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SUMMARY

An iterative finite element time-domain (FETD) method has been developed for simulating
transient electromagnetic fields in 3-D diffusive earth media and has been verified through
comparisons with analytic and finite-difference time-domain solutions. The adaptive time step
doubling (ATSD) method plays an important role in reducing solution run-time by allowing
large time steps in late time when high-frequency electric fields are increasingly attenuated in
the Earth. We demonstrate that for the ATSD method to work effectively, the conductivity of
the air and a drop tolerance of a preconditioner should be carefully selected. The conductivity
of the air should not be too large for accurate simulations but also not too small for avoid-
ing ill conditioning that results in error amplification in the ATSD method. A proper drop
tolerance keeps the eigenvalues of the preconditioned FETD matrices clustered when a time
step size is successively doubled during the ATSD processes, resulting in the convergence of
iterative solutions with the reasonable number of iterations. A rule of thumb for determining
the conductivity of the air and the drop tolerance has been presented. We also present the
simultaneous multiple-sources modelling (SM?) approach. The SM? approach simultaneously
advances the electric fields excited by multiple individual sources in a single time stepping
loop. This approach allows multiple sources to share the same preconditioner in the time

stepping loop and improves the simulation efficiency per a survey line.
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INTRODUCTION

Transient electromagnetic (TEM) methods have been widely used
in a wide range of geophysical research such as deep crustal stud-
ies (e.g. HOrdt et al. 1992; Hordt et al. 2002), energy explorations
(e.g. Strack 1992), environmental investigations (e.g. Auken et al.
2006) and geothermal explorations (e.g. Arnason et al. 2010). In-
terpretations of TEM data in complex geological environments in-
creasingly resort to multidimensional inverse modelling. Because
forward modelling is a major numerical bottleneck for the inverse
modelling, it is important to develop efficient and accurate forward
modelling algorithms.

Introduced by Yee (1966) in electrical engineering, finite-
difference time-domain (FDTD) methods have become one of the
standard tools used to simulate TEM fields in geophysics. Their
popularity is mainly based on the fact that FDTD methods are
relatively easy to implement, easy to use and can provide rea-
sonably accurate solutions over a wide range of geophysics prob-
lems. For example, Goldman & Stoyer (1983) present 2-D finite-
difference modelling of TEM fields in simplified axially symmetric
earth media. Wang & Hohmann (1993) develop a 3-D FDTD al-
gorithm that advances TEM fields in time using an explicit time
stepping approach. Commer & Newman (2004) introduce the par-

allel version of Wang & Hohmann (1993) along with new algo-
rithmic features such as parallel upward continuation procedures
and parallel time stepping. The parallel version has been em-
bedded to a 3-D TEM inversion algorithm (Newman & Commer
2005).

Despite their popularity, the 3-D FDTD methods also have well
known disadvantages. For example, their explicit time stepping ap-
proach requires small time step sizes to satisfy stability conditions
especially when there are large conductivity contrasts. To overcome
this issue, Haber et al. (2004) use an unconditionally stable implicit
time discretization scheme in their finite volume approach (we also
employ an implicit time discretization scheme in this paper). Be-
sides, in FDTD modelling, complex geological structures such as
seafloor bathymetry, reservoirs and salt domes need to be approx-
imated by small stair steps when the structures do not confirm
to rectangular cells. Therefore, this approximation approach can
quickly increase FDTD problem sizes; FDTD problems resulting
from realistic 3-D earth models are usually solved in massively
parallel computing environments (Commer & Newman 2004;
Newman & Commer 2005; Commer et al. 2008). Furthermore,
such stair steps can introduce discretization errors into numerical
modelling results especially when sources and receivers are placed
on or very close to the complex surface described by the stair steps.



To avoid the disadvantages of FDTD methods, finite element
time-domain (FETD) methods can be considered an alternative.
In contrast to FDTD methods, FETD methods are based on un-
structured meshes that allow precise representations of arbitrarily
irregular topography and complex geological structures in efficient
and accurate ways. There have been two major approaches to imple-
ment FETD methods. One approach is to inverse Fourier transform
the finite element frequency-domain solutions into the time domain
(Everett & Edwards 1992; Borner et al. 2008). The other approach
is to directly compute FETD solutions in the time domain by ad-
vancing EM fields (Lee et al. 1997; Um et al. 2010). The former
has been popular in geophysics literature because of its efficiency,
but Um et al. (2010) has also demonstrated that it is possible to
efficiently advance diffusive EM fields directly in the time domain
(1) by reusing the Cholesky factorization (Saad 2003) results and
(2) by adaptively increasing a time step size. For convenience, in
this paper, we call the FETD method of Um et al. (2010) the direct
FETD method, where direct means that the solution is obtained by
the back and forward substitution method after a system matrix of
the FETD method is decomposed by the Cholesky factorization.

Although Um et al. (2010) presents the efficient FETD method
computed directly in the time domain, the FETD method can have
numerical difficulties especially for very large-scale problems (e.g.
a number of unknowns more than a million on a workstation). For
example, as the FETD method employs the Cholesky factorization,
the storage requirement for the factorization is at least several ten
times larger than that for a corresponding FETD system matrix be-
cause of fill-ins. Furthermore, at every time step, the direct FETD
method requires back and forward substitution to advance the EM
fields. Although several parallel back and forward substitution al-
gorithms have been proposed, their nature is basically serial and is
not well suited for parallel computation (Golub & Van Loan 1996).

In this paper, we present an iterative solver version of the FETD
method and examine its numerical characteristics. By using an itera-
tive solver, the Cholesky factorization is replaced by the incomplete
Cholesky preconditioner. A short summary about the Cholesky fac-
torization and the incomplete Cholesky preconditioner can be found
in Appendix. Therefore, as will be shown in this paper, the iterative
FETD method requires much smaller storage requirements than the
direct one. Furthermore, the back and forward substitution are re-
placed by matrix-vector multiplication operations in the iterative
solver. Unlike back and forward substitution, matrix-vector multi-
plication can be efficiently parallelized (Golub & Van Loan 1996).
Although this paper is not about the parallel implementation of the
iterative FETD method, it is important to develop the serial FETD
method such that it can be efficiently mapped onto parallel computer
platforms for future development.

The remainder of this paper is organized as follows. First, we
briefly review the FETD formulation of the electric field diffu-
sion equation and the divergence-free condition. Next, we describe
efficient iterative FETD solution strategies in terms of adaptive
time step control and reuse of a preconditioner. We also introduce
the simultaneous multiple-sources modelling (SM?) approach that
makes it possible to simultaneously advance the electric fields ex-
cited by multiple individual sources in a single time stepping loop.
We follow this by verifying the accuracy of the iterative FETD
method through comparison with analytic and FDTD solutions for
toy problems. Next, we examine the effects of the conductivity of
the air on the iterative FETD method by comparing its accuracy and
performance against the analytic and direct FETD method. We also
present the performance analysis of the iterative FETD method as a
function of a drop tolerance of the preconditioner and propose a rule

of thumb for choosing a drop tolerance for a given earth model. Fi-
nally, to demonstrate the modelling capability of the iterative FETD
method, we simulate EM responses to complex seabed models de-
rived from Society of Exploration Geophysicists (SEG) salt model
(Aminzadeh et al. 1997) and present the performance analysis with
and without SM? approach. Through this paper, we also comment
on the possibility of the efficient parallel implementation of the
presented serial iterative FETD method.

REVIEW ON FETD FORMULATION

In a given computational domain, V, the electric field diffusion
equation is given as
e(r H _ Ojs(r, 1)
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where e(r, t) is the electric field at time ¢ at position r € V,
w,o(r)and js(r, ¢) are the magnetic permeability, the 3 x 3 elec-
tric conductivity tensor and the electric current source, respectively.
Note that, ; within the Earth is assumed to be constant and set to
that of free space. As shown in Um et al. (2010), the development of
the weak statement of eq. (1) requires the multiplication of eq. (1) by
the first-order edge elements, n*(r) (Nédélec 1980, 1986; Jin 2002),
following by the integration over the volume of the computational
domain V.
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where the superscript £ and the subscript i denote the kth tetrahedral
element and the ith edge of the element.

When the set of n‘(r) used in eq. (2) is also chosen as the basis
set, the electric field is expanded as
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where efl () is the unknown amplitude of the electric field on edge

j of the kth element that will be determined by solving a system

of FETD equations. Substituting eq. (3) into eq. (2) provides the

following system of first-order ordinary differential equations:

duk (1)
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Finally, one can discretize eq. (4) using the second-order back-

2 ward Euler method (Hairer & Wanner 1991; Haber ef al. 2004) and



obtain the FETD formulation:
Alet,, = B* (4e’;H —eff) —2Assh,. )

Note that, eq. (9) is the FETD formulation for the kth tetrahedral
element. When systems of FETD equations derived from individual
elements are assembled into a single large system of FETD equa-
tions (i.e. the global version of eq. 9), the superscript & is dropped.
The resulting global system matrix is symmetric positive definite
(SPD). Therefore, we can use the conjugate gradient (CG) method
(Hestenes & Stiefel 1952; Barrett et al. 1994) with an incomplete
Cholesky preconditioner (Golub & Van Loan 1996; Saad 2003).

However, a known drawback of solving eq. (9) with the CG
solver is that the solver can result in poor convergence and spurious
solutions in the static limit. To prevent these problems, we compute a
pure gradient field, V¢, which is added to e to satisfy the divergence-
free condition by cancelling its gradient component (Smith 1996;
Newman & Alumbaugh 2002):

V- (0" + Vgh) =V - jr 1) (10)
Again, the finite element (FE) formulation procedures of eq. (10)
is similar to those of eq. (1). The multiplication of eq. (10) by La-

grange polynomials 7*(r) (Jin 2002) and its subsequent integration
over the volume of the computational domain V generates

/f/ nk)(V - af (e + Vo*) — V- j(r, 1) dV = 0. (11)
vk

When the set of n¥(r) used in eq. (11) is also chosen as the basis set
for ¢*, the potential is expanded as
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where ¢§? is the potential of jth node of the kth tetrahedral element.
By substituting eqs (3) and (12) into eq. (11) and using the
homogeneous Dirichlet boundary condition, one can derive the FE
formulation for the kth tetrahedral element:

Dk /\': —E/‘ek—{-qk, (13)

where

(i,/) element of D¥ = / / / Vni(r) - (a*Vni(r) dv, (14)
vk
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yk
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Again, the system matrix of eq. (13) is SPD and can be solved
with the preconditioned CG solver. During CG solution processes of
eq. (9), the global version of eq. (13) is solved. Then, an intermediate
solution of eq. (9), e* is updated in such a divergence-free sense:

e =e + Vot (18)

As the final note, eq. (13) is also used to determine the initial value
of eq. (9). In this case, e* of the right-hand side of eq. (13) is set to a
zero vector. Thus, eq. (13) reduces to a finite element direct-current
equation developed in Bing & Greenhalgh (2001) and Um et al.
(2010).

EFFICIENT FETD SOLUTION
STRATEGIES

So far, we have developed the systems of FE equations for the elec-
tric field diffusion equation and the divergence-free condition. In
this section, we describe their efficient solution procedures. In FETD
solution procedures, the most computationally expensive part is to
advance the solution to eq. (9) in time because it needs to be solved
at every time step. To alleviate the computational burden, we exploit
the fact that the left-hand side matrix of eq. (9) is time-invariant with
a constant At. Therefore, for a given At, an incomplete Cholesky
preconditioner (Appendix) for eq. (9) is computed only once and
is repeatedly used inside a time stepping loop. Once time stepping
starts, the previous solution is used as an initial guess for the solu-
tion at the next time step. On the other hand, as the high-frequency
components of the electric fields are more rapidly attenuated in
time, we can take increasingly larger At and thus, can advance the
solution quickly without affecting the accuracy. Therefore, we can
change At as a strategy for a more efficient solution.

Regarding At, we do not determine an optimal Af at every time
step but attempt to double At every n time steps, where n is an
input parameter. This adaptive time step doubling (ATSD) method
effectively prevents unnecessarily small changes of A that entail
recalculating the preconditioner for eq. (9). At every n time steps,
e; of eq. (9) is computed twice using both A¢ and 2At¢. Then,
the difference between the two solutions is compared. If (1) the
difference is smaller than a prescribed tolerance and (2) the number
of iterations required for convergence with 2A¢ is smaller than two
times that required for convergence with A¢, then 2A¢ is accepted
as a new At. If either of the two conditions is not satisfied, we
reject the new time step 2A¢ and continue using Az. However, the
preconditioner for 2A¢ is stored for future use as long as memory is
available. For brevity, in this paper, we call this approach the ATSD
method (Um et al. 2010).

In contrast to eq. (9), the system matrix of eq. (13) is time-
invariant. Therefore, after an incomplete Cholesky preconditioner
for eq. (13) is computed, it is repeatedly used. Note that the size
of the system matrix of eq. (13) is (the number of internal nodes)>
in V, whereas that of eq. (9) is (the number of internal edges).
Therefore, the system matrix of eq. (13) is relatively small. As a
result, the storage requirement for the preconditioner of eq. (13)
is insignificant. As a side note, matrix E of eq. (13) is also time-
invariant and thus is evaluated only once.

Based on our numerical experiments, the divergence-free condi-
tion of eq. (13) does not need to be implemented at every iteration of
the main CG solution processes (i.c. eq. 9). Instead, it is sufficient to
implement the condition at every m CG iterations, where m is an in-
put parameter for forward modelling. The parameter is empirically
determined and varies according to not only a modelling problem
but also the quality of a preconditioner. However, when a precondi-
tioner for eq. (9) is sufficiently accurate such that the ATSD method
can work effectively as will be presented later, we have found that
the CG solution of eq. (9) is accurate enough without explicitly
implementing eq. (13). Therefore, our iterative FETD method in-
cludes divergence-free condition routines for completeness, but the
routines are not frequently used for modelling examples given in
this paper. In short, the primary computational cost of the iterative
FETD method is (1) to construct a series of preconditioners for eq.
(9) with multiple Az and (2) to perform matrix-vector multiplication
operations during CG solution to eq. (9).

To further improve the computational efficiency of the iterative
FETD method, we introduce the SM? approach. In this approach,




we design a single FE mesh that can accommodate multiple source
positions along a survey line. Then, the single FE mesh is used to
simulate the electric fields excited by each source. In this case, at a
given At, the system matrix of eq. (9) is the same for all sources,
whereas the right-hand side of eq. (9) is different with a different
source. Accordingly, we can advance the electric fields excited by
each source in a single time stepping loop where each source shares
the same incomplete Cholesky preconditioner. In other words, in-
side the time stepping loop, the SM? approach has an additional
source loop in which each source uses the same preconditioner. The
effectiveness of the SM? approach will be demonstrated later.

ACCURACY AND PERFORMANCE
OF ITERATIVE FETD METHOD

To verify the accuracy of the iterative FETD method and demon-
strate its performance, we compare the iterative FETD solutions
with analytic and 3-D FDTD (Commer & Newman 2004) solu-
tions. We implement the FETD method using MATLAB and simu-
late the controlled-source EM (CSEM) method over homogeneous
seafloor and simple 3-D reservoir models. Unless stated otherwise,
the presented CSEM models are simulated without explicitly im-
plementing the divergence-free condition. COMSOL Multiphysics
3.5a (COMSOL 2008) is used to discretize these toy models. The
simulations presented in this section are carried out on 2.6 GHz
Opteron single core with 16 GB memory.

Homogeneous seabed model

We simulate CSEM responses to a homogeneous seafloor model that
consists of an infinitely thick air layer, a 400 m thick sea water layer
and an infinitely thick seabed (Fig. 1). A 250-m-long x-oriented
electric dipole source is placed 50 m above the seafloor. The dipole
source generates a step-off waveform. Eight receivers are placed on
the seafloor at 1 km spacing along the positive x-axis and another
eight receivers along the positive y-axis. The length of the receivers
is set to 10 m. The conductivity values of the sea water and the
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Figure 1. The x—z section (¥ = 0 m) of the 3-D homogeneous seafloor
model. The black horizontal arrow is an electric dipole source directed
along the x-axis. Its centre is placed at (0 m, 0 m, 350 m).

seabed are set to 3.33 S m~! and 1.43 S m~!, respectively. The
conductivity value of the air is set to 10~ S m~". In our experience,
our FETD method can produce accurate solutions when the air is
at least 3 ~ 4 orders of magnitude more resistive than a medium
interfacing with the air. However, if the air is 8 ~ 9 orders of mag-
nitude more resistive than the medium, the system matrix becomes
extremely ill conditioned, resulting in inaccurate solutions. The de-
tailed discussion about the conductivity of the air is presented in the
next section.

The boundaries of the model are extended 100 km from its centre
to eliminate artificial boundary effects at the receiver positions. As a
rule of thumb for making the boundary effects negligible, we set the
size of a computational domain to be at least 10 times larger than the
maximum source—receiver offset. To discretize such a large model
economically, we grow the tetrahedral elements at factors ranging
from 1.5 to 2.0 towards the computational boundaries. The model is
discretized into 108 540 tetrahedral elements, resulting in 125 883
unknowns for eq. (9).

Fig. 2 shows the cross-sectional view of the FE mesh used for the
model at y = 0. The mesh is fine near the source to support high-
frequency contents early in time but gradually grows away from the
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Figure 2. A cross-sectional view (¥ = 0 m) of the 3-D FE mesh used for
the homogeneous seafloor shown in Fig. 1. In (a) and (b), the air—sea water
interface is coloured as blue and the seafloor red. In (a), the green-coloured
line segment above the centre of the seafloor is a 250 m long electric dipole
source, and the three shorter green-coloured line segments are the seafloor
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Figure 3. The inline and broadside CSEM responses (Ey) for selected detector positions over the model shown in Fig. 1. (a) The inline electric field responses.
(b) The percentage difference between the analytic solutions and the FETD solutions shown in (a). (¢) The broadside electric fields responses. (d) The percentage

difference between the analytic solutions and the FETD solutions shown in (c).

source. The growth rate is empirically determined but is usually less
than a factor of 2 from one edge to the next. In addition, because we
want to simulate the electric fields measured by 10 m long dipoles,
the mesh is also fine near the receivers. In other words, the FETD
discretization requires fine meshes around not only the source but
also receivers. This is an important difference in the discretization
between FETD and FDTD. Note also that inside the sea water
layer, tetrahedral elements are restricted from growing rapidly in the
x- and y-directions to prevent their aspect ratios from being too
small. Consequently, a rather large number of tetrahedral elements
are required to discretize the sea water layer.

The FETD and analytical solutions show good agreement at se-
lected receivers (Fig. 3). As time stepping continues, errors gradu-
ally increase, because of the error migration from early to late time
but remains within acceptable levels (<5.0 per cent). Fig. 4 shows
the performance of the iterative FETD method with and without
the ATSD method. As shown in Fig. 4(a), the ATSD method dras-
tically reduces the number of time steps required to complete the
simulation especially when time stepping processes need to con-
tinue until late time (e.g. a few time seconds). The ATSD method
results in stair-step increase in the solution run-time (Fig. 4b). The
increase corresponds to the computational cost of a new precon-
ditioner with a doubled Atz. In the early time, the larger At is not
accepted because of the presence of high-frequency electric fields.

Therefore, in the early time, the ATSD method decreases the perfor- 5

mance of the FETD method. However, as the diffusion continues,
the ATSD method effectively compensates the extra computational
cost because of the new preconditioners by quickly advancing the
solutions with larger Ar.

Seabed model with three-dimensional
hydrocarbon reservoir

Next, we simulate marine CSEM responses over a 3-D hydrocar-
bon reservoir whose conductivity is set to 1072 S m~! (Fig. 5).
Six receivers are placed on the seafloor with 1 km spacing along
the x-axis. The other model and simulation parameters are kept
the same as in the previous model. The inline CSEM responses
over the reservoir are simulated using both the FETD method and
the FDTD method (Commer & Newman 2004) for verification
purposes.

The FDTD model consists of 89 x 79 x 82 grid cells in the x-, y-
and z-directions with the computational domain boundaries at 50 km
from the centre of the model, resulting in 3 459 252 unknowns.
In contrast, with the boundaries of the FETD model extended to
100 km from its centre, we discretize the model into 81 984 tetra-
hedral elements, resulting in 94 848 unknowns. The comparison
of the unknowns between the FDTD and FETD models illustrates
an advantage of unstructured FETD meshes over structured FDTD
grids.
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Figure 4. The performance analysis of the FETD method with and without the ATSD method. (a) Az versus time and (b) solution run-time versus time.
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Figure 5. The cross-sectional view of the 3-D hydrocarbon reservoir model.
The size of the reservoir is 4 x 4 x 0.1 km in x, y and z directions,
respectively.

The simulation results from the methods are plotted in Fig. 6
and show overall good agreement. As a side note, the percentage
errors between the two solutions are not provided in this example
because the two solutions do not output the electric fields at same
outputting points on the time axis. In other words, the FETD method
adaptively doubles its time step size over time. At a given time, the
FDTD method also dynamically chooses the largest possible time
step size that satisfies its CFL condition to speed up its time stepping
processes.

EFFECTS OF CONDUCTIVITY OF THE
AIR ON ITERATIVE FETD METHOD

Next, we investigate the effects of the conductivity of the air on
the iterative FETD solutions by comparing them with analytic and

direct FETD solutions (Um et al. 2010). The goal of this section
is threefold. First, we examine the impact of an infinitesimal con-
ductivity of the air on the ATSD method. Secondly, we compare
the robustness of the iterative FETD method with that of the di-
rect FETD method over a wide range of the conductivity of the air.
Finally, we propose a rule of thumb for choosing a proper drop toler-
ance of the preconditioner that is closely related to the conductivity
of the air as will be demonstrated below.

Using both the iterative FETD method and the direct FETD
method, we simulate CSEM responses to a layered earth model that
consists of a lower half-space (the Earth) and an upper half-space
(air). The conductivity of the Earth is fixed at 0.1 S m~', but that of
the air varies from 1073 to 1072 S m~'. A 250-m-long x-oriented
electric dipole is placed at the centre of the model. The model is
discretized into 146 199 tetrahedral elements. Simulation charac-
teristics are summarized in Table 1 for the direct FETD method and
Table 2 for the iterative FETD method. CSEM responses are also
plotted at selected receiver positions in Fig. 7.

First, we examine Table 1 for the direct FETD method. The one-
norm condition numbers of the system matrices of the smallest Az
increase as the conductivity of the air decreases. Note that the con-
ductivity of the air is one and only variable in this numerical exper-
iment. Thus, the increase of the condition number is a direct result
of the change of the conductivity of the air. It is noteworthy that the
inverse of the conductivity of the air (i.e. the resistivity of the air)
is inversely proportional to the condition number on the logarith-
mic scale. Large conductivities of the air (e.g. 107> ~ 107* Sm™")
result in small condition numbers. However, in this case, the air
layer becomes very lossy compared with the real air layer (i.e. zero
conductivity). As a result, the direct FETD solutions do not agree
with the analytical solutions (Fig. 7a). For the next seven conduc-
tivities of the air (i.e. 107> through 10~!' S m™"), our numerical
modelling experiments agree well with the analytic solutions. With
the smallest conductivity of the air (i.e. 107! S m~!), the FETD
solutions diverge at around 0.2 s (Fig. 7i), because round-off errors
start to be amplified without control (i.e. blow-up) because of the
extreme ill conditioning.

Note that the direct FETD method produces accurate solutions
with very low conductivities (e.g. 10~'" S m™") of the air where the
electric fields are in the wave regime. This observation would be
counterintuitive as eq. (1) does not include the displacement term.

6 The paradox is explained by the fact that the second term of the
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Figure 6. The inline CSEM responses at (4 km, 0 km, 1 km), (5 km, 0 km, 1 km) and (6 km, 0 km, 1 km) over the model shown in Fig. 5. (a) E. (b) E..

Table 1. A summary of the direct FETD simulations with various air conductivities. When a direct FETD simulation fails due to
numerical instability (i.e. blow-up), the unavailable information is denoted as e. In the seventh column, x and o denote inaccurate and
accurate solutions, respectively. The innaccurate solutions result from insufficient contrast of the conductivity between the air and the
Earth surface. Note that accurate solutions mean that their errors are less than 5 per cent with respect to analytic solutions.

Condition number ~ Memory (MB) for Total number Total number of  Run-time Number

Air (Sm~')  of system matrix triangular matrix of factorization time steps (min) Accuracy  of'trials

1073 3.22 x 101 1300 9 1599 30 X 1

10~* 3.22 x 10'2 1300 9 1599 30 X 1

1073 3.34 x 1013 1300 9 1599 30 o 1

10-° 3.36 x 1014 1300 9 1599 30 o 1

1077 3.25 x 1013 1300 8 1696 33 o 1

10-8 3.22 x 100 1300 5 4038 56 o 1

10~° 3.22 x 107 1300 2 25873 303 o 1

10-10 3.22 x 10'8 1300 0 100 000 1185 o 1

10~ 3.25 x 10" 1300 0 100 000 1237 o 1

1012 3.22 x 1020 1300 o 100 000 o o 1

[Correction made after online publication 2012 June 13: the caption to this table has been corrected.]
Table 2. A summary of the iterative FETD simulations with various air conductivities. Symbols are the same as in Table 1.

Condition number ~ Memory (MB) for ~ Drop tolerance ~ Total number of ~ Total number  Run-time Number of

Air(Sm™") of system matrix preconditioner preconditioner of time steps (min) Accuracy trials
103 3.22 x 101 410 10-8 10 1198 19 X 2
10~* 3.22 x 102 454 10-8 10 1198 21 X 2
103 3.34 x 1013 616 107° 10 1198 22 o 2
10-° 3.36 x 104 725 1010 10 1198 23 o 2
107 3.25 x 1013 734 10-10 10 1198 23 o 2
10-8 3.22 x 100 866 10-12 . ° . ° 3
1079 3.22 x 1017 861 10712 . . . . 3
1010 322 x 10'8 919 10-13 . . . ° 3
10-11 3.25 x 1010 973 1014 o o o o 3
1012 3.22 x 102 1023 10-15 . . . . 3

left-hand side in eq. (1) becomes negligible when the conductivity
is very low. In this case, eq. (1) reduces to Laplace equation. Thus,
the finite velocity of the electric field in the real air is replaced
by the infinite velocity (Goldman et al. 1985). However, this non-
physical aspect does not produce inaccurate solutions for typical EM
geophysical modelling because a maximum source—receiver offset
is much shorter than the wavelength of the EM field in the real air
(e.g. 3 x 10> ~ 3 x 107 km for a frequency range of 0.01-100 Hz).
As a result, the FETD method can handle a very low conductivity
of the air.

At this point, it is instructive to compare the minimum contrast
between the air and the surface conductivity for accurate solutions
among different numerical methods. Hordt & Miiller (2000) and
Commer et al. (2006) report that the contrast of 1:100 would be
a reasonable choice for ensuring both accurate solutions and rea-
sonable convergence. The contrast of 1:1000 would result in slow
or non-convergence. The contrast of 1:10 would make sounding
curves be significantly different from the corresponding analyti-
cal solutions especially at early times. In contrast, the numerical
modelling experiments presented here show that the FETD method
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Figure 7. Effects of the conductivity of the air on the iterative FETD method. The electric field responses (Ey) at three receiver positions (x = 0.5, 1.0 and
1.5 km) along the x-axis are plotted. The conductivity of the air varies from (a) 10~* S m~! to (i) 10~'> Sm~! on the log scale. The iterative FETD solutions

are not plotted with the conductivity of the air smaller than 10~> S m~!.

requires at least the contrast of 1:10* between the air and the earth
surface. When the direct FETD method is used, the upper limit of
the contrast is given as 1:10'°. In short, the direct FETD method
is relatively insensitive to a large contrast of conductivities in a
computational domain.

The total number of time steps required for the direct FETD
solution increases quickly as the conductivity of the air decreases
below 10~7 S m~!. The same is true for the corresponding solution
run-times. Indeed, this observation illustrates that the ATSD method
does not work effectively when system matrices are too ill condi-
tioned. As discussed in section efficient FETD solution strategies,
the ATSD method accepts 2A¢ as a new time step for speed-up when
the difference in solutions obtained using A¢ and 2 At is smaller than
a tolerance because of the EM attenuation. However, when the air
is too resistive, differences between the two solutions are primar-
ily controlled not by the attenuation but by the error amplification
because of ill conditioning. Consequently, with the conductivity of
the air smaller than 10~ S m~', the ATSD method does not work
at all, although the high-frequency components of the TEM fields
are increasingly attenuated in time.

Next, we examine the numerical characteristics of the itera-
tive FETD method by comparing Table 1 (about the direct FETD
method) with Table 2 (about the iterative FETD method). In the nu-
merical experiments, the iterative FETD method allows one more
time step doubling process during the simulations, resulting in
shorter solution run-times. General benefits of the iterative solver
over the direct solver also contribute to the shorter run-times. The
memory required for storing incomplete Cholesky preconditioners
varies according to the preset drop tolerances. For the conductivities
of the air that produce accurate solutions, the memory for the pre-
conditioner (Table 2) is about 45-55 per cent of that for the lower
triangular matrices obtained from the complete Cholesky factoriza-
tion (Table 1).

Despite the advantages discussed above, however, the iterative
FETD method also has disadvantages. For example, the iterative
FETD method is less robust to a wide range of the conductivity
of the air compared with the direct FETD method (Table 1 ver-
sus Table 2). More importantly, when a drop tolerance was set to
107 for a model with an air conductivity of 107> S m~!, the CG
solver failed to converge after a prescribed maximum number of



iterations (i.e. 30). After two trial attempts, we succeeded in finding
a proper drop tolerance (10~%) that not only makes the CG solver
converge quickly, but also uses a reasonable amount of memory
(Table 2). However, when the conductivity of the air is set smaller
than 10~7 S m~!, we were unable to find such a drop tolerance after
four trials and discontinued the tests.

Resorting to trial and error for finding a proper drop tolerance
is an obvious drawback of the iterative FETD method. However,
through extensive modelling experiments, we have found that a
good estimate is to set the initial drop tolerance about a few orders of
magnitude smaller than the conductivity of the air (i.e. the smallest
conductivity in a given computational domain); one can try a smaller
drop tolerance for a shorter solution run-time, but this requires more
memory. We discuss more on this in the next section. For accurate
solutions, the conductivity of the air also needs to be a few orders of
magnitude smaller than that of the sea water or the Earth. With such
choices, we have succeeded in obtaining accurate FETD solutions
with just one or two trials. Throughout the modelling experiments,
the iterative FETD method uses about 30-50 per cent of the memory
required for the direct FETD method. In short, the conductivity of
the air can influence not only the FETD accuracy but also the ATSD
method. However, by properly setting the conductivity of the air and
a drop tolerance of the preconditioner, the iterative FETD method
can compute the EM fields in accurate and efficient ways as shown
here.

IMPACT OF ATSD METHOD ON
CONDITIONING OF FETD SYSTEM
MATRIX

As demonstrated, the ATSD method is essential to efficiently ad-
vance FETD solutions especially in the late time. In this section,
by changing At and a drop tolerance, we analyse the impact of
the ATSD method on conditioning of the system matrix during
the EM diffusion and its consequence on the CG convergence.
Thus, this section provides a quantitative understanding of the
relationship between the CG convergence, a drop tolerance and
At.

Because the previous models are too large to quickly compute the
distribution of their eigenvalues, a small test model is constructed
as shown in Fig. 8. To reduce the problem size, the test model is
somewhat different from the previous models. First, the test model
has only one receiver position at (3 km, 0 km, 2 km). Because small
elements are required around receivers, the single source—receiver
configuration reduces the problem size. Although the test model has
the simplified CSEM configuration, it has representative conductiv-
ity for the sea water layer (3.33 S m™!) and the seabed (1.43 Sm™!).
To ensure numerical stabilities and accuracy, the conductivity of the
airis setto 107> Sm~'. The thickness of the sea water layer is set to
2 km. In contrast to the 400 m thick sea water layer of the previous
models, tetrahedral elements in the 2 km thick sea water can grow
more rapidly in the x and y directions, reducing the problem size.
Accordingly, the model consists of 12 767 elements and has 14 505
unknowns.

The CSEM responses are computed with different drop tolerances
ranging from 1072 to 1073, The performance analysis is presented in
Fig. 9. Note that as discussed in the previous section, a rule of thumb
for choosing a proper drop tolerance is to set the drop tolerance a few
orders of magnitude smaller than the smallest conductivity (i.e. the
conductivity of the air). However, to better understand the impacts
of a less accurate preconditioner on the ATSD method, the analysis
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A Yf'\ o X
A I >
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2 km Seawater: 3.33 S/m
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5 r >
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Half space

Seabed: 1.43 S/m

Figure 8. The cross-sectional view of a homogeneous seabed model. The
single source and receiver are placed at (0 km, 0 km, 1.95 km) and (3 km,
0 km, 2 km), respectively.

includes a drop tolerance (i.e. 1072) even larger than the largest
conductivity value (i.e. 1073 Sm™).

When the least accurate preconditioner with the drop tolerance
of 1072 is used, the number of iterations for convergence suddenly
increases in late time (Fig. 9a). Furthermore, after around 5 s, the
time step size is no longer doubled (Fig. 9b). This is because the
number of iterations for convergence with 2A¢ becomes larger than
twice that required for convergence with Az. As a result, the time
step doubling process does not work anymore after 5 s; the solution
run-time quickly increases (Fig. 9d). More importantly, the resulting
FETD solutions are inaccurate especially in late time because of
non-convergence. However, we still manage to obtain the accurate
solutions by activating the divergence-free condition routines and
specifying a large maximum number of main CG iterations (e.g.
2000). As a side note, the implementation rate of the divergence-free
condition, m is set to 5. However, in this case, the solution run-time
is about 103 min, which is considerably long compared with the
run-times with more accurate preconditioners shown in Fig. 9(d).
This modelling example illustrates that rather than to use inaccurate
cheap preconditioners along with the divergence-free condition, it is
more practical to use somewhat accurate preconditioners that make
the ATSD method work effectively.

As the drop tolerance reduces from 1072 to 10~*, the increase
of the time step makes little impact on the number of iterations for
convergence. The ATSD method also works efficiently, reducing the
solution run-time. When the drop tolerance reduces from 10~ to
1073, the FETD performance does not improve much. To explain the
observation above, we first examine the impact of Af on the system
matrix before preconditioning. To do so, the eigenvalue distribution
of the system matrix is plotted as a function of A¢ (Fig. 10b). As At is
successively doubled, small and intermediate eigenvalues gradually
increase (Fig. 10b). In contrast, large eigenvalues do not change.
Thus, the condition number just slightly decreases with increasing
At (Fig. 10a). In short, the system matrix before preconditioning
does not significantly change with different Az.
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Next, we examine the impact of increasing A¢ on the precon-
ditioned system matrix. First, we start with preconditioners with
the largest drop tolerance, 102, The eigenvalue distribution of the
preconditioned FETD system matrices is plotted in Fig. 11. Fig. 12
shows the corresponding condition numbers as a function of A¢ (the
blue line). When the smallest At (i.e. 2-1073) is used for the sys-
tem matrix, the eigenvalues of the preconditioned system matrix are
clustered well near (1,0) as shown in Fig. 11(a). Therefore, a small
condition number is read from Fig. 12. The number of iterations
for convergence is also small (Fig. 9a). However, as At is succes-
sively doubled, the eigenvalues become less clustered (Figs 11d-f).
The corresponding condition numbers also quickly increase with
At (Fig. 12). As a result, the convergence rate quickly deteriorates
(Fig. 9a). Because of this reason, the preconditioner with the drop
tolerance of 10~2 does not make the ATSD method work effectively.

The same analysis procedures are repeated with the drop toler-
ance of 10~ that is an order of magnitude smaller than the smallest
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Figure 13. The eigenvalue distribution of the preconditioned FETD systemy 111atrix at selected time step sizes with the drop tolerance of 1074,
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conductivity and thus meets the rule of thumb for a choosing the
drop tolerance. The eigenvalue distribution of the preconditioned
system matrix is plotted as shown in Fig. 13. Compared with the
previous example (Fig. 11), the eigenvalue distribution is more
compactly clustered at around (1,0). The increase of the Ar in-
significantly changes the distribution of the eigenvalues. Therefore,
the condition numbers of the preconditioned matrices remain close

to 1 (the black line in Fig. 12). Accordingly, regardless of A¢, the
solutions converge consistently just after a few iterations (Fig. 9a).

Finally, we investigate the number of non-zeros of the precon-
ditioner as a function of Af and the drop tolerance (Fig. 14). Note
that the number of non-zeros is a yardstick to measure the size of
the preconditioner. The number of non-zeros of the preconditioners
increases with A¢. Therefore, at a given drop tolerance, the precon-
ditioner that is computed with the largest Af eventually determines
the memory requirement. As shown in Fig. 14, the memory require-
ment of a preconditioner that meets the rule of thumb for choosing
a drop tolerance is about 3 ~ 4 times that of the system matrix.
As a side note, the memory requirement for the complete Cholesky
factorization is 11 times that of the system matrix.

So far, we have analysed the performance of the ATSD method
by relating a drop tolerance of the preconditioner to the eigenvalue
distribution after preconditioning. In short, successive doubling of
At tends to increase the condition number of a preconditioned sys-
tem matrix and thus, decrease the convergence rate. However, when
a sufficiently accurate preconditioner is used, the eigenvalues of
the preconditioned matrix remains close to (1,0) through successive
time step doubling processes, ensuring the fast convergence.

SM2 APPROACH

In this section, we simulate CSEM responses to a 3-D seabed
model that has complex bathymetry, salt and reservoir structures
and demonstrate the SM? approach. Fig. 15 shows the cross-section
of central FETD meshes for the seabed model. Its bathymetry and

(a) FE meshes for one HED

z (km)
|

(b) FE meshes for nine HEDs

z (km)

7 8 9 10 11 12

Figure 15. A central portion of the FETD meshes for the complex 3-D seabed model. The red line segments above the seafloor indicate HED sources. (a) The
FETD mesh for a single HED source placed at x = 3 km. (b) the FETD mesh foq éhe nine HED sources placed at x = 1-9 km.
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Figure 16. The comparison of the Af evolution in the traditional single-source modelling approach (blue) and the SM? approach (red). The nine source

positions shown in Fig. 15(b) are considered in (a)—(i).

salt structure resemble those of the SEG salt model (Aminzadeh
et al. 1997). The seabed model also has a disk-shaped hydrocarbon
reservoir whose thickness and radius are 100 m and 2.5 km, respec-
tively. The sea water, the seabed, the salt and the reservoir are set to
3.33,1.43 and 1072 Sm™', respectively.

The CSEM survey line consists of nine horizontal electric-dipole
source positions from x = 1 to 9 km. In a traditional modelling
approach, we prepare each FETD mesh for each source position
and simulate CSEM responses at each source position. For exam-
ple, Fig. 15(a) shows the FETD mesh where a single source is
placed at x = 3 km. In contrast, the SM? approach uses a single
FETD mesh that accommodates all nine source positions (Fig. 15b)
and advances the solution of each source in a single time step-
ping loop. On average, the FETD mesh with a single source has
about 242 767 unknowns, whereas the FETD mesh with the nine
sources has 270 622 unknowns. Such small increase in the num-
ber of unknowns was possible because seafloor receivers already
require small elements along the survey line on the seafloor. There-
fore, placing eight more sources 50 m above the seafloor does not
critically increase the number of unknowns.
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In this paper, we do not intend to present the interpretation anal-
ysis of CSEM responses to the seafloor model, but instead focus
on the performance analysis of the SM? approach. For the inter-
pretation analysis, a reader is referred to Um (2011) and Um et al.
(2012). Fig. 16 compares the evolution of Af in the traditional
and SM? approaches at each source position. To ensure the ac-
curacy of the solution, the SM? approach advances the solution
with the smallest At from the nine source positions. Therefore,
At of the SM? approach never exceeds that of the traditional ap-
proach. However, as the SM? approach enables the nine sources to
share the same preconditioner for a given A¢, this benefit outweighs
the computational cost related to the smallest Az. Fig. 17 com-
pares the solution run-time in the traditional and SM? approaches
at each source position. It takes about 7.1 hr for the SM? ap-
proach to simultaneously simulate the nine sources. In contrast,
it takes about 1.9 hr for the traditional approach to simulate a
single source. Note that the difference in the two solution run-
times mainly originates from extra matrix-vector multiplication op-
erations that the CG solver entails in the SM? approach. How-
ever, when we consider the total run-time for simulating the nine
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Figure 17. The comparison of run-time in the traditional single-source modelling approach (blue) and the SM? approach (red). The nine source positions
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sources, the SM? approach is 2.5 times faster than the traditional
approach.

At this point, it is instructive to consider the parallel computing
aspects of the SM? approach. It is well known that the computation
of the incomplete Cholesky preconditioner has poor parallel effi-
ciency (Barrett et al. 1994). In contrast, the matrix-vector multipli-
cation operation is easy to be parallelized and is effectively scalable
(Golub & Van Loan 1996). Accordingly, the SM? approach that
shares the preconditioner and requires extra matrix-vector multipli-
cation operations is well suited to parallel computing environments.
We expect that the SM? approach would further improve overall
efficiency of the iterative FETD method on parallel computer ar-
chitectures. We currently develop parallel versions of the iterative
FETD method along with the SM? approach and the ATSD method,
and will investigate their performance.

CONCLUSION

A new iterative FETD method has been developed for simulating
EM responses to 3-D earth models. Unlike existing FETD meth-

ods, our FETD method iteratively computes the EM fields directly
in the time domain. We demonstrate that the direct time-domain
computation can be fast and efficient. The ATSD method enables
the iterative FETD method to take increasingly large time step sizes
over time and reduce the total number of time stepping processes,
speeding up the solution processes. For the ATSD method to work
efficiently, the conductivity of the air should not be too small. In
this case, the ill conditioning of the FETD system matrix prevents
the ATSD method from working in an intended way.

A proper choice of a drop tolerance of the preconditioner is also
important. When the drop tolerance is set several orders of magni-
tude smaller than the conductivity of the least conductive medium
(i.e. the air), the eigenvalues of the preconditioned system matrices
keep clustered during the successive time step doubling processes.
As a result, the CG solutions converge within the reasonable num-
ber of iterations at each time step. We also demonstrate that the
SM? approach improves the overall efficiency of the FETD method
by making multiple sources share the same preconditioner for a
given At. In short, the ATSD method and SM? approach are ef-
fective algorithm-driven speed-up techniques for simulating EM
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diffusion directly in the time domain. In our ongoing research,
as the hardware-driven speed-up techniques, we consider imple-
menting the presented iterative FETD method on different parallel
computing architectures and analysing their performance.
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APPENDIX: COMPLETE AND
INCOMPLETE CHOLESKY
FACTORIZATION

In this appendix, we provide readers with a short introduction to
complete and incomplete Cholesky factorization. One can find var-
ious pseudo-codes and in-depth discussions about the factorizations
in Saad (2003).

If matrix A is SPD, A can always and uniquely be decomposed
as

A=U"U, (A1)
where Uis a upper triangular matrix.

This is the complete Cholesky factorization. This factorization is
used in the direct solver version of the FETD algorithm (Um et al.
2010). For example, the FETD algorithm directly solves Ax = b,by

first implementing eq. (A1), then solving UTy = b for y and finally
solving Ux = y for x. Although, a system matrix arising from

finite element applications to EM problems is sparse, the triangu-
lar matrix resulting from the factorization is usually dense because
fill-ins occur during the factorization. Therefore, although a reorder-
ing scheme (e.g. Karypis & Kumar 1999) is employed, a storage




requirement for U is typically several orders of magnitude larger
than that for matrix A.
The incomplete Cholesky factorization is given as

A=U] Uy +E, (A2)

where Uy, and E are a upper triangular matrix and an error matrix,
respectively.

The incomplete Cholesky factorization essentially resembles the
complete Cholesky factorization. However, during the factorization,
the incomplete Cholesky factorization drops elements of U that are
smaller than a prescribed tolerance (i.e. drop tolerance). Thus, U
reduces to Uj,; error matrix E is introduced.

The incomplete Cholesky factorization has been widely used as
a preconditioner for the CG method in EM problems (e.g. Jin 2002;
Zhu & Cangellaris 2006). A small drop tolerance value generally
produces a more accurate preconditioner than a large drop tolerance,
but requires a larger storage for U;,.. For example, when a drop
tolerance value is set to zero, the incomplete Cholesky factorization
reduces to the complete one. Following Saad (2003), a pseudo-code
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of the incomplete Cholesky factorization used in this paper is given
as

1 U(1,)=A(1,:)

2 for i=2:n

3 row=A(i,:);

4 for k=1:(i-1) and row(k)#0

5 row(k)=row(k)/U(k,k)

6 Apply a dropping rule to vector row.
7 if (row(k)7£0)

8 row(k—+1:n)=row(k+1:n)-row(k)*U(k,k+1:n)
9 end

10 end

11 U(,i:n)=row(i:n)

12 end

In line 6, an element row(k) is dropped (i.e. replaced by zero) if it is
less than the relative tolerance 7;0obtained by multiplying the drop
tolerance by the two-norm of the ith row of matrix A.
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