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Section I 

This paper is concerned with higher order QCD corrections to 

double moment ratios in deep-inelastic lepta-production. Before 

entering a discussion of the process in detail we will first make a 

* few comments concerning such higher order QCD corrections and 

ambiguities therein. Consider a process calculated through at least 

two orders in perturbation theory. For convenience write 

p A+ Ba (J}) 
s 

where A and B are the same order in a (~2 ) . B depends on several 
s 

factors. If A contains the coupling constant a (~2 ), B will depend 
s 

on the renormaliza-tion scheme used to define a and on the scale ~ 
s 

at which it is evaluated.** In cases where the parton model (e.g. the 

Drell-Yan process [ 2]) is used and P is a parton process then B will 

depend on the scale at which the parton distributions are evaluated. 

A criterion for the validity of perturbation theory is Bas << A. 

Generally speaking if this criterion is satisfied then QCD is tested 

by fitting the data to the lowest order term A; few data are 

sufficiently accurate to be able to detect the presence of a small B 

term. If the criterion is not satisfied then the process is useless 

as a quantitative QCD test. 

Unfortunately it is true that by appropriate choice of scheme 

and scale(s) it is almost always possible to satisfy the criterion. 

The decision on the status of perturbation theory then rests on 

* For a relatively complete list of processes see Ref.[l]. 

** Strictly speaking the scheme and the scale ~ are equivalent, 

however it is convenient to think of them as independent. 
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whether those schemes and scales are reasonable (or on a calculation 

to yet another order in a). Ideally one would like to have some 
s 

a priori method of choosing schemes and scales in order to remove 

ambiguities in B. If this choice fails then the perturbation 

expansion would be meaningless. Unfortunately no such method exists 

rendering it extremely difficult to decide on the merits of 

ad hoc a posteriori choices which happen to make B small. 

Three schemes are widely used, minimal subtraction (MS), mutilated 

minh~al subtraction (MS) 3] and momentum space subtraction [4]. The 

former is unphysical but there is no reason to prefer either of the other 

two, or indeed some other scheme. With regard to the scale of 

if the process is characterized by only one physical scale Q
2

, then 

it seems natural to choose y
2 

= Q2
. But who is to say that 2Q

2 
or 

g2
;2 is unreasonable? In processes with more than one physical 

scale such as large pT hadron scattering [ 5] the situation is more 

complicated and ambiguous. 

The outline of this paper is as follows: Section II contains a 

detailed discussion of the double moment ratios; Sections III and 

·rv contain a discussion of the graphs we calculate; finally Section 

V contains our results and conclusions. We have elected not to 

give detailed formula. A presentation of tham would not clarify 

this paper and would make it very long. We would be happy to supply 

a formula for the final answer to anyone who requests it; either 

on a roll of paper or on a stack of (400) fortran cards. 

Section II 

Consider one particle inclusive neutrino production: 

Wv(q) + N(Pl) -+ 'IT(P
2

) +X 
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where W(q) is a virtual W meson of momentum q (Q
2 = -q

2 
> 0), N is a 

nucleon of momentum and -rr is a pion of momentu.'ll P 
2

. l-Ie will describe 

the process by the scaling variables xh and zh* 

Q2 

2P
1

•q 
0 <;X <; 1 

h 

p •p 

z =~ 
h Pl•q ' o< <1 

and define the semi-inclusive "cross-section" as follows: 

]1\! 2 
dWh (xh,zh,Q ) 

dzh 

1 
41T 

J d3P2 r 4 iq•x s ( ) 1 d xe u zh- P
1

•q 

l: < I 
X 

(xll ,x><P2,xjJv(O) > 

where J]l is the charged weak current. 

The QCD parton model relates the hadronic cross-section to the 

analagously defined partonic cross-section for the process 

\) 
W (q) + Parton (P

1
) -+ Parton (P

2
) + X 

With the definitions 

02 
X=-----

2P1• q 

z = 
Pl•p2 

pl•q 
-------

o<x<l 

o<z<l 

* 
-2P •q 

One could use the variable wh = 
2 

Q2 
instead of zh. The former 

choice has the advantage of being insensitive to target mass 

effects [ 6] • We choose zh because it compresses the fragmentation 

region (i.e. •P
1 

= 0) down to the single point zh = 0. Thus 

momen·t integrals can extend tlo.rough all of phase space, simplifying 

the calculation. 
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2 
dWh(xh,zh,Q ) 

dzh 
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dz F[xhl dW(x,z,Q
2

) D[zhl . 
z x J dz z J 

In this equation, dW/dz is the partonic cross-section, F is the 

partonic distribution function of the nucleon, and D is the decay 

(2.1) 

function of the final parton into the observed pion. We have dropped 

the usual sum over parton types on the assumption that non-singlet 

differences have been taken for both the nucleon and the pion. The 

Lorentz indices have been dropped on the assumption that a structure 

function has been projected out (see later). 

Taking moments of Eq. (2.1) with respect ·to xh and zh gives 

(n,m) 
[ ] (n,in) (m) 

(2. 2) 
F(n) dW· D , -

dz 

'lh7here 

[ rn,m) dW n-1 m-1 ___!::_ dW h 
- dx h xh dzh zh dzh dz h 

and 
(P) 

P-1 (F(U)) = dU U D(U) 

The factorization theorem [ 7] guarantees ·that the infrared* (IR) 

singularities of dW/dz can be factored out and absorbed into a 

redefinition of F and D. The factorization takes the follm,ring 

form in moment space: 

(~~J (n,m) r<nl (dw] Cn,ml dz r· (m) (2.3) 

* We will consider the term "infrared singularities" to mean both 

soft and collinear div.ergences. 
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where all of the IR singularities of the right hand side reside in 

r(n) and r· (m). 

Performing IR renormalizations of F and D as follows 

F(nl "' r<nl 

D (m) = D (m) r. (m) 

Eq. (2.2) takes the manifesty finite form 

(:::] (n,m) F(n) (dW) (n,m) 
dzJ D(m) 

The zeroth order graph for dW/dz has a single particle final 

state, so by kinematics 

Thus 

dW 
dz 

dW + 0(as) 
dz Ao(l-x)o(l-z) + Ocas) 

[~~) (n,m) 
A + O(a ) 

s 

and from Eq. (2.4) 

(:::] (n,m) AF(n) + O(a ) 
s 

(2 .4) 

(2 .5) 

The zeroth order result thus factorizes into a product of a function 

of n and a function of m. 

Sakai [s] has invented a double moment ratio whose deviation from 

unity measures the breaking of this factorization: 

R(n,m;l,k) ( 2) 
s Q 

(<:!_~gl (n,m) (l,k) 

J5j 
(n,k) (l,m) 
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The QCD par·ton model prediction for Rs is, from Eq. (2.4) and 

Eq. (2.5) 

R(n,m;l,k) 
s 

(n,m) [*] (l,k) 

[
dW] ( n' k) (dW) (l 'm) 

dz dz 

From Eq. (2.3), this can also be written as 

R(n,m; l,k) 
s 

[*) (n,m) (*] (l,k) 

-(dW} (n,k) (dW] (l,m) 
dz dz 

Of course, theIR singularities in Eq. (2.7) must cancel, since 

Eq. (2.6) gives Rs as a manifestly finite quantity. 

(2.6) 

(2.7) 

The essential property of Rs is that the distribution and decay 

fu.nc·tions cancel out of it. Indeed, from Eq. (2.7) we see that the 

prediction for R takes the form of a power series in a (]J) with 
s s 2 

calculable numerical coefficients. The coefficients depend on l-1
2 

, 

Q 

where 1--l is the ultraviolet (UV) renormaliza·tion poin-t, and on the 

UV renormalization scheme.* The only phenomenological input necessary 

is the value of as at some point. Thus, in terms of phenomenology 

and L~eoretical ambiguity R is analagous toR in e+e- annihilation [ 9]. 
s 

Rs is an especially interesting quantity with which to investiga-te 

the behavior of perturba-tion theory. The freedom to define away 

higher order corrections is limited by the fact that there is only 

one kinematic scale in the process (Q), and only one theoretical 

* All dependence on the IR renormalization scheme drops out in 

the ratio. 
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choice to make (the choice of a coupling constant). Furthermore, 

one of the usual ways to "improve" a badly converging perturbation 

series is to pull out n
2

•s on the assumption that they factor off 

into exponen·tials to all orders. Any such terms would cancel out 

of R 
s 

Thus a large correction to Rs for a reasonable choice of a· 

coupling constant indicates a deeper problem. 

The fact that Rs can be expressed directly in terms of partonic 

cross-sections (see Eq. (1. 7)) simplifies the calculation enormously, 

since we never have to fac·tor the IR singularities. The factorization 

requires calculation of all of the graphs con-tributing to dW/dz and 

careful treatment of the IR singularities as x or z approach unity. 

The use of Eq. (2. 7) saves us much of this trouble. Consider 

dW/dz to the order 

a 2 
dW 
dz 

A o(l-x)o(l-zl + 4~ d(x,z) + e(x,z) + ... ] 

In terms of moment 

(~~} (n,m) 
a 

A [ 1 + ~ d(n,m) 
4o + + ... l 
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Thus Eq. (2.7) becomes 

R(n,m;l,k) 
s 1 + [:~J [ d(n,m) + d(l,k) _ d(n,k) _ d(l,m) J 

+ r:~r{~[d(n,m) +d(l,k) -d(n,k) -d(l,m)J2 

_ ~ [(d(n,m)J2 + [d(l,k)J2 

_ [d(n,k))2 _ )2 } 

+ r:~r (n,m) (l,k) 
+ e _ e(n,k) _ e(l,m) J 

+ a( a!} 

Note that the contribution of the 4th order graphs (i.e. e(x,zl) 

R is 
s 

(
as) 

2 fl [ n-1 1-1 m-1 3 41f odx dz (x - X ) (z· - e(x,z) + O(as) 

(2.8) 

to 

(2.9) 

Thus any singularity in e(x,z) at x or z near 1 is controlled by the 

moment weighting in square brackets, and therefore requires no special 

treatment. Furthermore the two loop graphs (e.g. Fig. 2) which are 

all proportional to o(l-x)o(l-z) make no contribution to 4th 

order. 

We conclude this section by listing further simplifications 

and assumptions made in our calculation. 

In order to simplify ·the Dirac algebra we consider the structure 

function which is obtained by contracting the Lorentz indices of the 
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W's.* Note that this choice eliminates interference between the 

vector and axial vector weak currents. Thus we did not have to 

worry about regulating IR divergences in the presence of a y
5

. We 

take a strong isospin non-singlet, charge conjugation odd difference 

for the final state (i.e. 1f+-1f-). The relevant linear combination of 

final state partons is therefore u-d-u+d. 

For the initial state, we also take a non-singlet difference 

(e.g. proton-neutron). To fix the relative contributions of quarks 

and antiquarks in the initial state, we take the Cabbibo angle to 

be zero. The G parity** of JV and JA (1 and -1 respectively 

guarantees ·that quarks and antiquarks contribute with opposite signs. 

dW 
dz 

Thus we compute the following sum 

dW d-> u dW 1Jl+d dW d+d 
----- + ----- - ----- -

dz dz dz 

dW 
u+u 

dz (
dW - dW - dW - dW -] _ d->u + u+d _ d->d _ u+u. 
dz dz dz dz 

The terms with initial an·tiquarks simply reproduce the above 

sum by G parity. 

Section III 

We calculate the graphs which contribute to the cross-section 

with two body final states (vir-tual graphs) in this section. The 

graphs are computed in the Euclidean region where x > 1 and there 

are no discontinuities. Analytic continuation then yields the 

* In the notation of Ellis [ 10] this corresponds to the combination 

-3W
1 

+ 
\)2 

~w2 
Q M 

** The G parity we need here consists of a weak isospin rotation by 1f 

followed by charge conjugation. 
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correct result in the physical region 0 < x < l. All the calculations 

are performed in Feyrrman gauge. DL~ensional regularization is used 

to control both the UV and IR divergences [ll]. Integrals are 

performed in n dimensions and the singularities associated with UV 

and IR divergences appear as poles in s(n = 4 - 2s). If UV subtraction 

is necessary then it is important to distinguish between the UV and 

IR poles so that the former can be subtracted. This can always be 

done by firs·t evaluating the graph with the external legs off shell, 

extracting the UV poles, and then taking the on shell limit when the 

IR poles appear. However with the use of Feynman parameters the UV 

and IR singularities are always distinct. The former appear in 

momentum integrals and the latter in Feynman parameter integrals. 

The order as contribution to:~, [d(x,z)), is obtained from 

Figs. 3(a), 3(b), and 3(c). Figure 3(a) gives a contribution 

proportional to 6(1-z) o(l-x) which cancels from R to this order. 
s 

Figs. 3(b) and 3(c) give 

d(x,z•) 
8 
3 

2(1-x-z) + (x+z)
2 

(1-x) (l-z) 
+ O(s) 

Before considering the order a
2 

virtual graphs proper let us 

first dispose of the order a
2 

contributions to R coming from the 
s 

order a contribu-tions. (dmn + dkl- dnk- dm1 ) 2 is IR finite since 

it is simply the square of the order a piece. However the term 

(dnm) 2 + (dlk) 2 - (dnk) 2 - (dlm) 2 contains IR singularities which 

cancel against those from the order a
2 

graphs (emn etc.). In order 

to obtain the cancellation before integration over x and z it is 

sufficient to notice that 

(dmn)2 = J xm-1 zn-1 (d®d) dxdz 
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where 

doo(x,z) r X z 

dx 
d(x,z) a(~, dz 

X 2 

and d(x,z) comes from the order a graphs shown in Fig. 3. This 

convolution is easily performed. Note that the virtual graph 

Fig. 3(a) which did not contribute to the order a piece of Rs 

must now be included in the convolution. It is important ·that 

d(x, z) be retained in n dimensions un·til after the convolution 

has been performed when a Laurent expansion about s = 0 reveals 

double and single IR poles. The order a 2 
piece of R can now 

s 

be written as 

(
asi

2J m-1 k-1 I 1 
4
'lfj dxdz (z -z )le(x,z)- 2 

+ ~ (:~r 1 dmn + dkl _ dnk dm1} 2 

We now turn to the virtual diagrams contributing to e(x,z). 

(3 .1) 

The first set of such graphs consists of the one loop corrections to 

the vertices and propagators in Figs. 3(b) and 3(c). The corrections 

to the external quark lines and the W-quark vertex can be considered 

·cogether. A Ward identi-ty ensures that the UV divergences arising 

from these graphs will cancel so tha·t i·t is not necessary to perform 

a UV subtraction on them. This is especially convenient since the 

unsubtracted self energy of an on shell massless fermion is zero in 

dimensional regularization. 

The corrections to the internal (off shell) fermion lines, 

external gluon lines and gluon vertices need UV subtractions. We 

must specify the subtraction scheme and hence the coupling constant. 

We use the MS scheme [ 3] which entails subtracting the UV poles 
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as well as attendant Euler numbers and log (4~). Momentum space 

subtraction will be briefly mentioned later. After performing the 

subtractions all the remaining integrals are straightforward; no 

function worse than a log
2 

appears. 

The most difficult virtual diagrams are the box graphs shown in 

Fig. 4. These graphs have no UV singularities but contain single 

and double IR poles. The integrals are complicated by the need to 

retain these terms as well as E
0 

terms. Some comments on our 

technique may prove useful elsewhere. It is convenient to delay 

integrals over loop momenta until after forming the cross-section 

by multiplying by the lower order graphs and performing the Dirac 

algebra. Feynman parameters are introduced and the loop momentum 

integral performed. This leaves Feynman parameter integrals of the 

following type 

f
l-a 

1 da
3 

f(a
1

,a
2
,a

3
) 

IP = 1 da1 da2 
· 

0 
[Aa

2
(l-a

2
-a

3
) + Ba

1
(a

2
+a

3
J + ca

1
a

2
]P 

where A, B, and C are scalar products of various combinations of 

external momenta and f is a polynomial. There are 17 such integrals 

with p = 2 + E and 4 with p = l + E. These can be simplified and 

reduced in number as follows: 

change variables 

uv a2 

u(l - v) a3 

x(l - u) = 

-14-

then 

1-P 1-P 
u (1-u) du dv 

0 

dx f(x,u,v) 

(Av + Bx + Cxv)P 

Since f is a polynomial the integral over u is trivial. The following 

integral now remains 

dv J dx g(x,v) 

(Av + Bx + Cxv)P 

where g is a polynomial. All integrals of this type can be gotten 

from 

Jp fl dv fl ______ dx~-------P-
0 

0
(Av + Bx + Cxv) 

by differentiation with respect to different combinations of A, B, 

and C. 

l 
Jp (2-P) (1-P)AB (~r-P [- F C(A + B + 

AB 

+ F[P, - ~) + F 

C)) 

~)] 
with F(P,x) = 2-P 

X (1, 2-P, 3-P,x) and 
2

F
1 

(a, b, c, x) is the 

usual hypergeometric function. We need JP for P = -1 + E, E, l + E, 

and 2 + E. The extra values of P arise because of the need for 

differentiation. It is necessary to expand these functions in power 

series about E 0. The relevant expansions are 

2
F

1 
(1, -E, 1-E, x) l + E ln(l-x) - s

2 
Li

2
(x) 

2
F

1
(1, l~E, 2-E, X) (l:E) [ -ln(l-x) + ELi

2
(x) + s

2
Li 3 
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2
F

1 
(l, 2-s, 3-s, x) 

(2-s} 
[ -ln(l-x) - x + s(Li2 (xl - x) 2 

X 

+ s
2

(Li3 {x) -

(1, 3-s, 4-s, x) 
(3-S) 

[ -ln(l-x) - x - ~
2 

3 
X 

+ s(Li2 (x) - ~2 - x)] 

00 p 

and Lin (x) L ~ is ·the usual polylogarithm [12]. Although 
P=O pn 

trilogarithms appear in these expansions they are absent from the 

final result for the box graphs which does however contain some 17 

dilogarithms. 

Section IV 

In this section, we discuss the graphs with three body final 

states. 

The graphs contributing to a 2 gluon, l quark final state are 

shown in Fig. 5. The diagrams are drawn as squared amplitudes. The 

lines crossing the cut are the unobserved par tons. One must take 

care not to sum over the (unphysical) longitudinal polarization of the 

final gluons. This presents no problem when there is only one 

external gluon, but when there are two, the full spin SQm operator 

L e*a(P,A)e6 (P,A) 
physical 

polarization 
A 

-+ 

~ -[ g"' -

p (E,P) P = (E, 

PapS +~Spa] 
pop 

must be used on one of the gluons. The usual sum over physical and 

non-physical polarizations may then be used on the other one, by the 
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Ward identities. Note that since either of the gluons crossing the 

cut in Fig. 5 may be the "special" one, we mus·t average over both 

possibilities. It is convenient to label the cut mcmenta so that 

only one non-covariant vector P appears. The Dirac algebra can be 

reduced by using the interchange +-+ -P 
2 

to genera-te graphs from 

each other (e.g. Figs. 5(a) and 5(f) are related by this interchange). 

When the results were added up, the vector P dropped out. 

We can use arguments involving flavor ·to discard many of the 

graphs contributing to a 3 fermion final state. For instance, Fig. 6(a) 

and Fig. 6(b) each are zero because the charged weak current changes 

flavor.* Figure 6 ( c') vanishes due to the non-singlet sum on the 

final observed quark. 

The remaining graphs are divided by their flavor-topological 

structure into Figs. (7 + 13). 

Table I lists the processes ·to which each class contribu-tes 

(assuming an incoming W + boson) , and the associated weigh·t from 

Eq. (2.10) (of course this weight is the same for a W by G parity). 

Also listed is the factor (if any) which arises from ·the sum over 

the flavors of the unobserved fermions. Nf is the number of quark 

flavors. 

A careful application of Wick's theorem shows that Figs. (9 + 13) 

all receive Fermi minus signs. 

We have indicated the usefulness of interchanging Fermion 

momenta to generate graphs from each other. Numerous such 

transformation exist involving the graphs with 3 final state fermions. 

The Dirac algebra for Figs. 7 and 8 can be generated from 

* These graphs do contribute to Rs in electroproduction. 
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Figs. 7 (a) and 7 (b). Similarly Figs. 9-13 can be generated from 

Figs. 9(a)-9(c). 

We now describe the phase space integrals for the real emission 

graphs. Let P
3 

and P
4 

be the momenta of the unobserved partons. 

For fixed P
1 

and P
2

, P
3 

+ P
4 

is fixed by momentum conservation. 

remaining integral over the unobserved momenta is performed in 

their center of mass frame (which is the usual Gottfried-Jackson 

(GJ) frame), i.e. 

->- ->-
p3 + p4 pl + q 0 p2 

We further define 

y = ~ o<y<l 
(1-x) (1-z) 

Then the 3 body phase space integral is 

n-1 + + 

L r d p2 p3 

The 

(4 • .1) 

;p-4 

41T J n-1 
liz---[ p l•P 2 J f 

Pl•q n-1 f n-1 

(21T) 2 (2E
2

) (21T) 

n (n) I !2 x (21T) /i (P
1

+q-P
2
-P

3
-P

4
J M 

1 1 

2f(l-E) (41T) 5-3E 

z (1-x) 
2 

(1-z) 
2 

2 
X 

l f dy y-E(l-y)-E f dQGJ IMI2 

0 

where I is a squared matrix element, and 

rE 

2 
(2E

3
) (21T) 2 

is the angular 

integral of P
3 

(; - over the n-2 dimensional sphere in the GJ 

frame. 

(2E
4

) 

(4.2) 
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+ + -+ 
Equation (4.1) implies that p

1
,q and p

2 
span a 2 dimensional 

plane; call it the xz plane. Introduce angles 8 and ~ such that 

->-
(P3) z E

3 
cose o < e < 1T 

->-
(P3)x E

3 
sine cos~ 0 < <jJ < 1T 

Then 

dQGJ 
2 -E -2E -E f(l-E) 

d(cos8) (1-cos 8) dlj>(sin<jJ) (41T) 2 f(l-
2

E) 

(4.3) 

The angular integrals are performed by partial-fractioning the 

integrand. The resulting integrals are performed analytically as 

Laurent expansions in E, keeping only terms which become order s 0 

or lower after ·the y integration (as we shall see, the y integration 

L J. 
s 

can introduce a factor of There were 4 basic types of integrals. 

Integrals of the type 

Il 
1 

jdQGJ l-P ·V 
3 

v ±P 2 

A * 
have singularities when P

3 
v. These poles are regulated by the 

Jacobian in Eq. (4.3); giving rise to a simple pole in s. 

Integrals of the form 

I2 
1 

fdnGJ ~P, 
1-L 3 

L - < 1 

arise from propagators of the form l/(P
1

-P
2
-P

3
)

2
. L = l can occur 

only when •P
2 

= 0, i.e. z = 0. Thus the L = 1 singularity requires 

no special treatment since it is removed by the moment weighting in 

Eq. (2.9). and r
2 

are straightforward, and the results are 

* The symbol " denotes a unit vector. 
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Il [ 
l ) -s - s (27f) (47f) 

( 2 7rJ (47f) -s r (1-sJ l l+L 
+ + 0(s

2
J = 

f(l-2E:) L 1-L 

where A = - _§___ log 2 
(l+L)+ 2sLi [-2L1 

2 1-L 2 l-L1 

Integrals of the form 

fdnGJ 
l 

n-J?
3
.\h< 

can be performed by combining the denominators using Feynman parameters. 

The result is 

I3 ( 
l ) 1-E: - E: (47fl 

r (l-sJ 
2f(l-2s) 

Finally, we had integrals of the form 

I4 fdnGJ 
l 

n-:P ·vl (1-:P ·wJ 
3 3 

The integrand has poles at P
3 

v and at P
3 

( 

2 
1-L 

+sln -+A2 
(1-L"V) 

v 
w 

+p 
- l 

±P2 

)] + 

W. As V -+ W, the 

2 s;_ngularities collide. This occurs when one of the following is 

* satisfied 

(case A) 

(case B) pl 

p2 

- p2 

* The A type singularities occur in Fig. 13 and Fig. S(h)-S(k). 

-+ A 

sAL•V 
->- ;.; 

1-L•V 

The B type occur in Figs. 5(b), 5(c), 5(d), 5(e), 5(o), and 5(p). 
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Kinematics dictates that case A occurs at y = l, case B a·t y = 0. 

Any Laurent expansion performed at this stage (i.e. before the y 

integration), must be uniform in y. Thus our expansion for r
4 

must 

be uniform in (V•W). This integral is performed in Ref. (5). The 

result is 

I4 [- _!_) (4"1f)l-s 2 s f(l-s) 
s · f(l-2s) 

-1-s ( 2 ) (1-x) l+E: Li
2 

(x) 

A A 2 

where x 
(1-V•W) 

4 
Since 

•P2 l + 0(1-y) asy-+1 

pl.p2 =-1 + O(y) asy-+0 

case A singularities result in singularities of the form (1-y)-l-s as 

y-+ 1 similarly case B gives y-l-s as y + 0. 

The result of the angular integral as a function of y was compli-

cated enough to prevent us from doing ·the y in·tegral analytically. 

However, we still need to have the result as a Laurent expansion, 

even if the terms in it are integrals over y. We are prevented from 

simply expanding the integrand because of singularities of the form 

-1-s -1-s * 
(1-y) as y -+ 1 and y as y ->- 0. We handle these by the usual 

"plussing" technique, e.g. 

* The colliding singularities of the angular integrals give rise to 

-1-2s -l-2s 
singularities of the form (1-y) - and y , the extra s 

being due to the phase space factors of Eq. (4.2). Singularities 

-1-s 
of the form (1-y) also come from factors of 

l X 

(P3+P4)2 (1-x) (1-y) (l-z) 



-21-

-1-s 1 [ 1 ) (log(l-y~ 2 (1-y) = - - o (1-y) + -- - s + 0 (s J 
E: 1-y + 1-y + 

-1-E 
and similarly for y This equation is valid when multiplying 

a function of y which is continuous at y = 1. 

We have shown the great care with which the endpoint singularities 

in y must be handled. No such subtleties occur in the moment integra-

tion of Eq. (2.9) because the moment weighting cancels out all 

remaining endpoint singularities. 

Section V 

The IR singularities (i.e. poles and double poles in Eq. (2.8) 

can now be assembled in the formula for R 
s 

Their contribution is 

given by the pole part of Eq. (3.1). The contribu·tion of the real 

emission graphs to e(x,z), discussed in the previous section is in 

the form of an integral over y. The integral is sufficiently simple 

that it can be performed analytically. The factorization theorem 

guarantees that R is IR finite for all moment indices. 
s 

This can be 

true only if the integrand e(x,z) - (d~d)/2 is IR finite (up to delta 

functions at x = l or z = l, which we have discarded). We verified 

explicitly that this was the case. 

It now remains to evaluate the remaining integrals numerically in 

order to obtain values of Rs. The integral consists of two parts; a 

double integral over x and z coming from the IR finite parts of the 

graphs discussed in Sec. III and the parts from Sec. IV which result 

from the plussing operation; and a triple integral over the remaining 

terms from Sec. IV. These integrals are of course all finite, however 

they contain integrable singularities of the form log
2

(1-x), log
2

(1-z) 

etc. It is important to change variables to render these singularities 
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more amenable to numerical integration. The following variable 

transformation is very effective 

l I f(x)dx 

0 

1 1-l/y ( l-1/y) dy I e_
2
_ f e 

0 y 

If f(x) - logn(x) as x + 0, the left hand side needs of order 500 

steps to achieve a convergence on the integral, 10 steps are sufficient 

for the right hand side. The convergence of regular function integrals 

is unaffected by this variable change. Numerical integration of the 

(IR) finite parts of Eq. (2.8) is now simple and the results are dis-

played in Table II. Writing 

R (n,m;l,k) 
s 

1 + 
A(n,m;l,k) [ as(:2) J 

+ B(n,m;l,k) [ ~ r 
the table shows values for A and B. It is clear ·that the corrections 

are large. 

The numbers shown in the table are for the MS scheme with y
2 

The order a
2 

terms are of the order of 60% of the order a terms for 

a = 0.2. B is of course scheme dependent; in the momentum space 

( ) 'h 2 2 .. f . h scheme Landau gauge w1t y = Q , B 1s g1ven rom the BMS 1n t e 

table by [4] 

B 
mom 

B--3.07A 
MS 

[ as~2) J 

Q2. 

Using a momentum space subtracted a therefore reduces the corrections 

to about 40%. The corrections get larger as the difference between n 

and 1 and k and m increases. This presumably reflects pieces of the 

formula for R which go like log
2

(n) etc. Notice that the lowest 
s 
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_,. _,. 
order term A is symmetric under the interchanges m -<- n and k + l. 

This is a reflection of the fact that d(x,z) is symmetric with respect 

to interchange of x and z. This symmetry is maintained in the B terms 

within the errors on our numerical in·tegration. The fact tha·t the 

ratio B/A is almost independent of the indices indicates that the 

corrections can be made aDiformally small by using some fraction of 

Q2, as the scale in a . 
s 

Unfortunately w.e need Q
2 
/8 in the momentum 

space scheme to make the a
2 

term 10% of the a term. It seems difficult 

to see why this should be ·the correct scale although it is worth 

pointing out that within the momentum space scheme such a scale leads 

to reasonable (negative) corrections of the order of 20% to the usual 

formulae for the Q2 
evolution of moments in inclusive lepta-production. 

It can be argued [13] that a natural scale for ~ 2 is Q2
(l-z) (l-x); this 

scale being a typical off shell-ness of parton in the process. Now 

using this scale the lowest order contribution toRs changes. Choosing 

the coupling constant such that a (100 Gev
2

) = 0.2 Table III now shows 
s 

the order a and order a
2 

contributions to R. It is immediately clear 

that the corrections in order a
2 

are now small, and ·the perturbation 

expansion appears to be reliable. Unfortunately to see that this is 

really the case needs a proof that such a choice of ~ 2 will work to 

all orders in reducing the corrections. Such a proof is lacking, making 

it difficult to decide whether the smallness of the order a
2 

terms is 

a mere coincidence. 

In conclusion we have computed the order a
2 

terms in the double 
s 

moment ratio in semi-inclusive deep inelastic scattering. The corrections 

are large enough that one should worry about the status of the perturba-

·tion expansion. However they are not as large as those found in some 

other processes [14], and L~e fact that they depend only slightly on 
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the moment indices encourages one to think that something can be 

salvaged. 
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Graphs Processes 

Fig. (7) d->- U +X 

Fig. {8) 
d _,.·d +X 
u _,. u +X 

Fig. (9) d + u +X 

d ..... d +X 
Fig. (10) or 

u+u+X 

Fig. (H) d+U+X 

Fig. (12) U+d+X 

Fig, (13) d+d+X 
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Weight from 
Eq, (2.10) 

-

1 

-2 

1 

-1 

-1 

-1 

1 

----
I 

Sum Over 
Unobserved Flavors 

Nf 

1 

1 

1 

1 

1 

List of flavor weights associated with Figs. 7-13. 

I 

n m 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 3 

2 3 

2 3 

2 3 

2 4 

2 4 

3 3 

3 3 

4 4 

R (n,m;l,k) 
s 

1 

3 

3 

3 

3 

4 

5 

6 

10 

3 

3 

4 

5 

3 

5 

4 

5 

5 
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k A 

3 0.204 

4 0.344 

5 0.453 

8 0.680 

5 0.767 

5 1.01 

6 1.45 

10 3.10 

4 0.141 

5 0.249 > 

5 0.423 

6 o. 756 

5 0.108 

5 0.243 

4 0.0981 

5 0.309 

5 0.0588 
>>> 

B 

l. 78 

3.13 

4.22 

6.731 

7.50 

10.22 

15.4 

39.2 

1.32 

2 .• 39 

4.21 

7.90 

1.055 

2•50 

0.983 

3.23 

0.637 

II 

% Correction 
(a = 0.2) 

55.5 

57.8 

59.3 

62.9 

62.2 

64.3 

67.7 

80.3 

59.9 

61.2 

63.4 

66.5 

62.0 

65.3 

63.7 

66.7 

68.8 
--------------- . - -----------

Values of A and B in the formula. 

l + A(n,m;l,k) [ ~) + B(n,m;l,k) [ ~ r 
in the MS scheme with ~ 2 = Q2 . 
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n m l k LO NLO % Correction 

2 2 3 3 0.013 0.00164 l3 

2 2 5 5 0.064 0.00947 15 

2 2 10 10 0.197 0.043 21 

2 4 3 5 0.0687 7.5 X 10-3 
ll 

3 3 5 5 0.0196 0.0023 12 

4 4 5 5 0.0037 3.8 X 10-4 
10 

- ----------- --- - ... -- ------------L__ ------- ----- ---

III 
Values of LO and NLO, and the percentage correction, 

in the formula Rs = l + LO + NLO, where LO is the 

lowest order contribution with v2 
= Q2

(l-x) (l-z) in 

( . 2 . 
the MS scheme Wlth aMS (Q) = 0.2), and NLO lS the 

next correction. 
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FIGURE CAPTIONS 

The lowest order graph in semi-inclusive deep inelastic 

scattering. 

A two loop graph which does not contribute toRs. 

dW . 
Graph contributing to dz ln order as. 

. d. . . dW . 2 
Vlrtual lagrams contrlbutlng to dz ln order as. 

dW 
Graphs contributing to dz with two gluons in the final 

s·tate. 

dW 
Graphs which do not contribute to dz by virtue of their 

flavor structure. 

dW 
Figures 8-13: Graphs contributing to-- with one gluon and two fermions 

dz 

in the final state. 
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