all reflectivity spectra to the incident

beam spectrum in order to obtain the best values for the absolute reflectivity. Refinements

were done using our reflectivity analysis program written in Python. The program uses the
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variational approach and maximum entropy to refine f ′′ values of resonant atoms and phys-

ical parameters of the model for the sample. Reflectivities are calculated using the Parratt

formalism34 with the inclusion of a Névot-Croce35 roughness correction for each interface.

Refinement details for each model considered can be found in Table I.

To start, we consider the simplest possible model, that of a semi-infinite slab of stoichio-

metric STO (model #1). In order to simplify and speed up the refinement procedure, we

begin by considering only the data measured over the Ti edge at a incidence angle of θ = 15◦.

The refinement starts from a four Lorentzian model spectra for the Ti edge, similar to that

used by Valvidares et al24. The results are shown in Figure 2. The fit to the measured

reflectivity is essentially perfect, indicating that the refinement has proceeded as intended.

However, even a cursory inspection of the resulting f ′′ spectra shows serious deficiencies.

The dotted line is the tabulated Henke data36 showing the continuum step, and the solid line

is the result of the refinement. A physically meaningful absorption spectra should approach

the tabulated values away from resonance, and have a sharp onset of resonant features near

the continuum step in the tabulated data. The refined spectra has two obvious problems,

it rises significantly at energies well below the onset of resonance, and it dips slightly be-

low the pre-edge values at energies above resonance (∼ 468eV). Both of these features are

unphysical, indicating that this structural model is incorrect in some way.

As a modification to the näıve model #1, we include the possibility of a non-resonant

surface layer, which we assume to be composed of carbonaceous material (model #2). This

is the simplest modification of model #1 and represents the likely possibility that the sample

surface is not perfectly clean. We fit model #2 to a larger subset of the available data, that

at θ = 14◦, 15◦, 16◦, and 17◦ over both the Ti and O edges. Note that this approach deals

naturally with compound edges where absorption features of different atoms may overlap.

We refine the thickness, density, and surface roughness of the non-resonant surface layer,

the interfacial roughness, and the f ′′ spectra for Ti and O in the STO layer. We limit

the refinable range for the absorption spectra to be between 440eV and 500eV for Ti and

between 525eV and 600eV for O. The starting point for this model will be the result of the

Lorentzian modeling for the Ti spectra and the absorption measured from total electron

yield for the O edge measured concomitantly with the θ = 15◦ reflectivity with a 5Å thick

carbon top layer and all roughnesses being equal to 2Å. The results of model #2 are shown

in Figure 3.
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Model #2 represents a significant improvement from the result of model #1. The fit to all

of the refined data is good, though not perfect, but more importantly, the resulting f ′′ spectra

does not show the same severe unphysical behavior as in model #1. Examination of the

physical structure shows plausible parameters as well (Table I). However, closer inspection of

the reflectivity fits, especially at the Ti edge, shows a systematic variation as we move up in

angle such that the model progresses towards an underestimation of the data on resonance,

and an overestimation away from resonance. This systematic trend is extremely pronounced

at θ = 30◦, indicating again that structural model #2 is oversimplified. Understanding

the nature of Keissig (thickness) fringes whereby interference minima move from high Q

toward low Q as layer thickness increases, the strong θ dependence of fit quality suggests

the presence of a thicker layer in addition to the thin carbonaceous layer.

Clearly, the inclusion of a non-resonant surface layer is important, but not sufficient to

explain our data. It is also clear that we benefit from the inclusion of as much data as

possible in our model refinements, and so will refine our models against all available data

henceforth. As a further modification of our STO model, we refer to the literature on this

material, which suggests that there may exist a distinct surface region within the STO

itself24–27. This surface region may have a composition distinct from the bulk STO and/or

may exhibit different spectral features for the resonant atoms. This suggests two possible

models, one with distinct composition between the two STO regions, but common spectra

for the resonant atoms (model #3a), and one with both distinct composition and spectra

(model #3b)37. We consider the simpler of these, model #3a, first.

The thickness of the resonant STO surface region is initially assumed to be 20Å, in accord

with recent results from Valvidares et al24. We make the starting point of the refinement

of model #3a the endpoint of model #2 by giving the resonant surface region the same

composition as that of the bulk, and setting the spectra for both to the refined result of

model #2. In the interest of charge balance, we constrain the composition of the surface

region in our model to be a mixture of SrO and TiO2. This is a much simpler calculation

than for model #3b while still allowing for a distinct STO-like surface region to exist, the

results of which can be seen in Figure 4.

Model #3a is a significant improvement upon model #2. The reflectivities are all well

fit, and the resulting spectra for the Ti and O edges show no unphysical behavior. There is

still a small systematic discrepancy between measured and calculated reflectivity near the
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Ti edge, and some misfitting of the O edge in the θ = 30◦ data, although that may be due

to higher levels of noise in the data at that angle. All in all, this is a good model, and might

well be considered sufficient for this set of data.

In the spirit of completeness, and to explore the limits of this technique, we consider

model #3b, with distinct Ti and O spectra for the surface and bulk regions of the STO.

The starting point for this refinement will be the result of the refinement for model #3a,

and we let the surface and bulk STO spectra refine away from this point. The results of the

refinement for model #3b are shown in Figure 5.

The improvement beyond model #3a is subtle, and best seen in the decrease in the

figure of merit by roughly 35%. Given that the number of parameters being fit has nearly

doubled, it is unclear just how significant this improvement is. It is also clear that the

differences in spectra between the resonant surface region and the bulk STO are subtle at

best. Presumably questions as to the significance of these differences could be addressed

with a more complete data set, including R(hν) at a larger set of incidence angles as well

as R(Q) at discrete hν. While this method is capable of refining multiple spectra, even for

the same element, it seems apparent that the distinct surface region in STO exhibits little

spectral variation from the bulk, and is instead due primarily to compositional changes. As

such it seems unnecessary to consider models of any greater complexity.

IV. DISCUSSION AND CONCLUSIONS

Variational fitting of reflectivity spectra is a powerful approach for extracting resonant

optical constants for a material. We have taken as an example the case of a bare STO

substrate. We find evidence for both a resonant STO-like surface region as well as a non-

resonant contamination layer above that. The resonant surface region exhibits only subtle

spectroscopic variation from the bulk, but does have a distinct composition with an enhanced

SrO:TiO2 ratio which provides optical contrast. This result is not in complete agreement

with a previous study on the same material using the less sensitive Lorentzian lineshape

approach24 which found evidence for a resonant surface region, but did not consider the

possibility of a non-resonant contamination layer. This may be due to the complex and

dynamic nature of the STO surface, such that the samples measured may not exhibit the

same surface behavior. It is also possible that the nature of the STO-like surface region ap-
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pears differently when the model is constrained by a Lorentzian lineshape in the absence of

a non-resonant surface layer, as in that earlier work. Such constraints allow for a reasonable

overall fit, but give poor agreement in the fine details of the measured spectra. The varia-

tional algorithm models this fine detail, which may possess much of the critical information

about a sample.

This example illustrates some of the more important considerations in modeling of reso-

nant reflectivity data. While an initial starting spectra is necessary, no specific assumptions

about the details of the resonant spectra at a given edge need to be made for the method to

converge. An optical spectra will generally result, even if the structural model is inadequate,

and in such cases the result must be considered as an effective optical spectra within the

context of a given model, such as for model #1 above.

It is thus essential to have criteria available to judge whether a given refined spectral-

structural model is acceptable. Such criteria can include physical constraints on the resultant

absorption spectra, which should be positive with proper limiting behavior in the pre- and

post-edge regions. Systematic effects tend to occur near resonance due to overlayers and

can be useful as a guide towards a more suitable model. Results should also be consistent

with information from other measurements, and self-consistent within the largest dataset

available, including spectra measured at various incidence angles and angle resolved data.

The uniqueness and accuracy of the final spectra ultimately relies on the self-consistency

between the structural and spectral aspects of a model. Spectral self-consistency derives

from explicit inclusion of KK consistency, and structural self-consistency will derive from

modeling spectral behavior at many angles, as done here, or through the explicit inclusion

of angle dependent scans at one or more energies. Provided that self-consistency is reached,

the optical spectra can be considered as absolute and free from measurement artifacts that

plague many soft x-ray spectroscopies.

The approach presented here may be readily extended to any form of resonant scattering,

not just specular reflectivity, provided a suitable expression for the scattering intensity is

available for refinement. Reflectivity from stratified systems represents an obvious and broad

class of problems amenable to this analysis, as demonstrated here. This approach of fitting

reflectivity data, or indeed any resonant scattering data, solves a number of outstanding

problems in spectroscopy. The technique deals quite naturally with overlapping edges, as

demonstrated here by the weakly overlapping Ti and O spectra. Spatial inhomogeneities
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are commonly averaged in soft x-ray spectroscopy, whereas this approach relies on them

and determines the spatial distribution of their spectral composition as a matter of course.

Scattered intensities are generally easy to measure, making this approach less susceptible

to measurement artifacts such as saturation effects in electron yield, or self-absorption in

fluorescence yield experiments, while being applicable to a wide variety of sample geometries.

Most importantly, this approach ensures a self consistent description of spectroscopic and

structural aspects of the sample.

The computational burden required to converge to acceptable tolerances is determined

by the complexity of the structural model, both in the number of layers and the number of

parameters, and the amount of data being fit. The method is designed to be very efficient in

this respect and can be scaled up to problems of arbitrary size and complexity. To this end,

advances in computing power and developments in highly parallel processing will clearly be

of interest to this approach in the future.
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FIG. 1. (Color Online)A gaussian function (dashed line), sampled at discreet points (circles), and

approximated by a sum of basis triangle functions (grey), leading to a linear approximation to the

original function (blue). The KK transform of a single triangle function (green) as well as the sum

of all such functions representing the KK transform of the full gaussian function (red) are also

shown.
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FIG. 2. (Color Online)Results of refinement of model #1. Reflectivity, (a), across the Ti L2,3 edge

measured at θ = 14◦ (black circles) and calculated from the refined model (red line). The resulting

spectrum for the imaginary part of the atomic scattering factor, f ′′, (solid line) is shown in (b),

along with the step function from the tabulated data (dotted line) for that edge for comparison.

Only the data shown was considered for the refinement of this model.
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FIG. 3. (Color Online)Results of refinement of model #2. Reflectivity, (a), across the Ti L2,3

and O K edges measured at θ = 14◦, 15◦, 16◦, 17◦, and 30◦ (black circles) and calculated from the

refined model (red line) are shown top to bottom. The Ti L2,3 edge is shown in finer detail in

(b), showing the systematic trend towards underfitting of the data at higher angle. Note that the

reflectivity at θ = 30◦ is shown here, but was not considered in the refinement of this model. The

resulting spectra for the imaginary part of the atomic scattering factors, f ′′, are shown in (b) for Ti

and (c) for O, along with the step functions from the tabulated data for that edge for comparison.
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FIG. 4. (Color Online)Results of refinement of model #3a. Reflectivity, (a), across the Ti L2,3

and O K edges measured at θ = 14◦, 15◦, 16◦, 17◦, and 30◦ (black circles) and calculated from the

refined model (red line) are shown top to bottom. The Ti L2,3 edge is shown in finer detail in

(b). All data shown were considered in the refinement of this model. The resulting spectra for the

imaginary part of the atomic scattering factors, f ′′, are shown in (b) for Ti and (c) for O, along

with the step functions from the tabulated data for that edge for comparison.
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FIG. 5. (Color Online)Results of refinement of model #3b. Reflectivity, (a), across the Ti L2,3

and O K edges measured at θ = 14◦, 15◦, 16◦, 17◦, and 30◦ (black circles) and calculated from the

refined model (red line) are shown top to bottom. The Ti L2,3 edge is shown in finer detail in

(b). All data shown were considered in the refinement of this model. The resulting spectra for the

imaginary part of the atomic scattering factors, f ′′, are shown in (b) for Ti and (c) for O, along

with the step functions from the tabulated data for that edge for comparison.

440 450 460 470 480 490

(c)

40

80

120

160Bulk

Surface

500 510 520 530 540 550 560

(d)

2

4

6

8

10
Bulk

Surface

440 460 480 500 520 540 560

10-5

10-4

10-3

10-2

(a)

455 460 465 470
10-4

10-3

(b)

hν (eV)

R
e
fl
e
ct
iv
it
y

f ′′ (e
le
ctro

n
s)

19



TABLE I. Refinement details for each of the models considered. Those parameter values marked

with an ∗ were held fixed during refinement.

Model #1 Model #2 Model #3a Model #3b

Surface Layer Thickness (Å) - 4.933 9.539 9.622

Surface Layer Roughness (Å) - 3.296 3.928 3.477

Surface Layer Density (g/cm3) - 1.674 1.057 1.073

Surface Layer Composition - C∗ C∗ C∗

STO Surface Layer Thickness (Å) - - 21.653 21.242

STO Surface Layer Roughness (Å) - - 2.727 2.424

STO Surface Layer Density (g/cm3) - - 5.13∗ 5.13∗

STO Surface Layer Composition - - Sr1.252Ti1O3.252 Sr1.238Ti1O3.238

STO Bulk Layer Thickness (Å) ∞∗ ∞∗ ∞∗ ∞∗

STO Bulk Layer Roughness (Å) 10.603 5.423 9.346 6.745

STO Bulk Layer Density (g/cm3) 5.13∗ 5.13∗ 5.13∗ 5.13∗

STO Bulk Layer Composition SrTiO∗
3 SrTiO∗

3 SrTiO∗
3 SrTiO∗

3

Figure of Merit

(∑[
Yobs−Ycalc

Yobs

]2)
0.0368 3.258 5.344 3.518

Number of Parameters 221 302 307 607

Number of Data Points 224 1356 1695 1695
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