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ABSTRACT 

Nucleation of bubbles, their growth by diffusion of dissolved gas 

to the bubble surface and by coalescence, and their detachment from 

the electrode are all very fast phenomena; furthermore, electro­

lytically generated bubbles range in size from ten to a few hundred 

microns; therefore, magnification and high speed cinematography are 

required to observe bubbles and the phenomena of their growth on the 

electrode surface. Viewing the action from the front side (the 

surface on which the bubbles form) is complicated because the most 

important events occur close to the surface and are obscured by other 

bubbles passing between the cam~ra and the electrode; therefore, oxygen 

was evolved on a transparent tin oxide 11 Wi ndow" electrode and the 

events were viewed from the backside. The movies showed that coales-

cence of bubbles is very important for determining the size of bubbles 

and in the chain of transport processes; growth by diffusion and by 

coalescence proceeds in series and parallel; coalescing bubbles cause 

significant fluid motion close to the electrode; bubbles can leave and 

reattach; and bubbles evolve in a cycle of growth by diffusion and 

different modes of coalescence. 
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An analytical solution for the primary potential and current 

distribution around a spherical bubble in contact with a plane elec­

trode is presented. Zero at the contact point, the current density 

reaches only one percent of its undisturbed value at 30 percent of the 

radius f,rom that point and goes through a shallow maximum two radii 

away. The solution obtained for spherical bubbles is shown to apply 

for the small bubbles of electrolytic processes. The incremental 

resistance in ohms caused by sparse arrays of bubbles is given by 

6R = 1.352 af/kS 

where f is the void fraction of gas in the bubble layer, a is the 

bubble layer thickness, k is the conductivity of gas free electrolyte, 

and S is the electrode area. 

A densely populated gas bubble layer on an electrode was modeled 

as a hexagonal array of dielectric spheres. Accurately machined lucite 

spheres were placed one at a time in one end of a hexagonal cell which 

simulated the unit cell of such an array. The resistance as a function 

of gas bubble layer packing density sharply increased as close packing 

was approached. Because the interaction of the fields around bubbles 

closely spaced in the direction perpendicular to the current dominates 

the added resistance, and because there is a tri-modal distribution of 
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bubble sizes in a bubble layer, the Distribution Model of Meredith and 

Tobias (16), derived for three dimensional gas dispersions, approxi­

mately predicted the conductivity of a bubble layer at void fractions 

greater than 0.3. At moderate-to-high current densities, the bubble 

layer in a cell having an interelectrode gap of half a centimeter 

could increase the ohmic resistance by as much as 20 percent. 
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I. INTRODUCTION 

Gas evolution is an important phenomenon in nearly all industrial 

electrolytic processes, including production of chlorine and aluminum, 

which together consume 6 percent of all the electricity generated in 

the United States. Gas producing side reactions are also a concern in 

charging of conventional and advanced batteries, which might be im­

portant to electric vehicles in the future. Conserving energy in both 

of these applications must in part follow from fundamental understand­

ing of the physics of gas evolution; that is, both its phenomena and 

effects. 

Electrolytically evolved gases affect electrochemical processes in 

several ways. First, they increase the effective resistivity of the 

electrolyte by forcing current to take longer paths through the solu­

tion than it would in their absence. Also, bubbles attached to the 

electrode surface force the current through smaller areas of the elec­

trode than would otherwise be available; since the driving force for 

reaction is a function of current density, there must be a net addition 

to the surface overpotential caused by the shifting of the current. 

Furthermore, bubbles not only affect the processes' gross hydrodynamics 

through gas lift, but also disturb the electrolyte close to an elec­

trode surface and thereby enhance mass transport of any diffusion­

controlled species to the electrode surface. Finally, in a plating 

operation, the nonuniform current distribution arJund a bubble on a 

surface may cause defects in the finish if the bubble adheres over a 

significant time interval. 
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Past work on the effect of dispersed gas on the conductivity of an 

electrolyte is reviewed in detail in Chapter I. The effect of the 

bubbles attached to the electrode surface, however, must differ from 

that of bubbles dispersed in the bulk because the environment of a 

bubble at the interface is asymmetric; that is, the bubble adheres to 

an equipotential surface but is everywhere else submerged in electro­

lyte. In Chapter II, the primary potential and current distribution 

around a spherical bubble tangent to a planar electrode, an idealized 

model of a bubble layer, are presented. 

Although the ideal non-interacting bubbles of the analytical 

solution in Chapter III shield the electrode, they do not severely 

constrict the current to the electrode and hence do not present 

significant resistance. The analysis is only accurate for bubbles on 

an electrode which have neighbors no closer than approximately 1-1/2 

diameters away. The interactions between the fields around bubbles 

which sit closer on the electrode are too complicated for convenient 

theoretical analysis; hence, conductivity measurements were performed 

on a large scale model of a planar hexagonal array of bubbles tangent 

to an electrode. The results of these experiments are presented in 

Chapter III. 

After ions are discharged and form molecules at an electrode, the 

molecules are dissolved in the electrolyte and diffuse away toward 

the bulk solution. Because gases such as H2, o2, and c1
2 

are only 

sparingly soluble in electrolytes, dissolved gases cannot be trans­

ported away from the electrode fast enough, even at low current 
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densities, to prevent significant supersaturation of gas at the inter­

face and subsequent nucleation of gas bubbles. Once a nucleus exists, 

it grows only as rapidly as additional molecules can diffuse to the 

gas-liquid interface. Thus growth is mass-transfer limited. This 

mechanism has been extensively studied mathematically and verified 

experimentally. As the bubble grows, it may coalesce with other 

bubbles close to it or it may depart never having coalesced. When the 

stress on a bubble overcomes the surface forces which attach it to the 

electrode, it departs. 

All of the above processes, nucleation, growth by diffusion, growth 

by coalescence, and departure from the electrode, occur rapidly and on 

a small scale. Microscopy and high speed cinematography are required 

to reveal details of these processes at the electrode surface. Viewing 

the action from the front side is complicated because the most im­

portant events occur close to the surface and these are obscured by 

other bubbles passing between the camera and the electrode; therefore, 

we evolved oxygen on a transparent electrode and viewed the events from 

the backside. A discussion of the experiments which includes some 

frame sequences from the motion pictures compose the last part of this 

dissertation. 
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II. REVIEW OF THE EFFECTIVE CONDUCTIVITY OF ELECTROLYTES CONTAINING 

DISPERSIONS OF DIELECTRIC SPHERES 

1. Introduction to the Literature Survey 

Many investigators have discussed the conductivity of heterogeneous 

media; there is at least one extensive review of the subject in the 

electrochemical literature (1). One should consult this article for 

information on the effect of dispersed phase shape and non-zero con­

ductivity; I shall not duplicate its broad aspects but will concentrate 

on the results suitable for small gas bubbles, that is, on the results 

for dielectric spheres. 

The experimental and theoretical results predict the conductivity 

for three types of arrangements of spheres. 

1. Random arrangements of uniform spheres. 

2. Ordered arrangements of uniform spheres. 

3. Random arrangements of broad ranges of sphere sizes. 

In the discussion to follow, the equations appropriate to each of these 

categories are presented and compared to experimental data in both 

dilute and concentrated ranges of gas void fraction. (The data, com­

piled from the literature, are presented numerically with short dis­

cussions of their origins in Appendix A.} Then the most accurate 

equations are selected and compared over the whole range of void 

fraction with all of the experimental data. 

These equations and data are suitable for use in the bulk 

electrolyte but may not be appropriate for the layer of gas bubbles 

on the electrode surface because the bubbles there may be more densely 
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packed~ they are not perfect spheres, and their environment is not 

isotropic on the average since there is an electrode on one side and 

bulk electrolyte on the other. After the discussion of the bulk con-

ductivities, some empirical results for the resistance of bubble layers 

are reviewed with the conclusion that. theoretical work on the subject 

is justified. 

2. Random Arrangements of Monosized Spheres 

The classical result of Maxwell (2) plus several other theoretically 

derived equations can be grouped into the category of equations which 

predict the conductivity of random arrangements of monosized spheres. 

Each of the equations in this section is compared to the appropriate 

data in both dilute and concentrated reg ions. Because Maxwell's result 

is fundamental to the theory of heterogeneous conductivity, because 

many authors have rederived the same result, and because their deriva­

tions reveal important concepts in the theoretical approaches to this 

subject, I begin the survey of this category with four different 

derivations of the Maxwell equation. 

Maxwell considered a spherical surface of radius "a" which has 

resistivity od inside and od outside. He expanded the potential 

inside the surface and outside in spherical harmonics. (For simplicity, 

I use only the first harmonk.) 

( 1) 
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Ad is related to the field driving the current and Bd is the amount 

of disturbance caused by the sphere. s1 is the first harmonic, 

cos Q. Likewise outside the sphere 

At the surface, r = a, Maxwell required equivalence of currents and 

equivalence of potentials from both regions. 

Applying these conditions and solving for Be and Ac, Maxwell 

obtained 

If there are no sources or sinks within the sphere, the potential 

cannot be infinite anywhere inside; hence Bd is zero. Maxwell 

solved for Be, the disturbance coefficient outside the sphere, in 

(2) 

(3) 

(4) 

(5) 

(6) 
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terms of Ac, the slope of the impressed linear potential which drives 

the flow of electricity. 

(7) 

He then considered two cases. First, he drew an imaginary sphere of 

radius a2 around a dispersion of small spheres each of radius a1. The 

resistivity inside the inner spheres is pd while the resistivity in 

the contfnuous medium inside and outside of a2 is Pc· The system 

appears in Fig. 1. At point P he wrote the potential as 

(8) 

where n is the number of dispersed spheres. Maxwell assumed in this 

equation that the disturbance caused by each of the small spheres can 

be expressed by Eq. (7), derived for a concentric sphere, and that 

these disturbances can be summed to give the disturbance of n spheres. 

For the second case, he considered a sphere having resistivity p, 

radius a2, and immersed in a medium of resistivity Pc· This system 

appears in Fig. l(b). The again wrote the potential at a point P 

outside the sphere. 

(9) 
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Fig. 1. The two cases of f~axwe11's derivation (a) n small spheres 
disseminated in a large sphere (b) homogeneous sphere 
embedded in a continuous medium. 
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where p is a heterogeneous resistivity which accounts for both the 

dispersed and continuous media inside radius a2• Equating the dis­

turbance coefficients in the two equations, Maxwell obtained his 

expression for the resistivity of heterogeneous media. 

2pd + PC + f(pd- PC) 

p = 2pd + PC - 2f(pd - PC) 

where f is the void fraction of the dispersed medium. For infinite 

dispersed phase resistivity, such as for gas bubbles, the equation 

reduces to 

p 
-= 

1 + f 
1 

1 - f 

1 - f 
K - -:1! m - 1 + r 

1 

where Km, as in all subsequent equations, is the ratio of the gas­

present bulk conductivity to the gas-absent conductivity of the 

(10) 

( 11) 

(12) 

continuous medium. One would derive the same result if one considered 

a single concentric sphere of volume naf surrounded by an imagi-

nary spherical shell of radius a2 and resistivity the same as that 

of the surroundings; therefore, Maxwell's solution is not determined 

by the arrangement of gas within the system. It is accurate in the 

dilute range of void fractions in heterogeneous media because, as he 

noted, 
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11 
••• whether the spherical shell (i.e., the continuous 

medium), conducts better or worse than the rest of the 
medium, the electrical action in the space occupied by the 
shell is less than it would otherwise be. If the shell is 
a better conductor than the rest of the medium it tends to 
equalize the potential all around the inner sphere. If it 
is a worse conductor, it tends to prevent the electrical 
currents from reaching the inner sphere at a 11. 11 

When the concentration of spheres reaches approximately 20 percent, 

the interactions of fields around bubbles become significant and the 

electrical activity in the shells surrounding bubbles is no longer 

reduced; hence Eq. (12) cannot give very accurate answers past this 

point. 

While calculating the conductivity parallel to the principal planes 

of a cubic array of spheres, Rayleigh (6) produced an alternate deri-

vation of Maxwell's result for randomly disseminated spheres. 

Rayleigh's complete answer is an infinite series which gives a better 

approximation as more terms are included. I present his derivation in 

an abbreviated form which includes only the lower order terms to 

compare it to Maxwell's derivation. 

A cubic array schematic appears in Fig. 2. Rayleigh expanded the 

potential in the continuous and dispersed media in spherical harmonics 

around the sphere at point P. 

(13) 

(14) 
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Fig. 2. Section through a cubic array of spheres. 
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Vc is the potential in the continuous medium while Vd is that in 

the dispersed medium. 0
0 

and C
0 

are constants.which vary from 

sphere to sphere (but not in between). Applying equivalence of 

potential and current at the spherical surface, Rayleigh found a 

relation between the constants of the first equation. 

(15) 

He then derived the conductivity as a function of the first coefficient 

of disturbance, Be, and the strength of the impressed field, E
0

, 

by applying Green's theorem to the spherical and rectangular boundary 

of a unit cell in the array. 

(16) 

where Km is the conductivity ratio and a is the length of a side. 

Needing to relate Be to E
0

, Rayleigh equated an expansion for the 

potential around point P to the sum of the driving potential, E
0
cos e, 

and potential due to sources located at the center of the other spheres 

of the array. 
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x, y, z are the Cartesian equivalents of r, 

~. n, ~ are the coordinates of the spheres in the cubic array referred 

to the sphere at point P. 

2 - (•2 + 2 + 2) 
P - "' n P • 

After grouping the two terms in x on the left, Rayleigh expanded the 

right side in x around the point P at x,y,z = 0,0,0. He then equated 

the terms first order in x to find 

(18) 

Using Eqs. (15) and (18), Rayleigh obtained 

(19) 

2 2 
1 ~ d ( t; ) ~ p - 31; -"2""-([ j =L. 5 

p p 
(20) 

Noting that the right hand term is a perfect differential, Eq. (20), 

he let it pass to an integral; that is, he evaluated the integral 

JJJ & -\- dt;dndp 
() 

( 21) 

This step implies that the points of potential are uniformly dispersed 

about the central sphere and thus echoes Maxwell's derivation for the 
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randomly disseminated spheres. Integrating and inserting the result 

in Eqs. (19) and (16), Rayleigh obtained Maxwe11 1 s result. 

(22) 

Z. Hashin (7) derived Maxwen•s relation by considering a sphere 

(representing the dispersed phase) embedded concentrically in another 

sphere (representing the continuous phase) which is in turn embedded 

in a third statistically homogeneous phase consisting of dispersed and 

continuous phases. A schematic of this model appears in Fig. 3. He 

first defined volume averages of the fluxes in the three phases, 

(23) 

i = kE 

where i is the average current density, k is the effective 

conductivity and E is the volume averaged electric field. The letters 

c, d and no subscript represent the continuous, dispersed, and outer 

homogeneous phases, respectively. Since the total current in the 

concentric spheres is the sum of the two partial currents and the 

average current density in the spheres is the same as that in the 

outer medium, Hashin wrote 



15 

XBL 8011~7576 

Fig. 3. The self-consistent volume averaged model of Hashin 
d: dispersed phase 
c: continuous phase 
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(24) 

Combining Eq. (24) with 

(25} 

and eliminating the continuous phase field, he found 

E 
k = k + (kd - k ) ~ f c c -E 

(26) 

and concluded that "it is sufficient to know the average of the inten­

sity (field) over one phase only in order to calculate the effective 

conductivity~" 

In order to determine the ratio of the average electric field in 

the dispersed phase to the average electric field in the outer mix­

ture, he developed expressions that one may also find in Maxwell's 

Electricity and Magnetism (2); Hashin expanded the potential in spher­

ical harmonics and deduced the necessary relationships between the 

fields in three concentric phases by applying the usual conditions on 

current and potential at the phase boundaries. When kd is zero, as 

for gas bubbles, 

(27) 
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Inserting (27) into (26) and letting 

(28) 

he found 

(2 + f) K~ + ~ f - 1 + (f - 1) = 0 (29) 

from which by the quadratic formula he obtained 

(30) 

which is Maxwell's result. 

Neale and Nader (8) used Hashin's (7) model as the basis for their 

derivation; however, they evaluated the disturbances in the concentric 

continuous phase instead of those in the dispersed phase. In the 

nomenclature of the previous derivation, they first expressed the 

potential in the concentric continuous phase as 

The coefficient Ac, the disturbance in the concentric (continuous) 

phase, can again be found from Maxwell's developments~ 

( 31) 
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3k 
Ac = 2k + kr-+ 1 - f (32) 

Having an expression for the potential in the continuous phase, they 

used it to satisfy the requirement that all the current flowing in a 

tube of diameter equal to that of the outer concentric sphere must 

equal the current derived from Eq. (31) integrated from the inner 

sphere surface to the outer spherical surface, that is 

(33} 

Differentiating Eq. (31} and integrating according to Eq. (33), they 

found 

(34) 

from which they deduced 

(35) 

where 

(36) 
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The four derivations of the same result indicate that Maxwell's 

result is a fundamental relation of heterogeneous conductivity and they 

illustrate some of the techniques one can use to theoretically in­

vestigate such systems. The equation has been popular for experimental 

verification; investigators from the turn of the century to recent 

years (8,13,17,19,20) have claimed and disputed its applicability even 

up to void fractions corresponding to touching spheres in some packing 

arrangements. The fact that it is valid at low concentrations and that 

it passes through zero at a void fraction of one makes Maxwell's result 

never grossly wrong, as one can see in Figs. 4 and 5 where Eq. (12) is 

plotted against appropriate data in the dilute and concentrated 

regions. The maximum deviation from the data is a few percent; in view 

of its simple form and the relative ease of its derivation, this is 

remarkable. 

Trying a different approach, Buyevich (3) modeled the spheres 

surrounding a central sphere as point dipoles and deduced the equation 

s(17a + 7) 
Km = (1 - f}(17a + ~~ ( 37) 

where 

a = ~ {1o - 17f + [(l0-17f) 2 
+ (l-f)(476)J1' 2} 
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One calculates conductivities from this equation which are higher than 

those of Maxwell, a physical absurdity pointed out by Turner (19) and 

noticed by Buyevich himself. One can see this in Figs. 4 and 5, which 

are graphs of Eq. (37). He concluded that the dipole model suffers 

because it cannot account for the constrictions of current between 

spheres; hence this solution must be regarded as an elegant model that 

is a poor approximation. 

Attempting to extend Maxwell •s result, Jeffery (4) calculated the 

resistivity of a suspension of random spheres to order O(f2). He 

wrote a general formulation for the flux of current through such a 

suspension and then used the interaction of two spheres as a model for 

the interactions occurring throughout the suspension. He found the 

coefficient of f2 explicitly for the case where all possible con­

figurations of pairs of spheres are equally probable; hence the result 

is good for a random arrangement. 

3 . 2 
Km = 1 - 7 f + 0.588 f (38) 

The values of Km calculated from this equation appear in Figs. 4 and 

5. One can see that there is a slight improvement on Maxwell's solu-

tion at void fractions less than 0.5, but that Jeffery's result 

deviates severely at greater void fractions. 

Higuchi (5) also tr~ed to improve the classical result of Clausius 

and Mossotti for the dielectric constant analogous to Maxwell's result 

by deducing a correction to the average field which surrounds the 
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particle of interest. Specifically, he calculated a reaction field 

proportional to an unknown constant and due to dipole interactions 

between adjacent spheres; he summed this to the conventionally assumed 

average field and evaluated the constant by comparing his equation with 

a compilation of data by Pearce (30). Illustrated 

K _ 2(1 - f) - 0.39(1 - f) (39 ) 
m - 2 + f - 0.39(1 - f) 

in Figs. 6 and 7, his equation predicts much lower conductivities than 

the other equations and the experimental data. Furthermore, the 

expression does not reduce to Maxwell's result at low void fractions. 

Prager (9), in an apparently new approach, applied the principle 
I 

of minimum entropy to obtain bounds on the diffusion coefficient of a 

solute in a suspension of solid particles. Since the diffusion rate 

ratio can be considered analogous to the conductivity ratio, one may 

use the result to estimate the conductivity of heterogeneous electro­

lYte. His result, Eq. {40}, is exact for a suspension of spheres. It 

agrees with Maxwell's result at low void fractions and significantly 

improves on it over medium and concentrated ranges of void fraction. 

Its predictions appear in Figs. 6 and 7 with appropriate data. 

Prager's equation agrees with the data of OeLaRue (10) and Slawinski 

(11), while Meredith's data {12) bracket the predictions of Prager's 

e~uation: 

(40) 
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Of all the theoretical equations derived to predict the conductivity 

ratio of random arrangements of monosized spheres, I conclude that 

Prager•s fits the data significantly better than those of Maxwell, 

Jeffery, Buyevich, and Higuchi. The severe deviation of Buyevich•s 

result Eq. (37) indicates the importance of using potential expressions 

derived from spherical harmonics to obtain reasonable results. That 

Higuchi's equation, Eq. (39}, gives much too low_ a conductivity ratio 

must mean either that the data on which he based his adjustable param­

eter were inaccurate or that his analysis overestimates the interac­

tions between the dipole fields of particles in the dilute and medium 

concentration ranges. Jeffery•s equation, Eq. (38), while an improve­

ment over Maxwell's equation at low void fraction, diverges badly in 

the concentrated region. 

3. Ordered Arrangeme~ts of Uniform Spheres 

There have been three investigations into the class of ordered 

arrangements of monosized spheres. Rayleigh (6) calculated theoretical 

conductivity ratios at dilute the intermediate void fractions in a 

cubic array of spheres, Meredith (13) extended his result to higher 

order terms and experimented with these arrays, while Mashovets (14) 

also experimented with ordered arrangements of monosized spheres and 

suggested an empirical equation to fit his data. 

Rayleigh (6) extended the derivation presented earlier to include 

another term and obtained a formula which gave a becter value for the 

conductivity of his cubic array. Not finding a convenient calculation 

for the second coefficient as he did for the first discussed earlier, 
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he summed the contributions of the spheres closest to the reference 
' sphere to obtain its value. 

(41} 

Meredith and Tobias (13) extended this solution to give better results 

for high gas concentrations. 

K _ (2 + f) + 0.614 f?/J - 0.680 fl0/ 3 

m - 2(1 - f) + 0.614 f1T3 1.60 flO/J 
(42) 

Graphs of Eqs. (41) and (42) appear in Fig. 8 for the dilute region 

and in Fig. 9 for the concentrated region. They are indistinguishable 

up to nearly 30 percent gas fraction. Improving on Rayleigh's result, 

Meredith's equation predicts the lower conductivity as void fraction 

increases. The small difference between his equation's prediction and 

his carefully measured data point at a void fraction of 0.52 reflects 

the accuracy obtained by including an additional term in the series 

solution to this problem. The equations cannot be physically meaning­

ful past the void fraction corresponding to cubic close packing and in 

fact both Rayleigh's and Meredith's results diverge severely from the 

general boundary requirement that the conductivity be zero at a void 

fraction of one. I conclude that these two relations are unsuitable 

as candidates for best overall equation. 
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Mashovets (14) produced an equation which fit his data on ordered 

arrangements of spheres. 

(43) 

Equation (43) and his data appear in Figs. 8 and 9 with those of 

Rayleigh and Meredith. Mashovets' data (and equation) are signifi­

cantly below those of Meredith in the dilute range but lie signific­

antly above those of Meredith in the concentrated range. The three 

lowest void fractions correspond to dilute face-centered cubic 

arrangements. The point at f = 0.52, agreeing with Meredith's result, 

corresponds to a close packed cubic array (as also does Meredith's). 

The other points are for hexagonal and face-centered cubic packings 

where the spheres touch. Mashovets' results seem inconsistent with 

the fact that at low void fractions one expects agreement with 

Maxwell's result, even for ordered arrays, as Rayleigh showed. They 

also seem incorrect at high void fractions where they sharply diverge 

to higher conductivitie~. Curiously, his result for cubic close pack­

ing agrees with that of Meredith, but I conclude that Mashovets' 

equation is not generally accurate. 

The equations of this section are not suitable for the entire range 

of void fractions. Meredith's equation is accurate to void fractions 

near where the spheres touch in a cubic array, but it diverges badly 

afterward. It might be worthwhile to reproduce Mashovets' work on 

other types of packings to show the differences between various types 

of arrangements. 
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4. Random Ar~angements of Multisized Spheres 

There are two theoretical models based on size distributions of 

dielectric particles and one equation said to be applicable to multi­

sized dispersions. Bruggeman (15) treated a .. pseudo-continuous" 

distribution of sizes by accumulating the contributions of a range of 

bubble sizes. I call it a pseudo-continuous range because each size 

fraction of bubbles must be very different from each of the other sizes 

included in the integration. Adding infinitesimal size fractions, he 

treated the mixture already present as continuous with a bulk con­

ductivity. One can write this process in differential form (10), from 

which integration gives 

K = (1 - f) 312 
m (44) 

Appearing in Figs. 10 and 11, Bruggeman's result agrees with Maxwell's 

at low void fractions; it also agrees well with OelaRue's data in 

dilute and in intermediate ranges, but it underestimates the con­

ductivity at high void fractions. It does not agree with Slawinski's 

data in the dilute region, but neither does this data agree with 

Maxwell's result and must therefore be suspect. 

Meredith and Tobias (16) noted the tendency of Bruggeman's equation 

to overcorrect in the concentrated ranges and devised another approach 

called the Distribution Model by considering only two size fractions. 

As in the Bruggeman derivation, the smaller size fraction is added 

first and then is considered as part of a continuous medium having its 
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own bulk conductivity when the larger size fraction of bubbles is 

added. The Distribution Model result, Eq. (45), appears in Figs. 10 

and 11. 

K 8(2 ~ f)(1 - f) 
m = (4 + f)(4 - ry- (45) 

Intermediate between Maxwell's and Bruggeman's equations, Eq. (45), is 

as accurate as Bruggeman's at low void fractions, seems not quite as 

accurate in the intermediate range, but represents the data well in 

the concentrated range. As Meredith concluded in his 1962 review (1), 

the Distribution Model is a compromise between the fact that the con-

ductivity of dispersions which are neither perfectly uniform nor which 

have the broad range of sizes necessary to justify using the Bruggeman 

relation falls, between Maxwell's and Bruggeman's results. 

Slawinski (11) did not use spherical potential theory but deduced 

average current path lengths which he loaded into simple algebraic 

expressions for the resistance of general systems. After analyzing 

various configurations of spheres, he deduced an equation which one 

must modify as a function of the range of gas fraction. 

K = 1 
m 1 + ~ t (1 + 0. 321 ?r/0-- p ) - 1} 

p = 0. 806 f
2' 3 f < 0.15 

p = (0.806 + 0.133 f) f 213 0.15 < f < 0.6 

p = 0.904 f 213 0.6 < f 

(46) 
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Appearing in Figs. 10 and 11, Eq. (46) apparently agrees with the 

writer's own data on heterogeneous systems; but neither the data nor 

the equations agree with Maxwell's result at low void fractions. 

Furthermore, Slawinski's result diverges from the data at high void 

fractions so it cannot be suitable over the whole range. 

Two of the three equations in this section, Bruggeman•s and the 

Distribution Model, are candidates for the best equation over the whole 

range of void fraction. They both agree with Maxwe11 1 s result at low 

void fraction. Although they differ in their agreement with data 

through the medium and concentrated regions, neither diverges badly as 

some of the others and they both give zero conductivity at a void 

fraction of one. 

5. Conclusion: The Best Equation Over the Whole Range 

Many investigators, some of whose results were not included in this 

review because they were not given numerically, have experimented with 

heterogeneous systems and have claimed success for several of the 

equations discussed previously. Neale and Nader (8), whose experi­

mental work is discussed in Appendix A, endorsed Maxwell•s equation 

even at void fractions greater than those at which spheres touch in 

some packings. DeLaRue (10) advocated Bruggeman's equation for random 

dispersions of multisized spheres. 

Sigrist, Dossenbach, and Ibl (17) measured the conductivity of 

electrolytes containing gas bubbles dispersed through a glass frit. 

They added 1 percent ethanol to a mixture of aqueous copper sulfate, 

sulfuric acid, and sodium nitrate; the alcohol favored a uniform size 
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of half a millimeter. They determined the void fraction by a static 

pressure difference and the conductivity with a conventional bridge. 

They concluded that Maxwell's relation is better than the Bruggeman 

relation for electrolytes containing gas bubbles because the size 

distribution is narrow. One wonders how a dilute system result can be 

accurate for void fractions at which spheres would be touching in some 

packings. While the authors note the experimental work of DelaRue and 

Tobias (18) on dispersions of glass beads, they do not explain the 

apparent conflict between these authors' results, which depicted the 

failure of Maxwell's equation in concentrated solutions, and their own 

results. 

Turner (19) discussed previous theory and measured the conductivity 

of ion exchange resins fluidized in sodium chloride solution. He 

plotted relative ~onductivity versus void fraction for insulating beads 

and found that the conductivity at low void fractions exceeded that 

predicted by Maxwell's solution. He blamed this discrepancy on exper­

imental error or inhomogeneities in the fluidized dispersion; despite 

these discrepancies at low void fractions where Maxwell's equation 

should apply, he accepted the agreement between his results and 

Maxwell's relation at high void fraction where it should not be 

accurate. 

There is another puzzling detail of this paper. The author 

inserted a relatively high void fraction (0.6) into a Taylor expansion 

of Km in f around zero carried out to only the f2 term. He then 

inexplicably attributed the result of this arithmetic, which gives a 
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grossly high conductivity ratio, to Rayleigh's original equation. Even 

after noting twice that his answer exceeded Maxwell's and that this is 

physically absurd, he concluded that Rayleigh's equation is not useful. 

In fact, Rayleigh's equation gives a conductivity ratio of 0.288 at a 

void fraction of 0.6 rather than the 0.370 Turner erroneously derived 

from the expansion and then attributed to the original. 

Fricke and Morse (20) measured the resistance of cream with 

alternating current. They claim to have investigated void fractions 

from 0.08 to 0.62 but they list only two data points. After measuring 

the resistances of skimmed milk and a dilute cream and dividing the 

latter by the former they found a resistance ratio; then they calcu­

lated a void fraction from Maxwell's solution. They calculated 

subsequent void fractions from known amounts of dilution and compared 

them with the measured resistances. Because Maxwell's equation is not 

accurate for large void fractions, their fitting the equations at 0.225 

void fraction may account for the continued good agreement with this 

expression up to void fractions greater than 0.6. 

Wyllie and Gregory (21) measured the relative conductivity of 

unconsolidated pack ings of glass and plastic spheres. They used 0.1 N 

and 0.5 N KCl solution but did not discuss their electrical techniques. 

They experimented with random arrangements of multisized particles and 

compared their results to Slawinski's (11) equation at relatively high 

void fractions. They found that his equation agreed with their results 

at medium void fractions but overestimated the conductivity at void 

fractions greater than 80 percent. 
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These experiments notwithstanding, the three equations, Bruggeman's, 

the Distribution Model of Meredith and Tobias, and Prager's relation, 

which best represent the data plotted in the foregoing figures, are 

illustrated in Figs. 12-14 with all of the data included. All of the 

equations agree with Maxwell's result at low void fractions and all of 

the equations give a zero conductivity at a void fraction of zero. As 

noted before, Bruggeman's relation seems to be a lower limit in the 

medium and concentrated void fractions ranges. In a case where a broad 

range of particles sizes is present, Bruggeman's relation would fit 

the data better; however, Prager's result, Eq. {40), and the Distri­

bution Model, Eq. (45}, fit the data better than the other equation 

over the whole range and are almost indistinguishable from each other. 

I conclude that the two equations may be used interchangeably. 
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III. THE TANGENT SPHERE AND OTHER CALCULATIONS APPROPRIATE TO 

THE CONDUCTIVITY OF BUBBLE LAYERS 

1. Literature of the Bubble Layer 

A few investigators have studied the gas layer on the electrode 

surface. Kubasov and Volkov investigated the voltage increase caused 

by a bubble layer on graphite anodes which face downward during chlor­

ine evolution. Using a mercury pool as a counter electrode, they 

measured the cell voltage during electrolysis twice; once in otherwise 

quiescent solution and once with sufficient stirring to remove the gas 

from the electrode surface. After subtracting the latter from the 

former, they reported an increment of voltage which includes both ohmic 

and an anode shift potential caused by bubbles screening the electrode 

and changing the local current distribution. Measuring this voltage 

at various current densities, electrode widths and temperatures, the 

authors found bubble layer voltages as high as three volts when the 

solution was acidified 5M sodium chloride and the current density was 

greater than one ampere per square centimeter. The authors did not 

relate their data to any previous theoretical work on the conductivity 

of heterogeneous media; the article applies specifically to the 

chlorine/caustic mercury cell. Errors related to taking the difference 

between two large terms probably accounts for the data scatter they 

mention. 

Takata, Morishita, and KiharJ (33) experimentally investigated the 

resistance of chlorine gas bubble layers on electrodes by varying the 

distance between Luggin reference and platinum working electrodes for 
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horizontal, tilted, and vertical orientations. Plotting potential 

against distance between the electrodes, they noticed a sharp increase 

of electric field as the reference electrode approached the working 

electrode. They designated the point of field change as the outer 

boundary of the bubble layer and found layer thicknesses of 2, 1.8, 

and 1.4 mm for the horizontal, tilted, and vertical orientations, 

respectively. They devised an equation based on Maxwell's result to 

predict the additional potential required to push current through the 

bubble layer. One must know the amount of gas per square centimeter 

and the void fraction in the layer to calculate a potential. They 

concluded that the bubble layer thickness is not a strong function of 

current density but is a function of electrode orientation; the layer 

thins as one goes from horizo.ntal position to vertical. They found a 

significant polarization caused by the bubble layer and suggested 

dispersing it to save energy. 

Hine et al. (24) in 1956 discussed the anode shift potential caused 

by the actual local current density being higher than the superficial 

current density because the bubbles screen the electrode surface. Hine 

et al. (32) in 1975 recognized that bubbles may not be uniformly 

distributed in the interelectrode gap; they used the Bruggeman relation 

to predict the conductivity of these distributions. 

I conclude from the work of the foregoing authors that the voltage 

drop in the bubble layer can be hundreds of millivolts and thus deserve 

attention. Theory and experiments on model systems can illuminate 

important effects of this layer and this is the contribution of 

Chapters 2 and 3. 
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2. Introduction to the Calculations 

In this chapter I present several calculations which describe 

pertinent effects of bubbles on and off electrodes. The effect of the 

bubble layer, present during electrolysis, differs from that of bubbles 

dispersed in the bulk electrolyte because the environment of a bubble 

sitting on the surface is asymmetric; the electrode, an equipotential 

surface, is in contact with a planar array of bubbles, while electro­

lyte extends to a large distance on the opposite side of this array. 

In the following an analytical solution is presented which describes 

the potential field around a spherical bubble in point contact with a 

planar equipotential surface when the field far from the sphere is 

linear. The current distribution on the electrode plane and the in­

cremental resistance caused by a dilute array of bubbles are also 

evaluated. I compare this resistance to the resistance presented by 

bubbles out in the bulk in order to contrast the tangent sphere result, 

the solution for a single bubble in bulk electrolyte, and Maxwell's 

result. In subsequent examples I show that not only does the closeness 

of approach of bubbles affect their resistance, but also that the 

orientation of bubble systems with respect to the flow of current 

determines the overall resistance they present. Based on the insight 

afforded by the foregoing calculations, a simpler analysis is presented 

which illustrates the dominant contribution to the resistance presented 

by densely occupied bubble layers on electrodes. 
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3. The Tangent-Sphere Calculation* 

Theoretical 

We use tangent sphere coordinates to solve Laplace•s equation for 

the potential field and current distribution on the planar electrode 

around the insulating sphere. The coordinate planes are spheres 

tangent to the plane and toroids without center openings; they are 

related to Cartesian coordinates by 

z "'--"-.... 2 + 2 v IJ 

1.1 
X "' 2 2 

1.1 + v 

The coordinates and their relations to the geometry appear in 

Fig. 1. v corresponds to the inverse of radial distance from the 

(1) 

contact point while l.l is analogous to an angular coordinate. Infinity 

of both coordinates specifies the contact point. Moon and Spencer 

(26) present a rather complete discussion of various coordinate 

systems, including the one above, in their Field Theory Handbook. 

The variables, defined in dimensionless form, are as follows: 

z* "" z/2a 
x* "' x/2a 
v* = 2av 

l.l* = 2al.l 
~* = M2a~0 
i* = i/t<f/1

0 

*section II has appeared in print in substantially the same form. 
P. J. Sides and C. W. Tobias, J. Electrochem. Soc. 127, 288 (1980). 

(2) 



46 

0 
u 

X 

'II * 

*-O 'II .... 

XBL 793-993 

Fig. 1. Tangent sphere coordinates in two dimensions. 



47 

The distance variables are normalized to the bubble diameter; 

therefore, x* = 1 defines a plane parallel to the y*z* plane and 

located one bubble diameter from the axis passing through the center 

of the bubble and the contact point. 

We write the potential as the sum of a disturbance and a linear 

term: 

(3) 

The second term already satisfies Lap1ace 1 S equation and all 

boundary conditions except the one on the bubble surface; therefore, 

2 * v t>d = 0 (4) 

The disturbance must vanish both on the electrode and far away; the 

potential must be asymmetric about an axis passing through the center 

of the bubble and the contact point; finally, no current passes through 

the bubble. In tangent sphere coordinates Eq. ( 4) and these boundary 

conditions are: 

*2 (5) 
\1 

(6) 
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"" 0 (7) 

* atl 
~ "' 0 (8) 
av v*=1 

Moon and Spencer (26) give the separation criteria, the separated 

equations, and their general solutions. After applying conditions, 

Eqs. (6) and (7), we obtain 

(9) 

Because the domain is infinite, the solution must include all values 

of q; therefore, Eq. (9) passes to an integral. 

00 

t>~ = (~ *2 + ../2)112 J Asinh(qv*) J0 (q~ *) dq (10) 
0 

The insulation condition, Eq. (8), determines A as a function of q. 

* Upon differentiating the complete potential tl , evaluating this 

* expression at v = 1, and equating it to zero, we obtain 

00 

(11) 
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Following Witze, Schrock, and Chambre (27), we use the differential 

equation satisfied by J
0 

and integrate twice by parts to obtain 

(12) 

where 

H(q) = ~ - ~ [q ~q (Acoshq)] + A(qcoshq + sinhq)l (13) 

After inverting the transform with the help of the Erdelyi Tables (10) 

and rearranging the equations, we obtain 

(14) 

C must be zero for the derivative to remain finite at q = 0. 

f
oo 1 - q + e -2q 

A = dq 
2cosh2q 

(15} 

0 

The potential is now given .by 
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and the primary current distribution is 

(17) 

Equations (16) and (17) were numerically eval.uated by routines that 

calculated the Bessel functions and integrated their products with the 

hyperbolic functions over the appropriate domains. 

Discuss ion 

The electric field appears in Figs. 2(a) and 2(b). The potential 

is normalized so that equipotentials far from the bubble coincide with 

distance from the electrode (see Eq. (3)). As required by the insula­

tion condition, Eq. (8), the equipotentials meet the bubble at right 

angles; they approach their undistributed values far away. One can 

see from Fig. 2(a) that the displacement of equipotentials caused by 

the insulating sphere becomes negligibly small beyond one and a half 

diameters from its contact point along the electrode and three 

diameters perpendicular to the electrode. 

The current distribution as a function of dimensionless distance 

appears in Figs. 3(a) and 3(b}. The current density is normalized to 

be 1.0 at a great distance from the sphere; we call this the 

"undistur·bed 11 value. The value 0.5 on the abscissa of Fig. 3 marks 

the oute~most circle on the electrode shadowed by the bubble; here, 

the current density is 80 percent of its undisturbed value. The 

current density farther from the bubb 1e exceeds 1. 0 because the upper 

half of the sphere deflects the flux and thereby creates a maximum 
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current density 2 percent greater than the undisturbed value at one 

diameter from the contact point. We conclude that fields around 

spheres separated by more than three diameters affect each other 

negligibly. 

A detail of the current distribution near the contact point appears 

in Fig. 3(b). Zero at the axis, the current density reaches only 1 

percent of its undisturbed value at 30 percent of the radius from the 

contact point; therefore, we can insulate the area inside this distance 

with a surface which coincides with a surface of flow. Thus the effect 

of a tangent insulating sphere on the current distribution approximates 

that of a bubble having a nearly spherical shape and a contact area 

less than 0.09 wa2• Calculating the contact angle for this base area 

according to the geometry in Fig. 4, 

.. -1 ( ) " 9 = 90 -cos b/a = 17.5 (18) 

we conclude that the effect of a sphere on a plane approximates that 

of a nearly spherical bubble having a contact angle less than 17.5". 

The bubble increases the resistance by deforming the otherwise 

straight lines of current. We evaluate the effect by integrating the 

potential disturbance over a plane far from the electrode and parallel 

to it. 

(19) 
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Bubbles whose contact points are three diameters apart in a planar 

hexagonal array give a number density 0.0321ta2• If the bubble 

diameter is a tenth of the interelectrode gap in a parallel plane cell 

geometry, Eq. (22) predicts a resistance increase of only 1 percent. 

This means that the resistance caused by a sparse collection of small 

bubbles is negligible. When closer than three diameters, the bubbles 

interact significantly and thereby disturb the potential more than 

predicted by Eq. (22); nevertheless, this equation establishes that 

when the bubble diameters are a tenth of the interelectrode spacing, 

the minimum added resistance caused by a close-packed array of bubbles 

on a surface is at least 8 percent of the cell resistance. In reality, 

because of the severe pinching of the field between the bubbles, the 

effect must be substantially larger than this, perhaps by a factor of 

t~ ~ ilir~. 

4. Maxwell's Equation, the Single Bubble Calculation, the Tangent 

Sphere Result 

As discussed in the first chapter, Maxwell derived a fundamental 

equation for the conductivity of a medium containing a dilute 

dispersion of spheres Eq. (1-11). 

K _ [1 - f] 
m - 1 + ; 

(1-11) 

There is a case simpler than his; that is, one can deduce a resistance 

caused by a single sphere in an infinite medium as the limiting case 

of Maxwell's solution for a dilute dispersion of spheres. Consider 
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where 

"" 
A0 "" 8 f qAdq 

0 

= 0.9015 (20) 

A~ does not depend on distance from the electrode; it is the net 

disturbance of potential integrated with area. "n" bubbles per unit 

area, distributed such that their contributions are independent, cause 

a net potential disturbance. 

(21) 

One cannot deduce a conductivity analogous to Maxwell's because the 

layer of bubbles is two-dimensional; the effect must be characterized 

as a polarization at the electrode surface. The increment of resis­

tance caused by the bubbles on an electrode of area S is the net 

potential disturbance, Eq. (21), divided by the total current to the 

where f is the gas void fraction in the bubble layer. AR is a 

resistance increment related only to the disturbance caused by the 

bubbles. Its sum with the cell's resistance in the absence of gas 

gives the net cell resistance. 

(22) 
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the schematic in Fig. 5. There, r is the radial distance from the 

sphere's center, a is the sphere's radius, and 9 is the angular 

coordinate. The medium must be large enough for the disturbance 

caused by the sphere to vanish because the resistance itself is the 

macroscopic result of this disturbance of the flux lines. 

I write an expression for the potential around a single sphere in 

an otherwise linear field (1). 

(23) 

which was derived by solving the Laplace equation in the surrounding 

medium. ~0 is the slope of the linear field prevailing at large 

distances; multiplied by the conductivity, it gives the current density 

in the sphere's absence. The first term in Eq. (23) is the linear 

solution specified at large distances; the second modifies the linear 

solution to account for the sphere; that is, the solution consists of 

linear and disturbance terms. The resistance related specifically to 

the geometrical obstruction presented by the sphere comes from the 

second term. Evaluating the net potential disturbance as in Eq. (19) 

and dividing this increment of potential by the current density far 

from the bubble, one obtains the resistance caused by the sphere. 

(24) 
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Fig. 5. Geometry for single sphere analysis. 

1 

XBL 8011-7597 

Fig. 6. Single sphere in a flat plate cell. 

I 
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where k is the conductivity and AR is the increment of resistance 

related only to the sphere's presentee 

To express this equation in terms comparable to Maxwell's result, 

I consider a two-flat-plate cell as depicted in fig. 6. The 

resistance of this cell in the absence of any spheres is 

R = 9./KS 

Combining Eq. (24) with Eq. (25) one obtains an expression for the 

total resistance of the cell 

(25) 

(26) 

Dividing Eq. (26) by Eq. (25) and noting that the void fraction f is 

the sphere volume divided by the cell volume, one finds 

1 - 1 + I f "'m - 2 

Equation (27) is a limiting case of Maxwell's result which can be 

proved by expanding the latter around zero void fraction. 

1 3 
~ = 1 + ~ f + • • • 
m 

(21) 

(28) 

I conclude that a very dilute dispersion of spheres behaves like 

individual spheres having absolutely no interaction with other spheres 
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in the dispersion. Maxwell's solution is a correction to this case 

even though it itself is derived for non-interacting spheres. There 

is no contradiction between the ideality in the single sphere case and 

that in Maxwell's case; while one can evaluate the disturbance due to 

a single sphere over a plane and account for all the disturbance, one 

cannot use this method to evaluate the disturbance due to spheres which 

behave as a three dimensional collection. The difference between 

Maxwell's case and the single-sphere case is the three dimensional 

nature of the dispersion. 

Dividing Eq. (22) by Eq. (28), one can compare the tangent sphere 

result with the single-sphere result; the ratio equals 0.9015. A 

sphere on the electrode surface presents 90 percent of the resistance 

of a sphere in the bulk because the electrode plane terminates the 

disturbance in current at the base of the sphere instead of permitting 

it to slowly recover to straight paths. There is no equivalent of 

Maxwell's result for a bubble layer because it is two dimensional. 

5. Effect of Orientation of Two-Sphere Combinations on the Resistance 

They Present 

In Section III, I calculated the resistance caused by bubbles• 

screening the electrode from current. To contrast this screening 

effect to the constriction of current to flow between two bubbles side 

by side with respect to the overall direction of current, I compare 

three cases which illuminate the dependence of the resistance of bubble 

systems on their orientation with respect to the direction of current. 

Schematics of the three cases appear in Fig. 7. In case (a) the two 
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Fig. 7. Arrangements for demonstration of effect of 
bubble orientation. 
(a) Bubbles completely separated. 
(b) Bubbles oriented in line with the current. 
(c) Bubbles oriented side by side with respect to 

the current. 
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spheres are far enough apart from the boundaries and each other that 

they do not interact. In case (b) the line joining the bubbles' 

centers is parallel to the flow of current while in case (c) the line 

joining the bubbles' centers is perpendicular to the overall current. 

In each of the last two cases the spheres are tangent. 

The net resistance increase for a single bubble of the type in (a) 

is given by Eq. (24). Multiplying by 2 to account for both bubbles, 

3 
t!R = 4na 
a~ 

The net increase for the system in case (b) is given by twice the 

amount presented in the tangent sphere calculation. 

3 
~Rb = (0.9015) ~ 

K$ 

(29) 

(30) 

After dividing Eq. (30) by Eq. (29), one finds that the resistance of 

two tangent spheres whose line containing their centers is parallel to 

the direction of current is 90 percent that of two bubbles whose fields 

do not interact. The equipotentials around two such spheres appear in 

Fig. 8 and a vector graph of the current appears in Fig. 9. Note the 

absence of equipotential lines near the point of tangency; it means 

that there is little electrical activity between the spheres. In Fig. 

9 the length of the arrows is proportional to the current and their 

orientation indicates the direction of current at the point from which 
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Fig. 8. Equipotentials around bubbles oriented in line with current. 
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Fig. 9. Vector graph of currents around bubbles in line with current. 
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they are drawn. The current changes direction to avoid the top sphere 

and then begins to fill the volume between the spheres before passing 

the plane of symmetry and avoiding the second sphere~ but the currents 

in the volume between the spheres is small. The decrease in electrical 

activity between the spheres accounts for the 10 percent drop in 

resistance realized by moving the spheres from far apart to tangent 

with their line of centers parallel to th~ overall current. 

To evaluate case (c), in which the line joining the spheres• 

centers is perpendicular to the current, I used the tangent sphere 

coordinates defined in Eq. (1) and again add linear and disturbance 

terms to solve Laplace's equation with boundary conditions which 

resemble those of the earlier solution; however, the current far from 

the pair of spheres now flows parallel to the x direction illustrated 

in Fig. 1 of the previous section; therefore the solution is written as 

* * * fJ "' ~d + X (31) 

in contrast to Eq. (3). Also, the problem is no longer axisymmetric, 

but three dimensional; the angular coordinate rotates the coordinates 

of Figure 8 about the line containing the bubbles• centers. The solu­

tion to the problem in this case is 

(32) 
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This equation satisfies the boundary conditions 

* *2 at~d 
ll ~ = 0 

av v*=O 

"" 0 

(33) 

I use the condition of no current through the bubble to determine the 

transform coefficient A as a function of the variable q. 

"" 0 (34) 

Applied to Eq. (32), this equation gives 

2J.I* I"" * ; 2 372 "" AJ1(qll )(coshq + qsinhq) dq 
(ll + 1) 

0 
00 

+ ll*
2J AJ1(qJ.I*) qsinhqdq (35) 

0 

I again use the differential equation satisfied by J1(q) and two 

integrations by parts to rearrange the right hand side to a form suit­

able for using the Erdelyi Tables (31). After some rearrangement, I 
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find the following ordinary differential equation for A, the transform 

coefficient. 

(36) 

The conditions on this equation are that A be bounded at q = 0 and 

vanish at infinity. (q = 0) is a regular singular point so I begin 

the solution by examining the behavior around that point. Near 

(q = 0), the differential equation is 

All + _3 A I 1 A -2 
q -.., = q (37) 

The homogeneous portion of Eq. (37) is an Euler equation which has the 

solution 

A(o) C IZ - 1 c -IZ - 1 "" 1 q + 2q . (38) 

where A(O) is the function A near (q = 0). I throw away the unbounded 

second term. The particular integral is (-q) so the total solution 

near (q = 0) is 

(39) 
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Thus the value of A at zero is zero. I construct the overall solution 

to the problem by s·olving the general equation twice numerically, first 

as the homogeneous portion using starting values of q/:2-l for A and 

(/2- 1) q/2-1 for A', and second as the entire equation using 

starting values derived from the particular solution (-q). This gives 

two solutions which are combined linearly to give the correct behavior 

at infinity. 

The resistance presented by this two sphere system is calculated 

as before Eq. (19) and the result is 

3 
6RF = (1.831) 4wa 

" K$2" 

Normalizing case (c) to (a), one obtains 

(40) 

(41) 

Thus the two spheres oriented such that the line joining their centers 

is perpendicular to the flow of current offer 83 percent more resis-

tance than two separate spheres while two spheres whose line joinin,g 

their centers is parallel to the current presents 10 percent less 

resistance than two separate spheres. I conclude that interactions 

between bubbles side by side with respect to the current present much 

more resistance than bubbles oriented top to bottom. 
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Fig. 10. Equipotentials around bubbles side by side with respect to 
the current. 
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Fig. 11. Vector graph of currents around bubbles side by side with 
respect to the current. 
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There is more electric activity in the potential field around the 

spheres in case (c) than in case (b), illustrated in Figs. 8 and 10. 

One sees from Figs. 9 and 11, the vector currents, that in case (b) 

there is a streamline effect in which the disturbance is minimized by 

one sphere being placed behind the other and hence shielding it, but 

in case (c) the two spheres maximize the resistance by forcing the 

current to take long paths to get around the two-sphere combination 

and forcing the current to negotiate the constriction between the two 

spheres. 

6. The Constriction Calculation 

I demonstrated in the preceeding section that one can double the 

resistance to current presented by a two-sphere combination by rotating 

the combination from an orientation in which the line joining the 

spheres' centers is parallel to the overall direction of current to an 

orientation in which this line is perpendicular to the current. This 

means that the side-to-side interactions of spheres, that is, tne 

constriction of current between spheres, dominates the resistance 

presented by such heterogeneous systems. In order to explore this 

conclusion farther, I calculate a pure "constriction resistance" for a 

bubble layer and compare it to the results from the tangent sphere 

calculation. 

The layer is modeled as a sphere contained in a unit cell of a 

planar hexagonal array, as shown in Fig. 12(a). The layer is one 

bubble thick, as shown in (b). The dotted lines define a differential 
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Fig. 12(a). Unit cell of a planar hexagonal array of spheres. 
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Fig. 12(b). Side view of a differential slice at position z in a 
unit cell of a planar hexagonal array. 
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slice of the cell parallel to the electrode. The differential 

resistance of such a slice 

is 

(42) 

where Sc is the area between the walls of the unit cell and the 

sphere. I assume in this model that the current distributes itself 

evenly over the available area in any differential slice. This may 

not be a bad approximation because the largest contributions to resis­

tance come from the levels where the area is the smallest; the non­

uniformity of the current at these levels contributes second order 

amounts to the resistance. Adding these slices in the limit, I obtain 

(43) 

in which Ah is the area of the hexagonal unit cell, rc is the 

radius of the circular slice in the sphere at position y, and r is the 

sphere radius. After algebraic rearrangement, integration and 

substitution of 

f 
_ 2nr 
- A 

h 

I obtain 

2 
(44) 
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1 (1 )1/2 ( 1 )1/2 -1( 3f )1/2 
IC' = 2 3r T-!r TAN ~ 
m 

Equation (45) appears in Fig. 13 with the result from the tangent 

sphere calculation. At low void fractions, the constriction model 

overestimates the conductivity because it does not contain any 

(45) 

allowance for deformation of the flux lines by the sphere's surface. 

The constriction calculation, however, shows a dramatic decrease of 

conductivity relative to the tangent sphere result at high void 

fractions. I discuss this result later in more detail when I compare 

the results of all the model calculations to the experimental data. 

7. Conclusions 

In this chapter, we mathematically analyzed several models to study 

the effects of gas bubbles immersed in electrolyte. The tangent sphere 

is a model of a bubble attached to an electrode and an idealization of 

a bubble layer on an electrode. An exact expression for the resistance 

presented by such a dilute layer of uniformly sized bubbles was derived. 

The current density around a bubble on an electrode is zero at the 

contact point of the bubble and electrode; it rises steeply in the area 

on the electrode shadowed by the bubble; and it goes through a maximum 

one bubble diameter from the contact point before declining to the 

current density which would exist were the bubble not there. The two-

sphere calculations illustrated the importance of orientation of 

bubbles with respect to the current in determining the electrical 

resistance they present. The constriction of current between bubbles 

side by side with respect to the current contributes substantially to 
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Fig. 13. The results of the tangent sphere and constriction 
effect calculations. 



79 

the resistance. Where an infinitely sparse coverage was assumed in 

the tangent sphere model, meaning no constriction, this calculation 

was based entirely on the constriction of current to flow in small 

areas between bubbles. It overestimates the conductivity at low layer 

packing densities, as shown by values higher than the tangent-sphere 

calculation, but predicts conductivities lower than the tangent-sphere 

model at high void fractions. In the next chapter, an experimental 

inquiry into the conductivity of closely packed spheres is presented 

and compared to the models discussed in this chapter. 
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IV. EXPERIMENTS ON A MODEL OF A BUBBLE LAYER 

1. The Hexagonal Cell Experiments 

I have demonstrated that the constriction between spheres side by 

side with respect to the overall current resists current flow and may 

account for much of the resistance in heterogeneous systems. I wish 

to calculate analytically the resistance of a populous bubble layer, 

but solving Laplace's equation for multi-bubble systems would require 

extensive computer calculations; therefore, I experimented with planar 

arrays of spheres which simulate bubble layers on electrodes. 

A planar hexagonal array was chosen because it gives the highest 

packing density for equal sized spheres. One can section out a cell 

representative of the entire array as shown in Fig. 1. A Lucite tube 

40 em long, having a hexagonal crosssection, and stopped at either end 

by flat gold-plated copper electrodes, was built as a model for this 

unit cell around a bubble on an electrode. This device appears in 

Fig. 2. The cell and sphere dimensions are tabulated in Appendix B 

where error in the system is discussed. The cell accommodates a 

10.16 em diameter sphere, at the maximum, which represents close pack­

ing. The spheres rest on the bottom electrode while the upper 

electrode is attached to a piston so that the distance between the two 

electrodes can be changed. The cell, containing the largest sphere 

and surrounded by others 9.65, 9.14, 8.64, 7.11, and 5.84 em in 

diameter, appears in Fig. 3. The different-sized spheres, simulating 

a range of void fractions in the bubble layer, were placed one at a 

time in the cell and the resistance was measured. 
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Fig. 1. Unit cell of a planar hexagonal array of spheres. 
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CBB 796-8252 

Fig. 2. Hexagonal cell disassembled, hexagonal tube and piston electrode. 
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In some experiments the 120° wedges appearing in the foreground 

and cell in Fig. 3 were placed in the cell corners according to Fig. 4. 

Cut from spheres of several diameters, the wedges represent a second 

layer of bubbles underneath the largest ones. 

The largest ball was centered and held automatically because it 

touched the cell walls. The smaller spheres were centered and fixed 

by perching them on a 11 tee" machined into the electrode to make the 

balls effectively tangent to the electrode, fix them in the center, 

and disturb the system as little as possible. A crosssectional 

schematic appears in Fig. 5. The spheres contact the ~lectrode at the 

raised points but because the sphere is curved, it is effectively 

tangent to the electrode. The "tees" that would make each of the 

spheres tangent to the electrode appear in Table 1. I chose a single 

tee 0.0125 em high and 0.635 em in diameter which would minimize the 

disturbance fo.r all cases. The departure from effective tangency in 

Table 1. Ball diameter (em) amount by which the sphere must be 

lowered (em). 

---------------------------------------------~------------
9.652 
9.144 
8.636 
7.112 
5.842 

0.0104 
0.0109 
0.0117 
0.0142 
0.0173 
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CBB 801-242 

Fig. 3. Hexagonal cell with lucite spheres and wedges in the foreground. 
Note assembly with large sphere in cell and wedges placed in 
the corners. 
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Fig. 4. Unit cell of a hexagonal planar array showing symmetrical 
placement of second layer underneath the first. 
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Fig. 5. Crosssection of spheres on the electrode showing geometry 
of the tee for centering and holding the small spheres. 
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the worst case was less than 0.1 percent of the sphere diameter. This 

deviation was on the order of the accuracy of the spheres themselves. 

As discussed in Chapter 2 with respect to a tangent sphere, little or 

no current reaches the area just around the contact point so the 

disturbance due to the tee was considered small. To check this 

assumption, I employed the largest ball with and without the tee and 

found no measurable difference. 

The system resistance.was measured with an Electro-Scientific 

Industries Model 861A Generator/Detector and Model 290 Conductivity 

Bridge which gave readings to five significant figures. The generator 

signal was set at a frequency high enough to eliminate capacitance and 

polarizations in our system (2000Hz). Test measurements at higher 

frequencies showed no change in the measured resistance. 

The conductivity solutions were 0.1 Demal aqueous KC1 prepared 

according to the prescriptions of Jones and Bradshaw (28). One tenth 

of a gram equivalent weight was added to deionized water to make a 

solution whose total weight was 1000 g. Bremner and Thompson (29) give 

an equation for the conductivity of this solution in the range 0° to 

25°C: 

106 x K(0.1N KCl) = 7137.6 + 208.312T + 0.99077 T2 - 0.006964 T (1) 

Assuming that the electrodes and solution were at thermal equilibrium, 

I inserted a chromel-alumel thermocouple into the base electrode to 

measure the cell temperature. An ice bath provided the reference 
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temperature and a digital multimeter having 104 megohms input 

impedance and a 1 mv scale recorded the thermocouple potential. Values 

of the resistance measured at cell temperature were first corrected to 

25°. Dividing the resistance with a sphere present by a resistance 

calculated from the known cell area, solution conductivity at 25°C, 

and electrode separation, one can find Km for the bubble layer from 

the following operational definition. 

I introduce a modification of the equation used by other 

investigators to present results of studies on the conductivity of 

heterogeneous media. One usually defines a quantity which is a ratio 

between the conductivity with gas present and the conductivity with no 

gas present and then calculates the resistance of such systems 

according to 

(2) 

in which R is the gas-absent cell resistance and Rr is the gas­

present resistance. Assuming that the gas is confined to a layer of 

thickness xl close to the electrode where x is the fraction of the 

interelectrode gap 1 occupied by a bubble layer, I use the following 

form for a parallel plate configuration, 

1 xl 
RT = ( 1 - x ) J<S" + fSKiTi (3) 
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in which k is the homogeneous electrolyte conductivity and S is the 

electrode area. The two quantities x and Km must be determined in 

addition to the cell dimensions and homogeneous electrolyte conduc­

tivity. All theoretical and experimental results will be presented in 

terms of the function Km for convenient comparison of the various 

mode 1 s and data. 

2. Results of the Hexagonal Cell Experiments 

The results of the hexagonal cell experiments on monosized spheres, 

the tangent sphere prediction, the constriction calculation, and 

Maxwell's result for reference appear in Fig. 6. As predicted by the 

tangent sphere calculation, the experimental resistance values are 

greater than those predicted by the Maxwell relation at small void 

fractions; the electrode plane on one side of the bubble terminates 

the electrical activity and hence limits the resistance presented by a 

tangent sphere to 90 percent that of a similar sphere in the bulk 

electrolyte. At close packing, the conductivity of the bubble layer 

is reduced by a factor of nearly 5. This means that a close~packed 
_!~ 1 

bubble layer occupying 5 percent of the interelectrode gap causes a 

20 percent increase of the overall cell resistance according to 

Eq. (2). 

The tangent sphere calculation grossly overestimates the 

conductivity except at the low bubble layer occupancies for which it 

was derived. The opposite is true of the constriction calculation. 

It does not agree with the data at dilute bubble occupancies because 

the sphere's curved surfaces force the current to take net longer 
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Table 2. The hexagonal cell results. 

Diameter of Diameter of Bubble layer K 
sphere, em wedges, em void fraction m 

10.160 none 0.6046 0.2155 
10.160 2.54 0.6239 0.2076 
10.160 3.175 0.6415 0.1932 
9.652 none 0.5457 0.3196 
9.652 2.54 0.5661 0.3070 
9.652 ' 3.175 0.5845 0.2844 
9.144 none 0.4897 0.4076 
9.144 2.54 0.5089 0.3820 
9.144 3.175 0.5307 0.3583 
8.636 none 0.4368 0.4707 
8.636 2. 54 0.4591 0.4498 
8.636 3.175 0.4802 0.4188 
8.636 3.810 0.5118 0.3564 
7.112 none 0.2963 0.6388 
7.112 2.54 0.3239 0.6024 
7.112 3.175 0.3490 0.5685 
7.112 3.810 0.3877 0.5074 
5.842 none 0.1999 0.7503 
5.842 2.54 0.2328 0.7027 
5.842 3.175 0.2641 0.6601 
5.842 3.810 0.3108 0.5970 
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Fig. 6. Data of hexagonal cell for single spheres compared to 
calculated values. 
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paths through the electrolyte to get around them and hence resist the 

current more than the constriction calculation allows for. The con­

striction effect dominates at void fractions near close packing and 

the constriction calculation becomes a better approximation there. 

There is further evidence that the constriction of current between 

bubbles dominates the resistance in heterogeneous systems. Resistances 

were measured while the upper 11 piston" electrode was placed at several 

different distances from the sphere resting on the bottom electrode. 

Plotted in Fig. 7 against the ratio of the bubble layer thickness to 

the interelectrode gap, the resistance function Km changes only 

slightly as the upper electrode is moved from several diameters away 

to touching the ball at the top. I conclude that the disturbances in 

the potential and current fore and aft of the bubble (with respect to 

the overall current) are small by comparison with the constriction of 

current between bubbles sitting side by side with respect to the 

current. 

The results of the two-layer experiments in which the wedges of 

Fig. 3 were inserted in the cell corners according to the plan of 

Fig. 1, appear in Fig. 8. Note that at the lowest void fractions, the 

new conductivities are lower than just the single sphere line would 

predict while at the high bubble occupancies the new conductivities 

are higher than the single-sphere data alone would predict. The 

transition from one tendency to the other occurs near a bubble coverage 

of 0.4. This trend indicates that as the small spheres are added, the 
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Fig. 8. Two layer results for hexagonal cell. 
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system becomes a bulk-like three dimensional dispersion rather than a 

two-dimensional array. 

If many spheres were added, the Distribution Model (II-45) or 

Prager's equation (II-40) would predict the conductivity of the layer. 

Graphs of the Distribution Model and Meredith's equation (II-42) com­

pared to the hexagonal cell data appear in Fig. 9. At low void frac­

tions, the experiment confirms the theoretical prediction that the 

conductivity of the bubble layer exceeds that predicted by these 

equations. At high void fractions, where the constriction between 

bubbles dominates whether in bulk solution or on the electrode surface, 

the data and equations agree. 

3. Conclusions 

In the experiments with the planar hexagonal array of spheres, we 

studied the effects of packing density on the resistance presented by 

a bubble layer on an electrode. The results at low gas layer void 

fractions confirm the result of the tangent sphere calculation, that 

is, that sparse planar arrays of spheres resist current less than 

Maxwell's equation predicts because it is a two dimensional rather than 

a three dimensional array and the electrode terminates the disturbance 

caused by the sphere in the electric field. The hexagonal cell results 

also show how the constriction model, while it severely overestimates 

the conductivity at low void fractions, estimates better the con­

ductivity at high void fractions where we expected that it should be 

more appropriate. Comparison of the results to Meredith's equation 

and the Distribution Model (see Chapter II) revealed that these 
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Fig. 9. The hexagonal cell results compared to the Distribution Model 
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equations, derived for homogeneously dispersed or ordered spheres, are 

not grossly in error when applied to a bubble layer. Finally, when 

closely packed, a bibble layer resists current five times as much as 

the same layer of electrolyte without bubbles. 
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V. A ClOSE VIEW OF GAS EVOLUTION FROM THE BACKSIDE 

OF A TRANSPARENT ELECTRODE 

1. A Review of Literature on the Observation of 

Bubble Behavior 

Gas evolution begins with nucleation of bubbles from highly 

supersaturated solutions near the electrode surface. The bubbles grow 

by diffusion of dissolved gas to the bubble surface and by coalescence 

with other bubbles. They ultimately depart from the electrode when 

the forces pulling the bubbles away overcome the surface forces which 

bind them to the electrode. There is a body of theory behind each one 

of the stages in gas evolution. For example, nucleation is described 

by the probability for survival of a critical nucleus (33}. Scriven 

(34) and others (35,36) discussed growth by diffusion of dissolved gas 

to the gas/liquid interface. Frumkin and Kabanov (37) presented 

experimental and theoretical evidence concerning the detachment of 

bubbles. Other writers have investigated the phenomena of gas evolu­

tion by photographing them and in some cases comparing their findings 

to theory. In this chapter, I concentrate on these physical observa­

tions in preparation for the description of our own work in the chapter 

following. 

Using a microelectrode and a high speed camera, Westerheide and 

Westwater (38) quantitatively studied the growth of single electrolytic 

hydrogen bubbles and compared the result to the theoretical work of 

Scriven (34) who analyzed the diffusion limited growth of a spherical 

cavity. Scriven's square root of time growth dependence agreed with 
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their data for a single bubble but multiple bubbles interfered with 

each others• growth. In come cases, bubble growth was accelerated by 

the appearance of another bubble; the writers suggested that the second 

bubble's growth could enhance the mass transfer of dissolved gas to 

the bubble already there. The opposite also occurred; two bubbles grew 

with exponents less than 0.5 which the writers explained by the com­

petition for dissolved gas which starved both bubbles. Understanding 

that the enhancement and the competition were contradictory, they 

suggested that bubbles a sufficient distance apart competed for gas 

while close bubbles enhanced the mass transfer sufficiently to com­

pensate. When two bubbles of equal size coalesced, the resulting 

bubble jumped off the electrode and sometimes returned. The writers 

speculated that the expanding boundaries of the new bubble mechanically 

forced it off the electrode; to explain the bubbles' return, they left 

the possibility open that there could be electrostatic forces operating 

on a moving bubble, and they also mentioned that surface forces varying 

with concentration could be important. Nucleation occurred at pre­

ferred sites such as pits and scratches on the electrode. Growing 

bubbles were not necessarily attached to their nucleation site but 

moved around on the electrode. 

Glas and Westwater (39) extended the work of Westerheid et al. (38) 

to include different gases and different electrode materials. There 

were two stages in the growth of the bubbles: an early growth period 
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which was a function of the electrode metal and its nucleation site, 

and an asymptotic stage which obeyed the square root of time function­

ality deduced by Scriven (34). The writers proposed two equations to 

describe the growth of electrolytic bubbles as a function of current 

density; in the first, they assumed that the bubble volume is directly 

proportional to the current; in the second, they assumed that the 

growth obeys a fractional power as per Scriven and also included a 

waiting period for the birth of a bubble. They concluded that each 

model is appropriate for different gases. Their data depended on the 

bubble nucleation site; hence the electrode metal and surface pre-

paration must have influenced the results. The electrode potential 

did not affect the bubble growth, but the contact angle changed through 

the course of the growth; the writers noted that any theory which did 

not allow for this was flawed. Bubbles were ejected from the electrode 

in what the writers termed 11 rapid fire emission. 11 They did not obtain 

this mode consistently but mentioned that if one could, electrolytic 

gas could be removed quickly from the electrode with resulting 

benefits. 

Janssen and Hoogland (40) measured the mass transfer due to--and 

observed the growth of--electrolytic hydrogen, oxygen, and chlorine on 

a rotating Pt wire in H2so4 and HCl. Bubbles formed at fixed spots 

which acted as nucleation sites and depended on pretreatment as well 
' as current density. The size distribution of bubbles also depend on 

current density: while randomly sized at low current, hydrogen bubbles 

assumed discrete sizes as the current was increased. The writers 



101 

attributed this trend to bubbles coalescing at higher current densi­

ties. The new bubble formed from two coalescing bubbles vibrated very 

strongly. Some bubbles jumped away from the surface but others slipped 

along it. 

In their second article on the enhancement of mass transfer by gas 

evolution, Janssen and Hoogland (41) evolved gas on horizontal and 

vertical platinum discs and determined the size of bubbles as a func­

tion of current density and electrolyte. At low current densities, 

where bubbles rarely coalesced, the order of increasing sizes was: 

oxygen in acid, hydrogen in alkaline, hydrogen in acid and oxygen in 

alkaline solutions. 

From the viewpoint of kabanov and Frumkin (37), who related the 

ultimate size achieved by slowly grown bubbles to the electrode 

potential, one might conclude that the potential of oxygen evolution 

in acid was past the electrocapillary maximum for the Pt electrode in 

this experiment because the oxygen bubbles evolved in acid were smaller 

than those evolved in base. As the current density was increased past 

10 ma/cm2, all bubbles but hydrogen evolved in alkali increased in 

size; the writers attributed this to increased coalescence. Surpassing 

both the hydrogen evolved in acid and base, the oxygen bubbles evolved 

in acid became much larger at high current densities. The oxygen in 

base remained the largest followed by the oxygen in acid, the hydrogen 

in acid, and the hydrogen in base. 
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Venczel photographed bubbles (42) from the front of graphite, iron, 

copper, and Pt electrodes and from the backside of glass plates on 

which thin layers of Pt, Cr, Ni, and Au were vacuum deposited. He also 

used additives to change the properties of the electrode/electrolyte 

interface. 

The electrode material affected the size of the bubbles; in his 

experiments, large bubbles formed on Pt and C, but small ones formed 

on Fe and Cu. There was even a difference between the bubble sizes 

produced on two different grades of graphite. 

Venczel added gelatin, glycerine, and beta-naphthochinolin to his 

electrolyte; in most cases the bubble size decreased and in some cases 

a frothy mixture would result. The additives reduced the bubble 

diameter to contact diameter ratio by half in some cases. Venczel 

claimed that the increased wettability of the electrode in the presence 

of inhibitors leads to a thick film of electrolyte between the gas and 

the electrode; he asserted that this film is less adhesive than thin 

films and therefore bubbles apart sooner from wetted electrodes than 

from unwetted electrodes. Other explanations could be advanced. The 

reduced perimeter of contact area noted by Venczel means that the force 

holding the bubble to the electrode is reduced; furthermore, the in­

hibitors might be stabilizing the bubble interfaces and preventing 

coalescence on the electrode. This would also account for the smaller 

bubbles. As everyone else has observed, bubbles grew by diffusion and 

coalescence. On Pt and graphite, the bubbles grew uniformly and 

coalesced. On copper and iron, the bubbles never reached a size for 
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coalescence, but departed from the electrode after growing by dif­

fusion. The size distribution was nonuniform. The bubbles' size on 

Pt and graphite did not depend on current density. large bubbles con­

sumed small bubbles when they touched. New gas-evolving sites become 

active in the vicinity of a larger bubble, and they cease when it 

detaches. This is probably due to a combination of effects. As 

calculated in the previous chapter (p. 49) there is a maximum in the 

current density one diameter from the bubble; this might account for 

the increased activity around an attached bubble. Subsequently, when 

a large bubble leaves, electrolyte from the bulk solution, which does 

not contain as much dissolved gas, rushes in to fill the space. The 

supersaturation close to the surface decreases; hence the sites around 

the bubble would become inactive. Venczel estimated an absolute 

surface coverage by determining the number of bubbles, the diameter, 

and knowing the rough ratio between the bubble diameter and the surface 

contact area. He found that the surface coverage was 25 percent near 

250 ma/cm2 and was constant thereafter on graphite, platinum, and 

copper for currents up to 50 ma/cm2• Venczel then determined a 

bubble browth time; he showed that as the current density increases, 

the bubble grew faster, as one might expect. His interpretation on 

this point is weak because he did not correlate it with the variation 

in bubble size that occurs with current density. At higher current 

density, hydrogen is formed more rapidly; if the departure size remains 

the same, the growth time wi 11 naturally be shorter. If the departure 
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size is also a function of current density, the departure time must be 

modified. 

As did Venczel (42), Ibl and Venczel (43) observed that the size 

of bubbles depended on the electrode material; for example, they found 

that bubbles evolved on Pt were much larger than those evolved on Cu. 

They observed that adding inhibitors caused the bubbles to become 

smaller and also that as the current density increased, the bubble size 

decreased. 

Ibl (44) reviewed the physical phenomena associated with gas 

evolution: the ideas of nucleation, growth by diffusion, coalescence, 

and departure. He described in detail the theoretical work related to 

growth by diffusion and to detachment. He mentioned coalescence only 

in passing as responsible for determining bubble size. Ibl pointed 

out the discrepancy between the work of Venczel, who said that bubble 

size decreases with current density, and the work of Janssen and 

Hoogland, who found that bubbles increased in size with current 

density. 

Landolt, Acosta, Muller, and Tobias {45) photographed hydrogen 

evolution from the side of a transparent cell which simulated the high 

electrolyte flow rates characteristic of electrochemical machining. 

The size of bubble was a function of current density and flow rate. 

In agreement with Janssen and Hoogland (40), but contrary to Venczel 

(42}, and contrary to the theory of Frumkin and Kabanov (32), bubbles 

increased in size with current density; they did not mention increased 

coalescence as a possible explanation. The bubble size decreased with 
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flow rate; at high flow rates (1000 em/sec) nearly an the bubbles were 

blown away from the interrelectrode area; hence there was no influence 

on cell behavior. As long as sufficient flow was applied, current 

densities were achieved that were much higher than those which in 

stagnant electrolyte would lead to anode effect. The writers noted 

that the thickness of the two phase region next to the electrode could 

not be explained simply by the rise of bubbles under the influence of 

gravity; they suggested that a bubble ejection mechanism such as that 

noted by Glas and Westwater (39) may account for this. Perhaps gas 

was evolving at such a high rate that old bubbles were pushed away 

from the electrode by new bubbles. 

Ron Putt (46) used a still camera and microscope to photograph the 

growth of hydrogen and oxygen bubbles evolved electrolytically in base 

and acid on nickel electrodes. He documented the incipient bubble 

growth period by evolving gas for a fixed short amount of time and then 

triggering his camera. He reported both sequences of photographs and 

graphs showing the growth of bubbles as a function of time. The 

hydrogen bubbles in KOH grew to an asymptotic limit of approximately 

150 microns through a combined mechanism of growth by diffusion and by 

coalescence. The hydrogen produced in acid grew large by a scavenging 

mechanism in which the bubbles slid along the electrode and consumed 

other smaller bubbles. Putt noted a bimodal distribution of large 

bubbles (700 microns) and small bubbles (125 microns). The size dis­

tribution for oxygen bubbles evolved in KOH was narrow and centered 

around 250 microns. Although the bubbles slid along the electrode, 
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they did not scavenge as much as the hydrogen bubbles in acid. The 

oxygen bubbles grew faster at equal gas generation rates than hydrogen. 

Putt attributed the difference in size between the oxygen and hydrogen 

bubbles evolved in KOH to the Frumkin/Kabanov theory of electrode 

potential and interfacial tension. Oxygen bubbles, evolved at a higher 

potential than hydrogen, are bound by a higher interfacial tension and 

hence should grow to a higher diameter at departure. The writer 

discussed adhesion of bubbles to a solid surface in a semi-quantitative 

manner. He determined that the bubbles evolved at a finite rate were 

five times smaller than one expects under conditions of equilibrium 

growth. He pointed out that a new bubble formed by coalescence leaves 

the surface and returns until the hydrodynamic forces in the vicinity 

tear it off and do not permit it to return. 

The size of hydrogen bubbles in KOH increased with current density 

in the range 15-500 ma/cm2• This result agrees with Janssen and 

Hoogland, but disagrees with the result of Venczel and the theory of 

Frumkin and Kabanov. Putt concluded that bubbles grow by diffusion of 

dissolved gas and by coalescence and that these modes operate to some 

extent in series as well as in parallel. Bubble growth is governed by 

the effect of the electrode potential in physical properties at the 

electrode surface. He speculated that bubble departure at industrial 

gas evolution rates is controlled by 11 dynamics of the bubble inter-

actions" which presumably means collisions, coalescences, and the 

resulting hydrodynamic environment near the bubbles. 
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Darby and Haque (47) photographed hydrogen evolution on a 

microelectrode from the side and found that the radius was propor­

tional to the cube root of time at current densities near 10 a/cm2 

rather than the 0.5 found by other investigators at lower current 

densities. Since this rate law can be derived by assuming that all 

the gas produced at the electrode goes into forming the bubble, they 

concluded that at high current density the rate-limiting step is not 

mass transfer of dissolved gas. They theorized that recombination of 

atomic hydrogen to molecules limited the rate. 

Electrolytic gas evolution is complicated because it is a 

nonequilibrium process affected by interactions among all the vari­

ables. For example, the fundamental force binding the bubble to the 

electrode depends on the electrolyte's surface tension and the bubble•s 

contact angle which in turn depends on the interaction of the electrode 

and electrolyte to determine the potential and rate at which gas is 

evolved. Since the process occurs at a surface, small quantities of 

impurities may have a large effect as noted by Venczel (42) who 

reported differences between gas evolution on two different grades of 

graphite. It is important to observe and catalog the various phenomena 

of gas evolution that must be the result of such complexities. 

We expect to see some of the phenomena already reported in the 

foregoing discussion. 
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1. Growth of bubbles by diffusion and coalescence. 

2. Various modes of bubble departure such as detachment after a 

coalescence and the "rapid fire emission" discussed by 

Westwater (39). 

3. Bubbles sliding along the surface or remaining stationary. 

4. Preference of bubbles for certain nucleation sites. 

5. Vibration of bubbles newly formed by coalescence. 

Furthermore, the dynamics of bubble evolution should depend on current 

density, electrode rorphology, composition, and pretreatment. It 

should also depend on the electrolyte composition and the presence or 

absence of surface active agents which affect either or both the 

electrode potential and the mobility of the gas/electrolyte interface. 

2. The Transparent Electrode Experiment 

Experimenting in the lab with metal gas-evolving electrodes, one 

concludes that the events on gas-evolving electrodes are microscopic, 

they occur quickly, and that some events may be obscured from the 

camera by the outer bubbles on the electrode; that is, one cannot see 

clearly what is happening very close to the electrode surface. 

Magnification and a high speed camera can overcome the first two 

difficulties, but one must use a transparent electrode to view the 

phenomena close to the surface. Not only does a transparent electrode 

allow close observation of gas evolution, but the microscope objective 

can approach the electrode without shielding it from current or 

affecting the dynamics at the surface. Furthermore, light can be 
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transmitted directly into the camera; one is not forced to reflect it 

from the metal surface. 

We used a 0.2 micron thick antimony-doped film of Sn02 chemically 

vapor deposited on a 2 mm thick glass substrate as a transparent 

electrode. The samples were made by Dr. Werner Kern at RCA Laboratories 

who donated them for this research. The film conductivity was 100 ohms 

per square. The electrode was incorporated into a cell which allowed 

electrical contact to some part of the surface while sealing off the 

contacts from electrolyte. Figure 1 is a picture of the cell which 

shows how the 2 em square piece of the Sn02 electrode fits into a 

shallow opening in the lucite body. Illustrated in Fig. 2 is a cross 

section through the window electrode which shows the two basins and 

the channel opening in this shallow area where the electrode sits. 

The basins are filled with silver epoxy to make contact to the elec­

trode. The strips of lucite between the silver epoxy basins and the 

channel opening were coated with insulating epoxy when the cell was 

assembled in order to seal the electrolyte from the silver contacts. 

The clear area in the center is where the electrode faces the 

electrolyte. The wires leading out are copper electrical contacts. 

The channel of electrolyte facing the Sno2 was 0.3 em wide, 0.5 em 

deep, and 1.9 em long. Since there was significant resistance in the 

Sno2 film, we made the distance between the two contacts (of same 

polarity) on either side of the electrolyte channel as small as prac­

tical for lowest resistance, easy departure of the bubbles, and avoi­

dance of wall effects. There were holes leading out through the top 
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Key to Fig. 1. The transparent electrode cell. 

1. Copper current collector. 

2. Pt wire counter electrode. 

3. Silver epoxy making contact to Sn02 surface. 

4. Transparent Sn02 electrode facing electrolyte. 
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XBL 8011-7591 

Fig. 2. Cross section of the transparent electrode cell. 

1. Electrolyte facing the tin oxide electrode. 

2. Silver epoxy contact to electrode film. 

3. Glass substrate for tin oxide electrode. 

4. Tin oxide electrode film (2000A) on glass substrate.-

5. Seal between silver epoxy and electrolyte. 
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and bottom of the cell for adding electrolyte and directing gas out 

of the cell. The counterelectrode was a Pt wire placed above the 

vertically positioned electrode so that gas evolving on it would not 

interfere with observation of the working electrode gas. 

The arrangement of the apparatus is shown in Figs. 3 and 4. 

Intense light from an Ealing Corporation Model 22-0004 fiber optic 

light source passed through a clear lucite plate which faced the window 

electrode across the channel of electrolyte. Passing through the 

electrolyte and cell, the light became an image which was magnified by 

a Bausch and Lomb microscope and passed to a Redlakes HYCAM high speed 

camera. The microscope had a lOx objective and 15x eyepiece. The 

16 mm movie frame bounded an area 0.6 mm on a side as determined by 

photographing a calibrated microscope slide. Capable of framing rates 

from 10 to 104 frames per second, the camera accepted 100 to 400 ft 

rolls of KODAK TXR 430 high speed camera film. The exposure was 

determined by trial and error. Illuminated by a 250 watt slide pro­

jector lamp, the fiber optic tip was placed 3 em from the cell back 

and the power turned on full. This transmitted enough light to produce 

clear images at film rates of around 104 frames per second after 

traveling through 1 em of lucite, electrolyte, and glass. 

Procedure 

The cell was filled from a reservoir above it and drained to a 

flask below. The electrolyte in most experiments was KOH, but sodium 

sulfate was used instead in a few runs. We polarized the electrode 

positively to produce oxygen. The oxide electrode did not last long 
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XBB 804-4914A 

Fig. 4. Key to Fig. 4. 
1. Fiber optic light guide. 2. Transparent electrode 
cell. 3. Microscope. 4. Red Lakes HYCAM high speed camera. 
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in acid or NaC1, but performed well in alkaline solution. When the 

microscope was focused, the distance from the camera to the eyepiece 

was set every time to the same length for optimum exposure of the film. 

An Amel Model 551 potentiostat operated in ga1vanostatic mode provided 

the power for the reaction. Upon turning on the power to the cell, 

the camera was manually actuated. The experiments required only a few 

seconds to run; 400 ft of film was exposed in around 5 sec. At 

standard projection rate, 24 fps, 16 min are required to view the 

events of 5 sec. 

A catalog of films appears in Appendix C. The current density 

listed for each film is a gross average found by dividing the total 

current by the total electrode area. The current distribution on the 

electrode was nonuniform because the resistance through the film from 

the edges to the center was high. 

The intense fiber optic light passes through the bubbles' spherical 

caps but is deflected by the curved sides. The bubbles• image is a 

two dimensional dark annulus as shown in Fig. 5. An additional light 

pointed at the cell from the side gave the bubble a highlight and the 

third dimension. Watching the movies taken at the standard speed, 

24 fps, one sees nothing but much blurred motion.· After slowing the 

action by a factor of ten, one already sees many of the phenomena 

referred to in the review of observation of gas evolution. like other 

investigators, we observed nucleation, growth by diffusion, coalescence 

and detachment. Occurring on a scale of 10-7 em, nucleation could 

not be resolved by our optics, but the preference for nucleation at 
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surface imperfections such as scratches was noted. We inferred growth 

by diffusion when the bubble became enlarged with no apparent coales-

cences. The most interesting behavior was the frequent coalescence 

between bubbles of various sizes. It is difficult to convey the impact 

of the films in words and still pictures; in fact, we made the motion 

pictures because the process is best vi.ewed continuously; therefore, a 

30 min motion picture which summarizes the transparent electrode 

studies has been made and may be obtained for private viewing by 

contacting 

or 

Charles W. Tobias 
Department of Chemical Engineering 
University of California 
Berkeley, CA 94720 

Paul J. Sides 
Department of Chemical Engineering 
Carnegie-Mellon University 
Schenley Park, Pittsburgh, PA 15213 

In the following, five movie sequences which show a cyclical 

mechanism of bubble growth, the hydrodynamics close to the electrode, 

the departure and return of a bubble, the effect of different electro­

lytes, and bubbles being drawn toward other bubbles and coalescing with 

them are discussed •. 

There is a cyclical mechanism of bubble growth that was present 

in all of the films. Bubbles nucleated, grew to a small size 

(<10 microns) rapidly by diffusion, coalesced with other small and 

medium size bubbles to form medium size bubbles (<100 microns), and 

then were scavenged from the electrode surface by large bubbles 
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(200 microns) traveling upward along the surface under the influence 

of buoyancy. A film clip showing this appears in Fig. 5. A group of 

large bubbles has just passed through and a new group of bubbles has 

nucleated and grown to a size of 10 to 15 microns in diameter. A new 

group of large bubbles (200 microns) moves through and scavenges the 

smaller bubbles in their path. The large bubbles are attached to the 

surface and move along it or are very close to it. In some cases, as 

discussed later, one can see a darkened area in the light center which 

is the flattened area of attachment. 

These films show that coalescence causes fluid motions close to 

the electrode surface which may be important in the mass transport 

enhancement due to gas evolution reported by Ibl (44), Venczel (42}, 

and Janssen and Hoogland (40). This mode joins the flow due to gas 

lift and fluid replacement due to bubble departure as a contributor to 

mass transfer enhancement. A coalescence sequence between two large 

bubbles near the electrode and moving along it appears in Fig. 6. The 

two bubbles appear to be touching for many frames as the film between 

them thins and finally ruptures. The bubbles coalesce so quickly that 

the film rupture and the change from two bubbles to one occurs between 

two frames, that is, in much less than 100 microseconds. The new 

bubble is compressed along the axis of coalescence by the fluid rushing 

into the space behind the coalescing bubbles. The bubble vibrates like 

this for several frames before becoming spherical again. This is an 

example of coalescence of two relatively large bubbles, both traveling 

along the electrode surface. 
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START XBB 800-11780A 
(Film 083179-2) 

Time proceeds from the lower left frame up and from the lower right 
up. 1. Dispersion of small bubbles which grew on the electrode 
surface after a group of large bubbles swept through. 2. Several 
large bubbles travel along the surface and scavenge the small and 
medium size bubbles before them. 3. One can see the empty area 
behind a large bubble in its path. 

Fig. 5. Gas evolution slowed by a factor of 10. 
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Notes to Fig. 6 (early film, 10% KOH, 100 ma/cm2, 104 frames/s) 

1. Two bubbles touch for a number of frames while the film 
drains from between them. 

2. New coalesced bubbles: Note compression of the bubble against 
the electrode as shown by the enlarged dark area in the middle 
of the light center. 

3. The new bubble vibrates as it tries to establish its equilibrium 
spherical form. 

4. The oscillations have ended one half of a millisecond after 
the bubbles coalesced. 
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START ---- 600 llm ---

FINISH 

XBB 800-11782A 

Coalescence of two bubbles and subsequent vibration 
of the new bubble (100 microsec per frame). 
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We observed coalescence between large bubbles moving along the 

electrode, between small bubbles still on the electrode, and between 

large bubbles moving along the electrode with small bubbles still on 

it. The last, a scavenging coalescence, was mentioned before in 

connection with the cyclical nature of bubble growth. 

Mentioned by other investigators, especially by Glas and Westwater 

(39), the return of a bubble to the electrode after departing appears 

in Fig. 7. One can see the contact area under the bubbles as a dark 

spot in the light central area. When the bubbles coalesce, the contact 

spot disappears in the next frame and subsequently reappears. Coehn 

and Newman (48) would argue that the return to the electrode was caused 

by the attraction of the charged bubble to the electrode surface. Glas 

and Westwater speculated that a surface tension gradient caused the 

bubbles' return. A third possibility is that the bubble is still 

oscillating after the coalescence and reattaches when one part of it 

touches the electrode. Furthermore, local fluid motions could also 

push the bubble back to the surface. 

Characterizing the detachment of a bubble from a vertical electrode 

is difficult because the buoyancy force does not act perpendicularly 

to the electrode. The only force pushing the bubble away from the 

surface is that exerted by the bubbles' internal pressure against the 

flattened bubble base. The sequence shown in Fig. 7 indicates that 

coalescence of two bubbles to form a new bubble which, being compressed 

against the electrode, pushes away from it, may be an important 

mechanism by which bubbles depart from vertical electrodes. 
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Notes to Fig. 7. 

1. A bubble on the electrode touches another off the frame to the 
left. Note the circular dark area within the light center of 
the bubble. This is the bubble's contact with the electrode. 

2. The bubbles coalesce. 

3. The new bubble vibrates violently as it establishes its spherical 
boundary. 

4. The new bubble is off the surface. One can see small bubbles 
on the surface between the large bubble and the surface. 

5 .. The dark area in the light center shows that the bubble has 
re-established contact with the electrode. 
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XBB 800-11783A 

Fig. 7. Sequence showing the departure and return 
of a bubble. 
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An effect of using different electrolyte is shown in Fig. 8 in 

which oxygen is evolved in aqueous KOH and Na2so4 solutions. Nucleated 

bubbles are uniformly distributed on the surface in the KOH and move 

to coalesce with fewer large, but also uniformly distributed bubbles. 

By contrast, the bubbles nucleate in Na2so4 at a few specific sites 

and then coalesce with large bubbles at the site. There was little 

movement of bubbles away from a nucleation site in the sulfate, but 

bubbles moved freely inthe KOH. Whether the differences between the 

two experiments are related to differing gas solubilities in the two 

electrolytes or to the effect of the electrolyte on the oxide film is 

unclear. Water was electrolyzed in the neutral solution; the electro­

lyte pH near the surface must have been lowered with the resultant 

effect on the surface. We noted previously that the electrode did not 

last long in acid. 

One can see more clearly this movement of small bubbles toward 

larger bubbles in Fig. 9. The bubbles move as if drawn or sucked 

toward the larger bubbles. This mode of coalescence is the opposite 

of the scavenging of small bubbles by large ones. The movement may be 

a result of fluid motions since the coalescence of one bubble with 

another draws electrolyte toward the new bubble. Continual coalescence 

could establish a flow pattern which would suck other small bubbles 

toward the central large bubble. 

Large bubbles touched for many frames before coalescing but small 

ones coalesced almost immediately with each other or with large 

bubbles. Perhaps the small newly formed bubbles do not have film 
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Notes to Fig. 8 (film 061880-2 and 061880-5). 

1. There is a uniform distribution of nucleation sites on 
the electrode. 

2. The small bubbles move toward these medium size bubbles 
and are consumed by them. 

3. Large bubbles moving along the surface scavenge the small 
and medium size bubbles. 

4. Bubbles are grouped at a nucleation site and coalesce with 
each other. 
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Fig. 8. Comparison of gas evolution in two different electrolytes: 
on the left, KOH; on the right. Na2S04. 
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Key to Fig • 9 . 

1. A very small bubble at the tip of the arrow will coalesce 
with the large. 

2. The same bubble, but larger. 

3. The same bubble, but larger and closer. 

4. The small bubble has coalesced with the larger. 
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XBB 800-14619 

Fig. 9. A movie sequence showing the radia movement of 
small bubbles to coalesce with larger bubbles. 
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stabilizing compounds adsorbed at their surfaces as the large ones, 

which have been in the electrolyte for a while do. 

At high camera speeds, the bubbles do not noticeably grow without 

coalescing. Using the theoretical results of Scriven (34) and the 

experimental confirmation of Westerheide and Westwater (38), we show 

that growth by diffusion is slow in the time frame of the movie for 

all but very small bubbles. Scriven's formula for bubble growth is 

d = 46 lr)t (1 } 

where d is the bubble diameter, B is a growth constant depending on 

the gas supersaturation level, 0 is the gas diffusivity through the 

electrolyte, and t is time in seconds. Differentiating (Eq. (1)) with 

respect to time, dividing this result by Eq. (1) and by a factor of 

400 to account for the slowing of events obtained by projecting the 

movies at 24 frames per second after filming them at 10,000 frames per 

second, we obtain 

d* = 1/800 t (2) 

where d* is the rate of growth of a bubble at any time relative to its 

diameter. To find the dependence of d* on the bubble radius, we 

resubstitute Eq. (1) for t. 

d* = ~(7) 

The growth coefficient for Run 1 of Westerheide et al. was 0.56. A 

graph of Eq. (3) appears in Fig. 10. One can see that, under the 

condi.tions of the experiment~ which was hydrogen evolution at around 

(3) 
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100 ma/cm2, the relative growth rate in the slow time frame of the 

movie falls rapidly to a few percent per second; this makes the bubbles 

appear not to growth by diffusion in the movies. 

The bubble size depended on the number of coalescences. This means 

that one can control the bubble size by controlling coalescence. One 

must remove the bubbles before they coalesce or somehow stabilize the 

liquid film between the two touching bubbles, perhaps by surfactant, 

so it cannot rupture. We also observed the 11 rapid fire mechanism" of 

Glas and Westwater (39) at some nucleation sites. The bubbles nucleate 

quickly one after the other and do not stay on the electrode but are 

ejected either into the electrolyte or into other bubbles. This 

mechanism may occur generally on the electrode, but the resulting 

bubbles coalesce with the large bubbles sitting on the surface or mov­

ing along it so that the small ejected bubbles never reach the bulk 

electrolyte. 

The bubble layer on this electrode consists of three sizes of 

bubbles. There are many small bubbles on the order of ten microns 

on the surface. These are coalescing with medium size bubbles 

(<100 microns). Both the small and medium size bubbles are scavenged 

on the surface by large bubbles (250 microns) moving along it. 

3. Cone 1 us ions 

The tin oxide transparent electrode allowed observation of oxygen 

evolution in KOH and Na2so4 from the backside, a unique vantage 

from which to view the rapid and microscopic phenomena of gas evolu­

tion. The phenomena observed in this study are the same as reported 
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in the review of literature with three exceptions. First, coalescence 

seemed more important to the overall process of gas evolution than was 

indicated in many of the earlier studies. Second, the cycle of growth 

by diffusion and coalescence followed by scavenging coalescence has 

not been reported before. Third, small bubbles moved radially in to­

ward a medium size central bubble and coalesced with it before it in 

turn was scavenged by large bubbles moving along the surface. 

There are several problems associated with using the transparent 

electrode. To study has evolution quantitatively, one must know the 

current density to know the maximum gas volume production rate, but 

the current distribut1on on the tim oxide transparent electrode is 

nonuniform because of the large surface resistance to current flow in 

the oxide film. In a cell like the one used in these experiments, one 

would have to solve Laplace's equation in the electrolyte and on the 

semiconductor strip bounding it with a nonlinear boundary condition on 

the potential at their interface in order to determine the current 

distribution and hence the current density at any point on the 

electrode. Other problems include the fact that the electrode cannot 

be polarized negatively and hence one annot study hydrogen evolution 

with the tin oxide electrode. Neither was the electrode stable during 

chlorine evolution. 

Some subjects for further qualitative investigation of gas evolution 

based on the use of the tine oxide electrode include the study of 

coalescence and hence bubble size. If one could stabilize the film 

between two touching bubbles, perhaps with surfactants, the bubbles 
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probably would not coalesce. The electrode could also be used to 

investigate the mechanisms of detachment of bubbles from vertical 

surfaces. One could further study coalescence by going to higher 

framing rates in the hope of observing the process of film rupture more 

closely. The very transparency of the electrode makes observation of 

nucleation sites difficult, but some effects such as that noted when 

two different electrolytes were used could be studied further. 
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NOMENCLATURE 

a radius, em 

a1 radius of inner sphere, em 

a2 radius of outer sphere, em 

A (Chapter 1) coefficient in expansion of potential in 

spherical harmonics, volts/em 

A (Chapter 2) Fourier constant, dimensionless 

A
0 

0.9015, dimensionless 

b radius of bubble base, em 

B coefficient in expansion of potential in spherical harmonics 

C constant of integration, dimensionless 

C
0 

constant in Rayleigh's equation for potential in spherical 

harmonics, volts 

c1 constant coefficient of solution to ordinary differential 

equation, dimensionless 

c2 constant coefficient of solution to ordinary differential 

equation, dimensionless 

0
0 

constant in Rayleigh's expansion of potential in spherical 

harmonics, volts 

E
0 

intensity of average electric field in an array of spheres, 

volts/em 

E volume averaged electric field, volts/em 

f void fraction of gas in electrolyte, dimensionless 

current density, a/cm2 

k conductivity (ohm-cm)-1 
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Km conductivity of electrolyte with gas present compared to th.a.t 

with gas absent (dimensionless) 

1 

n 

N 

q 

r 

R 

x,y,z 

v 

K 

p 

electrode separation, em 

number density of bubbles, (cm)-2 

number of bubbles, dimensionless 

separation parameter, dimensionless 

radius, em 

resistance, ohms 

net resistance increase caused by the layer of bubbles, ohms 

area of electrode, cm2 

the first angular harmonic, cos 0, dimensionless 

area between hexagonal walls and sphere surface, cm2 

distance, em 

potential, volts 

potential, volts 

slope of linear potential far from the bubble, volts/em 

net potential disturbance far from the electrode integrated 

with area, volt-cm2 

tangent sphere coordinate, cm-1 

tangent sphere coordinate, cm-1 

conductivity (ohm-cm)-1 

angle, radians 

angular tangent sphere coordinate, radians 

resistivity, ohm-em 

length of a side of Rayleigh's array, em 
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~,n, ~ constants of coordinate translation, em 

a quantity in Slawinski•s equation, dimensionless 

Subscripts and Superscripts 

c 

d 

d 

* 
T 

continuous medium 

(Chapter 1) dispersed medium 

(Chapter 2) disturbance 

dimensionless quantity 

total 
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APPENDIX A. SOURCES FOR THE DATA 

In Chapter I, I compared various equations for the conductivity of 

heterogeneous media to experimental data. The following articles are 

sources of the data on ordered arrangements and random dispersions of 

dielectric spheres. 

Meredith ( 12) 

Published graphs in 1960 (13) and tabulations of data in his Ph. D. 

Thesis (12) on the conductivities of cubically ordered arrays and 

non-ordered dispersions are the results of Meredith•s experiments with 

large precisely machined hemispheres and with dispersions of small 

glass spheres. Careful attention to experimental technique with 

alternating current and a Wheatstone bridge indicates the high quality 

of these results. Using tap water as his electrolyte, he explored the 

variation of his experimental results with frequency and showed that 

high frequencies were necessary to obtain accurate results. 

DelaRue (10,18) 

DeLaRue experimented with uniform and multisized dispersions of 

glass spheres which he suspended by gyrating his cell during the 

measurements until he obtained a steady state value for the conduc­

tance. He used alternating current techniques and a near saturated 

solution of aqueous zinc bromide as the continuous phase to match the 

density of the glass spheres. Conductance across an identical size 

cell compartment not containing spheres provided directly conductance 

ratios which did not have to be corrected for temperature. 
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Mashovets (14) 

Mashovets investigated ordered arrays of spheres in face centered 

cubic, hexagonal, and simple cubic arrays. He used a solution of 

copper sulfate, sulfuric acid, and alcohol and an otherwise undefined 

11 usua1 potentiometric method 11 with a current of 50 ma through his cell. 

Slawinski (11) 

Slawinski measured the conductance of a tube 10.5 em in diameter 

and 21.5 em long which contained 0.56 and 0.64 em enameled spheres. 

The electrolyte was KCl, he used alternating current techniques, and 

the spheres were arranged in various manners. He also measured the 

conductivity of dispersions of castor oil in a mixture of gum arabic 

and 0.05 N KCl. 1 grouped the former data with the random, monosized 

spheres category and the latter data with the random multisized 

spheres. 

Clark (25) 

Clark experimented with foams and thus obtained data at very high 

void fractions. He used alternating current at 1 kHz in the experi­

ments. I plotted Clark's data with the randomly ordered multisized 

spheres because his foam was undefined. 

Neale ~nd Nader {8) 

Neale and Nader, using a tubular plastic cell, copper electrodes, 

copper sulfate, and alternating current, investigated conduction 

through packed glass spheres at void fractions of 60 to 70 percent. 

The spheres were 25 times smaller than the tube diameter to eliminate 

wall effects. The spheres of their experiments were probably of 
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unequal sizes so their data are also grouped into the random multisized 

c 1 ass. 

Other works describing experimental investigations (Turner (19), 

Sigrist (17), Fricke (20) did not provide numerical data so their 

results could not be included. Wyllie and Gregory (21) illuminated 

some experimental problems other than those associated with polariza­

tion of the electrodes. In order to explore the effect of dispersed 

particle and cell size, they plotted the conductivity ratio against 

the ratio of the cell diameter to particle diameter; they found that 

the conductivity ratio decreased with the tube diameter to particle 

diameter ratio until the latter reached 35; thereafter the conductivity 

ratio was constant; hence, they conclude that this was a criterion for 

experimental accuracy. 
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APPENDIX B. ESTIMATES OF ERROR IN THE HEXAGONAl CELL MEASUREMENTS 

Two equations were used to calculate the conductivity function. 

The first is 

(1) 

where Rc is the cell resistance with no gas present. The second is 

(2) 

where Rm is the resistance measured with the spheres present. Rc 

from Eq. (1) is substituted into Eq. (2) to determine Km. In the 

following, each of the variables, 1, k, S, Rm, x, and Rc is 

discussed for error and the ultimate percentage error is calculated. 

I measured the interelectrode gap, 1, externally with a micrometer; 

the possible error in this measurement was 0.0051 em. The error in x, 

the fraction of interelectrode gap occupied by the bubble layer, 

depends on the error in 1 and d, the sphere diameter. The deviation 

from perfect sphericity averaged 0.0076 em; the resulting error in x 

as a function of d and 1 is given in Table 1. 

Calculated from Eq. (1) of Chapter III, the conductivity could be 

in error by 2.45(10-5) (ohm-cm)-1 as determined by differentiating 

the above equation with respect to T, and inserting 25° and a possible 

temperature measurement error of O.l°C. 



Table l. The results of the error analysis of the hexagonal experiments. 

-----
R iiR R iiR 

d 1 Ill m c c 4 ilK a 
em Clll ohms ohms ohms ohms X Ax(lO ) Ill Error 

10.160 24.792 53.683 0.0166 21.546 0.038 0.4098 2.90 0.0007 0.327 
10.160 22.200 51.436 0.0122 19.296 0.034 0.4577 3.35 0.0007 0.309 
10.160 19.576 49.157 0.0087 17.017 0.031 0.5190 3.% 0.0007 0.321 
9.652* 26.342 40.381 0.3307 22.891 0.040 0.3664 2.65 0.0052 1.60 
9.652 24.792 39.200 0.0642 21.546 0.038 0.3893 2.86 0.0018 0.562 
9.652 22.200 36.924 0.0337 19.296 0.034 0.4348 3.30 0.0014 0.438 
9.144 24.792 33.042 0.0621 21.546 0.038 0.3681 2.82 0.0027 0.665 
9.144 22.200 30.794 0.0663 19.296 0.034 0.4111 3.24 0.0027 0.665 
9.144 19.576 28.581 0.0406 17.()17 o.o:n 0.4662 3.82 0.0021 0.524 
8.636* 23.929 29.616 0.4600 20.796 0.037 0.3609 2.90 0.0146 3.18 
8.636 21.389 27.060 0.0731 18.592 0.033 0.4057 3.35 0.0377 0.800 
8.636 18.489 24.858 0.0657 16.386 0.030 0.4582 3.95 0.0348 0.742 
7.112 22.659 23.192 0.0556 19.694 0.035 0.3141 26.9 0.0066 1.03 
7.112 21.389 22.079 0.0535 18.592 0.033 0.3327 3.17 0.0064 0.994 
7.112 18.849 19.878 0.0492 16.386 0.030 0.3776 3.13 0.0059 0.920 
5.842 21.389 20.286 0.0249 18.592 0.033 0.2731 3.04 0.0070 0.927 
5.842 18.849 18.079 0.0200 16.386 0.030 0.3099 3.54 0.00~;1 0.812 
5.842* 16.309 15.743 O.HI5 14.180 0.027 0.3582 4.25 0.025 3.26 

Asterisk (*) denotes a set of three experiments at a distance 1 for which the standard deviation 
showed an inconsistency. 

------------------

...... 
~ 
N 
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Figure 1. Calculation of the area of a hexagon 
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The error in the calculated cross sectional area depends on the 

geometry of a hexagon, as shown in Fig. 1. The area is 

S = 3 ab 

I measured a and b again with a micrometer and allowed an error of 

0.0051 em in each. After differentiation Eq. (3), I calculated an 

error in the area of 0.122 cm2• 

(3) 

I measured the resistance Rm three times with different solutions 

at each of three different interelectrode gaps large enough not to 

affect the result. The final data are thus the result of nine 

measurements in all cases but three where the standard deviation showed 

one of the data sets was bad and then only six measurements were used. 

The standard deviation was used as the average possible error at 

each interelectrode gap. The error in Km was estimated by the 

following formulas: 

( 4) 

(5) 

The values of the variables and the estimated errors appear in Table 1. 

In all but three cases the error in Km is 1 percent or less. The 

two cases, for which the standard deviation was large~ were discarded. 

Since the error analysis techniques give a maximum error for the data 

used, I conclude that the measurements are accurate to :tl percent. 
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APPENDIX C 

1. #083179-3, 28% KOH, 2400 pps*, 100 ma/cm2 

This 100 ft movie illustrates the slowing of time by a factor of 

100; that is, the film was exposed at 2400 pictures per second and 

projected at 24 pps. There is high contrast and the bubbles are in 

clear focus. The current density is relatively low so the phenomena 

occur slowly. The cyclincal growth processes were small bubbles 

coalesce with each other and are then scavenged by large bubbles, is 

apparent. The bubbles do not seem to grow much by diffusion for 

reasons discussed in the text. Bubbles nucleate uniformly over the 

surface. 

2. #083179-3, 28% KOH, 240 pps, 100 ma/cm2 

This is a high quality 100 ft movie which shows gas evolution 

slowed by a factor of 100. There is high contrast and the focus is 

sharp. At this slow speed, one sees clearly the cyclical gorwth pro­

cess several times. At this relatively low speed, one can distinguish 

events and phenomena, but one also feels the rapidity and complexity 

of the process which is lost when the events are slowed to a stand­

still. Nucleation and growth by diffusion are more apparent in this 

movie than in others. 

Pictures per second. 
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3. #082579, 28% KOH, 10,000 pps, 500 ma/cm2 

This is a fair quality film which shows gas evolution at a high 

current density. The image is somewhat overexposed, so the smallest 

bubbles are barely perceptible but the focus is sharp. Raising the 

current makes the events of lower current densities occur faster, but 

does not seem to change their kind. One can see movement of small 

bubbles along the surface to coalesce with medium size bubbles. Small 

bubbles detached from the surface rise in the wakes of large bubbles 

so there is a less uniform size distribution in the bulk electrolyte. 

4. #082279-4, 28% KOH, 10,000 pps, 100 ma/cm2 

This is a good quality film showing gas evolution at a relatively 

low current density and high framing rate. The film was shot to com­

pare to other films taken at the same current density but lower framing 

rates. The nucleation density seems high in the opening frames because 

the current has just been turned on and a close-packed layer of bubbles 

has formed. As the bubble layer reaches quasi-steady state, the number 

density of small bubbles decreases. At this combination of high speed 

and low current density, events seem very slow. 

5. #091379-1, 28% KOH, 1000 pps, 500 rna/ cm2 

This is a high-contrast shapr-focus film which shows gas evolution 

at a high current density and medium framing rate. All the phenomena 

are visible--the cyclical growth process, the motion of small bubbles 

to coalesce with large bubbles, the scavenging of small bubbles by 

large ones moving under the influence of gravity. The nucleation 

density is very uniform. large bubbles sometimes are stuck between 
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the light and the camera and obscrue the field, but they ultimately 

break away. This is one of the most important films from the 

standpoint of intensity of activity and clarity. 

6. #091379-2, 28% KOH, 100 pps, 100 ma/cm2 

This is also a high quality film which starts soon after the 

current has been turned on. The first group of bubbles, called the 

incipient growth, appears in the first frames. The film was taken to 

compare with the previous high current density movie. In this movie, 

one can distinguish paths cleared by large bubbles as they scavenge 

small ones off the surface. This indicates that they move very close 

to--or are still attached to the surface. New bubbles then nucleate 

in their path or trail on the surface. The nucleation density is 

uniform. 

7. #060280-1, 25% KOH, 24 pps, 100 ma/cm2 

This movie was taken at 24 frames per second which is also a 

standard projection rate. This means that there is no speed reduction. 

One sees much blurred action even though the focus and lighting were 

good. It demonstrates the need for high speed cinematography. 

8. #060280-3, 25% KOH, 10,000 pps, 50 ma/cm2 

This film was taken as an example of a low current density. The 

contrast and focus are good but there is little activity. Since the 

nucleation density is lower and bubbles do not apparently touch as 

often, one sees growth by diffusion in the early part of the movie. 
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9. #060980-19 25% KOH, 109000 pps, 250 ma/cm2 

This is a very high quality movie which shows the entire electrode 

surface from contact to contact; one can see the bubble distribution 

on the tin oxide electrode. The current density is higher near the 

edges because the thin film electrode is very resistive. Furthermore, 

the bubbles are firmly attached in the sides. There are particularly 

good coalescences showing the vibration of the new bubble after two 

bubbles join. 

10. #061880-01, 3% KOH, 10,000 pps, 500 ma/cm2 

This is an outstanding movie which shows gas evolution at a high 

current density and high framing rate. The movie was taken in 3% KOH 

so that the conductivity would be the same as that of 22% sodium 

sulfate for comparison. This movie more than most others shows the 

movement of small bubbles toward medium size bubbles which is discussed 

in the text. The bubble bases, the flattened spots were the bubbles 

adhere to the electrode, are visible as darkened areas within the high 

center of the bubbles. Several times during this movie one bubble 

coalesces with another and the new bubble detaches from the electrode 

as determined by the dia disappearance of the base. This is discussed 

in the text as the detachment and return of bubbles to the electrode. 

11. #061880-3, 22% Na2so4, 10,000 pps, 367 ma/cm2 

This is a high quality movie which shows gas evolution in sodium 

sulfate which is different from the KOH ordinarily used. Where the 

nucleation in KOH is uniformly distributed on the surface, bubbles in 

sodium sulfate nucleate rapidly at only a few sites. The bubbles do 
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not move from those sites, but coalesce with large bubbles at the sites 

until they are scavenged by large bubbles moving along the electrode. 
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