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ABSTRACT

The Krauklis wave is a slow dispersive wave mode that
propagates in a fluid layer bounded by elastic media. In a
model of alternating fluid and elastic layers, two interface
waves can exist at low frequencies: The first wave propa-
gates mostly in the elastic layer and has little dispersion,
while the second wave can have strong dispersion and
propagates as a Krauklis wave for some parameter combi-
nations. Analytical conditions predict appearance of the
Krauklis wave for higher frequencies and low porosities.
Interface-wave velocities depend on model porosity, which
potentially can be used for fracture mapping.

INTRODUCTION

Propagation of waves in a system of fractures filled with fluid has
been considered in many publications (Rytov, 1956; Brekhovskikh,
1980; Shoenberg, 1983, 1984; Molotkov, 2001; Gurevich, 2002;
Ciz et al., 2006). When fractures are multiple, parallel, and thin,
then two types of interface quasicompressional waves can propa-
gate along the fracture surfaces: one is mostly associated with the
elastic layers, the other with the fluid layers (Brekhovskikh, 1980).
Molotkov (1988, 2001) has reported that not just two, but three dif-
ferent quasicompressional waves can propagate along a stack of
fluid-filled fractures. Because such a statement contradicts pre-
viously obtained results, we must revisit the considered problem.
In addition to this motivation, a high-amplitude dispersive fluid
wave, which popagates along a single fluid layer, causes a special
interest (Goloshubin et al., 1993, 1994; Korneev et al., 2009;
Frehner and Schmalholz, 2010). This wave was first reported by
Krauklis (1962)), who, in studying single fractures, found its ana-
lytical form and described its main properties, such as dominant
polarization along the walls, high dispersion, and a propagation ve-
locity going to zero at the zero frequency limit. Independently,
Lloyd and Redwood (1965) and later Paillet and White (1982)

found this wave numerically, as a root of the correspondent deter-
minant for a linear system representing boundary conditions. Since
then, many authors have reported on interesting properties of this
slow fluid wave, including its high-amplitude and its central role in
wave propagation within fractures (Ferrazzini and Aki, 1987;
Groenenboom and Fokkema, 1998; Groenenboom and Falk,
2000, Ziatdinov, et al., 2006; Korneev, 2008; Korneev et al.,
2009; Derov et al., 2009; Frehner and Schmalholz, 2010). Some
authors (Bell and Fletcher, 2004; Elliott, 2007) suggest that these
slow fluid waves play a key role in hearing physiology. In the lit-
erature, this wave is known by different names: “slow fluid wave”
(Krauklis, 1962; Ferrazzini and Aki, 1987), “crack wave” (Chouet,
1986), “Stoneley wave” (Tang and Cheng, 1988), “Stoneley guided
wave” (Korneev, 2008; Frehner and Schmalholz, 2010), ”symmetric
Lloyd-Redwood (SLR)” or “squirting wave” (Bell and Fletcher,
2004; Elliott, 2007).
Today, there is a growing consensus among the specialists

(B. Kashtan, L. Molotkov, A. Bakulin, G. Maximov, G. Goloshu-
bin, M. Frehner, and S. Nakagawa, personal communications,
2011) to name the slow fluid wave within a fracture after Pavel
Krauklis, who found it first in 1962. Remarkably, Krauklis (1962)
presented in his original paper an analytical solution for this wave
for a model containing elastic halfspaces with different material
properties, whereas up to now, researchers dealt with models
that accounted just for the same material for both fracture walls.
In 2008, Krauklis devoted numerous papers to slow waves, studying
their propagation and attenuation in different models. In the follow-
ing, I will use the term “Krauklis wave” for a slow dispersive
wave that propagates in a fluid-saturated layer bounded by elastic
media.
The Krauklis wave has been observed in the laboratory (Tang and

Cheng, 1988; Hassan and Nagy, 1997), in field data during hydro-
fracturing (Ferrazzini et al., 1990), and in crosswell seismic
(Goloshubin et al., 1994). Chouet (1996) suggested that low-
frequency seismic tremors taking place before volcano eruptions
can be explained by this wave propagating in magma conduits.
Thenatural questions are:Does theKraukliswave exist in a layered

fluid-elastic medium, and what are the conditions of its existence?
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In this paper, I demonstrate that just two quasicompressional
low-frequencywaves can propagate along a stack of fluid-filled frac-
tures. At the low-frequency limit, neither wave shows dispersion, and
their propagation behavior depends on porosity. When the fractures
are well-separated and the fluid fracture waves experience little
interference, the second fluid wave propagates as a Krauklis wave.

THEORY

Consider an infinite model of alternating horizontal homoge-
neous layers (Figure 1), wherein a layer of the first kind (j ¼ 1)
has thickness h and consists of a nonviscous fluid, whereas the ad-
jacent layers of the second kind (j ¼ 2) are elastic and have thick-
ness d. This model can be characterized by porosity p ¼ h∕ðhþ dÞ.
Derivation of the equation for finding the phase velocities V of

waves propagating along the layers is presented in Appendix A
(equation A-37). After substitution of some notations, this equation
can be put in the form

ξ1

�ð1 − α2S2∕2Þ2
ξ2

−
1

χ2

�
−
ρ1α

2
S2V

2

4μ2
¼ 0; (1)
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� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
; (2)

ξ2 ¼ − tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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V
VP2

αS2 ¼
V
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; (5)

where angular frequency is ω, fluid density is ρ1, and shear
modulus of the elastic walls is μ2. No restrictions on parameter
values were used for derivation of equation 1. Even when the
radicals in equations 2, 3, and 4 become imaginary, all components
of equation 1 remain real and do not depend on a sign choice for the
radicals.
If the arguments x in all tanhðxÞ functions in equations 23, and 4

are small enough (thin layers) to allow the expansion

tanhðxÞ ≈ x (6)

then equation 1 becomes a square polynomial with respect to V2
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4V2
S2

��
þ qV2
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q ¼ 4

V2
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μ2
ρ1

h
d
¼ 4

μ2
λ1

p
1 − p

; (8)

and the elastic velocities ratio is γ ¼ VS2∕VP2. Equation 7 has two
real roots ~V1 and ~V2 corresponding to two possible waves. Note that
equation 7 contains no frequency as a parameter and, therefore, its
solutions represent nondispersive waves.
When q ≪ 1, signifying a “small porosity” regime, then

V1 ¼ ~V1 ¼ VP2; (9)

with P-velocity in the elastic medium, and

V2 ¼ ~V2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
ρ1

p
1 − p

ð1 − γ2Þ
r

: (10)

When q ≫ 1, signifying a “large porosity” regime, then

V1 ¼ ~V1 ¼ VL ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − γ2Þ

q
VS2 (11)

is the velocity of the symmetric Lamb wave (Lamb, 1917) in an
isolated elastic slab, and

V2 ¼ ~V2 ¼ VP1; (12)

is the velocity in the fluid.
Now, assume that the arguments of all tanhðxÞ functions in

equations 2–4 are large enough to use the asymptotic form

tanhðxÞ ≈�1; (13)

which, for example, can exist at high frequencies. Equation 1 now
has the form

Rþ ρ1V4

4μ2V2
S2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

p ¼ 0; (14)

which is that of a Scholte wave equation (Scholte, 1942), where

R ≡
ð1 − α2S2∕2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2P2
p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2S2

q
: (15)

Equation R ¼ 0 (e.g., for vanishing fluid density) has two physical
solutions in the form of Rayleigh waves (Malischewsky, 2004).
Real parts of the square roots in the equations 14 and 15 should
be chosen positive. Plus and minus signs give solutions correspond-
ingly at the upper and lower layer interfaces. Neither Scholte waves
(a real solution for equation 14) nor Rayleigh waves depend on
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Figure 1. Model geometry of alternating fluid-elastic horizontal
layers.
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frequency, and thus propagate correspondingly with constant
velocities VST and VR

If the expansion 13 is valid for the functions in equations 3 and 4,
and also we can apply the expansion 6 in equation 2 (“thin” frac-
tures between “thick” elastic plates), then we obtain the dispersion
equation for the Krauklis wave

ð1 − α2P1ÞRþ ρ1α
2
S2V

3

2μ2ωh
¼ 0; (16)

which has the solution (Krauklis, 1962; Korneev, 2008)

V2 ¼ VK ≡
�
ωhμ2
ρ1

ð1 − γ2Þ
�1

3

: (17)

Approximations 13 in equations 3 and 4 become satisfied when the
arguments are approximately equal to two, and therefore the con-
dition for existence of solution 17 isffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2S2

q
ωd
2VK

≈
ωd
2VK

> 2: (18)

The transition from the nondispersive solution 10 to the Krauklis
wave takes place when

d
4

�
ω2ρ1

hμ2ð1 − γ2Þ
�1

3

≈ 1. (19)

On the other hand, the condition 6 for equation 2 is approximately
satisfied when

ωh
2VK

≪ 1: (20)

Numerical evaluations suggest that a transition corresponding to
condition 20 occurs when

ωh
2VK

≈ 0.1: (21)

Conditions 18 and 20 signify that the Krauklis wave can exist
only when d ≫ h. At frequencies higher than those defined by con-
dition 20, the Krauklis wave loses its dispersive properties when
crossing the point where the condition 21 is satisfied, and then con-
verts into a Scholte wave.

NUMERICAL RESULTS

The sets of material parameters used in the numerical examples
below are shown in Table 1, with the water parameters used for fluid
and the elastic layers represented by “fast” (VS2 > VP1), and “slow”
(VS2 < VP1) materials. Equation 1 was used for finding exact solu-
tions for velocities V1 and V2, using a numerical root search pro-
cedure. In the following figures, these velocities are plotted together
with model velocities VP1, VP2, and VS2, the Scholte wave solution
VST of equation 14, the solutions ~V1 and ~V2 of equation 7, and with
velocity VK for the Krauklis wave from equation 17. The velocities
V1 and ~V1 practically coincide for all cases. The points where
conditions 19 and 21 become satisfied are marked by vertical ar-
rows with the corresponding labels 1 and 2. Figure 2 shows the

dependence of velocities on frequency for h ¼ 1 mm and
d ¼ 1 m (p ≈ 10−3) for a fast elastic model. The same parameters
were used for the slow elastic model shown in Figure 3. The fast
model was also used for plotting the velocities as functions of model
porosity (Figure 4) for a 100-Hz frequency, and the fixed spatial
period hþ d ¼ 1 m. Figures 2, 3, and 4 do not show the higher
modes appearing at high frequencies (e.g., see Coulouvrat et al.,
1998), which are not a subject of this study.

DISCUSSION

For a wide range of parameters, the interface waves in the
considered layered model have no dispersion at low frequencies.
This might seem somewhat surprising because a single fluid layer
exhibits very strong dispersion for a fluid wave in the form of the
Krauklis wave. Physically, the Krauklis wave is interpreted as the
interaction of the fluid mass and the elasticity of walls, described by
the ratio μ2∕ρ1 (equation 17), resulting from continuity of normal
stress (equation A-15). For a single layer, the deformation of the
walls is caused by the motion of fluid from one side of the elastic
halfspace; however, in the case of the layered model, each elastic
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Figure 2. Phase velocities for the fast (VS2 > VP1) elastic layers.
Shown are: the exact solutions for velocities V1 and V2, model ve-
locities VP1, VP2, and VS2, Scholte wave solution VST of equa-
tion 14, solutions ~V1 and ~V2 of equation 7, and with velocity
VK for Krauklis wave from equation 17. The vertical arrows mark
the points where the conditions 19 (arrow 1) and 21 (arrow 2) be-
come satisfied. The higher modes with cutoff frequencies are not
shown.

Table 1. Material parameters for numerical examples.

Models VP (m∕s) VS (m∕s) Density (Kg∕m3)

Water 1500 0 1000

Elastic fast 4000 2200 2700

Elastic slow 2000 1000 2700
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layer is subjected to the actions of symmetric forces from both sides.
These forces compensate for each other, leaving a small contribu-
tion of elastic forces in the total stress. Krauklis waves appear in the
layered model only when fluid layers are separated far enough when
the interaction of these waves in the middle of elastic layers is neg-
ligibly small. Conditions 18 and 20 give the criteria for Krauklis
waves to exist in the considered model and suggest that such
waves can exist in real rock with preferential fracture orientation.
Moreover, most fracture systems in nature exhibit a fractal charac-
ter: they can be oriented arbitrarily and their thicknesses are also
randomly distributed, leaving little room for perfect symmetry
and self-compensation of fluid waves. It seems likely that the dis-
persive properties of Krauklis waves in rock fractures can be a rather
common phenomenon.
In considering wave propagation problems, it is usually impor-

tant to make the proper choice of signs before the radicals to ensure

the physical meanings of the obtained solutions. However, in the
considered problem for unbounded layered models, the choice of
signs does not affect the solution. It can be readily seen that all
the of equations 2, 3, and 4 do not depend on the radical sign
and remain real even when any of radicals becomes purely imagin-
ary. This fact reflects the infiniteness of the model in which wave
energy has nowhere to leak to. Each layer loses the same amount of
energy that it receives from its neighbors.
Velocity curves for the fast and slow waves (Figures 2 and 3) look

rather similar. In both cases, the fluid wave flattens to a Scholte
wave velocity at high frequencies. The main difference here appears
in the value of VST. For the fast model, VST is slightly less than the
fluid velocity VP1, while for the slow model, it is slightly less than
the shear velocity VS2 in the plate. Therefore, the real root
of the Scholte equation is defined by the slowest velocity of
the model.
The results of this study did not confirm the existence of the three

quasicompressional waves reported by Molotkov (1988, 2001).
Similar to Brekhovskikh (1980), I have found just two waves,
coinciding with wave 1 and wave 3 in Molotkov’s notation. His
wave 2 is a symmetrical Lamb wave, which I obtain as an asymp-
totic solution for the first (fast) wave in the high porosity limit. The
difference in results is likely caused by a difference in methods for
obtaining the solutions. As a starting point, I used the exact solution
in the form of equation A-14. Then I used thin layer assumptions to
obtain the quadratic polynomial (equation 7). Molotkov (2001, page
247) used thin layer limits (h → 0 and d → 0) at the stage of aver-
aging the equations of motion. In doing so, he ignores the boundary
condition for the tangential stress component, arguing that after
applying the limits a computation of derivatives ∂ux∕∂z becomes
undefined because ux is a discontinuous function across the inter-
face (L. A. Molotkov, personal communication, 2011). I find this
argument hard to justify, especially because his results are not fully
supported by the exact formulation used in this paper.
Both of the waves propagating along the stack of fractures show a

strong dependence on the porosity. This property might indicate the
presence of fractures and might possibly be used for evaluation and
mapping of fractures. In low-density fracture zones where
conditions 18 and 20 are satisfied, the dispersive Krauklis wave
can possibly contribute additional information about fracture
properties.

CONCLUSIONS

An alternating fluid-elastic layered model is capable of carrying
two types of quasicompressional interface waves at low frequen-
cies. The first wave propagates mostly in elastic layers and has little
dispersion. The second (fluid) wave can, for some parameter com-
binations, exhibit strong dispersion when propagating as a Krauklis
wave. Such a mode of propagation is even more likely in real frac-
tured rock with a random fracture orientation.
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APPENDIX A

DERIVATION OF DISPERSION EQUATION

Consider a horizontally layered infinite model of alternating
homogeneous layers (Figure 1) in which the layers of the first kind
(j ¼ 1) have thickness h and consist of nonviscous fluid, while the
adjacent layers of the second kind (j ¼ 2) are elastic and have thick-
nesses d. Layers are aligned along the OX axis of the x spatial
coordinate. The OZ axis is orthogonal to the layer interfaces with
the origin in the middle of one of the layers of the first kind. We are
interested in waves propagating along the layer surfaces following
an analogous derivation originally used by Rytov (1956) for a mod-
el with two alternating elastic layers. The time t dependence of the
fields is taken in the form expð−iωtÞ, with angular frequency ω,
and i ¼ ffiffiffiffiffiffi

−1
p

.
Displacements uðjÞ in both layers j ¼ 1, two obey the equations

of motion

ðλj þ μjÞ∇∇ · uðjÞ þ μjΔuðjÞ þ ω2ρjuðjÞ ¼ 0 (A-1)

and can be represented as the sum

uðjÞ ¼ uðjÞP þ uðjÞS (A-2)

where uðjÞP and uðjÞS are compressional and shear components,
respectively. These components obey the equations

∇ × uðjÞP ¼ 0; ∇ · uðjÞS ¼ 0; (A-3)

and relate to potentials φj and ψ j through the following equations

uðjÞP ¼ ∇φj; (A-4)

uðjÞS ¼ ∇ × ðψ jy1Þ; (A-5)

where the unit vector along OYaxis y1 is used. The potentials obey
the equations

Δφj þ
ω2

V2
Pj
φj ¼ 0 (A-6)

Δψ j þ
ω2

V2
Sj

ψ j ¼ 0 (A-7)

describing the longitudinal (P-) waves with velocities

VPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λj þ 2μj

ρj

s
(A-8)

and a shear (S-) waves with velocities

VSj ¼
ffiffiffiffi
μj
ρj

r
; (A-9)

expressed through Lame constants λj, μj and density ρj (j ¼ 1, 2).
For the (fluid) layers of the first kind μ1 ¼ 0, and correspon-
dently ψ1 ¼ 0.
We consider the symmetrical wave modes propagating along the

interfaces with the wavenumbers kx ¼ ω∕V , where V is propaga-
tion phase velocity. In such a case, the potentials have the forms

φ1 ¼ A1ðekx
ffiffiffiffiffiffiffiffiffi
1−α2P1

p
ðzþnlÞ þ e−kx

ffiffiffiffiffiffiffiffiffi
1−α2P1

p
ðzþnlÞÞeikxx; (A-10)

for the layers of the first kind, and

φ2 ¼ A2ðekx
ffiffiffiffiffiffiffiffiffi
1−α2P2

p
ðzþnl−l2Þ þ e−kx

ffiffiffiffiffiffiffiffiffi
1−α2P2

p
ðzþnl−l2ÞÞeikxx;

(A-11)

ψ2 ¼ B2ðekx
ffiffiffiffiffiffiffiffiffi
1−α2S2

p
ðzþnl−l∕2Þ − e−kx

ffiffiffiffiffiffiffiffiffi
1−α2S2

p
ðzþnl−l∕2ÞÞeikxx

(A-12)

for the layers of the second kind, where n ¼ 0;�1;�2; : : : is an
index numerating of the interfaces, and l ¼ hþ d is the spatial
period of the model. In equations A-10, A-11, and A-12 we used
the notations

αPj ¼
ω

kxVPj
¼ V

VPj
; αS2 ¼

ω

kxVS2

¼ V
VS2

; ðj ¼ 1; 2Þ;

(A-13)

and Aj and B2 are constants determined from satisfying the
boundary conditions

uð1Þz ¼ uð2Þz ; (A-14)

tð1Þzz ¼ tð2Þzz ; (A-15)

tð2Þxz ¼ 0; (A-16)

requiring continuity of normal component uðjÞz of displacement
field, continuity of normal component for stress tðjÞzz , and free surface
condition for horizontal stress component tð2Þzx . Expressions for the
fields from equations A-14, A-15, and A-16 have the forms

uðjÞz ¼ ∂φj

∂z
þ ∂ψ j

∂x
; (A-17)

τðjÞxz ¼ μj

�
∂uðjÞx
∂z

þ ∂uðjÞz
∂x

�
; (A-18)

τðjÞzz ¼ ðλj þ 2μjÞ∇ ⋅ uðjÞ − 2μj
∂uðjÞx
∂x

: (A-19)

With such choice of the fields, if we satisfy boundary conditions for
n ¼ 0 (the first interface at z ¼ h∕2), these conditions will be auto-
matically satisfied at all other interfaces.
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Introducing the notations

ς−ðαP1Þ ≡ A1ðekx
ffiffiffiffiffiffiffiffiffi
1−α2P1

p
h
2 − e−kx

ffiffiffiffiffiffiffiffiffi
1−α2P1

p
h
2Þ; (A-20)
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ffiffiffiffiffiffiffiffiffi
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p
d
2 − ekx

ffiffiffiffiffiffiffiffiffi
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p
d
2Þ; (A-21)

ς−ðαS2Þ ≡ B2ðe−kx
ffiffiffiffiffiffiffiffiffi
1−α2S2

p
d
2 − ekx

ffiffiffiffiffiffiffiffiffi
1−α2S2

p
d
2Þ; (A-22)

ςþðαP1Þ ≡ A1ðekx
ffiffiffiffiffiffiffiffiffi
1−α2P1

p
h
2 þ e−kx

ffiffiffiffiffiffiffiffiffi
1−α2P1

p
h
2Þ; (A-23)

ςþðαP2Þ ≡ A2ðe−kx
ffiffiffiffiffiffiffiffiffi
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p
d
2 þ ekx

ffiffiffiffiffiffiffiffiffi
1−α2P2

p
d
2Þ; (A-24)
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ffiffiffiffiffiffiffiffiffi
1−α2S2

p
d
2 þ ekx

ffiffiffiffiffiffiffiffiffi
1−α2S2

p
d
2Þ: (A-25)

Expressions for boundary conditions (after dropping factor
eikxx) have the forms

uð1Þz ¼ kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

q
A1ς

−ðαP1Þ; (A-26)

uð2Þz ¼ kx

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q
A2ς

−ðαP2Þ þ iB2ς
−ðαS2Þ

�
; (A-27)

τð2Þzx ¼ μ2k2x

�
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q
A2ς

−ðαP2Þ − ð2 − α2S2ÞB2ς
−ðαS2Þ

�
;

(A-28)

τð1Þzz ¼ −ρ1V2k2xA1ς
þðαP1Þ; (A-29)

τð2Þzz ¼ 2μ2

�
1 −

α2S2
2

�
k2xA2ς

þðαP2Þ þ 2iμ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2S2

q
k2xB2ς

þðαS2Þ:
(A-30)

Velocities of the waves propagating along the interfaces of the mod-
el are the solutions of the equation

�����������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

p
ς−ðαP1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

p
ς−ðαP2Þ ς−ðαS2Þ

−ρ1V2ςþðαP1Þ 2μ2

�
1 − α2S2

2

�
ςþðαP2Þ 2μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2S2

p
ςþðαS2Þ

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

p
ς−ðαP2Þ ð1 − α2S2∕2Þς−ðαS2Þ

�����������
¼ 0; (A-31)

resulting from boundary conditions.
Introducing notations

ξ1 ¼ tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

q kxh
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

q
; (A-32)

ξ2 ¼ − tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q kxd
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q
; (A-33)

χ2 ¼ − tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2S2

q kxd
2

�
∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2S2

q
; (A-34)

a ¼ ρ1V2

2μ2
; b ¼ 1 −

α2S2
2
; (A-35)

we get ����
ξ1 ξ2 χ2
−a b 1

0 ξ2 bχ2

���� ¼ 0; (A-36)

or

ξ1ðb2χ2 − ξ2Þ þ aξ2χ2ðb − 1Þ ¼ 0: (A-37)
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