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d s 

e e 

no tons were us study 

i ons 

~ (II) rCU5G + rCA5G (III) 

first 

5 

2: l rCU5G: 

e s indica 

ons in uti on, 

the CeG se rs 

) in helix I 

1 

chemi i of 

I, III 

e~ 

is more shiel (a 094 

in h ix II or III. 

fi cant in he 1 i pa 

ce between base pairs, or 

H1 u 

conformation, 

on r t se 

pucker are consis 

, vvhereas II III 

i of the se protons in 

1 

ng 

(I) 

' (IV} 

le 

is implies 

t 

i X I s 

i B 

T 

11 ovJed with 

s 

increasing tempera The midpain the "t' T I SL.10ns9 m Ss 

1 ns were °C; this i an 1 or~none 

on, 



d 

un d 

ic: 

tf::sonances ~ rE~sonance 

resonan 

J\ or A 

'i ca 1 r 

rer et 

eo consi 

vri h a B in soH1tion & 

1 ~ 11 t 0 ~ 19 rly ) . These 

con usi ons are y u son of 

t; shi se ng current s r an 

1 as the Hl " 

con 

es d exes 

es ( ~1i 'l man 1 0 ~ 1 7; 

d t 

r d be e same 

and con i t wi an A in on ( i 

s uncommon ·in 

1 ucl ide solutions (Bl d t alo; '19 r 

ons & ( 19 
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0 low d imino on li U) 

resonances reverse 

irs. .(1 s 1 ar resul 

plexes including [AMP-(oli u15 ) 

In s work we the 1H NMR ali nucl in a 

d ex. an RNA duplex, a id duplex;. a 

id triplex~ all e ecules are (I) 

+ ~ (I I) + I {III) + (IV) 

+ dCA5G. The rst three molecules duplexes which l 

di conformations in solution; IV forms a e 

is much less stable than the other structures® These resul 

a.re consi with optical studies previously reported an these 

es. which pointed out the importance i i 1; 

DNA-RNA hybrid present at termination 

& naco~ 1980). 

on (Ma in 

thermodynamics of oligonucleotides have ied by 

methods (Martin .,1 ) as 1 as 

the helix-to-coil transition have 

irly well (Borer et al .• 19 ; llenba q 19 ; 

• 1979). Mel ng of the end base pairs before t rest 

ix seen in the with A·U or A·T 

rs of the helix 
0 ' 19 . 1 5; ~ ' 

1l et a l . , l 976) • In l"lces with C·G e irs on the 

seems to be no (Hughes et . ~ 1978) or little (Pa 

19 di ial melting of the ends of the helix before the 
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01 i leot·i ~ mos i 

on can 1 

ly l 

i 

ve b me as m eac 

i a more ace sen melti 

1 i X~ 

AND METHODS 

igonu were i dies 

1968). The ribo~o1i s wete 

ly prepared with polynucl phosph ase (Martin 

eck '~ 1971). ra on ion 

i were rrned by RPC-5 column 

·1 es was on u.mns ( B i O·~ 

} ' 
1 
! were run in 8.0 Na ~ 0.18 

M , 0.1 pH ~ 7.0 unless ! ~ ~ 

ons of e oli i were cula s ance 

u ons at nm. ex nct·ion were cal 

extinc on coe ici dinculeosi 

with the assumption only nearest neighbor 

i ion (Warshaw~ 19 haw & noco, & rshaw. 

values ob in in this are X 1 3 
9 58 X 1 0 ~ 
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X 1 

were on the HX MHz nford 

c nance boratory, Temperature was 

100/700 B r temperature ll er. non-

e pro s were meas in in ns rrn 

5 mm NMR tubes (Wilmad). e le 

v1ere in H
2
0 using Redfi d 4 

·( d a 1 a 9 1 ) to minimize the water s·! 

es 5mm microtubes which hold 160 ul of solu on (508 lmad) 

were u All utions were mea at cone ons ei 

LO or 0.5 mM per strand, measu 

the internal standard TSP 9 while the 

the H20 peak. The temperature 

ative TSP was ibra 

obtained in this way are ac 

±0. ppm for the H2o studies. A 11 

were a 1l 

in H2o were 

c ca 1 

.005 ppm 

l ec 

wi 1180 computer with l6K poi ined for the 

k and 8K data points for the H20. were ken 

1 every 5° fr~n 5 to 3 C, spec 

in In H2o measuremen were made every 5° 5 to 2 C or 

1 were no longer observed, 

es were prepared by three lyophili 

(Bio-Rad) and then dissolved in 100% o2o (Bio~ ). The internal 

e TSP was added the sample after the addition of the 100% 
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i 1 i ion 

~ wi 

s 

of cherni ca 1 shi of t e 

is on the single method cremen 1 ass i 

ment was u ere is less s eking e bases in 

s e . ~ 1975). The chemical s at 

were ob n from the chan in peak ition with 

Chemical fts of single strand igomers 6 c 
are ven in Table I. 

a ic on (6. .5 ppm) of was poo re ved 

uracil resi e 
;;)) so no a 

i ch contained is i In the 

sine resonances were the only in 

ion and easi id T ine v11ere 

e a ine H2 pro cause longer T1 

s 1
50 a 1 . , 1973). The H8 on ine was d'i s 

n s H8 of aden·ine by the ct that it nges mu 

lJ ti in 0 at c. (In one hour 80°C e guanine 
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was over le ine H2 was 

a ·1 • ) 

uc: 'l i ~ we ig 1 

the ine ~ the in e. 

se proton spectrum of 

si e s c. and so nes t n 

ne L v1e v.1ere able fically 

as H8 pro ur ine resonances 

e internal ine 

were i but not assigned to ci c es. H2 

on e internal nines a l1 si lar cal shi 

we were u e as resonances i ar nes in 

to make a.ssignment of the penu1tima ine resonances 

(#2 and #6) it was necessary to study the smaller 

The following compounds at 6 C were used son with 

ins 

t 

(dCpApApApApG): dCpA, dCpApA. dC(pA) 6• dpApA~ d(pA)4 ~ dpApG, 

dpApApG. The assignments on the dCpA and dpApG were rna 

ion. The assignment of the base protons in 

r line·,ridths when ti 

ally binds to the terminal phos 

ative the 51 aden 

ine (Chiao & Krugh. 1 ). This study enabl 

dpApA to made, with both H8 protons unambi 

two H2 protons only te ively assigned; 

i 

pD = 7 a 

the 3' 

assignmen 

ly assi 

tive assig 



sine 

r 

hi 

i 

ns on y 

signmen 

ssib'le. e 

se 

of 

t 

d 

e 

guous assi 

as well as the H6 

8 

of 

( Ll 

us 

on 

nes were The three internal thymine H6 

same emi 65"C. assi 

& 

) . 

tons 

ne methyl peaks to s ific bases in the sequence were 

at 

of were made by comparison w·i the es 

assigned by Shum (1977)~ as we11 as our anal is the 

rCpApA~ and rCpApApApA. From this we were a e 

ine and ine se as 1 as 

'lt:·ima adenines. 

in or the i 1 s 

ses were 

se pro ns 0 was 

1 k ift wi s is i 1l us 

in 2 and 3. Spectra were taken d 

er res there are small i n c hem i c s h ·i 



and c in e ra F ere ® ::J 

e i y wi ng 

is t. e t of the c 1 e 

+ was ded by son s 

e ine H8 protons were i ng at 

c one ur, emi shi s ven 

in e IL A four bond coup·l i ng ns 

e H6 h in e i ifice:1tion resonances. 

signment of ne H2 s was aided that e 

were sha resonances e le 

tunably use of r 1 anger 

The base proton s + in 

double d at C is shown in t~e 4. 

cal shi s in t e s nd hybrid 

ix + d unambiguous 1 are given 

e IL In exes + G + G t 

~vere so y ved a use of double th 

we were unable see individual pea in a c ion at 

res lower than 35°C. 

Hl 1 protons in deoxyribose and ri se su resona at 

5.5 .5 ppm. The Hl' n in deoxyri se su coupl 

" protons while the ribose Hl 1 is on the H2' 

Thus the Hl 1 protons on e two different ngs are easily 

ren a d. We were not able assign the Hl' tons c-

ar sugars in the uence, but only to either· se or 

ri e s 
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10 

re e resonances was 

1 as com~ 

e 

in ved ca 1 i d 

resona u or ne 

in se r ( rn s & ::> 1 man ~ 1 ill a & 

id~ 19 L n e is i 

ing 

ir 

are 14.4 ppm 13.6 

{ illa & id, 1 ). Since is only a 1i d 

wo available on the imino protons in 

known s ence (see Sarma, 1979, Chap 

ated base pairs derived 

DNA helices. 

+ dCTr.G helix the two resonances 
:.:> 

the 

re "!a tive 

2 d. 

is s e 

in e interior 

bo-oligonu-

5 & 6) ~ the 

vvork have 

at 12.93 

t 

rest 

rential 

ix 

aL9 ) . cula cal s of 

C·G resonances allow assignment of the resonance at 12.9 

e C·G in the one ition and 13.55 k 

seven on & Schmidt, 1976) (see Table III). 

A·T se irs were made rison with 
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calc shi B is led us 

A·T resonances at 14, 

kT se pairs assi ion 13.9 4,4 

In rcu5G + we were ded in assignments 

son with the (Data not s t 

see + G s Q ) s ves unam~ 

bi assi t the C·G(l) pair 12.6 s A·U(6) 

14.6 ppm, C· 7) 13.6 ppm. The resonances in 

+ were ass ~1 gned to ion 13, 13.9 ppm. All emi 

i c are given in Table III. 

ex + 9 assi s were in an ana 1o,~ 

us manner to the for + he1 X. 

C·G resonances in ve rent t pendences 

the T pro The other peak assignmen were then made 

us an RNA A geometry cula ring current shi each 

resonance. For this hybrid the cal a current shi are 

RNA A A' as well as DNA B in le IlL 

ce of the sin e 

en ied. e sine H6 

H2 H8 ~ the nine H8, and thymine H6 

resonances were ob shi 

1 e on G s e chan ltJi th tur'e 

. 1 ppm fr·om CL largest c are e adenine 

s in and the adenine H8 protons on as shown in 

7 '. Mo of the ton chemical s hi cha 0 erved are 
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1 near is is no ana 1 

curves~ as scuss in "I 

c; 

i i es wi b 

ences cal 

are sometimes ·fn i ons 

e, re C( 

' 4~ 5 or on in gure lo 

on indica rent confo ions and 

G. 

measures of se stacking ca 1 shi s 

from the H2 adenine and HS of the midi nes 

naco, 1980). The H8 of adenines and t midines 

i cant besides ring curren vvhi t r 

i al., 1969; Lee & noco~ )~ such as 

g i angle, the proximi of the su ns, 

or Therefore, in get an i e 

e s ing ·in e 

the a 

on e se are a1 downfi d (less 

on the bose s nd; this is i ica ve of 

s n in 

s 

de pen e of the chemical i e base 

s were s di in oligonuc·l ides, + " and 
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+ In h ix coil nsition + 

i \'Jere c. 

e i ia oc9 it is in 

shi due 

g resonances l exchange. In the er 

'ix, + e e over 

c ure range e assi many 

resonances lower chemi s hi c 

the is s in gure 3. 

monitor helix 1 i in t e 

i se s were chosen which show 1a 

the helical (>0.1 ppm), e cu1rves 

protons have sigmoi is cs which are 

ce versus curves r these 

However, the NMR data low one 

low the properties of indi ses double 

le strand i ti on. Thus NMR is a e 

es r nding properties such as di i ting of the 

( q 19 . Kan aL~ 19 ' 
melting temperatures,Tm 1 S, di t ses were c 

learn if there is any mel ng on the ends the + 

ix. e anal s was the same as that us in studies 

'9 '1971) eich requires the melting b vior of t 

s e stt~ands. The single strand molecule gives 

upper seline in Figure 3 and the lower s fne is emical 

shift meas at 5°C. For mo of the s ere are srna '11 



1 sh 5 1 c so cal 

was ken 

ues are s lar 

value ion 

all 

c ion 

1. 

ng under identi conditions gives a 

is probably due assumptions about re 

properties of the double strand also errors 

i 1n assuming fast exchange. on the NMR time scale. th 

si le to double strand iti on. wi 11 

discuss in a 1 section. 

the helix dCT5G + rCA5G the temperature dependence only 

some i 

hi identi on 

p in double strand. In is ix we were una e 

low guanine or cytosine protons throughout the 

on, so that it was not possi e 1 if 

mel ng of the of the 

1 irs was 23.5°C 0.5 mM 

u similar conditions from optical data l 

same concen ion was 25.7°C (Martin, unpu is ) ' 

validitv ofT or 
v rn halpy values from melting 

CU'r'VI'c:';S is upon the method anal is. In er 



res a ng curve, one must e t 

e le and 

in e (Ma -tn a 

in us 1 ol'i is es 

d can be stu e e 

i on. e 

in sin e show 1 

es one is assume ·1 i l 

errors in Tm. For e~ in 

s the melting curves wi the ex imen 1 

de pen e the single ues 

up some o protons. em seems 

more in NMR ·j ca 1 s and s uld 

in when i ing c 

1 curves. 

in ining l i um con 

ly assumes 9 on 

me e9 meas ca·l is a wei 

s s' The va 1 id·i of this a h breaks 

in in 

most i u -1 ve ' ng mel calculations 

lines of the resonances exchan ra 

, in order to estimate the errors ma in ex ting ther·mo~ 



wi as 011 

i rea 

y i 

h ix- -coil tion for many 

assuming in our 

curve es 1y low 

ow t assumption t ex 

ng curves ll 1 errors in 

ve T m ues which are in error 

+ G~ the T found o m 

Tm ined by NMR, which s 

ng at 28-30°C. We think the reason 

invalid assumption of t exchange throughout 

causes an incorrect e mation of the lower 

curve. ese molecules. we took all the lower 

so error is probably systematic and will 

~ 1 ) 0 

G + 

exc 

s. 

was 

1 

i 

ng of the lower 

up 4 c. 
cally a ue 

all the resonances 

renee is t 

si on 9 

NMR 

ines be at~ 

s lar r 

ing t s tern gives e same conclus,ion. that e 

errors as ng exchan are a i y same r 

1 s. • we think that 

ior irs melt at the same 

an all-or-none sition is a good a on is 

ex. 

de dence the imino se ns in 

+ in gure 6, al d"i cus in s ion 
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on assi of imino ~ it is t 

irs on e en b of se 

r'S in h ix. s la is r· 

ices + rCA5G, and + 

g 0 is due & Holm~ 

1 & 1 • '1980), as in a l r s on. 

no b and r in 

e C, ere is 1 ittl e chemi c th 

re of resonances. Di t 

ng a cular a given are seen 

in three systems; this is different l i exchan 

imino s th H20. We are invest·! mes 

imino s in these sa method 

us 

on 

C·G 

(1 

be 

by ld (Johns ton & dfie1d~ 1 ) ' Prell na t"e 

dCA5G + dCT5G hel 'fX show t the 1 i of the termin 

se paired protons are between l 50 msec and the 1 ' . l mes 

1 protons 1 0 msec at c ' 1 ). 

d 

the ol·lgomer , the sugar puc some 

or· deoxyribose rin cula d. The conformation of 

se or deoxyribose ring has scri d by & Sun 

as a two- equil ibri urn be N 

C3' exo]. t'i se ring con on can then 

cul from t 

the S type has J
1 

, 2 ~ ~ 

that in N confo 

~1 0 Hz. For the deoxyri 

ion J 
1 

I 

2 
, "' ~,a 

se ring the N 
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1 

r 

t 

(3 

e 

L 

H! 

on has J,!' + tLI ~ 2" H 1e 1 

ue ~>el6 sum ( f\ el 
~~' & ra1in 

) . 
T as t ar s in 

was not i y 

resonances w were e! d gtou 

s' t G + h i at C~ 0111 Hl' 

s 5,64 and 5. ppm were se d t re 

s co ing cons tan of J1 1 2 1 Jl' 
,..,.,, 1 

ves 90% s type ( 2 I con ion r l.4!F' 
~ .0 0 

dependence of these peaks~ as wen as son th 

e strands at 65"C9 shows that both protons are the 

The chemi shifts of the 1 pro in 

studi indica that these two protons are due 

ine resonances. The that oxyri sugars are in 

confo ion is consis t a B rm 

"iS i X. 

In e d igon des rCA5G + 

coupling cons 

a 11 seven 

ng r puc is c a 

rmation. This 3' en do su pu bose 

ub1 e h ix is indica ve of an A 

ix. 

e G + G we see extensive broa ing of some 

e se s during melting sit ion. e some 
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re b ile rs ve s is cl y 

seen ·in gure 2. ing is e t 

is chemical e daub le s 

ix) ngle s {coil). The 

as well as the renee in c cal 

ing of e resonances 

l 

( 

1 

coil 

ine (#1) H8 at 7, ppm, thymines ( 5) 

little, and therefore are throughout e on, 

r ine H2 protons (at 7.09~ 7. and 6, ppm 

such large chemical shi di rences r the 

r resonances are almost broa ine 

( ) a ine H8 proton (8. ppm 5°C) is se ra d 

n ghbors and broadens to a madera extent~ whi it 

e extract rate constan for the heli coil it ion 

~ 1979; Patel~ 1975), Equation (1) applies when the tern 

the t exchange limit (Kaplan & 

us calculate ra constants for 

itions in other oligonuc1 ides (Patel, 19 

) 

and l/TTT2(c) ?,re the measured 1 i of 

, respectively~ while 1/'rrT2(obs) is 

in the broadened s trum, The linewidth of 

icular proton is assumed be independent of 

, 1980 L 

i x~ 

' 19 ) . 

2 
) ( T +T ) H C 

h ix a 

line-

helix s 

'1 1 . 

re 

d 



i 

d 

me as lin dth ix 

e co·i 1 was 

si 

coil given ·in 

helix ile 

e si 

tions were ined from anal is 

melting curve. and are 

e d initions, 

+ ix ine H8 

were obtai 1/TIT2(H) = 6Hz, l/nT2( 

0, 12~ 1 (obs) = 15Hz, and (vH-vC) = 

0 

hi 

n vH ·is as 

is measu 

1 ems 

ve y. 

ance versus 

ix 

2 c t 

lowi 

on (l) we ca1cul the lifetimes to beTH = 14 msec 

2 msec. Since measurements of these l i are ir,·Jy 

e errors in the numbers are of 30-40%. 

ir ra constan are consi ki c 

eotides j 

( 1 ; et a 1, 9 l 

and show low 

t double stranded helices at C, There are 

no ns in ea spectrum, one each e ir in t 



ni i imino 

double s~ one sees s 

ons many This is i ve 

ons each t cal 

resul are + in a B 

+ + an::: in an 

A or A' 

the DNA B form ix is 

ve pos i ons imino are 

in their predi ions e exact posi ons. e 

resonances are all t 0.3 ppm hi er d n ex-

men resul Since rmati ons 

are di ~ it is 1 i kel y in n c these 

i pairs are also di t. As more NMR wo s 

ibo-oligon eoti it may s in 

ca 1 i ~ 
" A·T 

C·G no in ibose terns. 

are found more gid 

con than t ir DNA coun 

would then ex RNA h ix in our s 

d ose to an A seen in e III~ 

resu1 and 

c ations of the chemical shi for an or· A • 

e di ces can be due to several rs, s as inaccura 

ues the ring curren used in calcu'l ions, ·j ncorrect 



·fes a'" ;;, in calc ons ~ 

()!(' b cu vi si i 

on ca."l no s (see Borer 9 

scussion ese tion n so di y 

na1 ir 
., 

c s I 

em .; i s i i cant ! 

·!on f,: cone so c i 

lr'S are more di c .... in t, 

i are 

resul for s leo~ 

hel kes in e II. One sees la cies 

menta 1 and calcul chemical shi r the 

+ tern, We are inves gating the discrepancies 

ee if es are to igonucl bei in a 

sli B form, 1-

n ies 

are i 

cons and chemi shi e 

s i y u in t in 

rrna ti on on o 1 i gonuc l in solution 

1 a 1 o 9 l 7}' One of the most mean in 

n nu e·ic acid is con ion of t s r 

0 & Huk·ins, 3), In the + 1 e 1 ·j X, 

e d se r ri s in thE! dCA5G stri~.nd ¥1/en:: d 



are 

A 

15.0 

are 

as 

imino 

in a 2' on. 

in B es whi ·is consis t s h ix 

on. 

was so 1 enough v in the 

coupl i 

e i an 

Knowi the s y 

conforma ons 

ruling out many possi e geometries ix. 

ly in unction wi 

ons9 and may make it sible to define ions more 

The system rcu5G + dCA5G forms a iple strand 

our conditions. The low field imino proton spectrum this 

re is quite different than the other spectra in Figure 5. 

e9 is a resonance low d 

in Figure 5d, and the normal Watson-Cri no protons 

r·esonate higher n 4.6 ppm. s resonance 

1 as those centered 14.6 ppm are most lik reverse 

base pairs involved in the triple strand. 

& Hilbers (1977) have studied [oli A 

exes in ution by 1H NMR, From the chemical shi 

tons they proposed ~14.3 ppm for the intri ic i on 

e son-Crick A·U pair in t triple strand and 14.8 ppm r 

t~everse Hoog pair, Robillard & Reid (1979) have recently 

calculations which empirically optimize magn i des of 

shi of the isola e pairs by a method ich 



1 on 

1 0 ( 1 

e i 

im·fno resonances, y one r· 

reverse it~~;. 

most p e in ins·ic cal i was 14 0 1 

ir ~ b vJere un le rule 0 

an as in which i insic chemica'! 

·was 4.8 ppm. 

A 

our we are unable to make unambiguous assi 

no , but we think that broad resonance at 

5.0 ppm is due to an A·U reverse Hoogsteen base r. It seems 

1i 

res on too low fi d to be from a normal Watson-Crick type 

the above studies on triplexes die a 

reverse e pair' intrinsic i 

on 15.0 ppm. is d indica 

in 

resonances 

irs. 14.2 4.5 

resonances 

irs. 

d 

d ion 

d so be mostly from Hoogs 

ow 14.0 ppm are then due i 

e in ns·tc shift 

>15.0 ppm 

an rU·dA·rU reverse Ho 

are so many of resonances in 

type 

low 

tern, many more the seven 

one sees in double helical systems. in cates t t the 

are 1ly or ly in the triple s con forma on 0 



It is 1 nc on 

al of t an i 

Here we ne the melti a e r h1 

with to the ion e i r which is 

~ or ·f n in hydrogen ng. An 80% pair 

an urn con on of o)igon 

ir broken and 20% 

ng thus refl an equi 1i urn effect is y 

concentrations of the two s 

is defined as the rapid ing osi a e 

ir & Hi 1 bers ~ 19 Hil 1979), It is a ki c 

the ·important pa involved are e constants 

lin open and closed s ing can mani t i f in 

ing imino protons where the exchange the proton 

is the 1 inewidth of the resonance (see ' ~ 

1 . Hilb 1979, scussion ange of no protons ' 
) . In our igomer terns the C·G i imino protons 

dis a before the in or e irs, whi is in ca-

ng the s of the h ix. is mean end 

irs are me'l at the point ere the resonance has disappea 

e~ in the helix + 25°C~ t imino pr'oton 
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