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Using National Survey Data to 
Estimate Lifetimes of Residential 
Appliances  
 
ABSTRACT  

This article summarizes a rigorous method for estimating the lifetimes of household 

appliances. The method utilizes data from public surveys regarding appliances in 

residences combined with manufacturer data on historical shipments. Errors inherent in 

the survey sampling and analytical methods also are examined. Average lifetimes are 

estimated for residential central air-conditioners, heat pumps, furnaces, boilers, water 

heaters, room air-conditioners, refrigrators, and freezers.   

INTRODUCTION 

Accurate estimates of residential appliance lifetimes are necessary for developing 

strong regulatory policies and effective voluntary programs. To date, only informal 

estimates, based on the experiences of manufacturers and installers, have been developed 

to describe the lifetimes of U.S. residential appliances. This article describes a rigorous 

method of determining the lifetimes of appliances based on data from public surveys 

regarding the presence of appliances in residences combined with manufacturer data on 

historical shipments. This article describes the successful application of the method to 

estimate lifetimes for residential central air-conditioners, heat pumps, furnaces, boilers, 

water heaters, room air-conditioners (RACs), refrigerators, and freezers.  

GENERAL METHODOLOGY AND ASSUMPTIONS 

The method described here applies a survival function to the number of 

appliances shipped in a given past year in order to estimate the number of appliances still 

in use in a future year. The parameters of the survival function are chosen so that the 

calculated number of appliances still in use matches the number of appliances reported as 

being in use in a survey performed that year. Suppose, for example, that manufacturers 

report having shipped 100,000 furnaces between 1980 and 1990. If a 2000 survey 

indicates that 80,000 households have a furnace that is between 10 and 20 years old 

(corresponding to the 1980–1990 shipment period), then 80% of furnaces aged 10–20 

years are still in use, and 20% have been retired.   

Data Sources 

The method described in this article relies on publicly available data about appliance 

shipments and the numbers of in-use appliances in stock. Shipments data were obtained 

from the Association of Home Appliance Manufacturers and the Air-Conditioning, 

Heating and Refrigeration Institute.  Information on the number of appliances in use in 

various years was derived from the Energy Information Agency’s (EIA) Residential 
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Energy Consumption Survey (RECS 1990, 1993, 1997, 2001, 2005) and the Census 

Bureau’s American Housing Survey (AHS 1991, 1993, 1995, 1997, 1999, 2001, 2003, 

2005, 2007). 

Assumptions 

The following assumptions are necessary to evaluate the survival characteristics of an 

appliance.  

 

1. The survival function appropriate to an appliance type does not change over time. 

2. The survival function is independent of other household factors (such as household 

size or region). 

3. RECS survey respondents accurately estimate the ages of their appliances. 

4. AHS accurately represents the stock of in-use appliances.  

5. The historical shipments data are accurate. 

 

By combining household survey results with historical shipments data, the fraction of 

appliances of a given type and age that remain in operation can be estimated. This 

survival function provides an average and median appliance lifetime. 

The Weibull Distribution 

The Weibull distribution (Weibull 1951) is a probability distribution function of wide 

applicability that was introduced more than five decades ago. Weibull states that the 

reasoning behind the development of the distribution function “may be applied to the 

large group of problems, where the occurrence of an event in any part of an object may 

be said to have occurred in the object as a whole, e.g., the phenomena of yield limits, 

statical or dynamical strengths, electrical insulation breakdowns, life of electric bulbs, or 

even death of man, as the probability of surviving depends on the probability of not 

having died from many different causes” (pg. 293). Over time, this equation has been 

applied to estimates ranging from the fatigue-life of steel to the sensory shelf-life of 

ready-to-eat lettuce (Araneda et al. 2008). The Weibull distribution is often used in 

analyses of lifetime and reliability of mechanical and electronic equipment (Mahzar et al. 

2007). The distribution is capable of fitting a  broad range of shapes of data. Many 

common distributions, such as normal, exponential, or Rayleigh, are exact or 

approximate matches of special forms of the Weibull distribution (Abernethy 2006). In 

the context of appliance survival rates, a Weibull distribution function has been used 

successfully instead of normal or linear distributions (Welch and Rogers 2010; Young 

2008; Fernandez 2001). This article uses a Weibull distribution as the appropriate 

survival function to describe lifetimes of residential appliances. An important innovation 

here is using data from several surveys across many years. 
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The cumulative Weibull distribution takes the following form: 
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where 

 

P(x) is the probability that the appliance is still in use at age x; 

x is the appliance age; 

α is the scale parameter, which corresponds to the decay length in an exponential 

distribution; 

β is the shape parameter, which determines the way in which the failure rate changes 

through time; and 

θ is the delay parameter, which provides for a delay before any failures occur. 

 

When β = 1, the failure rate is constant through time, producing a cumulative 

exponential distribution. In the case of appliances, β commonly is greater than 1, 

reflecting an increasing failure rate as appliances age.  An example of such a survival 

curve is shown in Figure 1. 
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Figure 1. Sample Weibull survival curve. 
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PREPARING THE DATA  

RECS asks residents of occupied primary housing units about the presence of various 

appliances and the age, within a range, of each appliance. For all of the appliances 

discussed in this article, RECS asks respondents to place the appliance’s age in one of 

five or six bins. Table 1 shows RECS data taken from the 2005 RECS survey combined 

with shipments data for central air-conditioning systems. 

 

Table 1. Data on central air-conditioning systems (RECS 2005). 

Age of unit 
Corresponding 

year shipped 

Number of 

households 

represented 

Number of 

units shipped 

< 2 years 2004–2005               9,103,214  10,890,900 

2 to 4 years 2001–2003             11,103,845  13,724,151 

5 to 9 years 1996–2000             16,586,980  21,690,627 

10 to 19 years 1986–1995             17,028,647  27,634,578 

Over 20 years 1985 or prior               6,825,340  31,203,337 

As old as the home N/A               5,214,930   
 

Based on the 2005 RECS, in that year, the U.S. housing stock contained 65,862,956 

central air-conditioning units of various ages. By comparing those numbers to shipments 

data that correspond to each age bin, five data points are obtained about appliance 

replacement rates. Using RECSs conducted in 1990, 1993, 1997, 2001, and 2005, 25 data 

points are obtained for each appliance considered. 

Scaling Data for Number of Households  

RECS has been conducted every three or four years for the past several decades. 

AHS, conducted every odd year, samples more U.S. households (56,650 in 2005, 

compared to 4,382 for RECS). AHS does not record appliance age, however, but 

provides the total number of housing units (including unoccupied homes and second 

homes) that contain a given appliance type. Therefore, RECS data, excluding unoccupied 

homes and second homes, were scaled to match the number of households AHS reports 

as having a particular appliance. Including appliances in vacant or second homes enables 

the calculation to more closely match total recorded shipments.   

Scaling Data for Different Time Frames 

AHS is conducted in the middle of a year, RECS is scaled to July of the survey year, 

and shipments data are provided for a calendar year. These differing time frames are 

corrected for by adjusting the surveys to align with calendar-year shipments data. For 

appliances that are installed directly in new construction, such as central air-conditioners 

and heat pumps, units are added to the youngest age bin in RECS to represent homes 

constructed in the latter half of the survey year. The number of newly constructed units 

from U.S. Census data are obtained, and they include only new construction known to 

have installed the appliance type in question. Because RECS data for the youngest age bins tend to have 

a large scatter relative to the shipments in those years, the first two appliance age bins are combined. 



5 

 

Because it is unusual for appliances to fail during their first years, combining bins should not affect the 

shape of the distribution.  

REGRESSION ANALYSIS 

To determine the Weibull function parameters, a least-squares fit of the surviving 

stock is used, given by the data from RECS or AHS, to the modeled surviving stock, 

which is derived from the shipments data and the survival function. 

To control for the differences in sample size between the RECS and AHS, each 

residual is weighted by the inverse of its variance, which results in the following 

expression for the sum of squares of the errors: 
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where 

 

i is the identifier for an age bin from a single RECS year; 

y1 is the identifier for a RECS year; 

y2 is the identifier for an AHS year; 

RECSi is the number of appliances reported by RECS in bin i; 

AHSy is the total installed stock of appliances as measured by AHS in year y; 

Survi,y is the number of surviving appliances in bin i and year y predicted by the Weibull 

distribution (defined by α, β, and θ), applied to historical shipments data; 

σi,y1,RECS is the statistical standard error due to sampling (square root of the variance) of 

the RECS data point for bin i in year y1; and 

σi,y2,AHS is the standard error of the AHS data point for year y2. 

 

Then the parameters α, β, and θ are determined by minimizing the sum of the squares 

of the errors as calculated by Equation 2. One limit is placed on the parameters: that the 

delay θ must be greater than or equal to zero. Restricting the delay to be zero or greater 

allows us the matching of the boundary condition that shipments equal sales (and 

therefore the stock at age zero). It is noted that the lifetime calculating using this method 

is the appliance lifetime from the standpoint of the physical object, rather than the 

lifetime of an appliance purchase from a consumer’s standpoint. From the consumer’s 

standpoint, an appliance that fails at a very young age will commonly be replaced under 

warranty, so economic calculations from their standpoint (such as life-cycle cost 

calculations) should use a lifetime function with zero possibility of failure before the end 

of the warranty period. Appliances replaced under warranty are included in the 

manufacturer shipments used in this article, so by allowing the delay parameter in the fits 

to be zero, the physical lifetime of each appliance is consistently chosen for evaluation 

rather than the consumer’s economic lifetime.  

In this regression analysis, the sampling error is used to weight the RECS and AHS 

residuals, which results in assigning more weight to the AHS survey because of its larger 

sample size. See the “Error Modeling and Nonsampling Errors” section for a discussion 

of nonsampling errors. 
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Survival Function and Parameters 

Based on Equation 1, the median age M can be written as 
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In these equations, as in Equation 1, α is the Weibull scale parameter and β is the 

Weibull shape parameter. Γ is the Gamma function. 

By substituting Equation 3 into Equation 1, the survival function can be defined in 

terms of the more practical parameters of the distribution: delay θ, shape β, and median 

M, as done in the rest of this article. In this case,  
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One advantage of this formulation is that it simplifies the estimation of the standard 

error in the median M, as described below. 

Least-squares fitting produces estimate of the value of the parameters of the curve fit 

to the data. By varying the values of the parameters slightly away from the best-fit values 

and examining the resulting change in the residuals, the sensitivity of the fit to each 

parameter can be evaluated. This process, in turn, reveals the best estimate of the 

variance in the best-fit parameter values. It can also reveal covariance between pairs of 

parameters. 

The function to which survey data are fit, Equation 5, is nonlinear in its parameters, 

so the Jacobian must be used first to build a linear approximation around the best-fit 

parameters. The Jacobian takes the form of a matrix of constants having a number of 

rows equal to the number of observations to be fit (and therefore the number of residuals) 

and a number of columns equal to the number of parameters (three in this case). Each entry Jij 

in the Jacobian is defined as 
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Where ri is the ith residual, and πj is the jth parameter.  

This partial derivative is calculated numerically by varying each parameter slightly 

and calculating the change in the values of the residuals. The matrix WJJ T
is then 

constructed,where [W] is the matrix of weights assigned to each observation. The weights 

are, as in the fit itself, the inverses of the variances of the measurements (smaller weights 

correspond to less certain measurements): 
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where σi
2
 is the variance for observation i, either from RECS or AHS. Only the variance 

due to sampling error was used because of the difficulty in quantifying the nonsampling 

error (see the “Error Modeling, Nonsampling Errors” section). 

Then the three-by-three matrix WJJ T
is inverted to calculate the covariance matrix: 
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From Equation 8, the variance (and therefore the standard error) is determined for 

each parameter (VM, Vβ, Vδ), as well as the covariance for each pair of parameters (CMβ, 

CMδ, and Cβδ). 

RESULTS: APPLIANCE LIFETIMES 

This section presents lifetimes estimated using the method described above for each 

type of appliance, along with values for the parameters of the Weibull survival function 

for that type of appliance. 

Central Air-Conditioners 

Table 2 shows the parameters of the Weibull survival function that, when applied to 

total shipments of central air-conditioners, give the best match of the stock of central air-

conditioners by age bin in RECS and AHS data. The best-fit survival function is 

characterized by parameters α = 21.5, β = 2.09, and θ = 0.0. The survival function for 

central air-conditioners indicates a median lifetime of 18.0 years and a mean of 19.0 

years. 

 

Table 2. Results for central air-conditioners. 

Number of 

observations: 29 Best fit Error 

Median 18.04 0.2817 

Shape 2.094 0.2706 

Delay 0.000 1.8536 

Scale 21.49  

Mean 19.03  
 

A major uncertainity in calculating the lifetimes of central air-conditioners is the 

fraction of units used in commercial applications, such as small, stand-alone businesses 

or homes converted to businesses. The method of this study depends on comparing total 

shipments with the residential stock. If significant shipments are not included in the 

residential stock, the resulting lifetime estimates could be artificially short. For the central 

air-conditioner results given above, it was assumed that 95% of the appliance stock is in 

residential units and, thus, is captured by RECS and AHS. If it was assumed that 100% of 

the stock was in residential applications, the median lifetime would decrease to 16.5 

years; if it was assumed that 90% of the stock is in housing units, the median lifetime 
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would increase to 19.7 years. This uncertainty is greater than the statistical uncertainty in 

the best estimate resulting from sampling error and parameter uncertainty in the least-

squares fitting process, for which the standard error is estimated to be 0.3 years. 

It also is possible that the fraction of shipments to nonresidential applications has 

changed over time. Lacking any data to support this possibility, however, a simple, fixed 

fraction was assumed, consistent with the opinions of industry experts. 

Heat Pumps 

No single realistic survival function easily fits the shipment and stock history for 

residential heat pumps. Both AHS and RECS show the residential stock of heat pumps 

virtually unchanging from 1997 to 2003, while annual shipments grew substantially. 

AHS shows stock ranging from 13.8 million in 1997 to 14.7 million in 2003, followed by 

a sharp increase to 16.5 million in 2005; RECS reports 10.5 million in 1997, 11.5 million 

in 2001, and 12.1 million in 2005. During this period, shipments grew from 1.06 million 

in 1997 to 1.52 million in 2003 and 2.02 million in 2005. If attempting to fit all of these 

data with a single survival function, unchanging over time, the resulting function is 

unrealistic, approaching a step function at an age of approximately 15.5 years. While this 

average age at retirement may be reasonable, this function is dramatically inconsistent 

with the observed age distribution from RECS alone, which reports significant stock over 

age 20.  

In order to build a consistent survival function that represents current market and 

consumer choices,  the input data was restricted to AHS and RECS only from 2001 to 

2007 (the most recent data available). Using these surveys alone, a survival function was 

calculated with a median age at returement of 14.6 years and a mean lifetime of 16.8 

years. The parameters are shown in Table 3. 

 

Table 3. Results for heat pumps. 

Number of 

observations: 12 Best fit Error 

Median 14.64 0.884 

Shape 1.525 0.525 

Delay 0.000 3.734 

Scale 18.62   

Mean 16.77   
 

The challenge of finding a realistic single survival function for heat pumps illustrates 

some of the difficulties faced when applying this lifetime-calculation technique in the 

face of data indicating more complex consumer behavior. The large discrepancy between 

the reported stock of heat pumps between AHS and RECS (AHS reports more than 30% 

more heat pumps than RECS in some years) indicates either systematic differences 

between the two surveys or a large stock of heat pumps in housing units that are not 

primary residences. Lacking reliable data regarding the split of shipments between 

residential and commercial applications, and how that split may have changed over time, 

prevents the reaching of conclusions regarding the possibility of a change in consumer 
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behavior (or mechanical lifetime) between 1995 and 2005, which could explain the sharp 

rise in shipments while the stock remained almost constant. 

Gas Furnaces  

Table 4 shows the best-fit parameters for the Weibull survival function of gas 

furnaces. The best-fit survival function is characterized by parameters α = 26.7, β = 2. 22, 

and θ = 0.0. The survival function for residential gas furnaces indicates a median lifetime 

of 22.6 years and a mean of 23.6 years. 

 

Table 4. Results for gas furnaces.  

Number of 

observations: 29 Best fit Error 

Median 22.61 0.326 

Shape 2.218 0.320 

Delay 0.000 2.542 

Scale 26.68  

Mean 23.63  

Gas Boilers 

Table 5 shows the best-fit parameters for the Weibull survival function of gas boilers. 

The best-fit survival function is characterized by parameters α = 25.3, β = 1.00, and θ = 

0.0. The survival function for residential furnaces indicates a median lifetime of 17.5 

years and a mean of 25.3 years. 

 
Table 5. Results for gas boilers. 

Number of 

observations: 29 Best fit Error 

Median 17.54 0.721 

Shape 1.000 0.148 

Delay 0.000 2.188 

Scale 25.31  

Mean 25.31  

Gas and Electric Storage Water Heaters 

Table 6 and 7 show the best-fit parameters for the Weibull survival function of gas 

and electric storage water heater, respectively. The best-fit survival function is 

characterized by parameters α = 11.6, β = 1.31, and θ = 3.2 for gas storage water heaters 

and α = 13.2, β = 1.17, and θ = 0.0 for electric storage water heaters and. The survival 

function for gas storage water heaters indicates a median lifetime of 12.0 years and a 

mean of 13.9 years. The survival function for electric storage water heaters indicates a 

median lifetime of 9.6 years and a mean of 12.5 years. 
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Table 6. Results for gas water heaters. 

Number of 

observations: 29 Best fit Error 

Median 11.99 0.117 

Shape 1.307 0.061 

Delay 3.196 0.436 

Scale 11.64  

Mean 13.93  
 

Table 7. Results for electric water heaters. 

Number of 

observations: 29 Best fit Error 

Median 9.65 0.068 

Shape 1.174 0.020 

Delay 0.000 0.020 

Scale 13.19  

Mean 12.48  

 

Shorter lifetimes for electric water heaters compared to gas water heaters is somewhat 

unexpected, as electric water heaters have fewer mechanical components to fail. Possible 

explanations of this difference might be due to houses with electric water heaters having 

poorer water quality or using different amounts or temperatures of hot water. 

RACs 

One specificity of room air-conditioners (RACs) is that units are shipped to both the 

commercial and the residential sectors. Because the Commercial Building Energy 

Consumption Survey (CBECS 2003), also performed by the EIA, does not ask businesses 

how many RACs they have or the age of the units, several assumptions must be made to 

calculate the number of RACs shipped to commercial enterprises. Based on CBECS data 

about the total commercial square footage that is cooled by RACs, and assuming an 

average cooling capacity of 2.9 kW and an average cooling load of 1 kWh/m
2
, shipments 

are found to be split 88% for residential applications and 12% for commercial. 

Investigation of previous CBECSs produced similar results. 

For RECS, only the age of the most used RAC in a household is recorded. For this 

study, it is assumed that any additional units in a household were acquired at the same 

time as the most used unit.   

The results for RACs, based on the above assumptions, are given in Table 8. 

 

 

 

 

 

 

 

 



11 

 

Table 8. Primary results for (RACs). 

Number of 

observations: 30 Best fit Error 

Median 11.08 0.089 

Shape 1.442 0.040 

Delay 0.000 0.279 

Scale 14.29   

Mean 12.96   
 

The results in Table 8 were generated using AHS survey data from 1989 to 2007 and 

RECS survey data from 1990 to 2005. Although the overall agreement between the 

model and the data is good, having a coefficient of correlation of 94%, the number of 

RACs calculated to be installed for 2007 is about 30% higher than the 2007 AHS survey 

data. This overestimation of the stock begins with the 2003 AHS and occurs in the 2005 

RECS as well (for which the model overestimates the reported stock by 18%). This result 

led to the conclusion that the apparent lifetime of RACs has changed in recent years. As 

observed from RECS, most of the stock fits in the age bins of one to eight years. Based 

on the stock ages, it is estimated that the change in longevity happened in the late 1990s. 

Tables 9 and 10 give the resulting fits if data collected before 2000 and those collected 

after 2000 are seperated. 

 

Table 9. Results  for RACs (Based on 

Surveys Between 1989 and 2000). 

Number of 

observations: 18 Best fit Error 

Median 12.91 0.130 

Shape 1.067 0.090 

Delay 8.000 0.562 

Scale 6.92   

Mean 14.75   
 

Table 10.  Results  for RACs (Based on 

Surveys After 2000).  

Number of 

observations: 12 
Best fit Error 

Median 8.36 0.17 

Shape 1.08 0.06 

Delay 0.00 0.51 

Scale 10.27   

Mean 11.27   
 

The tables indicate that the apparent mean lifetime decreased by 3.5 years between 

the two periods. The reduction in lifetimes could have many causes, from technical 
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failure to consumer behavior or replacement programs. The methodology here does not 

enable the identification of the factors that may induce changes in calculated lifetimes. 

The conclusions are limited to what can be observed by comparing the shipments data to 

the surveyed stocks.  

This case is an example of a challenge to our assumption of constant lifetime through 

the period of study (see “Discussion” section).  

Refrigerators and Freezers 

Refrigerators follow more complex lifetime trends than do many other residential 

appliances. AHS records only whether a housing unit contains a refrigerator, not whether 

it has more than one unit. Therefore, it is difficult to compare total stock as recorded by 

AHS to calculated stock. In addition, AHS may record a housing unit as containing a 

refrigerator when it contains a compact, rather than standard-sized, appliance. RECS, on 

the other hand, provides the age and volume of both first and second refrigerators. These 

factors led to the use of AHS data only to scale the number of houses with standard-sized 

primary refrigerators found in RECS. AHS data was not used to develop a separate set of 

data points. Unlike the appliances discussed previously, most refrigerators are not 

installed during construction. Therefore, the content of the bins were adjusted for half a 

year of retirements and replacements (to account for survey timing) but do not assume 

that new homes completed in the latter half of a year contain installed refrigerators. 

Table 11 shows the parameters of the Weibull survival function that, when applied to 

total shipments of refrigerators, give the best match of the stock of refrigerators by age 

bin in the RECS data. The Weibull distribution is characterized by parameters α = 11.7, β 

= 1.27, and θ = 8.87. This distribution indicates a mean refrigerator lifetime of 19.8 years 

and a median lifetime of 17.7 years. 

 

Table 11.  Results for refrigerators. 

Number of 

observations: 20 
Best fit Error 

Median 17.68 0.357 

Shape 1.272 0.187 

Delay 8.874 1.141 

Scale 11.75  

Mean 19.77  
 

The same methodology was applied to standard-sized stand-alone freezers. The best-

fitting Weibull distribution is characterized by parameters α = 17.9, β = 1.89, and θ = 

6.46. This distribution indicates a mean freezer lifetime of 22.4 years and a median 

lifetime of 21.2 years. The parameters for freezers are shown in Table 12. 
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Table 12.  Results  for freezers. 

Number of 

observations: 20 
Best fit Error 

Median 21.21 0.706 

Shape 1.885 0.730 

Delay 6.459 4.746 

Scale 17.92  

Mean 22.36  
 

The process by which first refrigerators are converted to second refrigerators was also 

modeled as a Weibull process. Rather than comparing second refrigerators to shipments, 

they are compared with the total installed stock of refrigerators of a certain age, as 

measured by RECS.  

That is, this Weibull distribution models not a “survival function” but a “conversion 

function,” for which an offset at time zero was added. The offset considers the fraction of 

refrigerators bought for use as second refrigerators as having been converted from first to 

second units immediately at purchase. To the extent that this consumer behavior exists, it 

appears as a nonzero offset. The conversion function is shown in Equation 9: 
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where 

 

C(x)is the probability that the refrigerator has been converted to a second refrigerator at 

age x; 

x is the refrigerator age; 

α is the scale parameter, which corresponds to the decay length in an exponential 

distribution; 

β is the shape parameter, which determines the way in which the conversion rate changes 

through time; and 

φ is the offset parameter, which is the fracton of refrigerators that are purchased to be 

second refrigerators. 

 

Here AHS is not used to scale or adjust RECS, because AHS provides no data on the 

number of households that have more than one refrigerator. 

Table 13 shows the best fit of conversion to second refrigerators for a Weibull 

distribution. The best-fit Weibull parameters are α = 53.5, β = 1.83, and φ = 0.049. The 

offset parameter indicates a direct conversion rate of 5% upon purchase. Close to 14% of 

surviving refrigerators are converted to second refrigerator status before they reach age 

15. 
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Table 13.  Results for second refrigerator. 

Number of 

observations: 20 

Best fit Error 

Scale 53.449 4.424 

Shape 1.827 0.160 

Offset 0.049 0.004 

Median 41.96  
 

The high median age at conversion is a reflection of the fact that conversion of first 

refrigerators to second refrigerators does not happen regularily. Many first refrigerators 

do not survive long enough to be converted to a second refrigerator.  

ERROR MODELING AND NONSAMPLING ERRORS 

RECS utilizes a complicated survey method that engenders numerous possible errors 

beyond statistical sampling error. For the proposed method to produce rigorous results, 

several assumptions are made regarding those additional errors. First, it is assumed that 

the additional sources of errors do not lead to bias in the estimation method. Second, it is 

assumed that those errors that do not scale with the sample size in the same way that the 

statistical error does are small. If the nonsampling errors scale with sample size in the 

same way that sampling errors do, then they do not affect the relative weighting of RECS 

bins, and the same Weibull distribution is the best fit. Such errors would, however, 

change the error estimates for the Weibull parameters (see “Survival Function and 

Parameters” Section). 

Because the AHS data display a relatively small variance, and thus a smaller expected 

error, than do the RECS data, the AHS data are weighted more heavily. As with RECS, 

the estimates of statistical sampling error from AHS are used to account for the sample 

size. AHS, like RECS, encompasses various sources of error that are not captured by the 

sampling error alone, and the same assumptions are made regarding those errors as for 

the RECS data. 

DISCUSSION  

The analysis described herein yields predictions that align reasonably with what one 

might expect regarding normal consumer behavior and typical appliance lifetimes. It 

differs considerably, however, from long-standing estimates of appliance lifetime 

established by industry consensus. Appliance Magazine’s Annual Portrait of the U.S. 

Appliance Industry (2009) includes estimates of various appliance lifetimes based on a 

wide-ranging survey of appliance manufacturers, including engineers, designers, and 

product managers. These lifetime estimates have been generally accepted for policy 

purposes and are used for example in the lifecycle cost calculations by the U.S. 

Department of Energy for appliance energy efficiency standards (DOE 2007). The results 

of that survey are given in Table 14 and compared with the results obtained using the 

method of this study.  
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Table 14. Comparison of estimated appliance lifetimes. 

Product 
Appliance 

Magazine 

Median 

from this 

Study 

Mean from 

this Study 
Difference* 

Freezer 11 21.21 22.36 103% 

Refrigerator 12 17.68 19.77 65% 

Water Heater, Electric 13 9.65 12.48 -4% 

Water Heater, Gas 11 11.99 13.93 27% 

Room Air-

Conditioning 
9 

8.36 11.27 25% 

Central Air-

Conditioning 
11 

18.04 19.03 73% 

Boiler, Gas 20 17.54 25.31 27% 

Furnace, Gas 15 22.61 23.63 58% 

Heat Pump 12 14.64 16.77 40% 

* Percent change between Appliance Magazine and mean from this study.  

 

Table 14 shows that for most of the appliances outside of electric water heaters, a 

longer lifetime is found than what is usually accepted by consensus.  This means that 

inefficient old appliances are staying in the stock longer than expected and, therefore, 

that energy efficiency policies have a lower impact than previously assumed. 

In order for others to use the results of this article, the lifetime is described by a 

constant function over time. As seen in the case of RACs, this is not always the case. A 

component of time variability could have been added to the equation to take into account 

these observations, even though there is less confidence in predicting these effects in the 

future.  

SUMMARY AND CONCLUSIONS 

The analysis described herein has been successfully used to estimate the survival 

function for several residential appliances. The analysis rests on several important 

assumptions. The first is that a Weibull distribution is the correct distribution to use for 

appliance lifetimes. Although the Weibull is the standard distribution used for analyzing 

lifetimes, there is no guarantee that it reflects actual consumer behavior. The second 

assumption is that consumer behavior and appliance lifetimes have not changed through 

time. That is, data from the 1990 and 2005 RECS or the 1991 and 2005 AHS can be 

compared as equals. Limiting the analysis to only recent surveys would result in least-

squares fits based on only a handful of data points. Assuming unchanging appliance 

lifetimes expands and enriches the available data. 
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