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An Analysis of the Effect 

of Operator Splitting and of the Sampling Procedure 

on the Accuracy of Glimm's Method 

By 

Phillip Colella 

Abstract 

We investigate Glimm's method, a method for constructing 

approximate solutions to systems of hyperbolic conservation 

laws in one space variable by sampling explicit wave solutions. 

It is extended to several space variables by operator splitting. 

We consider two fundamental problems: 

1) We propose a highly accurate form of the sampling 

procedure, in one space variable, based on the van der Corput 

sampling sequence. We derive error bounds for Glimm's method, 

with van der Corput sampling, as applied to the inviscid 

Burgers' equation: for sufficiently small times, the error 

in shock locations, speeds, and strengths, is no greater than 

o {l {/f()~ -( I ) and the error in the continuous part of the 

solution, away from shocks, is o { { /1 or It / ) . Here 

is the spatial increment of the grid, \olith the estimates 

holding in the limit of L --=;, 0 . We test the improved 
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sampling procedure numerically in the case of inviscid 

compressible flow in one space dimension and find that it 

gives high resolution results both in the smooth parts of 

the solution, as well as at discontinuities. 

2) We investigate the operator splitting procedure by 

means of which the multidimensional method is constructed. 

An 0(1) error stemming from the use of this procedure near 

shocks oblique to the spatial grid is analyzed numerically 

in the case of the equations for inviscid compressible flow 

in two space dimensions, and a method for eliminating this 

error, by the use of suitable artificial viscosity, is 

proposed and tested. 

2 



Acknowledgments 

First, I would like to thank my thesis advisor, 

Alexandre Chorin, for a working relationship which has been 

both intellectually stimulating as well as convivial. 

The bulk of the research for this thesis was performed 

at the Lawrence Livermore Laboratory. I would like to 

thank LLL, in particular Julius Chang and William Noh, 

for making it possible for me to come to LLL. During my 

first three years of graduate school, I was supported by 

a National Science Foundation graduate fellowship, which 

I gratefully acknowledge. 

I would like to thank Gary Sod and Paul Woodward for the 

many discussions we had which sharpened my knowledge of 

computational fluid dynamics. I would also like to thank 

James Glimm for several interesting discussions, as well as 

for his hospitality at Rockefeller University during my 

visits to New York. 

Finally, I would like to thank my friends, roommates, 

and fellow students for helping to make ten years in Berkeley 

both productive and fun. 

i 



Table of Contents 

Acknowledgements • 

Table of Contents 

Introduction 

Chapter 1 

H.1 

§l.2 

Chapter 2 

§2.1 

Hyperbolic Systems of Conservation Laws 

Defini tions 

The Riemann Problem 

G1imm's Method for One Space Variable 

Definitions . . . . . 

§2.2The Inviscid Burgers' Equation 

§2.3 Gas Dynamics in One Dimension 

Chapter 3 

Chapter 4 

Operator Splitting 

Discussion and Conclusions 

i 

ii 

1 

6 

11 

15 

36 

117 

. 120 

. 132 

Bibliography . . . . . . . . . . . . . . . . . . . . . . 139 

Figures ........................ 146 

ii 



Introduction 

The problem which motivates this study is the numerical 

calculation of time-depende3t, discontinuous solutions to 

compressible fluid flow problems in one or more space variables. 

There are three criteria which such approximate solutions must 

simultaneously satisfy. 

1) The approximate solution must be reasonably accurate in 

regions where the flow is smooth. Continuous waves should move 

at the correct speed, have the correct shape, steepen or spread 

at the correct rate. 

2) Discontinuities which are transported along characteristics 

should be modelled in the approximate solution by sharp jumps 

which are transported at the correct speed. Examples of such 

discontinuities are: contact discontinuities (across which the 

density and temperature have jump discontinuities while the 

pressure and velocity remain continuous); the interface between 

two different materials, or between two different thermodynamic 

phases of the same material; lines or surfaces across which the 

solution is continuous, but some derivative of the solution is not. 

3) Nonlinear discontinuities should be computed stably and 

accurately. Such discontinuities occur, for example, when there 

is mass transfer across the discontinuity, as in the case of 

shock fronts in an ideal gas. 
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The main method for computing such solutions has been to 

solve a set of finite difference equations approximating the 

differential equations of motion. However, it is difficult to 

construct difference methods which satisfy all three of the above 

criteria. For example, it is well-known that a high-order 

difference method, which would perform well in smooth regions, may 

generate oscillations in the presence of discontinuities in the 

solution or its first derivative, or, as discussed in 

Harten, et. al. [20], even introduce some "unphysical" discontinuity 

(i.e., one violating the entropy condition; see § 1.1). In spite 

of these difficulties, many problems have been solved by the use 

of difference methods over the last thirty years. A good deal of 

effort has been spent refining them, and they have often been used 

in conjunction with some specialized technique to adopt them to 

a specific problem or class of problems in applied physics. For 

a cross-section of the application of difference methods to a 

variety of compressible flow problems, see volumes 3 and 4 in the 

Methods of Computational Physics series [2], as well as the 

Proceedings of the International Conferences on Numerical Methods 

in Fluid Dynamics [5], [22], [44], [53] for more recent work. 

We will be examining here an alternative approach to computing 

discontinuous fluid flows, known as Glimm's method. The method was 

first used by Glimm [15] as part of a constructive existence proof 

for solutions to systems of nonlinear hyperbolic conservation laws. 
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It was developed by Chorin [ 6], [ 7], into an effective 

numerical method in the case of gas dynamics. In the first 

reference Chorin also introduced a multi-dimensional version of 

the scheme; in the second, he applied the method to reacting gas 

flow in one space variable. Since that time, the method has been 

used to compute compressible flow in cylindrical or spherical 

geometry (Sod [47], [49], [50]), and in applications to some 

problems in petroleum engineering (Concus and Proskurowski [ 8], 

Albright, Concus and Proskurowski [ 1]). 

Although one computes solutions on a grid with Glimm's method, 

it is not a difference method. Rather than computing a weighted 

sum to arrive at the value of the solution at a grid point, one 

samples values from an explicit wave solution. Thus, the method 

has built into it an approximate form of wave transport and 

interaction, without the smoothing of such information inherent 

in averaging. The introduction of such a sampling technique as 

a numerical method is quite recent, compared to the length of time 

difference methods have been in use, and has not been subject to 

the extensive scrutiny and application from which the latter has 

benefitted. One of the purposes of this study is to indicate 

some of the features of Glimm's method which might make developing 

it worth the effort, as well as a few of the directions the 

development might go. 
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We consider in this study two fundamental problems. 

1) We introduce a more accurate form of the one-dimensional 

sampling procedure than that used in [ 6], which uses the 

van der Corput sampling sequence (see § 2.1), and analyze some 

simple examples, comparing van der Corput and random sampling. 

We perform a rigorous error analysis of the approximate solutions 

obtained using Glimm's method with van der Corput sampling for 

the inviscid Burgers' equation, and obtain the following result: 

if the initial data is piecewise C~ then, for sufficiently small 

times, the error in the shock location for the approximate 

solution is bounded by a constant times {{ Ilo~fv/ ) 
uniformly in compact time intervals, and the sup norm error in 

the approximate solution away from discontinuities is bounded 

by a constant times Iv / /o~ Iv I Here -{ denotes the spatial 

increment of the grid, with the estimates holding for l ~ 0 . 

(For a more precise statement of the results, see Theorem 2.4.) 

Unlike Glimm's theorem, which is simultaneously a proof of 

existence and convergence, Theorem 20 4 has as one of its 

hypotheses the existence of a sufficiently regular solution. 

However, the information obtained in the latter is more useful 

from a computational point of view. Finally, we study numerically 

the dependence of the solution on the sampling sequence in the 

case of gas dynamics. 
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2) We investigate the operator splitting procedure by 

means of which Chorin constructs a multi-dimensional scheme from 

the one-dimensional method. A source of error stemming from this 

procedure, not noticed in [ 6], is analyzed here numerically in 

the case of gas dynamics. A method for eliminating it is 

proposed and tested. 

For both the one-dimensional and two-dimensional cases we 

obtain, in the end, results which, for the test problems 

considered here, are competitive with or superior to those 

obtained by difference methods} in meeting the three criteria above. 

This thesis is divided into four Chapters. In Chapter 1, 

we give brief introduction to the theory of Hyperbolic 

Conservation Laws in one space variable. Chapter 2 is devoted 

to G1imm's method in one space variable: in § 2.1 we define Glimm's 

method, and the various sampling strategies, and analyze some 

simple examples; § 2.2 contains the statement and proof of the 

error bounds for G1imm's method as applied to the inviscid 

Burgers' equation; and § 2.3 contains some numerical experiments 

performed using G1imm's method with various sampling strategies 

for gas dynamics in one space dimension. Chapter 3 contains the 

discussion of the operator splitting technique. Chapter 4 is 

devoted to a general discussion of the results, some comparisons 

of G1imm's method to difference methods, our conclusions, and some 

suggestions for future work. 
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Chapter 1 Hyperbolic Systems of Conservation Laws 

§ 1.1 Definitions 

We wish to consider the. initial value problem for 

hyperbolic conservation laws in one space variable: 

~U + a.. (F{U')) = 0 
dt dl/.. 

11 (/1- It...) ::: V'. fR. ~ -: fi2,( [p ) O(») ---='> rR. N 

V(r{,o) = t.p{1-) 

(1.1.1) 

where the flux function is a C ~ map satisfying 

the condition that the Jacobian matrix 

has N real distinct right eigenvalues 

known as the characteristic velocities. 

is the given initial data. 

D" 1- ::. A ('lJ) 

lJU) < 'f)lJ L. < ~tlV)) 
~ 

The function tp: fR ~ fR 

Example 1.1 The inviscid Burgers' equation was first studied 

by Hopf [23] as a model equation for discontinuous fluid flows. 

~ 1- ~(~'LJ =0 
~t. d'" ':l.. 

u: IR ~ --;. fR 

The single characteristic velocity for 1.1.2 is 

(1.1.2) 

AlIA) ::. l{ • 

Example 1. 2 Euler's equations for the one-dimensional motion 

of an ideal compressible gas are the best-known physical example 

of a system of hyperbolic conservation laws. 
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d[) } W ::: () 
IT df1.. 

ff ' ~d rt P ) = 0 

~ t L (~(E +b)) ::: 0 
Jt. dli j r 

(1.1.3) 

Here f is the density, M is the momentum per unit volume, 

and E is the total energy per mit volume. We can express 

in terms of these variables the more familiar quantities U 

the ve loci ty , and E the internal energy per unit mass of the 

u":. !!1. E. = E u'L p gas: 
J 

and f - ~ The pressure which appears 

in the equations is a fmction of f/: p = ~t-1) pE 
where the constant '1'> i is the ratio of specific heats. The 

relations for f I (,{ ) p in terms of the conserved quanti ties 
t.-

f} ri1) £.. can be inverted: V\I\-:'pl-\) E.::: Flo + ~ ) 

so that the state of the gas at a point is uniquely determined 

by the values of .p I () ) p at that point. Another quantity of 

interest is the thermodynamic entropy, defined (up to an additive 

and a multiplicative constant) as S :=. tD} (p y-t) . 

The three characteristic velocities for the system are 

A1(vj = U-c) ~'llVJ= u. J IJ(lJ) ~ {).oIoC 

where C':, j~ --, is the sound speed. 
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It is well-known (see, for example, Courant and Friedrichs 

[ 9]) that continuous solutions to the problem (1.1.1) may not 

exist for all time t >0 e lO 

even if the initial data is 

We admit piecewise smooth f as initial data, and look for 

piecewise smooth weak solutions, i.e., ones which satisfy the 

equations (1.1) in the sense of distribution: 

1 'l. ~ U + d ~ F (u) d-tdt 
I'R+ dt. d rI. 

for all 'f f C~UR~) . 

-+ I_: !f11-)'VJ{/}.)o)d/l=o 

(1.1.1a) 

If we admit this wider class of solutions, there may be more 

than one solution to (1.1.1) - (l.l.la) for a given f 
A set of additional constraints on the solution, the so-called 

entropy conditions, were proposed, in varying degrees of generality, 

by Hopf [23], Lax [26], and Oleinik [42], in the case of a single 

equation, and by Lax [26] (later extended by Liu [30], [31]) in 

the case of systems, in order to make (1.1.1) - (l.l.la) 

well-posed. This was shown to be the case for a single equation in 

[23], [26], [42]; for systems of two equations, uniqueness of 

solutions to (1.1.1) - (l.l.la) has been proven in the general case 

by Liu· [32], see also [13], [17], [24], [43], [46]. 

In examples 1.1 and 1.2, the entropy condition reduces to 

the following conditions, given by Lax [26]. Assume that the 

set of points in where U{rt}.) is discontinuous consists 

of a collection of piecewise smooth curves (J{t) J i) . 

We say that such a curve is a shock associated with the 
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characteristic velocity A I<. (or, more simply, a k -shock) if 

A,,-~)Vjflt.) )-t.)) > ft tUt..( I It) J t..)) > S (t) (1.1. 4) 

> Ak("(JR.(!lt)J-L)) > Ak-l (U(~Jf(t.))-L)) 
wherever ~(t.):::i and the limits 

II~ -U(1.),=-),=-l]j/lt.),t) (1ft', -U({)tJ =Vj«l(t)jt.) 
~'l~) 11~t~) 

are defined. Lax's condition says that all discontinuties in 

the solution must be k -shocks, for some k -= I) .. :J N 

For gas dynamics, it can be shown (see [ 9]) that the shock 

conditions are equivalent to the restriction that the 

thermodynamic entropy of any particle of fluid is non-decreasing 

as a function of time. 

Example 1. 3 Consider the inviscid Burgers' equation (1.1.2) with 

initial data consisting of a piecewise constant function having a 

single jump discontinuity at the origin: 

For U,-< UR)there are at least two weak solutions to 0.1.2), one 

continuous, one discontinuous (in fact, there are an infinite 

number) . 

-=. UL. 11t < UL 

t.{ (It-,t) 
( :: "tIt U~~ X > t(L.. 

::. UR. /f-k> !.ilL 

:: !AL. !LIt. < /,{t..+U~ 

a.. 

~ UI2. ~it > Ut.. + l.{f2. 

~ 
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Howev~r, UD(~lt~ does not satisfy the entropy condition, 

since u~ > u.I...+ ().~ • The 
~ 

only solution which 

does satisfy the entropy is UclJt)t) which satisfies the 

entropy condition trivially, since it has no discontinuities 

for I:: > 0 For U
L

"> UR. ,there is no solution continuous 

for 1:-"> 0 J the only discontinuous solution satisfying the 

entropy condition is 
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§1.2 The Riemann Problem 

The simplest piecewise smooth initial data for (1.1.1) 

(l.l.la) is a single jump discontinuity at the origin. 

TT U rfRN 
UL-.) ~ 

4..>0 

This problem, known as Riemann's problem, was first considered 

by Riemann [45], (but solved incorrectly) in the case of 

gas dynamics. Every piecewise smooth weak solution 

satisfying the entropy conditions has the following properties: 

Self-similarity ~ U(1!)-L) -: t(1./tJ } t>O 
tV 

for some piecewise continuous L: /12. .--:; fR. 
Finite propagation speed There exist 

such that 

U(III)-U -

Additivity For any f! rQ ) let U M be the vector 

-U(f)tf)~~rJ Then the function 
-:: lRv I t.) '1:.-« 

V/")t.) t -

U
I1 

1->f -:. -t. ./ 

is a solution to the Riemann problem with left and right states 

11 L} LTM Similarly, the function 

:: LJ", f~f 
-U~('V.) -L) 

1)( "t-;t) 1->f :.. 
t. -

is a solution to the Riemann problem with left and right states 

Geometrically, this says that the solutions 
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fit together to form 11 (figure 1.1). 

Given any choice of the flux function F in (1.1.1) the 

Riemann problem can be solved if IIUl..-U~1I is sufficiently 

small. For some special choices of ~ the Riemann problem can 

be solved without restriction on LJ~)1J~ . 

Example 1. 4 In Example 1.3, we solved the Riemann problem for 

in inviscid Burgers' equation: If ~~,U~ are the left and right 

states, then 

for 1At. ~ u.. tt 
Ut.. 1. - :[.(t.{L -

(,d"l)t) -= 1- <A~).. 1.. :> (,(L 
t.. - t -

:: Ue. I'J. "> tAil-
t 

for UL-~L{e 

':: £,(c...- 4.>'5 
t.. 

Uh)-I:.) 
'=' lAe -«5 

t 

(figure 1.2). 

Example 1.5 The Riemann problem for the system (1.1.3) is 

discussed extensively in Chorin [6]. Courant and Friedrichs [9], 

Godunov [18], and Sad [48]; the first and last references also 

give detailed instructions for constructing the solution numerically. 

We will describe only qualitatively the structure of the solution. 
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We denote by 

The special case of the Riemann problem for gas dynamics in which 

UL.-= UR..":: () is often referred to as the shock tube problem. It is 

named after the experimental situation which it models; that of 

instantaneously removing at i -::: 0 the partition in a long tube 

with the gas on the two sides of the partition in different 

thermodynamical states. 

The solution to the Riemann problem for (1.1.3) (figure 1.3) 

is made up of four regions I) U ) TIl / If 

constant. These four regions are connected by three waves, each 

associated with one of the characteristic speeds. These are: 

a backwards facing hydrodynamic wave (associated with IA-C -: 11 (u) ) 

between ~/Jb and itJb ; a contact discontinuity (associated 

with U -::- 11.( U)), occuring across the line 15 ; and a forward 

facing hydrodynamic wave (associated with u.c'" 13(u)) between 

and J.,..f The pressure and velocity are continuous across 

the line ~s so they are equal to some fixed values pll. J ()~ 

in II and IJ1 
~ 

to fit . 
Only the density f changes across 15 (-0 " U*t ) 

13 



As was discussed in [9], the hydrodynamic waves are uniquely 

determined by knowing the state of the gas on one side of the 

wave, and only the pressure on the other. For the backwards facing 

wave, for example, there are two possibilities. 

then LAX-.::: U l.. ) ~ > pI.- J 1'/0 -::. i1.h and the wave is a shock 

associated, in the sense of (1.1.4), with the characteristic 

velocity (,{ - C If 
~ p < Pk) then we have a backwards facing 

centered rarefaction wave (see [9]): 1')b -j.j7.,b ~ P{'t;t.) "!lid llIY./-) 
are continuous strictly monotone decreasing functions of 1/t ) 

a continuous strictly monotone increasing function 

The description 

of the forward facing wave is the same, replacing LfL by lJR 

U. by - () and u. .. C by !A - c . 

In figure 1.4 we show the solution at a fixed time to the 

shock tube problem 

L - . P -10 p~ ~ .1 

fl.. c 1..0 J~~ 0.12.5 

IA -: 0 
L U.t. -= 0 cr ~ l.lf 

The waves which occur are a backward facing rarefaction wave 

a forward facing shock 
} 

and a contact discontinuity 

®) 
©. 
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Chapter 2 Glimm's Hethod for One Space Variable 

§2.l Definitions 

We want to construct approximate solutions to (1.1.1) - (l.l.la) 

which take values on a grid in (')' ;t..) space. Let l = 41-/'L 

be a spatial increment, a time increment. We 

assume that, at time h~ ) the approximate solution is 

constant on intervals of length 1..(: 

We wish to compute an approximate solution at time 

having the same property. 

U1Li ('V. J (~.'-) Ie.) = Uj~.~ 

(f -1.-) /... ~ 4. < j L 11" Y/ ell en 

(Note the shift in the grid by { at each time step.) 

The procedure is as follows: 

1) Compute the exact solution to 
_" _1'1 

U~_'l.. ) U ~ 
Assume ~ 

the Riemann problem with left and right states 

centered at (figure 2.1). 

is sufficiently small; then the waves generated by the adjacent 

Riemann problems don't intersect and we have an exact solution 

to (1.1.1) - (1.l.la) for VI f :: t "5 (PH 1.) £ with 

initial data If(1-) -= V f
{){II/.)J1k. ) . 
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A condition which guarantees this is 

o )-1 
~ ~ A « ( ~ ~ P A [-V ( L fIJ- ) t ')) 
t- L-I,,, 'It.) 

41: (iC 
t~~1t.. 

(2.1.1) 

When doing computations, one usually uses the more easily verified 

f, ~ A < 0: ( 5Vp I ~L (U; ) I r 
t.... J.Jtl'llcJOI. (2.1.2) 

L~ I, ... ,rJ 
where rx.. is a constant) 0 < (J( < 1-

2) Pick a )lid 1: [- L ) 1. ) and take 

U::~ -= U.~il,J({}-i)+Q(I~i){ lflT1)~). 

(figure 2.2). Notice that the procedure gives an approximate 
't 

solution for all ('t)-t...) i... (j2 + 

in the strip Vl-k. <::: -t <.( V\d.) ~ 

at (UV1)+c.t"d)L /Vlt:t){c ') ) 
"'1n~i 

the convention of setting V 
r i 

of 

which is an exact solution 
e 

If ""Uj-1)1'1 is discontinuous 

then we adopt 

equal to the right limit 

This procedure was first used by Glimm to prove the 

existence of global (in time) solutions to (1.1.1) - (l.l.la), 

assuming the initial data was sufficiently close (in total 

variation and sup norms) to a constant. He shm.;red that, under 

-"'-I 'c..'l. ) these assumptions) for any choice of sampling sequence Q -!. a.) ) ... 

that the set of approximate soluLDns is precompact in the space 

of all functions which are in in the 1-variab Ie, 

uniformly on compact t-intervals, with respect to the topology 

given by these conditions. Then he showed that, for almost 

~ 

all a (in a suitable measure-theoretic sense), some subsequence, 

16 



converged in the above topology to a weak solution to (1.1.1) 

(l.l.la). For this proof to hold, the flux function F in 

(1.1.1) was subject to some technical restrictions (genuine 

nonlinearity: see Lax [26)). 

Since then, several authors ([3], [11], [12], [16], [34], 

[35], [36], 138], [39], (40)) have extended the range of F 
for which the estimates leading to precompactness hold, as well 

as weakening the restrictions on the initial data. For the case 

of gas dynamics, see Liu [34], [35]. 

In order to study the dependence of the solutions constructed 
...:. 

using Glimm's method on the sampling sequence ~ we introduce 

the following notation to measure the regularity properties 

of a. Let H be a subset of the positive integers, 

of subsets of [-i) i ) We denote by I~ ) ~ 1: H a family 

N 1 t £ H ) ah rt 1 the number of t contained in (-/ 

ag is contained in If, If r' is independent of g) such that 

we write tJ{ t! H) a ~ ( Is 
f\J has the following properties: 

i) If I~ci~ 

N f ~ i H ) O~ ( I~I 

ii) If Hi) H'L 
for b t Hi U H1.. ) 

for all D l.. /-1 ,J then 

~ ~ftrH)Qt[IgI, 

are disjoint, It defined 

then 

~ f t z: Hi U H'l ] a ~ ( I ~] := 

tJf t ( H1) at r If 1 {- Nft£t-it. )a'er] 

(2.1.3) 
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iii) If 1 -1 1. I "l are disjoint and independent of b ~ 

Definition Let ICC-i,i) be an interval, III = length 

of I normalized so that 1(-1,1)/==1 We define the 

residual 

f 1 t , 
) 

..!o. 

and we say that a is equidistributed if 
-\ 

lim ~(<i: Vl1)vJ'l)1. J ==0 
nt. -fl (~ .... 

for all intervals T) I independent of n, ) fJ"L • 

The following is an immediate consequence of (2.1.3). 

Lemma 2.1 Let a be equidistributed, and let I ~) D = YI,',.{)' - -) f}1..-

be subsets of C:: 1.,1- ) such that 

C -d-'- f I ~ -f) C If C [~- f ) ~ +f ) 
for all b ) for some 1)1)!) ~ >~+'2.f - Then 

~ 2JlO:r1/) t7'L )[i-TF)J-f)) 

+ ~ (q: 1/,) YJ'l. ) C}-f> ~ +f )) -t F 



A fundamental result, due to Liu [35], is particularly 

relevant from the point of view of this study. Liu proves 

.... 
that, whenever Glimm's estimates hold, and if a is equidistributed, 

then all the accumulation points of ) the set 

of approximate solutions obtained using G1imm's method. are weak 

solutions to (l.l.l) - (l.l.la). Thus equidistribution is a 
...... 

sufficient condition on the sampling sequence a 

see below, it is a necessary condition as well. 

as we will 

We will be most concerned with the following two 

sampling procedures. 
00 

(A ,dM. ) -:: Jl ([-1.,1.)) dM ) 
t-=l 

be the Random Sampling Let 

Cartesian product of an infinite number of copies of the interval 

[-1. ) i) each bearing Lebesgue measure d M ) normalized so that 

) 
being the infinite produce measure 

If A - f 5 1 ~: a is eqUidistribute4 (Dunford and Schwartz [14]). 

then by the ergodic theorem (Breiman [4]) A-«J4)-=i. 
~ 

A random sampling sequence is some a chosen at random, the 

probability that a will be in some subset B c A being M(B)_ 
~ 

A sequence Q for ~lich the first r elements have statistical 

-'" 
properties close to those of a can be constructed on a computer 

by means of a pseudorandom number generator (Hammersley and 

Handscomb [19], Lehmer [29]). A (k!) kt,) stratified random 

sampling is a particular type of random sampling, defined as 

follows. Let 1<.1) k'L be integers) kt > ~ ) k1,> k"L 
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~ 

relatively prime; we construct 
oJl a from a by the rule 

a(/:= 1.~L.(f ffJ/k 1 _.,i) where gL is defined recursively 

by fi =- f i.-1. + k'L J MoD kf. : 1, is an arbitrary integer 

(} -£ ~,< k.J... For both random and stratified random sampling, 

it is a consequence of the central limit theorem that 

~ 

for almost all 0 As is discussed 

in [19] and in Chorin [7], the stratification of a 

sampling sequence reduces 

In the next example we construct sampling sequences 
.... 
o These are easily turned into sequences 

taking values in [-1) 1.) by a simple scaling at. I~ 7J~.I..-1. 
which leaves their distribution properties intact. 

Quasirandom Sampling The simplest form of this sampling 

procedure is due to van der Corput (see [19]). Let 
t'I K. • 
L Lt ~ -:: V\ ) LI:: = 0) i be the binary expansion of 
k=o 

Then 
t'\. -(k .. i) 
L. L 1 
Ie"" k. ~ 

In the following, we will refer to this as van der Corput 

sampling, to emphasize its nonrandom nature. 

The easiest way to see how the sequence is constructed 

is to write down the first few elements in it: 
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1 -= 1,,-
Q -= ·to'L 
'3 -::; ii~ 

l1 =- 1. 00 'L 

5 "" t01'1-
(; :: 11 'L 

1 -:: it. i L 

o! -= ,5 
()'t =: ,;;2.5 

~'-=.1S 

d~ -= .1.'.2.5 
OS-=-.G2.5 

0' ~.31S 
0 1

:: <:&15 

-= 

-:: 

::: 

::: 

=: 

"" 
-:: 

.1.'2.. 

.01. 1-

.1. t'L 

.00 i'L 

.101'L 

.0 t1-
iii , 'l.. 

Z ':; iOo0'L- at :: .OC~5 -:: .000 :it 

So a~ ~ .6 if 
.k .( q~.::' hi. 
4 - if if L is even 

odd 

l.~ J- (k) MOD 4- ) k~o) 1., 'L)3 / where f(6) = 0) 

! (J.) ='2- JI(2.J=1.;/J:3J=3. In general, if one divides the unit 

....s -5) s 1. interval into the subintervals [r- 2- )(r'-i)'- J-<:(), ... 'l. - ) 

then for each r there is exactly one b for which to ~ 6 < [0+;). ~ 
s --:; ) 

such that Q~ 1... [r:J..- )(('+.1)2.. • 

We will have need of a variant of this procedure for use in 

multi-dimensional problems. Let 

k, > ~'l.) k,) kt.. relatively prime. 
....:., 

sampling sequence q is given by 

k I ) k'L >0 be integers, 

The (k l ) k'L) van der Corput 
t1 M I.)-{l+!.) 

Q -= L tl" (K/ 
l~o D~ ) 

~ . I. ( fo t..p,,-! :: Vl 

is the base /(1. expansion of VI ~ Thus the binary van der Corput 

sampling sequence given above is the special case ki =L) k'l..-:= 1 , 

The van der Corput sampling sequences are all equidistributed; 

the detailed distribution properties of the binary sequence 

are given in the following lemma. 
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"'. I.e 
Definition Le t L.. l.- k ~ -:: (' be the binary expansion 

r . bo 

of a positive integer r 'f(I{') = L L k. • 
,,:c> 

Then 
~ 

Lemma 2.2 Let a be the scaled binary van der Corput sequence 

on [- i) 1.) I an interval 
. I -(,-,,-1.) r 

1) I a} - 0. ( (~ ~ TO r (2.1.4) 

2) Nt~t[~Vi) ... ,rI'I.1 }o6 z rl- (V1,:V\ I J III].:; z.. t(vtt.-VlI) 
(2.1.5) 

3) If I I [~ ~ /. and rl'l.- "\ <5 '2.... 111 ) 

then ~1 t [ [1Il1~11" Ill'll ) af 
l r] ~ 1 ~-e"," L (2.1.6) 

To prove this lemma, we will prove the analogous facts 

about the original sequence a on [0) 1. ) - It is trivial 

to show that the results obtained imply the results given 

in the lemma for the scaled sequence. 

It follows immediately from the fact that the ,first :2.''''-1 

sample points are all of the form ~~ ) ~ an integer that 

[ a ~ - a t I I ~ t... } b f r J ) 1. 5 f I! J < :L
tM 

) 

from which follows (2.1.4). 

. To prove (2.1.5), let I be an interval, l C [0)1) 

ICo,!) I:: 1. 

Let 

I Il[c-)i) = length of I normalized so that 
"0. k 
L L.k2. ~ Vtt.-V\, 
k~o 

be the binary expansion of 

v't'L - V\. I We write 
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In every sequence of ;1 ~ consecutive elements of 
.... 
q 

there is exactly one in each interval of the form 

[r 'L-r )(n I) 1..-<) ) r-:-. 0) ... ) ;1. S -1 

thus, each summand in the above expression is bounded by 2, and 

tJf~f-t~,d)""Y1.z1 )a~f.J..7 -(yI1.-~\) II\[o)i]l 
rtf 

~ '2.. f t k -= 2.. t( Yi1.-- Vi, ) [('om 
'-=0 ) 

which follows (2.1.5). 

In the following, we will use ~2.l.5) and (2.1.6) in 

conjunction with (2.1.3), i.e., if I~) t 1. r (l,d/''·'~'1.1 
satisfy 

[1'''f) ~-f) cIt c [~-f)1~\) ) 
then 

I ~f ~t.f ~,dl'" )11'L11 a~ t I~ 1- }~ I 
~ f t 'L t ( 1/'1-- Y] J (2.1. 7) 
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then 

~l bl: 11'1 I
t i,,,.,Vl'\.1 )a~!l~l ,,;).""-i~'1- (2.1.8) 

Lax [27] was the first to propose the use of a non-random 

equidistributed sampling sequence in G1imm's method, the we11-

equipartitioned sequence of Richtmeyer and Ostrowski. We shall 

not discuss this sampling sequence here. In numerical experiments, 

and for simple analytical models, one obtains results using 

the Richtmeyer-Ostrowski sequence similar to those obtained 

using van der Corput sampling. However, the techniques used 

to prove Theorem 2.4 make use of some special properties of the 

van der Corput sequence which do not hold for the Richtmeyer -

Ostrowski sequence. 

We now analyze some simple examples. 

Example 2.1 Consider the initial value problem for 

~ -t- c.~-:::O 
~t. 'iN. (2.1.9) 

u('"l)Q) -= ~('i) 

lf piecewise C 1.) C a real constant. 

The exact solution to this problem is 

In particular, the solution to (2.1.9) in the case 



(i. e. the Riemann prob lem) is 

I/.,<.G 
t. 

U(-x)t. ) 

The discontinuity propagates with velocity C. 

Let even be the solution to 

(2.1.9) obtained using G1imm's method. The Courant condition 

(2.1.1) reduces to 

One easily finds that 

" A -:: 1t1. 
( 

if .. 
-= U. ¢i"L 

a llft 1[-i})C) 
0 ... 1 {[Xc) 1) 

so that the whole solution is shifted to the left by L 
if Q /1,1.<::: ~ C- or to the righ t by { if 

", ... £ :::. ~C 
) 

u _ 

If we define 

1 (YI) ~ ~ f k ~ f { ) ... )r'l 1 J 0. k I: [- 1.) 1 c ) 1 
-1J1~(f{) .. .,V\1 )o.kr[~c.)i)1 

then LI.; :; (Ai-Itt'!) -= f.f({f- ((VI)) Ie ) 
Th~s Glimm's method models the travelling wave nature of the 

exact solution a discrete wave whose location is determined by 

the sampling (figure 2.3) 
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If we look at the limit, for ('lIt) fixed, '-..!'I)O IO<::t ::A~t 

f :: [~ ] V1 even 

f -= [fr ] +1 J VI odd 

then the error 

tAl '- \ fe.. /~ k,) -IA l 1- )t) -= lA ~ - tA 11,) -{ ) 

-= ~(~(-1(~){) -f/(1--Ct ) 

will be completely determined by (It - c.t ) - ~ ( -1(,,) /... ) 

whether the solution is continuous or not . 

...:. 
If Q is equidistributed, then 

I b VI) ( - It c VI t.. [..: tI { ( ~ (a ; 0) VI ) [-1 ) 1c ) J 
+- ~ ( Q i 0 J VI ) [~e. ) 1. ) ) ) 

and 

I 11-- ct ) -lfi -1In) IJI-= f {( (Qj 0, J] ) [-i,1el) 

f~(qiO)Vl }[Ae, 4.)) t(~+1)( 

-..:;> 0 a 5 l --:::> 0 

~ 

If u is a random sequence, 

I(~-ct) -~( -J(~)h) ( <;; C(~) :;- O({t) 
Ifo( 
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~ 

If a is van der Corput, 

Other than the error involved in discretizing the solution 

at t <: 0 .the only error introduced by the sampling is an 
) 

error in the location of the discretized wave, which is 

proportional to the residual of the sampling procedure. 

Example 2.2 The initial value problem 

(2.1.10) 

is not a conservation law; nevertheless it can be solved using 

sampling and error estimates derived. 

The exact (distribution) solution to (2.1.10) is given 

by (Courant and Hilbert [10] ) 

-:: l{L -1.c(ilt) 
[,t(1!,t) 

-:: (,{{L .-(). itt) 
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where ltt) satisfies the ordinary differential equation 

1(0) = 6 

We solve (2.1.10) using G1imm's method, sampling an 

approximation to the Riemann problem. 

For short times, 

1ft) -: j(t .. o) t (t -tJ p(!(tD)) + 0((1: -tCJ/') 

using this approximation to the Riemann problem in G1imm's 

method, we obtain (figure 2.4), 

IF D. ~ 1: [- t) A P (I () ) 

IF a" r C'J.plflv) ) 1 ) 

The solution at time step n to (2.1.10), using G1imm's 

method with the above approximate Riemann solution is 

where 

I~ !~ /(~){rt ) 

IF' f ~/(J,)(YJ ) 

(t.. ) ! ( V1 ) 

-=- 1 (t.)( Y/ - 1-) -I- 1-

::: J (0 
( VI-J.) - 1. 

j (~)( 0) := i 

IF all 1: [-i)'J.f(I(1~-L)J.J) 

0"( [-i) ~p(f(~l~-1.)~)) 
IF 
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The approximate solution converges to the exact solution if 

'1/°(",,) ) ~ " the location of the approximate discontinuity, 

converges to ~(t)) the exact location of the discontinuity; 

that is, if in the limit I....~o with 1:: 1 <cL ) n-=Ct ] 
(. 0 ) 

that /(l.tv1)[-!(t) ~ 0 ) 

uniformly on compact t-intervals. 

Let 

such that 

I. f (0" 1.) and assume that there exist Cz > 0 

~ve II. ~(O){,M/.ud.)IY/) ri"lI1) -== ('Ltv/-A( 
1~ C.f.I>1 ([ f r) 
""~"'o 

constant C{ and the sequence of subsets where the 

are to be specified below. Then there exists 

independent of L for { sufficiently small, such that 

(2.1.11) 

uniformly in compact t-intervals. 

The idea here is quite simple. We bound the differences 

the first using Taylor's theorem, the second using the assumed 

bounds on the sampling sequence, choosing M so that 

t'r{jNJ) "'" rs(W\) , Then the total error in the location of 

the discontinuity after ~ time steps is bounded by a 

constant times e jIIl!L t:~JVV\) . 
M 

Then 

Let t"rl '" [ h. -Iii ] } (t ~ [t ] + i 

1J1~)(S+}M ) 

I p(1(~t S+ }M) ) 0 <:' 5~m 
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Take the intervals I}/M 

By our assumption concerning the sampling sequence, and Lemma 2.1, 

By Taylor's theorem, if 0 5 5 ~ tII\ 

Thus 

Ii {(f~ + L) rYl) L -j «r /) 1/1 i) I 
~ /1 V-f>1l) -1 (O~M){ + ~i (p(/~,"l)) -p(t' ?m)A )1 

If we take 10 ~ [~J ) 5" = 11 - /0 f1 ) 

then 

11(~) -J{J.f0 )t--/ <: /110-/(,,£) I 

+ Ii (1/ l) - j t1h)£ - (J'ivMiJ -j(~~ M){) I 

t 1110*1k) -ltL~o~)£ I 
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~ C) .. + ~o...," (1. + WIt t l (1. t Co",/dJ tl- h~ 
~ J~I 

~(i+Co~~)J.o (iro)-!(i.io){) 

.( eNt m + /0 e (,,/0
1'1 l [1 '- ~ 

~ 

If a is taken to be the van der Corput sampling sequence, 

then the above hypothesis concerning the sampling sequence 

holds f or all N o<O<<'i If'c J giving a bound in (2.1.11) 

t-! 
proportional to t... for L arbitrarily small. By using 

special properties of the van der Corput sequence, one can 

actually obtain a bound proportional to Lt 
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Example 2.3 We want to look qualitatively at how Glimm's 

method models the initial value problem for the inviscid 

Burgers' equation (1.1.2) for the following special caseS. 

1) Rarefaction Wave: Let 

-/.</¥.<1. 

~ -1 

The exact solution to this problem is 

1 

-{ 

so that the wave is spreading (figure 2.5). 

The initial data for Glimm' s method given by ui -= ~~( ) 

even, satisfies for all 

so that for the first time step, we may take ~ -= ~ ~ i 

Then there are three possibilities. If Q 'f [-1. ) -A ) 
then the sampling point lies in the left state of all the 

Riemann problems, which are all rarefaction waves, so the 

solution is shifted to the right by l: 
for all j. 

If a'i(~)i) then, by similar reasoning, the 

solution is shifted to the left by { and 

If then there is exactly one /-0 
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1 0 I I} D 

such th at t\ IA ~CI ~ II <. ilIA. J.o-4-L Then 

for i ~io ) a I ~ A u~ for ) 
and we have 

I -= l.1. 0 1 ~ 10 
(.A. ri ~ 

I lAO U 
J?t -= f., ? /o+L } 

I 
-= ~' 

u. ~o+ 1 ?-. 

(figure 2.6). So the sampling procedure models the spreading 

of the wave by moving part of the approximate solution to 

the left, part of the approximate solution to the right, and 

inserting a new value ~ A in the gap, in such a way that UJ 

still satisfies I, I ~ IA I 
V't- vt) 

at time step VI "'etA" 
LA. a- - d-i-'L 

In the exact solution, 

r~~I~ 1 

}ILAJI~i 

?.!i "' L, ~ 
d~ ....... 

and therefore, 

at all points 

so, at each time t. the amount of 

spreading is spatially uniform. In order to obtain the 

same behavior in the approximate solution, one wants to use 

a sampling sequence such that the 
a~ 

/. 
are distributed 

as evenly as possible throughout the interval, i.e., that the 

residual ~ ( if ) 0) V1 ) L ) is as small as ;>ossible for 

as many intervals .I as possible, uniformly in I. 
Otherwise, one obtains results as in figure 2.7 where the 

solution to the problem is computed using random sampling, 

pieces of the wave spread apart from each other at an uneven 

rate, leaving flat spots in between. Van der Corput sampling 
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has more desirable distribution properties, as seen in the 

results in figure 2.8. 

2) Compression Wave: Let 

-;: -1 

:: -I'(. 

= i 

Then for t < 1 

-= -1 1. ~ 1- f.. 

lA(ti,t) - tf.-/r /; .. L) i.-i <~< /-L 
-

::= i ,t!~ t-i 

for t.~ i 
-:::-1 I'/.. > () 

-:: i 1- < 0 

So 1J.1'i,t) consists of a continuous wave, which gets steeper 

until t::{ when it becomes a shock (figure 2.9). 

The approximate initial data used in Glimm's method 

even, satisfies 

for J~ ~ f <E I ~ 
otherwise. Those Riemann problems for which 

have as their solutions shock discontinuities propagating at 

so that we may take '-It.. -= ). ~ 1 
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As was the case with the rarefaction wave, if 

a'r[1sf>1) (a'rC-1./J.s_)) 

the solution is shifted to the left (right) by L, Here 

5 t ~ t (i + ~I\X [ U ~ " u; 1 L 1 ) 
5 _ -:0 t (- i.. M~' V f LA ~: U ~ ,; - i:r ) 

If then there is a 10 such that 

I 0 f a < SJ--1. or J;"!tJ) o 0 (} 

IA.c}o-1. > (,t t-" > £,(J-."'L ) 

a' > 
(} 

SJd for i ?Jo 
(figure 2.10), so that 

, 
lAo 

UJ-+1 ':: } 

, l,{/l () i-1- -:: r 
,.0 

and the value ~ does not appear in 
Jo , 

Asbefore IIU~I~i ) !A~-1~4J+i 

the solution at time step 1. 

, I "..::../<::j' 
wi th U F L '> (). J. d I J L - J- - (f R ) 

otherwise) 

but with 

The steepening of the wave seen in the exact solution is 

modeled in Glimm's method by successively removing intermediate 

values taken on by the wave. 

The modeling of a compression wave is rather sensitive 

to the choice of sampling. For t... <. i the exact solution 

is continuous; so that one wants the approximate solution to 



also be smooth, i.e., if Il{ :: i-t. one wants 

., 
- lA ~ -= O(~) U t-1.. ~ 

(~;~1-~lA~)/L 
/I +O(i) uj+t- ~ O{ f ) -:: Li J-L 

-:: 

If one creates larger jumps between states by fluctuation in the 

sampling procedure, the effect will be amplified; artificially 

large jumps lead to incorrect shock speeds 

(lA~_1. ~ fA ~ ) 1'1-. - IA; t t ):. '> I.. /0 f' YJ k < 1 

and eventually cause the compression wave to steepen into a 

shock prematurely. Figure 2.11 shmV's an example of this having 

occurred for the above problem. We used random sampling in 

this run, and the wave has steepened into several strong shocks. 

Van der Corput sampling tl1aS introduced specifically to control 

this problem. In figure 2.12 we show the problem at the same 

time as that shown in figure 2.11; the wave is much smoother. 

In the next section, we prove that, if one uses van der Corput 

" " sampling with Glimm's method, then for (,(S-'l JUt 

in a compression wave IIA ~ -(;1;-1.1 ~ C { for all II) 

1"; sufficiently small, but independent of L . for 
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§ 2.2 The Inviscid Burgers' Equation 

In this section, we will analyze and derive error estimates 

for Glimm's method, as applied to the initial value problem 

for the inviscid Burgers' equation. 

Lth~)t)= U', (i2"-[o)Tol ~ ri2.. d~ ~ 2-{.!:i..'l..) :; 0 
dt. ;h 'l... 

(2.2.1) 

U('tlO)-= L(JC1-) 
We will make some simplifying assumptions on the initial data. 

We require ~ to be C Q.. except at a finite number of points; 

at those points where ~ fails to be 

may have jump discontinuities, so that 

where II (1/ ~ ~ It: f~~O"'T.L~ lJi- 11 

rather serious restriction on To Let 

We will also make a 

c'Uf" = - IAIF ~/(1-) , 
/J.. ) 

then we will require where ~4?tT is the larges t 

time satisfying the condition 1- J; .. cr CI~.?: 0 . This restricts 

us to times sufficiently small such that no compression wave has 

a chance to steepen into a shock: the only discontinuities in the 

problem are those present in the initial data. This is a 

restriction imposed by the limitations of our error analysis: 

the problem (2.2.1) is known to be well posed, and Glimm's method 

known to converge for it, without restrictions on ~, 

Hopf [23] first studied discontinuous solutions to (2.2.1): 

his results were extended and generalized by Lax [26] and 

Oleinik [42]. In the following, we will state without proof 
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some basic facts about the solutions to 2.2.1; for further 

details, see Hopf [23]. The lectures by Lax [28] give a good 

general introduction to the subject of discontinuous solutions 

of a single quasilinear hyperbolic conservation law. 

In the following, we will denote by C ... J K'c:. constants which 

may depend on 1:) the initial data If and the parameter A" It./L 

in Glimm's method, but are independent of the spatial increment ~ 

and the grid locations {f{ I Y1 {) fI ts ~ . The C .. )s will denote 

constants whose values remain fixed throughout this section; the 

~L'S will be fixed during the proof of any given Lemma, but may 

be reused in each Lemma. 

Weak solutions to 2.2.1 which are piecewise continuous and 

satisfy the entropy condition exist, are unique and have a finite 

numb er of shocks, i. e., the set of all points in rR.~ (0 ) 10 J 
where ~ fails to be continuous can be represented as the union 

of finite number of continuous connected curves 

at all points of which ~ has a jump discontinuity. We call such 

curves shocks. The solutions are also uniformly bounded: 

~uPt Ild'¥ t) \ < II tf 11_ 
("", t )<- rK·[o,To1 ) - . (2.2.2) 

Let (AD I to) be a point in lR J<, [0 /fo J where 

is continuous. We define a characteristic through (f'{IJ) tcJ 

to be the line segment in 
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such that or and for all 

to <{ /;,./ S t.} U. is continuous at 

(c{u(~o,t()J,rl~}tojt./))t-/) , 

Characteristics have the following properties. 

1) There is exactly one through each point 

where U is continuous. 

for all {> 0 where the characteristic is defined. If U 

is continuous at (c.(U(l\:'.o,t.o) ,I'{.O}tD; 0) J D ) ) 

then lA. satisfies the func tional equation 

U(1-o,l:.o) =- ~(ClU{'i.,to),!lDltojD)) ':: <f(4-o-I.J.(/II.o,to)t.~) 

3) If If is not continuous at C(U(~~,4.)/~O)t.bjO) -= 11/..1. 1 

then II>VI ~(I'/.);:: It'''!!) < tfR. (/'{.i) :: (,tV! f(1-) 
,,:1/(t l/.~tlL 

We call /t1. a rarefaction center. Conversely, if 1'/.1 

is a rarefaction center, then for every ~) ~L{~i)~ tr~ ~(~i) 

there is a characteristic passing through (1(.'1.) (!)) which we 

is continuous at 

L/~_ t for all L 

where 

Iti + t./I.j .... , defined so long as u.. 

(c....l")/'t[~ ,0; {.')) -L') 
and satisfying u.{c.('l.T, ~1IDjt))t) = 1r 

for all t> 0 We can invert the relation 1'(:::. ~i. 4- U(tt,t) t 

to find [AIIIl,t) explicitly as a function of (1.-, c): 
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Let lIt) be a shock. At all but a finite number of times 

t~ }t::/, .. IN) the limits 

II tV\ ('UIL)t) =: u'L (Jtt) It ) 
('1-/t.) ~ (jlto)'t.D) 

1(,< ftt) 

/1iV) L.{(It.)t.) 
l 'I' / t.) ~!II to \t) 

!I.>l(t. ) 

exist, and 

with 5 (jtt.o ) l· () ) satisfying the entropy condition 

u.jJtt.o),t.o) > s(lfto»to) > U~(J(to)/ ttl) (2.2.3) 

A useful parameter is the shock strength 

5 t (' (.( ( c(») ItO) -= ~ ( U...t j ( to) } t (J - U. R ( 1 (t.o ) Ito ) ) 

At times t.i.} L ~ 1,., .) rJ) 1 is overtaken by one 

or more shocks, i.e., there exists 11 (t.))' .. )i,./t) Itt)::~(t) 

for some t for which 1, (t.) < . .. < JII1 (t ) for t. < t.,:, 
) 

and II t'\'1 1 i l t) -:: IV.- L 
t.1/:.i. 

ffl) '" ~ (t. ) for all 

independent of if. 
f -= ( ) .•. ) r1) t > t.~ 

In that case, 

No shock 

ever disappears, although the number of non-coincident shocks 

decreases by at least one at each time ti . 
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The following limits also exist 

with the entropy conditions (2.2.3) 

continuing to hold in the limit: 

fA. ~ { 1 i ( I:. i.) Ii: i.) > S ± (~( tJ ) t i.) / u.~!:. {~( ti.) ) ti.) 

s!: ('/tiJ,t.~) ~ %. ((At (if (ti.) ) t..~) t u: (~(t~) t~ J) 
(2.2.4) 

We also have 

l.( tJ,lCi) /-i..) -;: lit: (fJ t~) }.~) -= uJ J,hJ, t.i. ) 

L{ ~ (f •. J t J I t. d -= (,.{; ( ~ ~ (i.e: J l i.) -: ~ R. (f r1 ( t..i. ) J t L ) 

(2.2.5) 

Given a shock is a con tinuous 

function of t except at times when it is overtaken by another 

shock, when 1A ... ,1t (jLt) J t ) may have a jump discontinuity. 
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By (2.2.2), sup /s(l{tl,t. ')1 :5 INIl..., 
t 

so p(t) is a piecewise C{) uniformly Lipschitz function of t: 

for all t) t/ ~ ~ 

The strength of a shock '5 cr (Nt) ) t ) is a positive 

continuous function of -( except at the times when the shock 

is overtaken by another shock. At those times it has a jump 

discontinuity, which, by (2.2.4) and (2.2.5); increases the 

strength of the shock. Therefore, there exists 4> 0 

such that, for all shocks (l(l)) t) 0 ~ t.~ To 

(2.2.6) 

Let if tc,) be a shock. Define, for 

C(U~:~-) ({{t.o \to) ,lIto») toj t J 
:= JUt» + (t - to ) 4~~~) (J (to)) to ) 

We call the line segment 

(L(u~*)~)(LUo)/ __ o))ftto))t,,;t))L) O~ t<;.-t o 

a backwards characteristic from (jt{(,») cl1 ) 

For 1:. -:f Cr. it coincides with some characteristic of the 

continuous solution, and satisfies the relation 
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If C~ is the minimum distance between discontinuities in the 

initial data i.e. 

C:J -:: M''-> [ !/'(.i. - tl ~ '. tf is not continuous at .-to:.) 1.~ 1 
and if C(u.~~~)(1{l:.o))t9))j(to'; ,t.c.;O) 

is a rarefaction center, then 

f:.. sup IcL(l(t) - c{()~:~) (l(tJ/~." )f(t),T..uj t. ))Lt' 1 
dt. . 

O~t'-:'c.o 

to 'L Ii l{> I( C10 

More generally, if f.d"l,c.) t. o ) is a point in a centered 

rarefaction wave satisfying 

then 

(2.2.7) 

We can represent graphically, in the (~)t) plane a typical 

solu tion to (2.2.1) (figure 2.13). The bold lines represent 

shocks, the light lines characteristics. There is a 

rarefaction center at ® . The two shocks ® 
overtake one another at point © to form the shock ~ 

We can now derive some smoothness results, given the 

structure of the solution as described above. If ~ is 

continuous at (I/.. ,t. ') and lfl continuous at C(UltL)t..),fIl.)t;O)) 

then U has the same smoothness properties at l '1..) t ) 

as t(> does at For example, 

assumetf is Ct
at Ctl.A.l"l)t.)/Y-)LjO) 
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Then 

= 

A similar calculation yields 

~ :: If L(J J j( i + { If I) I c..(t.t ll'i i.) It i. . 0 ) 
;}"t. I J I ) 

I 
and in the case where If has a jump discontinuity at 

C(U.(-v-/)/~,t..;6) ) 

i 
i+ t.~ 

llc. 

(2.2.8) 

_ (1M 
/'( 0 V C((.({I(,t ) J/1!): i G) t{JhUL tfl) ill 

o 

The same results as obtained by formally differentiating 

the relation U.(1.J) -:: ~(1- f:.. L{(1.J .... )) 

and solving for ~ 
d .( 

~: ~ tpl - i-~ tf' ~~ ~ lf1ri ftCf?' ) 

dl.{ - -4~3. ~ ~lf'l(it-t.(nl) d-t.- ito( /1 l 
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Hereafter, when deriving such formulas, we will do so by such 

a formal manipulation, omitting the calculus proof. 

More generally, if If( is a continuous, piecewise C k 

function in the interval [e1 )C~1 having only a finite number 

of jump discontinuities in its derivatives, and U is 

continuous in the region 

[( 't 1 t ) (, + t.i.f( C i) ~ r( ..:: C't. + t. ~ ( C 1..))' t. s t..o ] 

then lA is also a piecewise (k func tion of ( .ttl. ) f.. ) in 

that region. If ~ is C
k 

at C(u..(I'{,t»)"i; i j 0 ) 

for all where Qr,'S is a polynomial in ('+5+:{. 
,0 (f'rS) 

variables. If \ has a jump discontinuity at 

IJ"+S 11 
then has a jump 

dif'dt.s 

discontinuity at (It.-) t..) with 

I d ~ 2.2.10) '\ .... ~s I, f ( 
11>'\-

~.uo d;(r dt...'5 (1.-~~,-t..) 

I Q (-L If) l{') [I"->S It 1./"'5)-.1 
-:: 1M (\S )'fr",T -' ti+ttf') 

S.j,o C{I.{I,""t.»)/X)t;6h~ 

If the interval [ci,CtJ contains a rarefaction center at 

and U is continuous in the region 
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then, for lflJ C6 ') <: 1r' < t{Jil.. ( Co) ) L{ 

is a C~ function at (C(1r)Co,6 j t) ,t ) ) 

all (AI/_') near (c.(V; CO)Oj t) ... t) 
~u ~ 

then ~{,.) a 1- have jump 

since, for 

example, the formula (2.2.9) for 

II", ~ I 
~~O d1- ~L(~R(CO)(O)O;-tJ-t~)t..) 

cannot be expressed as 

II,., g. r _ 
~~D ;1i.. (c(lf\,,(CoJ)c.oP;{.) ~)-L) 

for any finite value of 

At a shock, we denote by 

the limits (if they are defined) 

/1 M d r.s LA I :: (d r+s 4. s) ( j ( Lo ) ) t D ) 

(1()t.)~{J(tD)/"O) d-t"dt..5 
l't)t) ~"t'''di... L. 

,((,J{t.) 



d"'~ \ ( \ 
( dltr~e) L,R. J(~o),tO) exists if U,-,A.(f(to),-Co) 

exists, and if either Lf is Cr"-rS at C,(UL/R.. (!((o))i. D)/lto)/:-o)'O ) 

or c.,{lJ.I..,R..(Zlt ... o ) )t o )/(4))t...o jO ) 

is a rarefaction center ~ with 
o 

V.L/R (1(io )) lo) f. ~L( 4-0 ) 

(,((.)~ (l{to},{o) i- LfR.{1o) 

In the former case 

where Qf'/'S is as in (2.2.8) and in the latter case 

(0 /(}(r .. s) 
If 'f).,,)., are uniformly bounded. then, by (2.2.11), 

and our restriction on ~ 

(
dr~5U \ 
dlJ'."dL<;) L/Q (l(t o)) to) 

is bounded independent of t.o 5 ~ -

10 C r~s 
If \ is piecewise with only a finite number of 

jump discontinuities in then there are at most a finite 

number of times t f) when 

can fail to exist: when 1ft.;) is overtaken by another shock; 
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when ~ is continuous at C(UI.,R(Rtc,,),t.o))j{t.o),l.o j 0 ) 

but tf{r.,) isn't; and when C.JLlL,{{(}U-o),t.o) ,ftt.6 »)t..tJ; 0) 

is a rarefaction center 1£.0 with u'-'R(i(Lo))t o ) = tPLlio) 

The total number of times 

this can occur is finite, since a characteristic intersects a 

shock at most once. At such times the limits 

exist, and can be computed in a similar fashion as the limits 

(2.2.10) were. 

For the initial data we are considering, the above 

discussion implies that the solution (,{(-l) t. ') is piecewise 

~C~C(D) 

for any compact subset such that D 
does not contain a rarefaction center. The set where ~ fails 

to be ~~ can be represented as the union of finite number 

of continuous curves which are 

either characteristics or shocks. 

Finally, we need some knowledge of the smoothness properties 

of j (t) ) t.J. ... ,~ { I (tJ ,f;.. ) as functions of t We already 

know that f is a piecewise function of t-
) 

piecewise continuous, with only a finite number of jump 
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1-
discontinuities. If 1ft) is C and 

u. ... ~ U (t.) It) (~ ) (f (t) t..) 
I ) g'i L,R. I 

continuous near f. 0 ' then 

So 

Similarly, if (f;~)L..'~)(~\"}R.., Ul..)~ 
are continuous func tions of t near L 0 

where PL..I~ is a polynomial. 
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Lennna 2.3 We can choose constants C.1~ i )' () < C2 5 C.1 

independent of tl It.t.~ To such that the following holds: 

1) It(t,J-l(lt.)!~ c.!Ii..I-t..'l1 

If LtI,..,R (itt.), t) is a continuous function of t r[t,)t.tl 

then 
(2.2.13) 

for all 

If U <- I U ~ ) (~t ) (~ ) P- are continuous functions of 

t. (. C t..[) t.\.J then 

(2.2.14) 

t(.(I,..,~U(t.1 ))c.. I
) - ().L1R(i({)/-) 

-(~) (I(t )/.) (S (}(O}-J -u'L.,r)f(O) -1::.)) (t-t.
I )! 

;'l 1...," 
L 

< C (t..-ct) 
- 1 
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2) Let U be continuous at with 

~ I JJ I ~ 0 - ,R l t.o ) t 
J. ~ MAX [ fo ) 4/('L MAXf /llt'l~-'oCllJf)) '4/~1f .... ]) 

then there exists a shock 1. and time t > tb such that 

C ((.<~) (l{t»)t.) )j(O)I:; t.o) -:= ;to 

with 

It.-CI~ L MIl> !1o-f'(i..e» I 
v t. ~ 

(2.2.15) 

The bounds in part 1 of the Lemma follow from Taylor's Theorem, 

(2.2.12) and (2.2.10). 

To prove part 2, assume for example, that there is a 

shock J I /(t D ) ~l(tJ such that 

P(Lo)-l'(.o': 1
0

:: ~,IJ Ilrto)-ti() ( 
and that, for 0 <: (/:.-t. 6 ) < Ct.1.o} C{U(6Jt..o)/loJ-o j-t) 

is defined and does not intersect a shock. Then it suffices 

to show that C'{.. is bounded above independent of ~ eo 

We also assume that 5(;(6») t) i 
is a C function of -t 

for The extension to the case when 

this fails at a finite number of times is straightforward. 

u/~ Jto) is in a rarefaction fan 

centered at 

So for all 

we have 
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L(/(I:) - ((U('tO)to)/to)t.oit.)) 
d.t 

=.st.('(i{t),t) ~I).jflt),t) -1A.(c.lU/l'io)t"l,ltc"t.o/\-c) 

L.. --<1.- -t (1 (t. ) - c( u. ('tv /v) /,l (j ) t. C)) -L ) 1'111;([ HlP/!.. 11 tf~ .... - J 
lfCo ) 1- I (. o 1111' 

where A...- is the minimum shock strength, defined in (2.2.6). 

If we set r(-t)::::: j({)- C(U(/(O)t.o»)i(.;(}}-C,)·f..) 

then 7~) satisfies a differential inequality of the 

d ( 111ft/eo Ill{ I II 1 Pi. ~ -.4 + '1 "'Vw t 4 CO) 1- T"C/ N , J 
wtth ~ I ~ -4/'J... . . 

dt- -l6 

form 

This inequality is easily integrated to show that 

1({)~ 1([0) 

1ft) ~ 0 IF" 

so that 
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To apply Glimm' s method to the initial value problem (2.2.1), 

we take Uj.-= ~(~lJ for even, and assume ~~ A~ ) 

where ~= 1ft, '( lIte The solution to Riemann's problem for 

the inviscid Burgers' equation is given in Example (1.4): since 

Il.d~)1~ MAX[I(JI.')14 .. ll 
it follows easily from the definition of Glimm's me thod tha t the 

" (-l \.) J ) 
approximate solution U~ -::: LA (1"'- )t1~ ) even, 

at time step VI satisfies the bound 

5~p luJ I < Sue /1/ ! ~ II <f I{ 00 - . d' 
f G f( -= A {isC/plu; I The condition (2.1) reduces to <::: 

(see Example (1.4)), which is clearly satisfied. In particular, 

this insures that waves from adjacent Riemann problems do not 

overlap. 

We are going to want to trace various wave structures in the 

approximate solution; the first step in doing so is to identify 

such structures in the initial data. By our assumptions on ~) 

the approximate initial data may be partitioned into a finite 

number of intervals of four different types. We define C3 

and integers k I)' .• ) kd wi th -.,.,,: k i < k 1. < . . . < k d :: t .0 } 

and C d ']) 
independent of (. for l sufficiently small, 

by the following conditions": 
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1) For each interval [~, L, 1 ~, ~ t+ i ~= I" .. ,d-i 

one of four possible conditions is satisfied: 

We say that approximate initial data consists 

of a compression wave between k~ and k~t~ , 

ii) 

u
C
" -= U~~'L k" kt ) kt'L)",) k~~L-2-

( k td - k J {. ~ C 3 

() ~+t. - (). 
0 ~ ~ l ( /I If /I cP 

We say that the approximate initial data consists 

of a rarefaction wave between k} Ql'ld k~+i' 

iii) There is a rarefac tion center at k/ i 

iv) There is a shock discontinuity at k/l; 

(2.2.16) 

2) If the interval [kJ.' kJ.fo1. 1 satisfies i) or ii) there are 

no larger intervals [k./ / I~/H ] ~ [k..
l

) k~T1. ] such that those 

conditions are satisfied. 
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There is a one-to-one correspondence between shock 

discontinuities and rarefaction centers in the initial data for 

the approximate solution, and the corresponding discontinuities 

in the exact initial data. Let ~i~. ,.~ ~s be the points 

where f has a jump discontinuity. We can associate with 

an integer p. i- :: I) ... ) S such that 
(.. 1 

IfIJ'Y-J -U~~-j.ll !~RC'tJ- U;.f 1 i ~ 2lll<f'fl vo 
(2.2.17) 

I P~~i ~ - p~ ~! ~ Co-If ( 
1 Pi.. t.. - Ii, .... I ~ q L 
We can define and track in the approximate solution the 

approximate analogues of the shocks and characteristics of the 

exact solution. 

Denote by '(! 1 t'l) the point (It..) n i) 1: Ii(.;. [0) To J ) 
it h even. Then we can define bLJ..I t1 ; ~ ) 

the approximate backwards characteristic from (~) v'l) at 

time step ~ I 0 ~ ~~ V1 7 as follows: 

Define s'C -::: (tAL! tCALt.) /~ 
Ie. 

t 8 
if U 1<.-1 > U ".-1_ and 

~ 
51( If" tAt > l.{ k.+ 1 

= k.- 1-

V~ 
k 

t , l{~ Ie II=' ~ -:: lAk• i U /r:.-i - Ie. + 1. 

Then we define 

and 
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It follows easily from the definitions that 

lb{~,¥1j~)-~ I~ Vl-~ (2.2.18) 

and that I, t\ ).. IA. ~ 
V\~ - h(},Vl;~) 

It is also easy to show that approximate backwards 

characteristics cannot cross, i.e., if i ~ j I ) then 

b(J,n;~) ~ bCf')Vl)b) (2.2.19) 

for all ~ .( V1 From the definitions, we have 

b{f') Yli b ) - b{J-)flig ) - ( btf ') VJ; b 1-1) - 6(1) fI)' b t-i ) -:: 0) -t:l 

is even, the result follows from the second part 

of the definition of b(l)fJ)6) ' 
Similarly, we define approximate forward characteristics 

from LJ} () ') for ~ 2 t1 . 

IA" > lA ~ then r L q. } 

f (h V1 j V\ t 1) -,;: ~ ± i If 

If ., < () ~ -then 
I). ~ -1 - J-) 

l1.i <: a >-

As was the case with approximate backwards characteristics, 

approximate forward characteristics cannot cross, i.e. 
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although they can coincide. We also have 

f( b(~1 t'lj (1-1 ) Jl-i ~ V\ ) < ~ 

h(-UJI Yl JYld_))V1t-i; n) ?! 
from which follows, by induction 

~(6(}}"i~) )~ /, ') ~ ~ 

b(-r(t/)/b))6~V)) ?~ 

(2.2.20) 

We can also trace approximate shock paths forward in time • 

Let . tH,) be such that U.;(I.~n) - i > ().;I.. }nh 1. ) 

we say that at time step Vl there is a shock located at 

Then we def ine 

We need to make sure that there is a shock located at 

"",.t '> Un.!. 
i.e., that VI,l,I(I1HJ-i l.(l~l1.t)d.. There are only the 

! lid 
following possibilities for t)/b(I/"o -t.. ) U,J((}{lfdJ I- t 
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If 

Ii 
t'\+i 

()..,tIltll" ... i )'t".1. r\ ()t.~ e.rWt<;.€'-
-:: (). JP')(fI l .. { 

It 



From this, it is easy to see that it is impossible for 

1'1.1 <" £,1.11..1 
!.A;tV{rld) -1 i(,I(.,.-+! ) +1 

l b. '(" ) Thus, given an u such that 
o 

U ;fI..J(OJ-i.> cJ.).tl.l(()) +i 

we can define, by the above procedure, the location of the 

discontinuity j{t,)( VI) at time step VI. However, we will 

reserve the term approximate shock for those discontinuities 

1(4) 
for which (0) is a shock discontinuity in the initial data, 

in the sense of (2.2.16). 

By similar arguments as those used for backwards 

characteristics it is easy to show that 

/.e{I.)(fI) -l(O(.Vltb) I ~ ~ (2.2.21) 

1°+ .A Similarly, if ~ ~ is a rarefaction center, then 

6 {f (~ ) ( t ) t 3 I ~ ; 0) =- 1/ 

~ [~L l -~ 
only if 

r~ t .. W ) 
(2.2.22) 

It) to 
and if j I I 1,1 are two approximate shocks for which 

1~4)(~o) ~ f~"j6o) then l:~)r!) -= l'l..II..){g) 

for 

So approximate shocks may neither disappear nor cross, 

although they may coincide after some time. 

We need to define several quantities associated with 

/J(J...)/~) 
an approximate shock { (b 
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S (pI,) It') ) 0 Si'Vlt) = (Uj~"I$).i + U ~"'(I H. ) / L 

51.1' U l'llt)) = ( u ;111 (; ).1 -U}I4J1!) +L) I L 

- U e 
l{~)(t )-3 

- !It 1/~}{b )+ 3 

The latter two being defined only if 

t11~ U{{'J(9) -lfilf/) ( ~L{-
l'~ t() DO' 

By the correspondence given in (2.2.17) there is a 

one-to-one correspondence between approximate shocks 

and shocks in the exact solution 1(-t.) given by the condition 

f (/f4J(()) - 1(0) I ~ If "-- (2.2.23) 

Finally, as was the case for characteristics in the exact 

solution, we restrict the definition of approximate forward 

characteristics to the situation where they never intersect 

a shock. Specifically ) t(~I..,)t'l'ti) 

if jI-111J I ;to( ~) - J ! ~:) 
f"l t 

Given a shock )) we will denote by 

vector ( ,( (t) ) u J I ( t)) t )) fA R (j (tJ) t) ) 

are def ined. 

approximate 

the vector 

whenever those quantities are defined. 

will be defined only 

1(J(!/t.)) the 

\.menever ttL..) UI2. 
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The following Theorem is the main result in this section. 

Theorem 2.4 Let and 

--r :: Sup ft. : 
J (/lot", 

Let U(1)t) be the exact solution to (2.2.1) for 

('1. -1:.) f 1i2><[O)T,,]) and let I.t\~. be the approximate solution 
J ~ 

obtained using Glirnrn's method, using the binary van der Corput 

sampling sequence Q"" (QI)q'l) . • ' ') . 

1) Let D be a compact subset of (R.)( ( 0 ) To J 
such that is continuous at L1,-l) for all 11-)t) 1" D. 
Then there exists A>o such that, for all ~ sufficiently 

small, I IA: - U ('¥ It.) I ~ A ill () 1 { I 
where (f 1;'1) are chosen such that 

,,~~ t«/t1i-I)( ) ,l--=IY-«J--+'L)L 
with the bound holding uniformly for all 

2) Let itt) be a shock, and [t./)i.."tJ an interval 

such that 1 (i) is not overtaken by another shock at any time 

t t: C t. J ) t.'\. J Then there exists (3 '> 0 such that, 

fori ~1(~1~ ) ~U~~'~;lt(~~~7;1)~ () Ie t //01 L/ 
where 1 (I .. ) is the approximate shock associated with 1 
by (2.2.23)) f -=[rJ) with the bound holding uniformly 

in [ -(: I ) f..1- J 
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We will prove this Theorem in a series of Lemmas. 

Lemma 2.5 says that Glimm's method is stable in Lipschitz 

norm (see (2.2.24)), and that, as a consequence, approximate 

characteristics possess the main properties of the 

characteristics in the exact solution, modulo small error 

terms. The approximate solution differs from being constant 

along characteristics by 0('-. ~and the approximate 

characteristics themselves differ from straight lines with 

slope equal to the solution along them by O{l/loIL/) 

Lemma 2.5 Assume that the strength of all the approximate 

(0 I -
shocks t (t) ) f -< 6° I (0 e.~ I., ;is greater than or equal to 4/1. 
independent of 1. Jg where 4- is as in (2.2.6). Then there 

exists a C 4 independent of {. such that the following holds: 

for any approximate shock path j to 

and is not the left state of a rarefaction 

center, then 

/I.{;tt - U!-i I -: (lfL (2.2.24) 

If b~-l) bjO ) is the left state of a rarefaction center, then 

, - C1ol,-f] 
IV..! - U~ I < "-

.!--t.L (--1. -

2) If M"~ If (~(q ) - / f.~ 3 (r-esp- 5 )) then 
/41 ~ cJ 

"J~:) I bfH ; ( ) -1 ('/6/) I d (fesf' 5 ) (2.2.25) 

for all (~6' 
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) I to / 
3) Let (/1 t be such that /~- cg) ~ 3 

for all shocks ltl.. >. 

is not the left state of a 

rarefaction center, then 

IIA ~ - u t:! I ~ i r ) I ~ elf "-

If br d- J ~ ; 0 ) is the left state of a 

rarefaction center, then 

I -[ID; ... f J 
I (). ~ - ().!l ') I.c._ ~ r 0 ~,~/~ 

In either case 

Ib{})~j~/) -1(t-()U! I 
< ~~(r-t') +C'I£{r-t') 

..( C, //oJL / 

(2.2.26) 

(2.2.27) 

is defined, then there exists ~6 

independen t of such that 

Jo ~ If(~)~;r')- b(f{J)~;f'))b"jg) (2.2.28) 

for all t I') f~(/~ r '. 
·5) Let kO+i 

Then for every ~ 

there exists 1-

b(~1b)O ) -= ko 
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There also exist {L/ I ~ such that 

, 0 " {)t /' I 
0< (A.b -U/o IU.

" 
- In.. <:L9~ 

J-.... It. It. +i.. rr 
(2.2.29) 

6(;1-16;D) ~ fO 
b ~p.) & /() ) -:: k a I k °r"L 

In order to prove this Lemma, we have to analyze the 

propagation in time of the wave structures in the initial 

data (2.2.16). 

Let k~ ('g 
J 

r f >_ 0 ) ( t -I-? be integers, I:: D even. 

We call 

a compression wave (at time step 

and if for all approximate shocks ; 
{I.J, 

Given a compression wave 

at time step b one would like to define 

ed, r'"1. 1 
lA Ir.. C~!1} f ::. 0), . -) r + -

a compression wave at time step f + 1. which is the wave 

uq . 
kt +1..~ 

.{ '" 0 ('t + i 4" )."J 

advanced by one time step. We shall do so, first under :.:he 

following assumption about the Riemann problems at the left 

and right endpoints 

k ~ -:: 1<. ~L ) k ~ ~ k t 1.( rt + i) . 
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i) The Riemann problem just beyond the 
(2.2.30) 

endpoint results in a rarefaction fan: 

, < I. ~ 
I). " - VI l' '" ,-~1 '-

ttgt ~ Uf 
1<.2. ~~ .. 'L 

ii) Condition i) doesn't hold, and the 

endpoint state of the wave does not change during 

the time step: 

~t >lA~ ~t'l f ['A Sit+1 l'5!t_i ) 
k'-1. k' ) 

L.. '-

~ U~ 
$ti 1 [~s r 1. s r \ 

U ktC '> k' +'2...... ) a 1<8 +1 ) k~ -.1) ,.. 
~ R t. 

We then define the successor at time step t r..i. to the 

compression wave in terms of a partitioning of the interval [- i)1 ) . 

where 

lX.,~.,? = n '5~"'~"-) 1 S~'''~_~) ,r i,. ,rf ) 

if (2.2.30, i) holds at the left endpoint; 

if (2.2.30,ii) holds at the left endpoint; 



if (2.2.30, i) holds at the right endpoint; 

= ¢ 
if (2.2.30, ii) holds at the right endpoint. 

Notice that ()( ~ . are arranged in decreasing order, as 
J,.Dt'1.d-

f . . 
increases, i.e., if ;t~ £. Ctk'l-rt;.:.) L -=/) 'L 

then implies 

We define by 

Then, reasoning as in Example 2.3, we can define the new 
Q+1. , i 

compression wave () ~'·A~ I f -=()/ .•. } r D
./. -I-.i 

at time step g.,.1 
1) If q ~41 r # ~ 

se t k ~ • 1 -= k ~ + i C k t i ) 

The wave remains unchanged, except for a translation: 
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2) If 

so (2.2.30, i) holds at we define 

k~d=~t_1.) 

then 
t .. ! 

U ltt1~i~ 

with 

~+r 
{,(, k,·t 

( ~.! 
/) l t 4

' 

3) 

we define 

then 

( 
:: 

tAl:.'+'I..~ 

~'t1 

": ~ 
'). ) 

~ 
-= () k~ 

fo '" 1. I .. , I r~ 

::: r~ - i j 

~.,f. ~ . < A 
U. k,,+1 +'l..t -=. Uk't'l(i-i) O:$. f - t' 0 

::: u.1~ t '2..1 Jo <: 1 ~ rt
d 

+ .i 

In all three cases we obtain again a compression wave at 

d'! I t·~ '1{r1'~1.. i) time step ~.,1.. between t: and I( , .(. r 

In particular, the inequalities 

(2.2.31) 

hold. 
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Given a compression wave at 

time step ~I we can define by induction the successive 

compression waves . (~t-1.. . ) 

provided (2.2.30) is satisfied for f/~g~6'L and 

we call U~,+t.~ )}:::o) ... }r~j.i) 6/~r~~").. a compression wave. 

Let Uf • 1.-=(J r~· 1.. 0 ~ ¢ ~ P be a compression 1::.-~~ f J •. -) ) b 

wave for which there exists f 1...) g f<.. such that 

~ 
(2.2.30,i) holds at k /..,12.. for t ~ (L.)i2.. 

% 
(2.2.32) 

(2.2.30,ii) holds at kL ,12. for b :> gL-}Q. 

Then it follows from the d~finitions and (2.2.28) that, for all 

f or all j -:: 2. I' .• ) r t - i 

for some 1"" 1..) .. ' I r ~ - 1. 

is defined, and 

if 

then 

b(flkt.t})t)~'J.))~·1.i~) ~ "t'~f ) 
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Let mb~!o~~[k}·i}and let L-\~~+1..t )r=O.J".\){'~tiJO~D~f<JrJO 
be a compression wave for which (2.2.32) holds. Then we 

want to show that, for J-='2."-,,rLi 

if and only if 
(2.2.34) 

~ 

where 0 is the binary van der Corput sampling sequence. 

e'" ~ t ! t 
That () 1: cXb(~g+'l.J-'bi 0) implies a. T "( C(kq+t~ 

follows immediately from (2.2.33). We prove that 

~.~ f ~'" c/.. b a [ tx. kg+1.} implies Q L b(~t+"l.~, ~;0) 

by induction. Trivially, the implication is true for r::- 0 ~ 

~~1 e 
but a 1.. IX. k.L'Lf ) assume that it is true for 

we show that this leads to 
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Since 

for at most one j i < If <' 'l "'0 - i _ .t _ ) by (2.1.4). 

~J. 0 J< 
SO a. l- 0(,,-'+1.5) - ~ and it follows from the 

induction hypothesis, and (2.2.33) that there exists 

such that D (kt +t./~ t j 0) -== k :2.5 

which provides the 

required contradiction. 

Using the above assertion we can derive a bound, uniform 

in f, 6 on 

b(k t+7-f) 6 ;D) 

Assume that, for every 

6(1< t+tlj-J.) It; oJ) 
j ~ /IJ···) J I 1"1 0 there exists 

o 
C{> t: fX. kD-I-1..i ) 1'1 

as) )~ 55 b ~ '- O-i such that 

(2.2.34) and (2.1.4) where lf~i'Ji,t!o ~ ~o_i By 

~1. ~ f.j,d I eX. Ok +-z.i ~ ~ II C,VF (/~Ti ) 
which implies 

10 <: ,-((,,)/,, I 'L-,~.-t) -ljC,_» ~ L.Wiv. - C'~F) 

It follows from (2.2.33) and (2.2.34) that for every s) 

b( k ~ .. 2. (t -i ) ) ~ j 0) < s <: b ( k ~ + 2..}) b ; 0) ) 

there exists g I ~ g such that 

with b({(s,Ojb'-iL(-i jO )/":: 5) 

r -~ " ) k ( '~tlf ! f ( '5) 0 ; ~ '-1 ) -:: k -T'Z. U' 0 - 1. 
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Then it follows immediately that 

lb(k't-?.})t",o) --, b(k~tl(fi»)b jO)) 

~ 2. C ,aJF { U C \ + 2 < I, 
Ie '0 - tAlF) 

From (2.2.34) also follow bounds on 

b(k~~llb;O) - k
O 

kOq)r0t-i) _ b(k't1'Lrt)~;o) r~ > <:) 

'0 -L II of 
Assume that a'''' ! 0( ~~'--!T~ ) but at" 0/.... ~;-!+"2.... 

for ~L.-:: b I~ r c:.li.od. Then 

b ( k ~ ~ l J ~ j 0 ) - k () ~ b( k t ~ -~ 'L) r ~ j 0) - k 0 

+ bl kl.t}~; 0') - bl kl
'-: ~,-i;0) 

B t b ( k t ~ ~ 'L 1 ° ° f/ ° - i I -::: k ~L. - i. + Jot It u s 
U I D'- ) DI- / \ I ) 

b(kt;"+L,~i.;(») _b(k~ .. -ii-'L) ~L.-ijO) ~ J:. )and.. 

by induction, 

b( k' H, t; 0 ) -L 0" k·. 1- - k" -t (J1.+ i) N[fr r' ,. ·,t-11 ).l[l.:{,J 

.(~i" (~+i jt\Jf1t[i,ooo'b-i], Q~(C<:Ott.U(koI 

where I't is independent of {.,/ f!:1 "'0_.1... by (2.1. 8) and 

(2.2.16). 
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Similar arguments show that 

k 0 +1.(('0 T 1..) - b lk 1 
t 'Lr' ) ~ ;" ) 

..:::: Jt- IF rt>o 

bUt+'L)b;O) -b(k' ~·O) <. .2 .J" 'Z. IF rg=o 
) ) -

The following bounds follow easily from the above: 

f ~ 0 -t..( 
o < U k~+t(tl) - U. kC .. 1.~ = U"(k6~1.CJ.-1.)/r;;o) Mk'ft.i)t)CJ 

(2.2.35) 

.( I,C/VF ( J=2." ... /,b 

~ IJ f ..- 0 (). 0 <: I C L 
o <: fA ~~ - VI Le+?... :: 4.kG 

- Mkf>+'L)b jO) L t IAJF 

g t '- £4.0 t g -L(' 0 ~ 2. J~ -( 
d < Uk.i 4-t.d -Uk, .. t.trtd ) - btl<. -1-1..(' )gju) tf1.(rl-t) I W 

We can extend the results in the above discussion to 

the case of a compression wave overtaken from one or both 

sides by an approximate shock. If U gkC-l-1.t, II =0". ~~ I"~+ i 

b) then we can de fine 

Lt ~.I % J. 
kC .. t+~~ r-=- (J" .•. )r .. + 1 

is a compression wave at time step 

r""1. k$r1 for the 
I compression wave 

in the following cases: 

1) If j({;~) -=:k! -i, (2.2.30) holds at f t-l-1,('td, 

at· t r [II t '1 sf) 
and " 'S ~(41(~) ) /L k'+i ) k. ,.,.1. __ k '+ i ) rK"'~ rt.1. . 

..J 
set 
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j lO 1.1 f 
2) If (g) ::: K +1.1" -to.3 ) (2.2.30) holds at k 

g 

and ~~1 C;t , '1') o ( ?J..'+2r« .... i.) A51/(){t> ) 

set kif 1. :: k 8 + 1 } d+.!":: r 3 -1-

Otherwise, we define k~~! )r~d. as before, since, if 

then (2.2.30, ii) holds at 

also covers the case when 

since 

CAsJ~"{g) / 1 SI,,!) n OS["2~'J.1 A5phcJ -= l) . 
Since it is possible that (corresponding 

to the shock completely overtaking the compression wave), 

S,.I ~+~ 
t,.{~&o#.liJt-:o).,_,r .... 1- is well-defined as a compression 

wave at time step ~-t1 only 'if 

the compression wave is not defined for 

If is defined, then 

implies /

(1,) e .. l 
(gr1.) -:: k - i 

and f (4 ) kC·! _'+1 
implies ((+oJ.) ':' 'f-l.rv +.,3. 

) 0 <:: t ~ P be a compression 

wave, and assume there exists t~) ~ ~ such that, for 

~~ ~L ) U~,_'L':; (,{t~ (t <&I?. ) U.~ki1'1.(r'~l.)? U. ~~ ~'l(rf+.i) ) 

and that for ~ ~ f '- ) Ie f - i 

l ~~ b~) kg "f'L{,frj == j(llg ) ) 

(I.. ) 
::: J (6) 
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Then it follows from the definitions there exists a compression 

wave 

with which satisfies (2.2.32) 

so that (2.2.35) holds without modification for the 

compression wave 

Let kt ) r~ 

~ 
say that Lt k.~ "'l.t 
at time step f 

f:O;.-. )r~t 1-

if [,Lr~ ~ IA :~~1.- ~ 

even. We 

is a rarefaction wave 

As was the case for compression waves in the approximate solution, 

we want to define kgd. ) r t .-1. such that ufd'L A ,.0> . . ' ,r~+4;..1.. 
k~t +"l. ~' cY 

advanced by one time is the ~ )} -:: 0.) ..• rt~i wave fA k't 'l.,\-- ) 

step. We do so in two steps. 

1) If 

~d CA ~ 1u f \ a 1:. Lt ktt +'L}O / k't .,.'t~D+ I) ) 

for some 10 -:: 0) ... ) r t ) then define 

"'~d 

LA ~~t4. T'L} 
~ 

-:: !.A. k$H.~ } ~ 10 

rv~. i 
-::: (At 1- >1 0 u_ i . 

kf' "1} k' t~(r.1) 

,,-,~d 4 ~t! 
LA P't f'l..lo ----I. 

73 



If 

for to the left (right) of [Auf~) A(.{~~+1(rC"1) ) . 

2) (a) If 

\,( h-~ lA!c 

then we set 

) \).t~."1..(rtd.) ~ tA~~f-'l.((,~"'l.) 
kt+f.~kt .. ! ,rtti-:r\+i 

(b) Assume that there is a shock or compression 

wave just to the left or right, or on both sides of the 

rarefaction wave, 

lIt > U~ 
II'k'-1.. jt.'f, 

or both. Then we have the following four cases: 

i) If 

ott ~ ~ \ $.1 
0 0 ' 1: [?.V.kf. Tt ) A'SkLt. )) a r 

(so that lA1'T1. c: stt-i Qt'\d 

ii) If i) doesn't hold and 

~t+1.i [~~l'!. .. ~)').<;!t-i) 

(so that (Atf>+L <. S1'-i ) ) 
def:ine kt +{ -= t\.j.'l., rt+t.~ r~"l._.i. 
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iii) If i) doesn't hold and 

Q t .. t ( [1'5~~f-1.rl+s I 1l.(~f)-'l.I"~) 

(so that !A. ti+V~ '> S !, tl.('~ -1-3 )) 

define ktd ::: k,d. ) ('~.' -=rttl-i 

L~r1. ) r~.1 iv) i) - iii) do not hold, then ~ 

is defined as in (a). 

As was the case with compression waves, it is possible 

~d ~.t. _ f-U 
that (' <. 0 So l.t "t'h~ I } - 0) ... ) ,'T i is defined 

r ir1. ~ r ..... as a rarefaction wave only if ~u otherwise, it is 

not defined. 

It is easy to check that, with the above definitions, 

~ '1.('\ ~ .1. i 
(A k,.1.2..} I }= 0 ) ... ) v + 

is a rarefaction wave at time step 6"{ if and 

C"1. _ '" ttl _ r~·i +- i 
U k(tr .. "Z.} - I.A. k.~.t.f-'l} ,t' (J.J' ") 

Thus, given a rarefaction wave 

at time step we can define by the above procedure the 

successive rarefaction waves IJ~ • -( - 0 rf'~ +-i g ~ (/5. 9" 
V' Ill .. ']. } ) (- )".) ) I 6 i ..... 

provided ~'I,f-1.~O ~r~~~~1.-.1.. We call 

lA. ~'I .. 1..~ } = 0) ... ) ('~ i-1 J 11 ~ ~ .s b t.-
a rarefaction wave. 

Let lAttt"'lJ-1r:6>, .. /'~+1 be a rarefaction wave, as 

defined' above for ~I ~ b ~ ~ 1...- Then the following facts 

follow immediately from the definitions for ~ / 

and for general 6') ~/~ t ~rl5.1'l.- by induction. 
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there exists a 

We also have I 

6(k~I~'lf)tl;b) ~ I"tAxf kCftrf'0)""r6j.i)u.~t#-'2.i<U!z~(1 (2.2.36) 

f 

'2) If rt"'i ::~I'>Jt..:-::O) then 

b(k t ' tt~l) ~fib) - b(k'~'I.~'l.)b/j~) ~ ii-it.. (2.2.37) 

0/ 0 0 1 « 
II :> ,. \ IJ ~ f I < U 

3) 1A.k.~1 - II'k~ ) ""kg 't1.(rt.d.) kt.,.?.(rg~i) 

4) Consider the set of real numbers 

~ t.\, = f ~~''''-~ : ~ ,0, ... , rt'i] lJ f ( h+! '"' r I J 
Then 

(2.2.38) 

5) 

be a rarefaction wave or a compression wave, such that 
o -t, re, -~ ,g, k'b I ... "[(l't 1 t 1)-=k )0(' 1< ,,"1.(('\(+1) -=/< 

Then we have, respectively, 

k9d.(('~ .. 1) -= kt ) ·P+'l.(i'&+.1)-= kt (2.2.39) 
" 0 

'

(/"}IIJ , ) -_ kt'_i 
f or all b 1 ~ I ~ f ~ ~ 1.... If (b 

or jrh'{f') -:: kC't1 . .rt ' ... 3 ) then 

J(ljg);:- kt~i ) f((>{r) -= l< e-l-1..I'C+3 .) 

respectively} for all ~ I ~ f:) 6'2- . 



Consider now the special case of a rarefaction wave 

which, at time step ~-=-O has rO=o and 
d 

k+i a 

rarefaction center in the sense of (2.2.16). We call such 

a wave an (approximate) centered rarefaction fan. It has all 

the properties of rarefaction waves; in particular, (2.2.36) 

holds, from which it follows that b{ k ~+t.f ,'~ i O ) '" k 0 

for all }=O,'" )r~ I 

We turn now to the proof of Lemma 2.5. Consider the 

partition (2.2.16) of the initial data into compression waves, 

rarefaction waves, rarefaction centers, and shocks. We can follow 

these structures forward in time using the above discussion, 

if we assume that compression waves satisfy (2.2.32). They 

do so at time step 6 = O. We shall assume that they do so 

for all Z ~ ~ r;, ) deferring the demonstration of this 

claim to the end of the proof of the Lemma. 

By (2.2.16), (2.2.39), every 

satisfies one of the following four conditions: 

I.~ n 
1) f" ~ .. ~s ) S -: 1.)' ' ') r for some compression wave 

(.(t,,+'I.Y ) f::: 0)' - - r~t.1.. , t :::0)" ") V1 ) with (2.2.16) 

" a .{ _ 0 rO 
To .i holding for tA. ko+ 1} ) () - .I"') 

2) J-:::k""~5 )S"::o" .. )f""d. for some rarefaction wave 

U!'''1.{- f=o), .. )rS.,.i ) (,::0.", ,.)V1 with (2.2.16) 

holding for 
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3) 1-:: V'~1S 'S-.:o, ... )('''+1.. for some centered 

rarefaction wave U~k("l} J}-=O'" "1 rt ) &=o ...... ,V) 

J If) 4) t-=l(I.. J
("IJti for some shock (t1) . 

.., 1'\ 

Similarly, for any pair of states (.I. I-i) lA ~Y i 

h I./ "'_ .(-i"fti ~ k" -t~l"r"'T! ) where "t $=0 ... rtti we ave r d" ) "'"""'1.5},J ) 

t-=o" ... ,V) is some compression wave, noncentered 

rarefaction wave, or centered rarefaction wave satisfying 
(0 

(2.2.16) at time step 0, or <f-:1.. (VI) 

for some approximate shock J fO. 

The inequalities (2.2.24) follow immediate.ly from (2.2.35) 

" 1\ 

when IAVi ll.tt~1. are in a compression wave, from (2.2.37) 

when (A" 0\ 
Vi) U..j-t!' are in a rarefaction wave. 

To prove (2.2.25) it suffices to' show that, for example 

by (2.2.24), and our assumption concerning the strength of Ill) 
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thus it is impossible for [-1. l~lIr; ) n [A5~-{~)(t_l)}1) I ~) 
d h · Th' . IJ (I.. () an t e assert10n is proven. e rema1n1ng cases J -;:. ~ ) =-5):!:,] 

are dealt with similarly. 

If U\ is not in a centered rarefaction waVt', then either 

u~::: [At}lti~/) in the case when v..t=- ur'as} 5-::;i) ... )('~ 

for some compression wave 

/,0 < ~I 
11\ b (f I ~ j 0) - lA, bL;.) g; ~ / ) < 

by (2.2.36), which implies 

so that (2.2.26) holds. 

In both cases, we have 

L f) llfl. [A Qll a k[[').v k
-1. i)C 

D(l , t")t ""'} t IV 1 K): ~r:l.) .•. ) ~) ),l/,g;!<) ) J 

- N f kif b +i) .. '. ) b I} ) q k 1: [- i ) 1 V t~~g))) 1 

By (2.2.25), bl~ J~; k ) i jlO( k-i ) 
f
(~ ) 

for any approximate shock so, 

so that (2.2.27) follows from (2.1.7) 

is a rarefaction center, then (2.2.26) 

follows from (2.2.36) and (2.2.38). To prove (2.2.27) in the 

case of J:> k fl-lls for some centered rarefaction wave 
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we partition f ~ +1. J' " • , V\ 1 into three sets: 

5, -:: t p: b(~)r'\jP)-1 -:: k -! ;ur p
-

t
j.1.)) ~d~ p5Yl} 

St. ~ r P: b(d,t1jp) +1 -:: kr
-\ bd.~ p~Vll 

5
3

:0 [t~1.,..")n7 -(S{US1.) 

If p151 } then b(d)V'iP-1.) -=b(}J{)jp)-i 

f. {() (p -1.) -=1= b (J,fJ j p ) 

by (2.2.25); thus 

are points in a compression wave or noncentered rarefaction wave, 

and 
p-t C I 

OS Vp-i 
- {,( ~ 4VL.. 

b I ~J r1 )" P ) b'} In j P ) - 1 

by (2.2.24), and 

o C I <' t.t p -1 
<C /All < U

O 

U b(~J~ jD)d + q 11... - bl I,ll jf) -1 - d- - btJ J l/jo) "I".1.. 

by (2.2.35) and (2.2.38). Thus IVP~!. -lA~ I ~ 2. C4L 
b(IJl\jP) d 

and 

I ~ f PIS i 1 0 P 1: [-1 ) 1 V P -i " )! -N [ p ( S 1 ) Q P l [. i) u: ) 11 ) 
b'~)(I)P) 0 • 

1
1\[ (C' "OPf[~l)fJ-1 i)"']-Nrp(S'l)QPt:[~«;)i)jl 
NIP .).t) b1t,/liP) ) 

by (2.1.8). 
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If P (~'l. we find, similarly to the previous case, that 

1(~IY1iF-i)'" b(~)()jf )+i j 
0-/ p-i u,' () -
b{~,l\iPlTi) bl~If\·)P)-i. 

are either in a compression or noncentered rarefaction wave, and 

o p-L I I D - Ll p-1 I < C -( 
IlA~o - Vbl¢lniP) ) lA/..o b{J't';p-.U - If 

Let 1V\:-LA..~o\-=! by (2.2.34), either t-=O) or 

- [10,,-r J -i n p-( I I tI V P-L I < C L c:::' ~ t ) 1U.~-().kl'-1 ) V()-- bCf1llif) -7 t If 

However, by (2.2.38)) (p-i) ('I(tLcr{) -:: 4-) 
and the number of elements in 51. is bounded, independent 

of ~ by [1: C</( J t i ~ g,..,I\X By (2.1.8). 

I tJ{ 5 a Pt. [-1 'lv P- i \ - Nfp7:C:; : aPr [-i)u:o)l/ p 1: 'L: ) It. b(~1 n j p) ) 'l. 

~ N{pf ~1-: oP 1: [At-<;o-cte) A t);~C~(){ 

~ If fI Ct/. L ~ k'L 

I ~ ( P i ~~. Q P , [-1 J "~. ) l- N [ p'), a P l (- i h ) } I 
:::::: IJ [ p r 5,..: Q f' ~ [AlA ~o /),() ~ ) 1 

fJ [p f [ i , ." ) & M " '" r Q P l [A IA ~~ ) fA; ) ) ~ t 6 M A~ ? ~ K 3 

so that 
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Similarly, we obtain 

If ~ t. 5:3 ) then 
p-i 

k ~ 

and it follows from (2.2.36) and (2.2.18) 

if and on 1y if for at 

most one p ) 

/tJ[pt.53·.aPl.[AVbP-r )i)1-~nptS3: l{t't[AlA7)i)lJ) 
(~I~;P) ![ 

INfp(5
j 

·.a P
[ [-i) J.lIb~-1 )1- Nff l )3 :aPr[-i) A{)j)1! 

\ lJ/YljP) lJ ..l 

~i 

Combining the above results we obtain, using (2.1.2a) 

(Nf F(f~+i). ··) t11 : o.P f [').v:rf~,,;p))1 ) 1 
- ~fF[fbd) ... )Y11 : D Pr[1u;)1)1 f 

I N[p'fl",·,n]. qP {[i, 1 v[,;\f)l 
-fJ/pr[rd) ... )nj·.o.pr[-i)AtAl)]! 

and the result follows from (2.1.7). 



for 

then 

with 

To prove (2.2.28), we first claim that 

bU(~}~jb')_'L)6')b) ~/~ b{/(f~~;~/))f/;~) 

if t < b(f(J)~)r)-'L)f )'D )=f'--

f ,( i L ) ~ ; b I ) '5 { cf) r j b I ) 

It....> J which contradicts (2.2.20). Thus (2.2.28) follows 

from (2.2.37) when 
I t' ~ '" '/ _ f I k ~ of 2. -: t ( f ) ~ ; () -: k -# '1 (r~ ~ 1.. ) ) fo (' (). It. T .. 1. ! I ) I -0 ,I" ' ) (' + i 

a rarefaction wave, and from (2.2.35) and (2.2.37) if 
I (I I- -= 0/ " . ) r f 1 

a compression wave. 

If :5 -=-O}, ,}"~ t-.i is a centered rarefaction wave, 

then it follows from (2.2.22) that for ~ < e MI,J ) 

Ikt-{(l(b)/ )~r~11rg-ri)-J((;t)1 '>:J 

;
(0 

for any approximate shock so 

must be either part of a compression wave or a rarefaction wave. 

If the former holds, then I v..~" - (A ~o (.$ 1.. ~ ( ) 

by (2.2.35): if the latter ho1ds~ then v<.t, "" u;o 

and an induction argument implies that the wave is defined for 

all and, by (2.2.38), that (2.2.29) holds. 

Finally, we need to prove the claim that a compression 

wave initially satisfying (2.2.16) satisfies the assumption 
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(2.2.32). To this end, we prove the following fact. Assume 

that, for ~ ~ ~o the claim is true, and let 

ul~.t?} i:: o , ... Ir.~+i 
be two compression waves, with 

ko Il 
f or all i) I 4 2.(r + i) L:., ( 

Then, f or all 61 ~ f?: 0 at least one of the following 

two inequalities hold: 

At ~:o 

rarefaction waves separated by rarefaction centers, so one of 

these alternatives hold. If (1) holds for t = 0) then 

it holds for t I ~ r > 6 by (2.2.35) and (2.1.7), if 

(2) holds at 

by (2.2.35). 

tAt < t{t 
,y - ~Yl 

z::: D; then it holds for f,? f>O 
In either case 

I ~ k;., 2 (f'~ + 1) J _ .' ) k ~ 
To prove the claim, we notice that if (1) or (2) hold 

then there are one of three possibilities for the approximate 
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Similar conditions hold to the left of v. t t 
k" c 

It follows 

easily that the assumption (2.2.32) holds for a compression wave 

at time step if it exists. 

Since (1) or (2) hold at time step the claim is seen 

to be true by induction. 

It follows from Lemma 2.5 that the various quantities 

associated with the approximate shocks are well-behaved as 

(2.2.40) 

with as in (2.2.22). 

The following Lemma is the estimate of the error in the 

position, speed, and strength of a shock on either side of which 

the solution is smooth. The argument is an elaboration of that 

used in Example 2.2. 

Let AcU2 ~~ [ l.:f is C 1. at /f-. or 4.- is a 

rarefaction center ? then /Q- A consists of a finite 

number of points. We can partition A into a finite number of 

disjoint sets 51 J'" I S~ each of which either cor:~~ists 

of a single point, which is a rarefaction center, or is an 
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open interval. In the latter case, SJ is uniquely determined 

by the requirement that lP is C'l. on S i- ) and that there is no 

larger interval on which ~ 
1. 

is L containing 

If tA. is· continuous at (11 I -t) we say that u h) t..) 

satisfies condition (" if c(u.I"i)t) )1) tj 0) 1. 5r-
and, if that u I'):) t.) .,. CP,- (1. 0 ) ) ~ ("i 0 ) 

We say that UI...IR..(f{t),c) satisfies condition rc...)i2.. 

if C ((.( n (f (t ) J-) Ito { j 0 ) "T 5 r and, if 5 .,. ~ [1: '2 t. ,,~ )) '-I R. ,-,It II S ) 

that UL.IR.(iftJ"t) 1lfLt1YO) / lALIt2 (lit); t) -:: ct.f'f.o) 

A shock f (t) satisfies (f' .... ) re ) if 

exist, and satisfy, respectively, 

conditions r L ) r~ 

Given a shock J(t.) J 0-:.1:.5.7:) there are, according 

to our discpssion of the exact solution, at most a finite number 

of times t such that /({) doesn't satisfy (f't.J"'R) for any 

possible rt..) rR- Since characteristics can't cross one 

another, if sa tisfy conditions ( r;.) f'(l. ) 

then Itt) ) t/ ~ t ~ t.1... satisfy conditions (r;.) r,e ) 

So that for each the set of all t )o~t<To 
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such that f (t) sa tisfy condi tions {V''- I {'(2 ) is an open interval. 

We define, with slight modification, what it means for 

1(4) I 
lA, ~ M liJ I { - (Yj ) ). 3 

J. ) tllllOJ) d" -
to satisfy condition r. 

If '5r is an interval, then U; satisfies condition ~ if 



If 5r is a rarefaction center 11-0) then 

condition r if b(~) nj 0) -= kO -.i ) 

u. ~ satisfies 
el- ,-0 
where K 

is an approximate rarefaction center associated wIth ~c 

by (2.2.20). We say that an approximate shock Ill-In) 

~) lii) J 
satisfies conditions (f/...)'f'f!-) if F1~):I-!«r,Jj l;1) - (I?) ~1} 

and 4t-Uti.(Il))) ut;.(l"){t,) ) satisfy, respectively, 

conditions rL-) r R 

Lemma 2.6 Let be a shock in the exact solution 

and the associated approximate shock. Assume that, for all 

~ ) ~1'5 ~ ~~t) j(tg)) Itrt ) satisfy 

conditions (rt...) I'g. ) ) that 

was proven hold, and that 

Then there exists C5 ~ 1 independen t of It) f J) ,2 for l 
sufficiently small, such that 

11f/<riO(~ ») -1' (J (g k ) ) / ~ C5 114~) t 910,1-1 f (2.2.41) 

We define t'tI -:: [i:. lo}'I... i J and without loss of 

generality assume ~ ~ ~ t I fo;{ I We want to find an 

expression for 1f{O{j((ht~t.) 1 II!) -1//{jj(I.V1.."'») 
analogous to that found for the exact solution in Lemma 2.3. 

Recall that one of the assumptions under which Lemma 2.5 was 

proven was that, for ~1..rt"~f ,,!:~t')1...m) the strength of 

is greater than or equal to ~~ 
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By (2.1.7) and (2.2.42), 

Ilfl ((f")'L~ ) _}'I ~2'" ) - Jt'" 5(J('~'" ~ ) ) /9''''''1 Cf T Z 

~ k1. ( 2 . 2 . 43) 

Next we look for an appropriate expression for 

u.J iL){fj~')~_:")) - (},f-{tl.}{f'L A
)) . 

There are two cases, corresponding to whether :)r is an 
'-

interval or a rarefaction center. 

First, we consider the case where 5r . is an interval. 

Introducing the notation b( k~ JJ ::. b(l()(k,'J.."') -3) k/J.'"j('--f'1), 

We write 

~ (( b(V 1/~ ) - ( p} -3 ) ) 

" _b(~ i i) 0) - b (~) 0) " 

b(&d) J) --Od- -j) 

(2.2.44) 
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assuming the denominators of the last two factors are nonzero, 

and estimating each term in the product separately. By (2.2.27) 

Ib(~+i}~) -(ltodo-3) -~LL"'UL-)}"1.I~'2....+C:(~'L~~ K1-

\ blrt}~) - (lJ -3) - Al!\1(5i- U'-lt J 1 

::: it'A {c/ + /(1+/('L ~ k3 

(2.2.45) 

j /~I "") Since the strength of 1/2 was assumed to be greater than ~) 

I bil-'i 'J) -(fi -3) h rz. h'" - k3 -1 ~"C/'-
> /(., 2l1li (2.2.46) 

Since h( b{tL)~) )f'- M j 0) = 6(I-+ i )0) 

we have, by (2.2.23), (2.2.24) 

I b(fiJ~) - (l~-J) -1j2I'<1llA~(~~1)O)-{):(~)O)) 

, -lb{JTi)O) -b{J>o) ~ 
~ C~ ( tit (f) l' A J ':L M( C~ ~ fsYff ) 

(2.2.47) 

We also have that 

! b( V'/O) - b(~)0) ( ~ tb:2 ~ 
since, if 

tA"!I~.!P) -1A!cJJO) > !\:o Z"'() b1J))-6r;dP)~ tv:l: 
t -r: Iltf I ~ PO 

by (2.2.21); otherwise, by (2.2.24) 
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(2.2.48) 

t 1./ I \) - { / (IJ I J . . ) \ 
/(1~tj~Ui1r}CJ)() / [J.+t~T (ld~-til1l..)f ) 

L k'2tl~) 1 . -l- II~I'/I= ~b1"'( 1- (~(i) ~2.Cq(ji'~/ltf'V.J( 
~'1 ~~ 1. - r: C,pr :J.. (i- -r;C'VF ) ( 1. - ~ C,~;: ) 'L-



~ 1. Cg, l + 1~/ob(i f Cq I: ) a.'" ( 
Vb '1~( L 

+ I/~I/IL (dJii/'" 'lC~f ) 
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(2.2.49) 



t w ) 
In both (2.2. 4~ and (2.2.49) we have used the fact that LAt:.lrr;.n2.."') .I 

uJl"}f··")) satisfy condition ('l- in that bf/,O){) 

b(}~i,o)( I If{-{j{,()~ 1:. )('L..' Combining (2.2.43), (2.2.48) 

and (2.2.49) in (2.2.44), we obtain 

f (2.2.50) 

- 't' CS~ -(,{L)~) If t!;L-tJut-lj )/(1 ft... (Prll-ell .)) { !(i J.. 1 /L d '-)J 

~ t$L(/I~I(jtN + k~~ \) (1~- t l(g~(.J) ) 
d.. J oC'lJF ~ Iv. 

+ ~~ (L-lIlfl{qq t ~j()~:r:(" + ~j1~)) 
:l. WI ~ l1 D INF ;}-..." 

+ K~~(J') ('t: IItfl/oO t- ~3{)(II~I/foO t ~) 
~M ~ 

~ r,o (II"J £1 

If 5~ is a rarefaction center with associated 
L 

1,
0 i ,,"" :> q ( approximate center r:- + ) 1-.,c... ~ 0 " ... ,). By 2.2.39) and 

(2.2.40) 

I - U ~1-,o\ [~C I L 
1A!..'V i b1tt,i) if-

I kO -+lt1!2.M u..i'L'" - bL1+1.A )/ 
cJ"' blJd/~) <I" cr ) 

I ~rLMU")~ ~ kO ~ -3) I L. ell / (0; i! 

K~"IH - ~"'i ) Ai"." - blj.i ,i ) -(~ -3) I, I 
~ "2.clOJ [I t P·~Cf L ~ /:,) lo,L, 

92 



Thus we have, by (2.2.43) 

I Ul.'fi -~L't -(5j -L{L.~) A'L M I 
~ .,1M 
f 

<:. r~'+'i -1A·'i - (b(t'1.J)-~-3))/ 
Art 

+ ll-F -3 - 4L1J i- i A'l!" -b{Jti/J) \ 
~ Ai~~ 

.j- lk' St -(£1'" -fj) I 
J '2-~ 

+ I(~v,~:>~) 1"1-" I 
~ (k'kll O} {I ' C11101 (/ + /(1 + K,' { 't")t." 

-" !://lloJ Iv I 

(2.2.51) 
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Similarly, we obtain 

if 5f'R,. is an interval) 

if 5(' is a rarefaction center. 
rz.. • _ V: (QlJ. -.:$ r!2"j 
De fln e Ij( j ) lA L. } U e ) -t) -

by 

if S V'L IrQ. is an interval) 

fl-)R. (1) 1-) 1.) = X 
if 5 V'L.. J'r.. is a rarefaction center. 

Using \I we can express the estimates (2.2.50) -(2.2.53) as 

It'i)UU/tf,LJ'l.''') _1j/l(/~&2") 1 
- 't' V( "{JW(f'ip")) t.: J I ~ /:;~'/Io,L/ 

By Lemma 2.3 we have 



Here I'IJ 1-= ~,,~ IIlrC I I (V;.~,V;) =7Jt. fi2? Since !t,1!. =- ¥.. 
~::1}1..3 (It) 

only if r",I)~/'-/<\. ) and since Ilt)}l ('6) are assumed 

to satisfy Lv-t... rf2. ) we have 

I V( <f(J{t~»)) t ~ ) - V(1'i'(f'1.:L"») / j) I (2.2.54) 

<0 t,. l1f(j(l~)l+) -1jll t/12M)), t) f. 
We turn now to the proof of the Lemma. By (2.2.42) 

jY{f(~~)) - 1f{O(!(~){b »)f (2.2.55) 

~ Jt{1(~kJ)-1f(l(b/tJ)) + 11/'il!;I) -1Jf'(J~t)) I 
+ l~l'(IM(61)) -1f(f{( L)f 

~ KIt 1 t + If (()(j(~ ~() )- fft (t li )) I 
if 0 c t -~ Ie;).. ,.,.,.i ) 

"t.t 
so it suffices to assume (z.-t, >l. 

JIll ""-
Let fl) 11.... satisfy (,</-/:1., </t...'L ~ f'L.) 

~ ~111<".2.n1 
1/2 -~I ) g'L-J'" j"tl.) 

By assumption, the strength of It ) 
is greater than 4~~ ) so that (2.2.46) holds. Thus, 

by (2.2.51) - (2.2.54) 

1"f{It){j(J.)(ri)~"') -1f;(l(tj •
I
))f 

~ ({. 't I:',J 111/?11l~1."») - N/ftj) )/~f'f{/~!l/ 

By induction, 

14f(i)(l(~)(fj,I>1))-f(JllJ)) J L. 

KI1 1:J

-'(1. + 't:10.Y {Iloll / 
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+ (if k"S't j4't (l(lj.)) -~(()(lfV(/I1."')) I 

<: e '('if {J'l-j.)1: (l/ /01 IJ (It _/,)~? + ~'1 '- t) 

Thus (2.2.41) follows from (2.2.55). 

In the following Lemma, we show that, for points (~O)to~) 

sufficiently far from any shock, there exist /0 
such that the approximate backwards characteristic from 

(Jt> () ~,,~ ) is a distance no more than 0 (I.. I/(); 1 / ) 
from the backwards characteristic from ('1 0 )~" i) 
in the exact solution; and that 

O 
_[Io},-g.l 

IA~· -:: U(I'{." )~o~) t (i) 1 
~o b 

if (-1- 0 /~ok.) is in a centered rarefaction fan, 

U ~e -:: (.( (~O) to ~) T 0 ("'- ') 
.j-0 

otherwise. 
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Lemma 2.7 Assume that the hypotheses under which Lemma 2.5 

was proven hold; that, for all t } ~~~" Itot!E. To 
and for all shocks 1 that 

y 

Ii (~~J _j(L>{~) It I <!: ~ :: I...- j 

h J IO. h . h k . d . h 1 were 1S t e apprOX1mate s oc assoc1ate W1t 

by (2.2.23); and that, for 46t:/12. J{ '>6 

MIU lito -1 (~ok-) ! 
J. ~ ~,. M'I'A[ 1+ ~lItf'l/<A J ~2!1..~I (S -fe/fllo/A./ +C,{) 

where C, is a positive constant to be determined. Then) for L 
sufficiently small there exist C1 ) J c> such that 
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where J o is as in part 4 of Lemma 2.5; 

if I.({/(e )t" ~ ) is in a centered rarefaction fan) 

IU{'(t-}~,,!G) - tAt" I) '10"--1) 5 C1- ll/o/{/ 
otherwise. 

First we wish to show that, for ~ sufficiently small, 

;\110 /C(U('t(l}to))"Y-o)iojt') -Ltt') I 

if 1.' J) t./~c.t> :> ~ + C'/ l/lo
l 
(I t C, ( . (2.2.56) 

Since shocks cannot cross one another, it suffices to show that, 

for i",./'-o) >1::: 6 > lL(t.o) 

c..(I.{("{.O)t o) ,'l-",)t.o; -/:..') -fLitl) ) If/i. ') - C(U/Y.jo\1.0 )t.o;t.) 

> S t C; ItI/oILI +Cc"--

where lL)f'f? are defined by the condition, for all -t'<Lu 

there are no shocks 1 such that f~ (t. ') .> 1ft I) > h ( e) 

We prove the bound for 1,- ; the proof of the other 

inequality is identical. 

There are two cases. First, assume there are no 

rarefaction centers in the interval 

then it suffices to show that 

C{Ul1.",)to)/'i
O

)1: 0 ;t') -c.{().~{L{t..o)/-o)}ftto)/()jt')· 

> ~./- (,/Lllo/"-I t CG { 

98 



for all 
I 

t <'1:...0 • We have 

10 - LJt.,') -= c( L{('lO)ta) ,Il-O) to j t...
1 

) 

- c (u.,i ((to) /:"0 ) ) I{t.o») to j 1:. I) 
+ (t.

0
-{.') (U.{/(O)LO ) - VfI.J..t(CO)1 to )) 

L.. (c (U(-tc,)t.o ) }.-to) t.o j t.') - C (Ll/((tc.)/_) ) It/to ) /"0 jt l
)) 

X (1.+ (s-up ~h( ){/. -t l
) 

A.! It.' d4 (1. /.1) 0 

:::: ( c(u.( 'Lo /-0) )/(.o/-o;t. ') - C (Il./ fJt,,)/ to )./!£o)/ to;t.' )) 

X ({ t fo//tf'//oo) 

Here 

It-' -= CC(L(f(!fto)/:-o))It..('-o)/-tojt')) C(l{(~"ltD)) /(.0) toj t./)Jj (2.2.56) 

follows immediately from the hypotheses of the Lemma. 

If 

[C(I.{p-C({t.) )t.o) jtto) ,t·o; 0) ) C. (trl'Yo)to);"f'O)t(JjO J 
contains a rarefaction center ~) then)for 

we have, as before 

/(o-I,)to) .! (Clu(to)Lo) ;'1-0 )to) t l
) - C( fAR (.«(~,) /-0), ~(lo))to j t')) 

A (1 + ~ ~ ~t' fi I ( It, t I ) ) ~ ) 
with the second factor bounded by 11- 10 M.qX f /If/lIP) lfl/£PI/~ ] 

Co 
and the argument proceeds as before. 
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l' ~ Co I 
If 

4f14'1Id> ) then there is an /( 

1. rt') < Il' < (( u.( 1.0 ,t.,,) I'(. e> /-0 ~ l' ) 
L. J 

for which C(u.(IV.JJt') 
I , ) 

)1X.)t.;O -="t 

so that 

C(U.(1 o)t,,),l'i o/:" o j 1:..') -/I-(t.') > til -La') > Cc. 
"L 

by (2.2. 7). 

To prove the Lemma, we consider two cases, depending on 

whether or not 

[C(I.{{~o )to) )tY.~) to jO ) - C4t3)L .I c({).{ti~)t..o) /'1. ~) to) 0) +(Jo-r3) (J 

contains a rarefaction center; here Jro is as in (2.2.28). 

If 

CC(L{i'V.o,t..o) ,tic )-t..o 0) -(1"0 t3)~ ) ({ u{'i() to) ,-1-0) to) 0 )/r;,.q ) ( J 

does not contain a rarefaction center, then Lemma 2.7 

follows immediately from Lemma 2.5 if we can show 

f (} /'j ~o ') - fO is defined, where 

T -= 1. [ d:LIk(1",t..()~L'¥O)t.o ; C) )J 
If fqJOJ'~ ') 

I {Jl} ,OJ ~ ) 

is defined, then 
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~ I { b { { ( I, a ) ~ ) ) 6 )' 0) - c ( IA 11..& ) t 0) /1." ) to j 0 ) I 
~ /ld'/6l eO) ..., uj ! ~ 1e-

~ C't L /lO}t I r (ro+t) { ~ T;;( cq rtf/If 'II.., ) ( 

by Lemma 2. 5 

l{(T,Ojt) -J(~!b)/1. 

.> (C(ull'fl')t. o ) /1-0) L()jtk-) -j(t~·J ( 

- C~(J(o({/-({Ia~t.) 71.1; /llf'II •. J{ - ~ 

> 5L 

by (2.2.561, with the appropriate choice of C, ~ thus f(J.IO)·~~l) 

if defined, and the result follows by induction on 

If 

[C,I.{ ( IK-o;t o )) ;to )tojO)-{r.+'3)t)C(lA.l'X,,)to)"to/.()O)"L~1"3)(] 

contains a rarefaction center 4 with associated approximate 

10 + _A rarefaction center ( " the result follows 

immediately from (2.2.26), (2.2.29) if ~~~""I~' 

If b > f,...1J then by (2.2.29) there exists -} 

llA~~"') ~lA.l-tc)/o)! ~ (c: ~(Io~3)l/f/ll~TC~)[ 
J 

If f (~ ) ~1I41r.l; ~ 0) is defined, again, the Lemma 

follows from parts 3 and 4 of Lemma 2.5 by taking 

such that 
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The argument showing that f{:r q ~, q ) b .., I" ; 0 0 ) 

is defined is identical to the one showing the approximate 

forward characteristic existed when there was no rarefaction 

center in 

details are omitted. 

According to the discussion preceeding Lernna 2.6, 

at all but a finite number of times, shocks in solutions 

to (2.2.1) satisfy conditions for some choice 

of In the following Lemma, we prove a 

corresponding fact about shocks in the approximate solutions, 

bounding the length of time that approximate shocks do not 

satisfy conditions (If'L.l r,,-) for any choice of r L ) r~ 

which implies a bound, by Lemma 2.3 and (2.2.40), on the 

amount the error can increase at those times. 

Lemma 2.8 1) Assume that the hypotheses under 

which Lemma 2.5 was proven hold, and that there exists 

times 
~ 

and a constant ~..;: £... 3 such that 

the following holds: 

For every shock f (t) there exists l v"I..J {'It) ) ('1'1..') {'~' ) 

such that lIt) satisfies 

Loc::::-l<'tl ) (rL-')ri.) 

~ 0 I 0 < go ~ -t.o < ~ 

condition (rl..l('"~) 

for L ,L t < -tL 

for 

Ol() 
that the associated approximate shock A 
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satisfies condition (ft.. ,r(L) at time step 

1
(11) , 

if ( b ) satisfies condition U',-, (' (~) for 

fk <: t ( ) then 11/~)(I (It'{O' ) ) -1.p (flg~) ) I ~ ~ ) 

and that) 

<:()/~r; 
~o-" -b) 

and 11 fJo )I(') -ltg"() 5 ~ for all 

Then there exists C«::- 1. independent of J) ~ for 

sufficiently small, such that the following holds: 

There exists 

0< t. ,- g ,I) k. ) ~oVT ~ - t I < C'i b (2.2.57) 

satisfies condition (r ... Jrt) for 
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such that i 4
)(g) 

~o~f~~/aJ ) 
JIll J 

and that l. (Do~r) satisfies condition ((-..~r,,) 

with 

(2.2.58) 

and 

I f(4)(f) -Jfrl) 1 ~ (8 ~ (2.2.59) 

for all g ~ !(!JVI . 

If!.. is not overtaken by one or more shocks at time 

then 

1~(It.1{J((?t)) -1f(f{f~))J sC~[ {or rl<Jfr~ro(}r. 

2) If ift) satisfies conditions (f't.,1'i) 

then there exist 
o (OUT 

} (4)(., ) 
such that t00JT 

) 6~tlT~ <: Cr;lllo,l/ ) 
satisfies (yZ'('II!.)) and 

11f(llr l )) -14

(JWr,») I ~ Ci{!~t- (I 
for 

., r ~{OCJI. 

for 



be the first time step such that 

/~)('''Jd. ) does not satisfy conditions (('I..I v""/a) 

(4) J ..J 
for some shock j with flv ~ to } r,,) J! <: .'-/ • 

Then one of the following three cases hold: 

"'{O 
1) There exists 1 such that 

A.{(> • (~) I t(-/J. q",.d.) -1 (r'oJd) :; 

2) (1) doesn't hold, 5,.. 
L.. 

(5-e) is an interval, 

and 
1I1-L)f(.. - ( b (/fO((IAJ+1.) -3) f,lJ +J. )' 0 ) I ~ C'(- {/11 (/ 

(I'f-"r, -!,J{i'(f-.d)+3,f,ud; 0)( <' c,f/k/LI) 

where /y.. (If.. \ is the left (right) endpoint of Sr (Sr ). 
L ,~'- R./It ) L R. 

3) (1) doesn't hold, 5rl.. l St"1It ) is a rarefaction 

center 1.~ (",or.) with associated approximate center 
L- It-

(k~~+i) and 

. To prove (2.2.4), we show that each of these three cases 

imply a bound on t.. I -r,c).£ of the form 

Case 1) Assume, for example, that 
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tV 

Th us 1 (t. I ).::. 1 ( f.., )) an d 

I Lei) <: C (f.(t." (ltt.,)) t., )) itt,) / t.. ( j r,i) < jf{I4J.() 

and (2.2.57) holds by (2.2.15). 

r~(I,J ) 
Case 2) If condition rL. fails to hold for '-4/1 1"'+1.) ) 

then 

/ C(Udftr,u£) 4'"~ \itr,ut)J""J ; 0) - 4,-/,-1 

~ J c{ w J I q,)) 1') ) /'l.J. )4'[ j 0) -/ Ii /r",) -3 j.,;0;J 

+ l£b{/'{r,,)-3 f f,"i O) -1:<--,rJ 

.<: ~.d, ~f,,,t + 1 CIDlo, (! ft Cj~ ".£ 
.e 'Ii (ll! 01 ( ( + S ) 
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Since 

we have 

which implies (2.2.57) by (2.2.15). 

Case 3) If condition rL fails to hold for u~()(i(1f,tJd.)) 

then 

I UJ fcr'})J r IAJL) - fL (1-;L-) I ~ I u (jIAr,) )-~ (1.;L-) I 

Since 

~ / U J /'1(,,)) ) -uJ!r(,J )) t)J J 

~ 4C;{+ ~ 

O~ l(r'AJ~) - c (t((ltt,) /-,))/It, ») t,j f'/J~) 

.,( 'S + 41-L 
f ... ,.; 

and (2.2.57) follows from (2.2.15) . 

.1be proofs of (2.2.57) when condition r-e.. fails to 

are similar, and are omitted. 

According to our discussion of the exact solution, and 

by (2.2.41), either 1-= j Ie for some k = f J ••• ) M 

with 1,)''') 1M overtaking one another at time t.. . 
J ) 

or 11 (A) (t,,)) ~ -If,:) ~ I ?:.1!rrllJk.) -l(r',)~) / - '2 g ~ ko 
"" ,..,... 

for all shocks J. such that 1(1.0 ) f j (to) • 
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Next, we show that, if 1-:. fit. 

such that ~ It.) <: •.. < /,/t) overtake one another at time t{) 

i l!') j (4) 
then , I ~) ~ ." -= M (r) 

where t I .} k'3 $ ::: 6 £HOGK 

Il,IJ1t,.){ - ('it-~)~ I ~ 11I,"r:._) -l,lt)·)1 

t J' /~n (!o)) - 1/1 ~lJi )/ 

+ J ~ (11.) l ) - It'f (rid J) I 
<; /(q [ 

().J/~4)(bIV)) ~ (A~O{~(rIP)) -4r~ ~-:=I) .• -)r1 

by (2.2.24). 

If k'3~ +{( ~ r k ~ rllJ Ie- ) then, for £. sufficiently 

small, ()t!(/~O(f)) ~ t{J4(~(t)) l(M-t.)(J -(!/4~)~o 

/
(4») (I) II '\ 

(U/ift) -C{R(~ (1))/1- ~ 4. -(~+Cr)C;~ 

by (2.2.40). 
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Thus 

5(1~(~~)) - s(l~)(&)) ::- t.(4- -(t3TCrI)C,/~ ) 

and the result follows from (2.1.7), for an appropriate 

choice of ~ 3 . 

Define t ,:: HI/t ( C~""OCI:.) [t] + i? if J is overtaken by 

one or more shocks at time 1:..1'; fl ~ [t] +-1 otherwise. Since 

we have, for 

li(~)(()L -ifti)/ ~ I/I[l) -J({t,,{)lfl(~c)i)-l('rfc»)AI 
"'~/j(~{tIAJ) -J(~(t)( 

~ !<6~ 

Let 

1:-1. ~ J (t J~') - ((KG $ 1- C/ '- //0; U + Cc /.J 
A 1'1/!~ r i + fo 1(lf~/t1» /flf/ljqco 7) - 1 

where '( -= (Jo rz.) L f(C'I- Llloft- / I-ifo +5) {) (j of UCf'foo r; ) 
if S ('~ is an interval j ~ -: (50 tot. ) (. 

if S,....I .... 
is a rarefaction center . 

Then 1/f6Ik) -I(.J./~ k~~ ) 

and it follows from (2.2.29) that 41 satisfies condition r!.. 
In the case where S~I is an interval, the argument 

t.. 

used to show (2.2.56) can be applied to show that 
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tL~)rJ - C (U('Y-1)ZJ), 1 1) 6/k.; 0) 

> C. (u.J f (f' It) ) 1")' I (C,/L ) /1' J. ; () ) -c ( /j t-r. I "/~ ~/f-I)~,,)-0 ) 

So that the interval 

[ c ( L ( '" J ) t,le. ) ) -'t I ) f,le j 0) - C q { / /tJ! {I - 0;, + 3) I.. ) 

c{u('Y/1(,k.),/'{/lf'(;D) T clft.l1o;(1 T(~TS)L] 

is contained in In e i th er the case of 

an interval or rarefaction center (2.2.27), (2.2.28) and 

Lemma 2.7 imply that there exists JI 
tA.. ~(t/)8,j g) satisfies condition and 

for which f(!1J6r)~) is defined. We also have 

'i-11t- -Ifi,l) I ~ k8 ~ . 
We shall prove (2.2.58) and (2.2.59) with 

gou r:: [¥ M A x [~ ) i 1 ] ~ i + t I 
if we denote by 

if 1 is overtaken by lJ. r .' ;1"1 at time it j 
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f~/R-{t.) :: j{-() 

UL/Il-{t) -:: IAL/~Ll{t))-L) 

-(i) J(l) 
iL}~(g)7 (t) 

Z{(L~~{b) -: ULJ~ (j(~(b)) 

otherwise. 

Then UL}~ (t.) J lL..}rJt) are Lipschitz functions of t 

for t lU .( ~ t: ~ tOUT k-- )' 
-(I,) JIO I i 11 L ,1/ t -t i J - L,R (g) -:: ) 

similarly 

1 U (~})R (b ~ i) - U:~~ (g ) I ~ Cq t 
for all 6'AJ ~ g ~ touT' by (2.2. 40 ) and, for t '>t..( 

(~ ). e ,) 
f (t) 71(t) ) L(LJ/l{t) 

LIe 

( ;-({) (() 

L) Q. (b) ~ 1 (g) ) 

Thus 11fJ(l)(lf~rb)) -14f(tl)) /~ r(OS 
for e,~ <[ 5 [OUt. 

(J/~) ) / 
To show that tJ. L ftwr) satisfies condition f'L. 

(1 M 
) it suffices to show that, for some f) (I ~ f~ /ocrr) tA It) 

satisfies condition r ~ ) where ~ may vary from shock to 

shock. If this is true, then an argument similar to the one 

used to from (2.2.57) for (0) shows that (),L(I{"lfD"~») 

satisfies 
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Proof is by contradiction. If uJJll..lg)) does not satisfy 

rL.' for all ~) g(~ 1~ro"r ) then (V"I,;g) 
is defined for all ~ ) (I ~ r ~ to VI ) and 

<) ~ f~'tt) - f'l'f,;f) , ¥ tkf~' L < 

(4) _ r 
f (toVT) (If) [, J"f0I)T" ) 

.( j (A if,) - h ((fll) !, j $(1)/ \ fOllr ) f~ ) 

- Alp OvT" - g~) {(,( (t{fIrI r"(J ) - s{ !('If/wI)) 
b hD')bOUT 0' 

+ (~o"r -rd K,oS + '/(g""T -ft) + c.~ 

L Ks ~ - JrtwT -flo) (4---10, C,/f- ~o~) 
.,.. k'l'Lb 

.c 0 

for ~ sufficiently small, thus obtaining the required 

contradiction. 

The proof of part 2 of the Lemma proceeds along similar 

lines to that of part 1: the details are omitted. 
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Proof of Theorem 2.4: First, it suffices to prove the Theorem 

under the assumption that the strength of the approximate shocks 

are always greater than 4/~ ) so that Lemmas 2.5 - 2.8 hold. 

Then the bounds proven below, combined with an induction on the 

time step Z similar to that used at the end of the proof of 

Lemma 2.5, show that the assumption holds for all gk.-= -r; . 
Let 0 -=-Lo<t.(t!. ... « t.~ -::. To be times such that 

for every shock ~) there exists ('L{i./ .. ) )<'Q.lL) { ) 

such that }(t.) satisfies conditions 

for ti. c: L < ti..+1. and take -( sufficiently small so that 

(C
lf

l C g ') ~ (t if or (I ~ £ J; 

and that Lemmas 2.6 - 2. 8hold. Then, by Lemma 2.8, there 

exists It () 
000) r ) such that 

every shock 1 and associated approximate shock 

satisfies l ~(1.)1) ) ~(i) 1 ) ) and 

jll/J{!f6l) -1fJ f"1/(A)(C/e.))/ <' C'ii/Iol l/ 
for ~ ~ ~ gvr.. ~y Lemmas 2. 6 and 2. 8, for every 

b t. H 
there exist bll) tour} with . 

o <. t i. - ~;I) Ie. I ~ L~ l - t i -1. -: ( C/ C f Y-ll: I /01 Ie I 
'-1 L' J ~ l) 11M/ ) 

such that, for g!u, ~f ~6'IJ} t It (f 

satisfy conditions (f',.J i) ( ) ) ~(L I) )) and 
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L '-
If ~ ICI {~ ~ gOIlT then, by Lemma 2. 8, 

o 0 t ~ 

/j(k)(t) -ifrtJ ( < C/ L C/+!. '-~llo(~ /5 t..') 
if f is overtaken by another shock at t~ otherwise) 

J ttp(h)(f((){~») - p(/frf)) /5 ~ ~ (9 ~tl {f/lo;i / ~ 
thus part 2 of the Theorem follows immediately. 

To prove part (i) of the Theorem, let 

o <: {IV F -= (V &' [t : ('1-) t ) ( D J 
A (d :: ,NF[!itt)-.t1l: (1!)i) rD s 
v .oJt 

Choose £ sufficiently small so that 

d'tJF> 2. C/ llf0j-h/ .. /-'lAX r fw'l",,) (tfT,//tpl{l.x. Jl 
)( (l f ?- C / 1.//°1 t. / + c, ~ ) 

then. by Lemma 2. 7 for every ['1) t) ( 0 there exists {6 

statement of the Theorem. 

Since '?= L C/ / lOt (/ 
there is no approximate shock 1 /0 Ib,) between td and f 
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t ~,( • C:'-OIDIA I 
~ ~ (I/o; It) 

The techniques used to prove Theorem 2.4 do not generalize 

to the case of random sampling. In particular, it is not clear 

what the appropriate analogue to Lemma 2.5 is in the case of 

random sampling. However, in the case where the solution consists 

entirely of rarefaction waves, we can apply the central limit 

theorem more or less directly. 

Theorem 2.9 Let be a monotone increasing 

function such that for some L>O }IC)U"\-rlR l~ (1-) ~ (,{_ 

If- ),. L . If 

is the approximate solution to (2.2.1) obtained using Glimm's 

method with random sampling, with initial data Lf ) then 

for some q-< 00) where .~ "::; A < /1£1 1,1 ) V1 -::: [r ] 
and the measure ~ is the one defined in the discussion of 

random sampling. 
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Proof: Let S't(2;)~ f(Ltft.{i-) l-/~)(1-)~~(Q) d1-
-(Lr-}tL) 

Reasoning as in Example 2. 3/or ~ IL « L 

S~(Q)-S~_/O) -::Xt{Q) ::-Kt(Qt) 
where 

=(1t -(u++u_)) ( J qf [O~-)tI+) 

~ (Ut--tJ.-) ( if (}(f[A~T)i) 

We have also used here the fact that 

L-ifA){L+f u ... )~{jC;) ::- fA"t 

I)(O{-(LTfu-)J~ijq )-=tL 

for all ~ i < t . 

The random variables Xt are independent, identically 

distributed Ie 2. 1.) 
E(X~) ~ f Kr{t) d-« ::- t (Xg(aC)da! -= - {Ut;U-

If we define Yt -:: Xf 1(. ) then ~ are independent, identically 

distributed, with E( Yt ) E (CYe -EC Yg ))'2... J -::: (j'L 

finite and independent of l j 

Since it is a weak solution to (2.2.1) ) 
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Since 

for some k independent of { the result follows from the 

central limit theorem. 



§ 2.3 Gas Dynamics in One Dimension 

In the case of systems of equations, we have no results 

corresponding to Theorem 2.4 for any general initial data. For 

the Riemann problem, analogues of Theorems 2. 4 and 2.9 can be 

proven rather easily using the additivity property 

In this case we have O{It./I'1 t)) accuracy both in the continuous 

part of the solution and for the location of discontinuities 

using van der Corput sampling, and the central limit theorem 

holding for random sampling. This is a very special situation, 

however, since there is no wave interaction. In an effort to 

understand the errors introduced by the interaction of the 

sampling and the coupling between the modes, we looked at the 

following test problem for the gas-dynamical system (t. t. :3) . 

The initial data consists of a shock and a rarefaction wave of 

the same family (forward facing) next to one another (figure 2.14). 

The shock overtakes the rarefaction, the cancellation between 

them weakening both (figure 2.15 ) ® ). The nonlinear coupling 

between the modes produces waves of the other two families in back 

of the shock and moving to the left, away from the shock. These 

are, a weak backwards facing compression wave (figure 2.15 ) ® ), 
with a weak gradient in the pressure and velocity, and a strong 

density/entropy wave (figure 2.15 ) ~ ), advected passively by 

the velocity field U(i)t..). 
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In figures 2.16 - 2.18 we display the calculation of this 

problem by G1imm's method using, respectively, the random 

(7,3) stratified random, and binary van der Corput sampling 

procedures. All calculations were done on the spatial interval 

[0 111 with boundary conditions at 0 and 1 obtained by assuming 

h 1 · . f 'd1l r -0 t e so utlons satls y d-(. ~-:o)1 - The various solutions 

being compared were computed with lJ./'f... :: .01.. and are represented 

graphically by circles for the computed values at mesh points, 

interpolated by a dotted line. Also plotted on each of the graphs 

with a solid line, is a solution obtained using G1imm's method, 

with van der Corput sampling and [y( :: .00 'L 5. Having compared 

the latter solution with a similar one done for 61{. -= .005 

we found that the two results differed by less than .5%, so that 

the method has converged for nl'i-::. 00';1..'5. For the purposes of 

comparing the various solutions, we treat the 

Alt -:::. OO'L S solutions as exact, against which the /J"l :: .0 i 

solutions can be compared. 

The sampling governs the rate at which the shock and 

rarefaction interact. If is the speed of the shock)located 

at mesh point ~ at time step VI) and 
'1 1'1 >'l C., 
A.,. ~ {,(~t-1 + ~d. ) 

then the shock will cancel with a piece of the rarefaction wave, 

and produce more wave of the other two families, at time step n + 1 

if and on ly if Thus the loss of 

gradient information observed in the randomly sampled solution 

(figure 2.16) 



is a result of random fluctuations in the rate of interaction 

between the shock and rarefaction which is producing the wave. 

The use of stratified random sampling (figure 2.17) produces 

smoother profiles, but the shape of the entropy wave is incorrect; 

in particular, there is a sizable deviation in the density profile, 

a failure to conserve mass. The profile obtained using 

van der Corput sampling (figure 2.18) is in much closer 

agreement with the Al.. -::: .00 ~S result, the rate of wave 

production being modeled much better than in the other two cases. 

In fact, if one uses van der Corput sampling, one can use a much 

coarser mesh and still get good results for this problem. In 

figure 2.19, we present the results obtained on this problem with 

binary van de.r Corput sampling, and The absolute 

locations of the waves, and their locations relative to each 

other, are to within at/.- more important, the size and shape of 

the waves, which are more sensitive to the cumulative error 

introduced by the sampling, are in very close agreement with 

the tYi"" .c>o::!..S result. In all the calculations, the shock 

discontinuity is sharp, as guaranteed by Glirnm's method. 
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Chapter 3 Operator Splitting 

In [ 6], Chorin proposed a method for computing 

multi-dimensional unsteady compressible flow using Glimm's 

method by means of operator splitting. We can write the 

equations of motion for an ideal gas in two space dimensions as 

n 

(i ) 
I'V\ 

Fell) 
'I. G ru) :: ~ 1] == ::. !]. + p p 

) 
p 

) 
!l~~ P ~ 

P J 
~LE-4-p ) J(t:.-rpJ J 

Here p is the density, fVI is the x-component of momentum, 

Vl is the y-component of momentum, and 1:::. is the total energy. 

~ 

We can express the velocity V and internal energy f. 

in terms of the above variables: ~~ ~ is the x-component of 
J 

the veloci ty , ~ -= J- is the y-component of the velocity, and 

t: :: E -t(~'L+1rt~j The pressure p is a function of p 
p and E p'" Cr-.i)'p t where 'I) the ratio of 

specific heats, is a constant assumed to be greater than 1. As 

was the case for one space variable, the value of U at a given 
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..... 
point is tmiquely determined by the values of f) P 
at that point: 

and 'lr' 

We wish to construct approximate solutions 

u ~. ,k} ( '" , '<I- ) n { J -

(i. -1) (1- 5 -1-- < (L+ i') "-1-
(1- J.) £( ~ 1 <::(/+4.) {~ 

where c!1--=~l1 J Ad--:~(} 

"I rR. ct 

are spatial increments, 

is a time increment, and L}}I Y1 are integers, with ~ ... v1 ) 

L .. n even, n~6. 

~ 

Assume we know 1l:. 
(.'( and want to find 

the procedure is as follows: 

1) For each 1- perform one time step 

for the equations 

o Uti 
data V.9-"" J. 1} 

'dY + ~ (F(11))::: 0 
dt... oi 

Set the result 

(we denote this procedure 

which is now piecewise constant on 

~{'t< d.«LYL) L~ 

(J- i )l}C1<V+i)£"r .) 

) 

U n 4-i 
L'1 ,! + i ) 

of G1imm's method 

2) For each fixed L perform one time step of G1imm's 

'ill + 'L{GOJ)) : 0 
dt. dl/.. ) 

J. 
o Vv1 .. t 

W I. '= Lt!. ) f. ) time step ~. 

method for the equations 

taking as initial data 
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Set (we denote this procedure 

by 

The solution thus derived at time (n~1)",- is interpreted 

as being the piecewise constant function 

u- L.,ll' ("', 11".il k-) = 

1../... 1 <4 <U~~'I..)I..1-

J l} < 1- <~~'L){'J' 

A necessary condition on the time step ~ is that it must 

satisfy (2.1.3) for each of the one-dimensional calculations. 

In practice, a somewhat different condition was used: 

M/~ r {~I '-11 
..... ~ "- t.. 

/1r I :d v:,. • ry. ) . 

The above pro~edure is formally the same as is done to 

construct multi-dimensional difference methods from one-

dimensional ones (Sod [51], Strang [52]). However, the 

mechanism by which Glimm's method propagates the solution to 

the equations in one dimension is rather different than that of 

difference methods, as it requires many time steps for the 

cumulative effect of the sampling to give the correct wave 

speeds; therefore the actual justification of the splitting 

procedure, currently unknown, is likely to be quite different than 

the usual truncation error analysis for difference methods. 
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The Riemann problems in question are easily solved, given 

the solution for one-dimensional gas dynamics. For example, to 

solve Riemann's problem for 

take the solution P(tt,t) I p(1)t) ) (.Alt;t-) 

in example 1. 5 with 

Pl'Y.,t)::: pl"i.lt)) f('X,t)-:fl1,t.}) ~(N.-I-t) :::u{"t,-t.) j 

~ ('t) t ) :: 1)1-) L-

if (1) t') is to the left of the contact discontinuity is 

-if: (I'{ t) 0: ~IR-
~ j IT 

if (/II., t...) is to the right of the contact discontinuity 15 
Thus in the x-sweep, we have ordinary l-D gas dynamics, with 

the discontinuity in 'IT} passively advected. 

Riemann problem for 5W + L (G ttif)) -:: 0 
t.. a~ 

roles of ~ and 110- _ 

To solve the 

) interchange the 

To test the validity of this procedure, we looked at the 

simplest two-dimensional test problem possible (figure 3.1). 

We took our computational domain to be the unit square 

with the computational mesh aligned with the x- and y-axes, 
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and took the initial conditions to be 

pI.. 
pI.. 1f''''' I.-. 

U P-

po. "l,t-
P .. /t'(-i) + t-(~,~+~~L.) 

fe 1.re. 
P%t-1) ~ ~R.(~,~ +~,~) 

This is the Riemann problem, for which we have an analytic solution. 

Computationally, it is a two-dimensional problem, since the initial 

discontinuity is at a 45° angle to the mesh directions. 

We denote by ~N the component of the velocity normal to 

Il~"} ) vr the component parallel to /1.,::1 
'lr'tJ 

-; v;. - 'lI'} 'lI7- = V{?1l} 
\IX 

~i.. 
:: ~Ie.-~I(L 1.1; R. :: 1(1/2. T '$R. 

I Vi: I V£ 

'1l;;L ~ "i,L- -~ /L- ~'-~ 1J;;.,L + 1 ,t-. 
I 

IJ£ If5: 
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Throughout these test calculations we will set V' -=-'11: =0 T,L T}12.. 

i.e., we will be looking at problems for which there is no slip 

line in the exact solution. Unless otherwise indicated, the 

calculations shown were done on a 50 x 50 grid: LVi.::: ll1-:: .()~ . 

The results of the calculations are displayed by plotting the 

profiles of various quantities along the line 1 = 1- ~ ) 

and comparing them with the exact solution. In these plots, the 

computed values at the mesh points are graphed as circles, 

interpolated by a dotted line: the exact solution is plotted as 

a solid line. When boundary conditions are required, we assume 

the solution is constant on lines parallel to the initial jump. 

This was quite effective in preserving the symmetry of the 

solution, and enabled us to run for long times without noise 

from the boundary affecting the results. 

The one-dimens ional calculations us fng Glimm' s method 
-» ~ 

in the x and y directions require sampling sequences o..-t.) 0l' 

which we took to be two independent van der Corput sampling 
.j -> 

sequences: Q-t, was the (3,2) van der Corput sequence, and at 

wa.s the (5,3) van der Corput sequence. This insured optimal 

distribution in the square [-1){) x [-1..)i) . 

In figure (3.2), we show the results for the following problem 

.f~:: .1 
(3.1) 

pit ~ .5 

~ ~ = -11..G 
) 
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The exact solution is a strong, right-facing shock. It is 

almost stagnant (after 175 time steps, the exact shock point hau 

moved only two zones). By this time, the oscillations 

(±80% of the exact post-shock value in the pressure) have begun 

to make themselves known by a three zone error in the shock 

location, the shock moving a distance more than two times greater 

than it should have. We see substantial values (±60% of 

for tr. (Jl.'4-'-t.) the tangen tial component of the 

velocity appearing. Finally, the density profile shows a 

substantial deviation from conservation of mass. 

The fundamental reason why large errors occur in this problem 

is that, although each half-step L~ ILl models the resulting 

one-dimensional gas dynamics well, the problem it is modeling is 

incorrect from the point of view of the two-dimensional 

flow. For example, consider the problem one solves (one for each 

value of ) in the first x-pass in the test problem 3.1. 

They are each the same Riemann problem for a one-dimensional gas 

flow, with the jump taking place along the diagonal. The left 

and right states 

PL.-lit UL.,R 

p,,/< (~)L,R-
f:t- ~ (UL~ + (~ te.) ~L)R-



for the one-dimensional problem are 

The jump in the velocity lfL. - UI2.. is less than '2fN L. -~ D 
/ )F'-

so a weaker forward-facing shock than that of the original 

two-dimensional problem is produced~ as well as a backwards-

facing rarefaction wave. If we sample anywhere in the fan other 

than the left or right states, we get a 
J.. II.!. ptl.,t 

The new values {~:~ } f ~); ) ""~ 

sampling value Q ~ and the ratio It-/l-t 

Mt -tV;;l., ~ > U,- I l.( R. 

depend only on the 

but not on It.. and 

separately. So the difference between these and the exact 

answer is an 0(1..) quantity relative to the mesh spacing. In 

particular, there is an DC 1) contribution to the tangential 

component of the velocity. Since there has been an 0 (i) 

change in the thermodynamic variables P and'p there is 

no reason for the y-pass to produce a tangential velocity to 

cancel the one produced by the x-pass~ and in fact it does not. 

Similar phenomena occur for a shock tube, (figure 3.3) or even 

a Riemann problem whose solution consists of two (continuous) 

rarefaction waves (figure 3.4); in the latter case, there is an 

O( i) error introduced due to the incorrect modeling of the 

discontinuity at t = 0 in the first few time steps. This is a 
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start-up error. and does not get amplified at later times, in 

contrast to the error produced at shocks, which is produced and 

propagated as long as the shock exists. 

The above failures in the splitting procedure in situations 
-'> 

when there are discontinuities in p)~ can be viewed as a 

consequence of an invalid interchange of limiting procedures. 

Analytically, shock solutions are obtained as limits of viscous 

solutions as some set of diffusion coefficients go to zero. One 

might try to obtain the shocked solutions by using an operator 

splitting method to solve the viscous equations; the splitting 

procedure is then known to converge as Then, in the 

inviscid limit, the viscous solutions converge to the physically 

correct shocked solutions. In a difference method, the t,vo 

limiting procedures take place simultaneously. with the 

coefficients mUltiplying the numerical diffusion approaching 

zero with D. t... The use of operator splitting with Glimm's method 

corresponds to letting the diffusion coefficients vanish for 

nonzero f:J. t. This interchange of limits is valid for continuou..s 

soluti.ons, or near contact discontinuities, but near discontinuities 

--> 
in p or 1) the two limiting procedures are singular with respect 

to each other, and cannot be interchanged freely. 

In an effort to solve this problem, we introduce some artificial 

viscosity into Glimm's method, to be used in the presence of large 

pressure or density gradients, but designed so as not to diffuse 

contact discontinities. In terms of the above discussion, this 



will introduce into Glimm's method the limiting procedure used 

in difference methods, but only near discontinuities in p 
or 1r. 

The general form of the viscosity used here is due to 

Lapidus [25], who developed it for use with the Lax-Wendroff 

difference method; see also Sod [48]. lJ lI.t 
If is the array of 

conserved quantities after half-step in the x-direction, we define 

-::: 0 ;t'>-~ 

1 ~ (",-) 
:: i 4 ~ -~ 

l-t ': k/Ci_ 

We define L1,~ similarly, interchanging the roles of L and ~) 
J I I 

replacing ~ by 'lr1 ) It-t by h..'})and 1J'1 by 61[; the latter defined 
( a ~ ~ 

by Ll~L,} ~ (,i -L'i-'L· The vectors CO}e! 
and the numbers ~o, b~ are parameters to be set at the beginning 

of the calculation. V II lT~~i 
If is the approximate solution array/ 

at time step n + 1, using Glimm's method and artificial viscosity, is 
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Note that it may be necessary to make further restrictions on the 

time step ~ than (2.1.2) for the scheme to be stable; see [25]. 

When applying artificial viscosity with Glimm's method, one wants 

to choose the parameters C,,) (1 ) £0) £ L such that the artificial 

viscosity will not spread the sharp contact discontinuities 

generated by Glimm's method. 

There are some difficulties with the use of the above 

artificial viscosity with Glimm's method in the presence of 

extremely strong shocks. Since it acts on the conserved quantities 

momentum and total energy, it is possible, in one time step, to 

diffuse a large amount of momentum across a shock. If there is 

little or no diffusion of mass, this leads to an artificially 

large preshock velocity, which, when used to compute the pressure 

from the total energy, may yield a low or even negative pressure. 

One way to alleviate this problem is to use a smaller time step; 

another is to allow the artificial viscosity to act on the density, 

but only near strong discontinuities in p or 11. 

In figure 3.7 we display the result of using Glimm's method 

with the above artificial viscosity for the shock tube problem. 

rL~ 
i.e) p~-:o .i')..5 (3.2) 

pL-<= i.o pR-~ .1 

~)t... = 1.r. It. 0:: 0 tJ, '1'-=1.4-
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The artificial viscosity parameters in this calculation were 
-->-

(0-=(0,.'5,.5,.1)) C1 -=(0).2'5,.25,.2.5) ~o-= £'I=- .del. 

Since C ~ -:: C~:: 0) the numerical viscosity was not applied to 

the density, which insured that the contact discontinuity 

remained sharp. Comparing this solution with the one obtained 

for this problem using Glimm's method without artificial viscosity 

(figure 3.3), we see that the post-shock oscillations seen in 

the latter solution are, in the artificial viscosity solution, 

virtually eliminated from the pressure and density, and strongly 

attenuated in the velocity and internal energy. The shock is 

spread over three mesh points, but the contact discontinuity 

remains sharp (for a comparison to difference methods, see 

Chapter 4). 



Chapter 4 Discussion and Conclusions 

In one space variable, Glimm's method has directly built into 

it an approximate form of the propagation of information along 

characteristics, without the smoothing of such information, as 

occurs in most difference methods, and without any complicated 

bookkeeping; the sampling procedure determining the weakest wave 

or wave interaction to be resolved. If a pair of characteristics 

have speeds c. i ) C'). ) Ci '> C'L ) the waves carried by each of them 

move toward each other at time step if 

To model smooth flow correctly using this scheme, one needs Q 

to have good distribution properties with respect to all intervals 

to the above form, even if the length of the interval is 

approaching zero, as (l. -"'> OQ : S U; J nO) r'lo-t 1"\ J 1.1\. ) ~"" 0 

where for as many {(~) as possible, 

independent of cI) VI 0 . This is the motivation for using 

van der Corput sampling. A comparison of Theorem 2.9 and part 1 

of Theorem 2.4 indicates the gain in accuracy in going from random 

to van der Corput sampling in the absence of any interaction. The 

numerical examples in figures 2.16 and 2.17 show how the randomness 

can cause a loss of information in a wave interaction situation. 

The assumptions of Theorem 2.4 explicitly exclude the case 

of a compression wave steepening into a shock. This is likely 
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to be a failure in technique, rather than in the result itself, as 

seen in the following example. Let l.t(1l J l) be the solution to 

the inviscid Burgers' equation, with initial data 

= i 1- .::-i 

u.(1l.]0 ) = -4- -i <-t< 1-

= - i /i,.">1 

Then 

i.< i '::; 1. 1- < - (i-t.) 

U(tL)t) -1/(1.-t) - (1.-t).s"l- .:;; (1.. -t.) 

.=. -1 /t.. > (1. -t. ) 

t"> 1 ":::: i /l. < 0 
U{If..) t) 

-i ~>O = 

It is easy to show that there exists ~ independent of {. 

for all -( sufficiently small, such that Glimm' s method with 

van der Corput sampling applied to this problem gives a solution 

consisting of a single jump discontinuity between 

1 and -1 for all t.~ ~ >- i But an estimate in Liu [35], 

specialized to this case and van der Corput sampling, says 

that the integral of across the shock differs from 

the exact answer by no more than o ( {'i: II ~ ( I ) so the 

location of the discontinuity is correct to o L {t II o~ ~ I ) 
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In fact, there are many similarities, both technical and 

conceptual, between the proof of our Theorem 2.2 and those in 

[35], as both are based on the idea of tracing approximate 

characteristics. But we are willing to assume the existence 

of a sufficiently regular solution and prove that the approximate 

solution converges to it. This yields more detailed results for 

a single equation; also it is likely that any extension of thf'c;e 

results to systems would not require the restriction on the 

initial data needed in [35]. 

There do not appear to be analogous results to Theorem 2.3 

in the case of difference schemes. The study of the accuracy of 

difference schemes in the presence of discontinuities for linear 

equations (Majda and Osher [36], Hock and Lax [37]) gives some 

indication of the situation. It is shown in [36] for example 

that, in the presence of a discontinuity, the true order of 

accuracy of the approximate solution obtained from a difference 

scheme can be substantially less than the formal order of 

accuracy defined in terms of the truncation error of the scheme. 

Sod [48] compared the performance of a number of the lliore 

widely used difference schemes along with Glimm's method, on a 

one-dimensional shock tube problem for gas dynamics. The results 

obtained there using GliQID's method were not the best possible, 

due to the use ad stratified random sampling. On the other 

hand, comparing difference schemes to Glimm's method on this 
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problem is not entirely fair either, since the latter has the 

exact solution built into it. In any case, we present in 

figure 4.1 the calculation done with Glimm's method but using 

van der Corput sampling. The result obtained is clearly 

superior to any of those in [48]. It would be interesting to 

compare the schemes in [48] on the test problem in § 2.3. 

The original proposal in [ 6] for using Glimm's method with 

operator splitting for multidimensional gas dynamics was seen 

to give incorrect results for flows in which there occur large 

jumps in the pressure or velocity along surfaces oblique to the 

mesh directions. The inclusion of artificial viscosity appears 

to be successful in eliminating these errors, without degrading 

the rest of the solution. 

For the purpose of comparison with the results in Sod [48] 

obtained by the various difference methods, we computed the shock 

tube problem (3.2) using Glimm's method with artificial viscosity, 

but on a 100 x 100 grid ( t.tr.~.Oi ) nt':o·O.i ) (figures 4.2,4.3). 

In principle, the problem solved here is more difficult than the 

one solved in [48], since in the latter it is solved as a 

one-dimensional problem. But the exact answer is the same for 

both, and the results are worth comparing. 

The calculation of the rarefaction, and the width of the 

shock transition in the results obtained with Glimm's method 

compare favorably to the best results by the difference methods. 
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There are still some small amplitude post-shock oscillations 

that the artificial viscosity fails to damp. However, the 

treatment of the contact discontinuity is clearly superior 

to that given by any of the difference methods. The latter, 

with one exception, spread the contact discontinuity over 

4 - 10 mesh points, with the number of mesh points increasing 

as a function of time. At the earlier time displayed (figure 4.2), 

we calculated one intermediate value in the contact discontinuity; 

but this small degree of spreading is transient, since at later 

times (figure 4.3) the contact discontinuity is sharp. The 

only difference methods in [48] to obtain nearly this resolution 

are those to which Harten's artificial compression method [21] 

was applied. But our results do not exhibit the oscillations on 

either side of the contact discontinuity that appeared when 

artificial compression was applied. 

There are several directions in which further work is 

indicated. For one-dimensional flows, Glimm's method with 

van der Corput sampling is quite effective in modeling the 

interaction of discontinuities with the smooth parts of the 

flow, without introducing unacceptable errors in the latter. The 

fact that the solutions to the Riemann problem we use in the 

numerical scheme satisfy exactly the conservation laws is 

probably not essential to the accuracy of the method, since 

much of that information is lost in the sampling procedure. What 
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is essential is that the solution ~hich is sampled has built into 

it the physically correct waves and wave speeds to some reasonable 

order of accuracy. Thus it is feasible to try to model with 

G1imm's method the dynamics of media other than an ideal gas in 

Cartesian coordinates: for example, gas dynamics with source terms 

or unusual equations of state, or elastic-plastic flow. 

The central advantage of G1imm's method for multi-dimensional 

flow is its treatment of contact discontinuities. They are 

computed automatically as sharp discontinuities, and do not spread 

as time progresses. This is especially crucial in shock 

interaction problems where the contact discontinuities are not 

present in the initial flow field, but come into existence at 

some later time on account of shock reflections and interactions. 

In this case, it is impossible to use a material interface-following 

technique, such as in (41), to prevent the discontinuity froTh 

spreading. In order for G1imm's method to be effective in such 

situations, the artificial viscosity for controlling the errors 

near shocks must be introduced in such a way so as not to degrade 

unacceptably the rest of the solution, particularly the contact 

discontinuities. In a specific test problem, we were able to 

accomplish this, but more extensive experiments are required to 

determine the optimum form and strength for the viscosity for 

some broad class of problems. 
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Finally, there are some analytical results which would be 

interesting to have. One would be elimination of the restriction 

on time in Theorem 2.3, by some combination of our techniques 

and those in [35]. Another problem is to prove the 

appropriate analogue to Theorem 2.3, in the case of systems. 

This can probably be done by an adaptation of Glimm's 

perturbation theory for the Riemann problem in [15] to the 

characteristic equations, currently being looked at by the 

author in the case of the isentropic flow equations. Finally, 

one would like to see some analytic justification of the use 

of splitting and Glimm's method in the case of continuous 

flow, even for a simple rarefaction wave oblique to the mesh. 

We have attempted to assess the effectiveness of Glimm's 

me thod as a method for computing time dependent discontinuities 

compressible fluid flows. In one space variable, we obtain 

results which easily satisfy the three criteria given at the 

beginning of the Introduction. In two or more space variables, 

Glimm's method, with the inclusion of a suitable artificial 

viscosity, has the potential for surpassing the performance of 

difference methods because of its treatment of contact 

discontinuities. However, this modification of the method 

requires further investigation to determine the limits of its 

applicability. 
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Figure 1.2 Riemann Problem for the Inviscid Burgers' Equation 
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Figure 1.3 Riemann Problem for Gas Dynamics 
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Figure 2.5 Rarefaction Wave Solution to the 

Inviscid Burgers' Equation 
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Figure 2.9 Compression Wave Solution to the Inviscid Burger's 

Equation 
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Figure 2.10 Sampling an Approximate Compression Wave 
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Figure 2.l3 
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