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ABSTRACT

A detailed study is presented of the variation in electron-hole
pair density in the electron-hole ligquid (EHL) in stressed Ge and Si.
First, the variation of the density and other properties of the EHL is
studied theoretically as a function of uniaxial stress in both Ge and Si.
Second, the variation of the density with position is studied both
theoretically and experimentally in the strain-confined electron-hole
Tiquid (SCEHL} in Ge.

The first study represents an attempt to understand theoretically
how EHL properties vary between their zero- and infinite-stress values,
both at zerc and at finite temperature, as continuous functions of stress,
for (111} stress in Ge and (100 stress in Si. These properties include
the ground state (T=0) equilibrium density, the ground state pair energy,
the electron and hole Fermi energies, the luminescence linewidth, the

electron-hole drop charge, and the liquid compressibility. The possibility



of a phasé transition is discussed for the case of Ge; this phase transi-
tion would eccur as the stress is varied, as the upper electron valleys
become depopulated. The approach to the infinite-stress limit is
discussed. The importance of including the nonparabolic valence band
density of states in the fitting of the luminescence lineshape is
emphasized. Theoretical results for the systematic low-temperature
variation of the liquid density, Fermi energy, and chemical potential

are presented. The high-temperature properties are also discussed,
including the critical temperature and density. These theoretical results
are found to be in reasomably good agreement with the available experi-
mental data. The study of the EHL under uniform stress is a necessary
prelude to the understanding of the EHL under nonunifgrm stress, i[F"
confined in a strain well, ’

The properties of the strain-confined EHL are determined from
measurements of the recombination luminescence with spatial, time, and
spectral resolution, as a function of excitation level, magnetic field,
temperature, and stress. A single drop of EHL forms in the strain well,
with radius as large as R~ 0.7 mm and volume greater than 1 mm3. At
high excitation levels the luminescence Tinewidth is found to increase
and the recombination lifetime is found to decrease, indicating that
the liquid becomes compressed. For smaller drop sizes {R £ 150 pm),
however, the equilibrium properties of the liquid may be studied:
from a Fit of the luminescence lineshape the density is found to be
n, = 0.50+0.05 ><'qu|7 cm—3 for typical moderate stresses, and the Tife-
time is found from pulsed experiments to be T ~ 500 usec. The enhanced
lifetime is undersiood qualitatively as a result of the reduced density

{compared to the values for unstressed Ge), while the reduction in

vi

density is due to the stress. The size, shape, and kinetics of drops
confined in strain wells are contrasted with the size, shape, and
kinetics of clouds of EHD in unstressed Ge.

The compression of the SCEHL at higher excitation levels is
investigated in detail. It is shown theoretically that the density
should vary with position, with the magnitude of the variation increasing™
with drop size. Experimentally, density profiles are measured using
Tuminescence spatial profiles (box scans) and an Abel transform. The
density is found to be largest at the center of the drop, decreasing
at the drop surface, as predicted theoretically. The density at the R
center of the drop is found to increase with drop size from the equi]ibﬂiuw
rium value by approximately a factor of three, in agreement with theory.
The Tiquid chemical potential is measured as a function of density by ;
varying the drop size, providing a very stringent test of the many-body.
theories used to describe the EHL. The compressibility of the SCEHL i% :
measured to be KT = 0.058 tg:g%g cm2/dyne. Finally, the Tiguid 1ifetimg
is studied as a function of density. The lifetime changes more s]owlymi”
than the density, indicating that a density independent decay mechanism,,.
is significant. In addition, the Auger recombination coefficient is

significantly reduced from its value in unstressed Ge.
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CHAPTER 1. INTRODUCTION

When 1ight is incident on a crystal of Ge electron-hole pairs are
created. Electrons excited into the conduction band relax to the con-
duction band minima at the L point in the Brillouin zone, while holes
relax to the valence band maxima at the center of the Brillouin zone
{see Fig. 1.1). These carriers can move freely through the crystal.
Because electrons and holes are oppositely charged, at Tow temperatures
they bind into a hydrogen-like species via their Coulomb interaction.
Such an electron-hole pair is called a free exciton (FE). For Ge the
excitonic Bohr radius is large, a, -~ 1008, so that the exciton wave
function extends over many lattice sites; in this case the exciton
is called a Mott-Wannier exciton.

At sufficiently low temperatures and high exciton concentrations,
the exciton gas actually condenses into a liquid phase. The phase
separation is analogous to that found in ordinary gas-liquid systems.
In the liquid phase, however, the electrons and holes are no longer
bound into pairs, thus the liquid phase consists of a metallic electron-
hole plasma called the electron-hole liquid (EHL). This situation was
suggested in 1968 by KeIdysh,"‘ in his interpretation of photocon- .

1.2

ductivity experiments by Asnin et al. Keldysh's insight has since

been confirmed both experimentally and theoretically. These studies

of electron-hole droplets (EHD) have been the subjects of several

1.3-1.6 particularly the more recent articles by Hensel et a].]‘s

1.6

reviews,

and by Rice.

In unstressed Ge, a cloud of EHD is formed, each drop having a

1.7, 1.8

radius ~}-5 ym and e-h pair density

1.9-1.12 17 -3

n~23x 10 cm

Because an electron-hole pair (either in an exciton or in the Tiquid)

represents an excitation of the crystal, the pair has a finite

Tifetime. Due to the indirect nature of the band gap in Ge, however,

the Tifetimes are relatively long: the droplet lifetime is =40 psec,

(Refs. 1.10, 1.13, and 1.14), while the exciton lifetime is ~7 psec

{Refs. 1.3, 1.14, 1.15). As shown in Fig. 1.1, a free exciton is bound

with respect to free carriers by the exciton binding energy

Ex =~ 4 meV. The liquid ground state energy per pair

~6 meV below that of free carriers. Thus the

1.16

.11, 1.12 R
kaI is

condensation energy]']]’ 112

of excitons into the Tiquid ¢ = 2 meV., This gas-liquid system has a

phase diagram, with a critical temperature Tc

~ 6.5 K.B.17, 1.18

Hysteresis has been obse\rved]‘w"]'z‘i in EHD thresholds, due to the

1.20-1.22 o 4

surface tension = 2.6 x 107

erg/cmz.

A convenient method to observe FE and EHD and measure their

properties is to collect their characteristic

recombination radiation

Tines at A ~ 1.75 ym. The study of this luminescence yields a great

deal of information about the FE-EHD system.

Because of the indirect

gap, the radiative recombination of an e-h pair is accompanied by the

emission of a phonon. In Ge the LA phonon-assisted transition has the

most intense luminescence and is studied the most. Figure 1.2 shows a

Tuminescence spectrum]'20 from unstressed ultrapure Ge at 2,10 K. At

the selected excitation level, the FE and EHD

peak intensities are

nearly equal (LA phonon assisted). The bump on the low energy edge of

the EHD line is the T0O replica of the FE line.

The EHL Fermi energy
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111, .12 and condensation energy ¢ and the FE ground state

EF ~ & me¥
energy E, are indicated. The energies EF and ¢ may be obtained from a

careful analysis of the luminescence lineshapes; the equilibrium density
is obtained from the Fermi energy. The experimental values given above

1.23-1.26, 1.6 1, qgition to this

are in good agreement with theory.
spectral information, the luminescence can be studied as a function of
other parameters, such as position within the crystal, time, temperature,
magnetic field, and stress.

The above discussion has dealt specifically with Ge and is now
generalized slightly to include Si. This is an indirect gap material
similar to Ge, except that the conduction band minima are located along
the {100) directions, approximately 86% of the way out to the Brillouin

zone edge.]'27

In both Ge and Si, near the conduction band minima the
surfaces of constant energy are ellipsoids of revelution. Bue to symmetry,
in unstressed Ge there are four equivalent conduction band minima, while
in Si there are six. Two valence bands corresponding to light and heavy
holes are degenerate at the zone center. Away from k= 0, however, the
constant-energy surfaces are warped, due to the strong interaction
between the bands. A third valence band is split from the light and
heavy hole bands, due to the spin-orbit interaction; the effects of this
band can often be neglected in EHL calculations.

When uniaxial stress is applied to Ge or Si along one of the principal
crystallographic directions (<111), (100), or (110}), changes occur in
the band structure. For (111) compressional stresses in Ge, one con-
duction band is lowered in energy while the other three are raised,
relative to the mean. For (100) compressional stresses in Si, two

conduction bands are lowered and four are raised. These two cases are

illustrated in Fig. 1.3. In both cases, the valence bands are split

and further warped by the stress, |-28-1.31

1.32

For finite values of the
stress, it is convenient to designate the electronic configuration

as Ge(ve:vh) or Si(ve:vh), where v_ and v, are the number of electron

e
bands and hole bands respectively whose minima are located below the o
EHL Fermi level. Thus, for example, unstressed Ge has the configuration
Ge (4:2) while unstressed Si is Si (6:2). In both of the cases
illustrated in Fig. 1.3, the conduction band degeneracy is lifted at a
lower value of the stress than where the valence band degeneracy is
lifted, due to the different electron and hole deformation potentials.];%?
It is convenient to designate the stress at which the upper conduction ‘
band minima pass through the electron Fermi level as O3 it is shown ‘
in this thesis that Gy ® 2.6 kgf/mm2 for <111) stress in Ge and i
-0y ~ 10 kgf/mm2 for <100) stress in Si. Here the convention is on]ow?d

i

that compressional stresses are negative, and 1 kgf = 9.80665 Newton.
Similarly, the stress at which the Tight hole band minimum passes s
through the hole Fermi level is designated Op3 it is shown in this thesis.
that O, 6.5 kgf/mm2 for (111) stress in Ge and that -y 36 kgf/mm2
for €100 stress in Si. In addition, certain theoretical calculations

have been performed]'33” 1.34

for an idealized intermedﬁatg stress

case in which the electrons are treated as for infinite stress while

the holes are treated as for zero stress. This case does not correspond
exactly to any value of the stress (it most closely approximates the
stress ce), but may be referred to as the idealized Ge (1:2) or Si (2:2)

system.



For the case of infinite uniaxial compression, the band structure
again simplifies: one conduction band is occupied in Ge and two in Si,
for the stress dirvections in Fig. 1.3; in addition, the single valence
band becomes ellipsoidal at infinite stress. Indeed, due to symmetry
considerations, the band structure becomes as simple as possible for
these stress directions. Early theoretical treatments]'23’ 1.4 gave
different conclusions about the existence of the EHL at infinite
stress, i.e., whether or not the Tiquid would be bound with respect

1.26, 1.35

to free excitons. The most sophisticated treatment predicts

that the EHL should be bound at infinite stress, in agreement with the

experimental indicatinns.1’36’ 1.10, 1.37-1.42

This thesis presents the results of a detailed calcu]ation]‘43”
of properties of the electron-hole liquid in unfaxially stressed Ge and
Si, for the stress directions of Fig. 1.3. This represents an attempt

to understand how the properties vary between their zero- and infinite-

stress values, as contipuous functions of stress. In particular, rather

rapid changes are predicted here to occur as the upper electron valleys
empty out, at stresses just below Ope Additionally, significant changes
should occur after the valence band degeneracy is lifted at Oy s
indicating the importance of the residual valence band nonparabolicity
at fairly high stresses. These calculations are performed at finite
temperature, as well as for the usual simpler case at T=0, in order
to study the critical point and the phase diagram.

While the above studies of the EHL in uniformly stressed crystals

are extremely useful in their own right, they are also necessary in the

understanding of the experiments on inhomogeneously stressed Ge

1.44-1.50 1.48, 1.49

performed at Berkeley. 1t has been shown that for a
suitable stress geometry, a three-dimensional energy minimum for the
FHL is formed in the interior of the crystal. In this case, the
photoexcited e-h pairs {(free carriers, FE, and EHD) are attracted into
this strain well and coalesce into a large pool of electron-hole liguid.
This is referred to as either a y-drop]'32 or, equivalently, the strain-
confined electron-hole liquid {SCEHL). The EHD in unstressed Ge are

referred to as u~drops.1'32

Figure 1.4 shows a photograph of the
luminescence from such a y-drop: the drop diameter is ~1.4 wm and the
volume is over 1 mm3. The method of obtaining the photograph and the
faint luminescence tail extending below the drop are discussed later
in this thesis.

The strain wells which contain large drops are located in regions
of the crystal where the local strain tensor is approximately equivalent

1.48, 1.49 Hence the properties of the SCEHL,

to a {111} uniaxial strain.
at Jeast for small y-drop sizes, reflect the properties of the EHL in
uniformly stressed Ge. These properties are conveniently studied via
the SCEHL luminescence. Measurements of the equilibrium density

n, = 0.5 x 1017 cm'3 and lifetime t ~ 500 usec are described in this
thesis. The reduction in the liquid density is due to the siress, and
the enhancement of the lifetime is understood qualitatively in terms of
density dependent recombination mechanisms. (However, some interesting
questions remain in the quantitative understanding of the EHL lifetime
under stress.) In addition, studies of the threshold for EHL formation

and the SCEHL condensation energy are presented here, as well as studies

of the Tuminescence as a function of drop size, position within



the drop, temperature, magnetic field, time, and stress.

The understanding and interpretation of these luminescence experiments
depends critically in many cases on the fact that the SCEHL in Ge is a
single entity, i.e., a single pool of liquid, not a collection of'smaller

1.51 Evidence for this has come from light scattering

1.52, 1.53

droplets.

in which the large-angle scattering typical of
1.7, 1.8

experiments,
Rayleigh-Gans scattering by small drops vanished, leaving only
an in intense absorption near 6 =0. Earlier evidence came from the

1.44, 1.45, 1.48, 1.54-1.56 which occur

microwave Alfvén rescnances,
when the drop diameter is matched to a multiple of the microwave wavelength
inside the drop. (There the wavelength is much shorter than in air,

due to the high dielectric constant of the metallic liguid.) The Ai?vén
waves require a continuous medium im which to propagate; hence if the
SCEHL consisted of small drops, the resonant freguency would not be
characteristic of sizes ~30-300 um. Further evidence for a single drop

1.57-1.59 The

is its distortion in shape in an external magnetic field.
observation and explanation of this remarkable phenomenon, which is
discussed briefly in this thesis, relies on the production and imaging
of a single large drop.

There are several advantages which result either from having a
single drop of EHL or from the strain confinement geometry. The internal
particle dynamics can be probed, including recombination currvents and
carrier-carrier collision times. Because the drop exists in a strain
well, the strain gradient inhibits evaporation of excitons; thus the
liquid lifetime can be measured even at high temperatures. In addition,

since the drop is well separated from the crystal surfaces, the decay

is studied without the complications of surface recombination. While
recent experiments]'ao have shown that the FE Tifetime in unstressed Ge

can be as long as 30 usec away from the crystal surface, the exciton s

1.61 o

lifetime in the strain well has been found to be several hundred

usec, comparable to the SCEHL Tifetime. The strain well provides a ver;M

convenient method to control the spatial distribution of the photo-
1.42, 1.62)

behave like an ideal gas. On Si this fact has enabled a detailed study
1.62 a

excited carriers: excitons (and excitonic molecules in Si

of excitons and excitonic melecules in equilibrium.

Finally, it is shown in this thesis that in large drops the e-h
pair density varies with position. This remarkable situation requires .
a single drop confined in a strain well. The density variation increa;gg
with drop size, and extends over a factor of 3 for the largest drops “
studied. This provides a unique feature of the SCEHL: the liquid is i
compressed directly by squeezing due to the strain gradient. This is
in contrast to the case in unstressed Ge, where the density can be chazgéd
only by changing the temperature]']] {or by completly filling a sma]]i w

Sample,]'63’ 1.64

in which the surfaces and sample heating provide
complications}). The compression is studied in detail in this thesis,

both theoretically and experimentally. Theoretically, the density
variation can be explained straightforwardly by assuming that the

chemical potential is constant throughout the drop volume. Experimentally,
e-h pair density profiles are measured for single EMD. Because the
density variation is so large, properties of the SCEHL can be studied

as a function of density. The density dependence of the chemical

potential is measured, providing a sensitive test of the many-body
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CHAPTER 2. CALCULATION OF PROPERTIES OF THE ELECTRON-HOLE

theoretical calculations. The compressibility of the SCEHL is measured,
P 4 LIQUID IN UNIAXIALLY STRESSED Ge AND Si

and is found to be an order of magnitude greater than for the EHL in

unstressed Ge. Information on the density dependence of the EHL j 21. Introduction
lifetime and on the relative importance of different recombination ? The first theories of the electron-hole liguid in semiconductors”* 1723
processes is obtained and discussed. The form and magnitude of the were concerned with predicting and understanding the properties for systems
density variations are found to be in excellent agreement with the in which the EHL had already been cbserved experimentally, namely
theory presented here. unstressed Ge and Si. However, as described in detail in Chapter 1,

Chapter 2 of this thesis presents the calculations of the stress since the band structure becomes much simpler in Ge under infinite
dependence of EHL properties for Ge and Si. Experimental details are . uniaxial (111) compression and in Si under infinite uniaxial (100>
discussed in Chapter 3, including the special imaging techniques and compression, these cases were also considered,?" 1723 in order to make
the detector which were necessary for the experiments. In Chapter 4 : the theories more tractable. These first calculations predicted that
an experimental study is presented of the basic properties of the SCE@L the EHL may not be bound with respect to excitons in the infinite-stress
in Ge. The theoretical and experimental studies of the density Vimit in Ge, or is just barely bound. The more sophisticated calculations
variation and compressibility of the SCEHL are presented in Chapter 5. : of VYashishta et a!.2'4 indicated that the EHL should be stable and observ-
Finally, in Chapter 6 the results are summarized and some suggestions % able in this system. The electron-hole pain density is expected
are made for further work. ‘ to be considerably reduced compared to unstressed crystals. Vashishta,

et a!.z's’ 2.6 also performed a calculation for an ideal system, in

which the electrons were treated as for infinite stress and holes as for
zero stress. This system was expected to be approximately valid for
intermediate stresses, and the experimental findings were indeed inter-

mediate between the zero and infinite stress theories. In addition, the

2.7

effect of temperature on EHL properties was estimated, for zero and

infinite stress, using an expansion valid at low T. Several estimates

2.7-2.10 2.7

were made of the critical temperature at zero and infinite

2.1

stress. Rice has reviewed the theory of the EHL in semiconductors.
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In the meantime, some experimermtsz']2“2~M

were being performed

on Ge and Si uniaxially stressed along the three principal crystallographic
directions. These early experiments showed the existence of the liquid
and the shift of the luminescence spectra under moderate stresses but

were not analyzed in enough detail to determine the properties of the

2.15

EHL. Additional experiments were performed at Berkeley on inhomo-

geneously stressed Ge, in which the e-h pair density was found to be
reudced from its value in unstressed Ge. More recently, careful experi-
memsz'w’z']8 have been performed on Ge uniaxially stressed along the
{11 direction in order to study the stress dependence of the EHL

properties. lLess detailed experiments have been performed on unrn"fomnlyz']9

{
2.20, 2.21 stressed Si (<100 stress). Hensel et al ?‘22

and nonuniformly
have reviewed the experimental results for stressed and unstressed
crystals available prior to mid-1976.

It is of course highly desirable to have a theory applicable at
finite stress and finite temperatures with which to compare experimental
results. A first attempt at predicting the systematic variation of the
ground state {7=0) properties of the EHL in (111)-stressed Ge was made by
Markiewicz and myseif.2'23 In this paper we treated the intermediate to
high stress region: the electrons were treated as for infinite stress
and the stress dependence of the holes was taken into account. Thus the
results of Ref. 2.23 should be valid for stresses greater (in magnitude)
than g the stress at which the upper conduction bands become depopulated;
lcel = 2.6 kgf/mmz, as will be shown.

2.2

In this chapter I present a calculation™" 4 of a number of properties

of the EHL in uniaxially stressed Ge and Si both at T=0 and at finite

12~

temperature. This is the first calculation of the systematic stress
dependence of EHL properties at T=0 in Si and at finite temperature in

both Ge and Si. Kirczenow and Singwi2'25 have independently performed

a similar calculation, restricted to the ground state in Ge. In additio;;
1 2.26, 2.27

5

Liu et a have performed a calculation at two values of the ™
stress, both for Ge and 5i, including a Tow-T expansion to estimate the
critical point.

For the kinetic energy, the full stress dependence of the conductiéh
and valence bands is included, except that the split-off valence band &
is ignored {as is customary for Ge and common for Si). In order to o
describe the nonparabolicity of the valence bands, energy-dependent hoig

masses are introduced.2'23m 2.28

These density-ef-states and optical

masses may be useful for other types of calculations. In particular,

it is emphasized here that it is necessary to fit Tuminescence spectra%

including the nonparabolicity of the valence bands. If spectra are ‘

analyzed using the infinite-stress masses, the deduced densities can be™ ™

substantially in error. The Coulomb energy, which describes the interg,.

actions between the carriers, is calculated according to several models,

but is believed to be nearly independent of stress, following a sugges-

tion by Vash‘ishta.z’29
A rapid change in the ground state electron-hole pair density is

predicted, associated with the emptying of the upper conduction bands

at the stress Og- The possibility of the existence of two different

types of EHL, with a phase transition as a function of stress, is discussed

for the case of Ge. It is noted, however, that this phase transition is
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unlikely to be observed experimentally, due to the effect of the
temperature. Significant changes are predicted for all properties of
the EHL at stresses beyond Opyo where the upper valence band becomes
depopulated. Since no further changes take place in the number of
occupied bands {i.e. the configuration), the high-stress variation of
EHL properties is due entirely to the residual nonparabolicity of the
valence band, which remains important after the bands are well split
in energy. Because of these significant changes in EHL properties,
guidelines are given for extrapolation from finite stresses to the
infinite-stress limit.

For finite temperatures, both Tow-T and high-T limits are consfqered.
At Tow temperatures, the usualz'30 expansion for the kinetic energy‘;f

a degenerate Fermi system is valid, except at stresses very near O and ‘

o The systematic Jow-T variation of EHL properties is disucssed,

using derivatives of the free energy versus density for the ground state.
In order to estimate the critical point, however, the expansion is no
Tonger valid. Thus the kinetic energy is calculated exactly at finite
temperatures. A brief discussion is presented concerning the liquid-gas
phase diagram and the nature of the gas phase near the critical point,
in order to assess the validity of the model used. Other topics consid-
ered briefly include the effect on EHL properties of a renormalization
of carrier masses, and the possibility that several quantities may have
"universal® values, independent of the system. It should be noted that
the compressional stresses considered here are taken to be negative,
according to convention. Stresses are expressed in kgf/mmz, where

1 kgf = 9.80665 Newtons.
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Because the band structures of Ge and Si are so similar, it was
possible to use the same compuler programs for both materials. Results
are presented for (111 stress in Ge and for (100} stress in S5i. It
would be straightforward to extend the calculations to the other
principal stress directions, for which there are no experimental results
at the present time. The directions considered here were chosen for
several related reasons. Most importantly, the band configuration at
high stress becomes the simplest: one conduction band for Ge and two
for Si, and one {parabolic) valence band. Because the number of occupied
conduction bands is the smallest allowed by symmetry considerations, the
Tower band or bands héve the greatest energy lowering with stress
relative to the "center of mass” of the bands. For the case of
a suitable inhomogeneous stress geometry,2°3l discussed in detail in
later chapters, the EHL energy is lowest in a region of local <111
stress for Ge and local (100) stress for Si. Thus the strain-confined
1iquid collects in a potential well in a region of the crystal with
these "locally uniform” stresses. It should be noted that it is
necessary to first understand the effects of uniform stress on the
properties of the EHL before considering the more complicated case of
inhomogeneous stress. As % result of the above considerations, &
growing body of experimental results is available for Ge stressed
along the (111) direction and Si stressed along the (100 direction.
These experimental results are compared with the theoretical predictions
made here.

This chapter is divided into several sections. The calculation of

the free energy of the electrons and holes is described in Section 22,
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for arbitrary stress and temperature. The hole masses are introduced
and described. A discussion is presented of the luminescence linshape,
including the nonparabolicity of the valence bands. Several models are
introduced for the Coulomb energy, but the proposal is made of a universal
Coulomb energy. The results for the ground state properties are presented
in Section 23. A1l models are compared for the density and ground state
energy, and two are selected for further detailed comparison. The
stress dependence of the exciton binding energy and the binding energy
of the EHL with respect to excitons are estimated. The possible phase
transition associated with the depopulation of the upper electron
valleys in Ge is discussed. Other systems are suggested in which this
might be observed. The results are presented for the electron and hole
Fermi energies and the luminescence linewidth. The charge of electron-
hole drops is predicted, and the effect of mass renormalization is
considered. In addition, the approach to the infinite-stress limit is
discussed. The theorvetical resulfs are compared with experiment. In
Section 24, the finite-temperature results are presented. The low-
temperature expansion is derived and its validity is discussed. Several
quantities which describe the low-T variation of EHL properties are
given. The critical point is defined and calculated. The results are
compared with available experimental data. Finally, some remarks are
made concerning the electron-holte fluid phase diagram and the scaling

of certain gquantities between different systems.

22. Calculation of the Free Energy at Arbitrary Stress

The results presented in Sections 23 and 24 are derived from a

calculation of the free energy per electron-hole {e-h) pair of a neutral
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plasma of electrons and holes as a function of pair density, temperature,
and stress. In this section the calculation of the free energy is
described. We begin with a discussion of some basic thermodynamics in
Section 22.1. The calculation of the energy-dependent hole masses is -
described in Section 22.2. A discussion of the liminescence lineshape i_.
is given in Section 22.3, since this lineshape makes important use of

the hole masses. For the electron-hole liquid, the free emergy F is

separated into kinetic and Coulomb energy contributions:

Foe Fin ¥ Feoul (2.1 -

(the free energy is defined below in Eq. (2.3)). The calculation of thé

s,

kinetic energy is described in Section 22.4, and the Coulomb energy S

is descussed in Section 22.5.

22.1. Basic Thermodynamics

We begin with some basic thermodynamics. Consider a system
consisting of N particles in a volume V, in equilibrium with a reserveir
at temperature T. In an EHD experiment N = Ne = Nh is the number of
e~h pairs, electrons, or holes and is determined by the excitation }ev;«lm;'
V is the effective volume accessible to the e-h pairs; and T is the
carrier temperature, assumed here to be the lattice temperature. A
number of thermodynamic functions may be defined for such a system, It
2.30

is convenient to begin with the grand potential, which is defined

as follows:

Q

Hl

PY = U-TS-Ng o . (2.2)

Here P is the pressure, U is the total energy, S is the entropy, and

u is the chewical potential. In addition, the Helwholtz free energy
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is given by:

F =z U-TS = Mu-PV (2.3)

2.30 and the second part

where the first part is the usual definition
uses Eq. (2,2). If the parameters N, V, and T are held constant,

then the most probable configuration of the system is that for which

F is a minimum with respect to any internal parameter of the system.2‘30
For the case of an electron-hole liquid in a semiconductor below the
critical point, the e-h pairs can be in either the Tiguid or gas
state. Then F = F2 +Fg
5 Vﬁ, and Vg» such that N +N

is a minimum with respect to changes in

NR’ N = N = constant and vz-@vg =Y =

g g
constant. That is, from Eq. (2.3) and the thermodynamic H

the differential

dF = ugdNp ¢ ungg - PydVy - Podvy - 5,47, - Sngg = 0. (2.4)
Thus we obtain a familiar resu]t:2'30
Ty =Tg > My = g Py =Py - (2.5)

In equilibrium the temperatures, pressures, and chemical potentials

of the twe phases are equal, Now in general the free energy F is a
function of N, ¥, and T. It is convenient to jntroduce the free

energy per pair f = F/N and the e-h pair density n = N/V and to consider
variations of f with n. Thus we can make the following definitionsz‘30

and simplifications:

P = —(%%) = ﬁz(éﬁ) ) (2.6a)
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uo= (%‘%)r,v - “"(%f;)m - (2.6b)

At sufficiently low temperatures, the gas density is essentially zero,
so that the gas pressure and hence the liquid pressure are zero. Thus

the equilibrium density for the liguid is that demsity for which ¥ is
5
nlr w

2

a wminimum, i.e., ( =0 for T~ 0.,

The preceding discussion has been for the most general case,
in which both kinetic and Coulomb energies are included. We now
specialize slightly and write down expressions which are appropriate
for the kinetic energy; these are precisely the same expressions which

are used to describe an noninteracting gas of particles, Again we

begin with the grand potential, which may be written as follows for

a gas of Fermi partic]es:2'30
- (Eg-E)/kT
9 = —ka D(E) In (1 +e )dE (2.7a)
[¥]
= E (B )Tyt
- - ](f D(x) dx><1+e ) & (2.7b)
g ¢

In this equation D(E)} is the density of states, the number of states
per unit energy £, and E is measured from the band edge, The second
Vine is obtained via integration by parts. The second factor in the
integrand of Eq. (2.7b) is just the Fermi distribution function
(E-E) /KTy
REELT) = (1+e . (2.8)
The Fermi energy EF plays the same role as the chemical potential u

for a noninteracting gas. Other quantities and relations may be



-19-

derived from the grand potential:2'30
A
v () [ o) mEELD € (2.9)
T,y ©

The Fermi energy is a function of temperature and is determined by this

relation. AL T=0 we may write

E-(0)
W= f DEME, (T=0) . (2.9b)
0
The entropy is given by2‘3O
= 382
s = . aT)\, ] (2.10a)
=
P (Eg-E)/KkT ¥
= kf pE) Inll +e dE (2.10b)
[
1
+ 1 j; DIENE - Ef) h(E,ELT) dE
NE <
I A A §
= Fooety f D{E)E h(E,EF,T) dE (2.10c)

0
using Eqs. (2.7a) and (2.9a). From Eqs. (2.2} and (2.10c) the total

energy U is given by

U = MNE -PV+TS =f D(EJE h{E,E.,TE . {2.11)
0

Equations (2.9a) and {2.11) are familiar results, but it is useful to
see how they arise. In addition, as will be seen shortly, this general
derivation is easily applied to the complicated case of the real band
structure in stressed Ge and 5i. First, however, we still require an

expression for F, which is easily obtained from Eqs. {2.3) and (2.7b):

20~

« E

F o= NE —f(fv(x)dx) h(E.E..TIE . {2.12)
00

The preceding equations are valid for any system which can be

%,

described using a density of states D(E). For the case of carriers in
a semiconductor we require information about the conduction and valence ©..
band structure. First consider a single band of carriers; for this

case2°32

SV [l dk
o) - o K Fa (2.13)

The integration is performed over solid angle (Q is not to be confused G
with the grand potential of Eq. (2.2)), on a surface in k-space with
energy E. If the band is parabolic, then Eq. (2.13) may be reduced

to a simple form. If the band is not parabolic, the nonparabolicity

may be taken into account by writing:

_ 3/2 /2 5.
P(E) = a*y md]oc(E) E (2.14a)
where e
V2
ax = e (2.14b)

Thus the nonparabolicity may be described through the use of an energy-

dependent local density-of-states mass, which is defined by

I

3/2 i 2 dk
"ioc(E) = W]k & - (2.15)
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An average or integrated density of states mass may also be defined,
using £q. {2.9b) and the analogy with the parabolic band case. Thus

we may write

2 3/2 3/2
UL GHU)) A S G () B (2.16)
where the integrated demsity-of-states mass is defined as follows:
E
3/2 . 3 -3/2}‘ 3/2 172
myi (€)= FE Myjaelx) x 77 dx {2.17}
0

Note that for the case of a parabolic band, both Biloc and Mying 2T€
just equal to a constant {in fact, the same constant) times the free
electron mass m-

The actual situation is Ge or Si at arbitrary stress is more
complicated, because both the conduction and valence bands are splify
by stress, as discussed in Chapter 1. Only the band(s) lowest in energy
remain populated at high stress. Suppose that a set of vy identical
bands 1s lower in energy by Esp1 than another set of Vo identical bands.
{For example, for electrons in (111)-stressed Ge, vy =1 and v, = 3; for
electrons in (100)-stressed Si, vy = 2 and Yy = 4; for holes in both cases,
vy =V, oS 1.} In this case the density of states can be written as

follows:

B 3/2, 00, 1/2 372 1z} .

D{E) = a*y {vl m (E)E + v,m, (E)(E—Esp]) ; (2.18)
here m‘(E) and mZ(E) are the local density-of-states masses for the two
sets of bands. It is understood that mZ(E) = 0 for E<Espl' This form
for the density of states should be used in Egs. {2.7), {2.9a), {2.10c),
(2.71), and {2,12) for @, N, S, U, and F respectively. In particular,

we may explicitly write
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3

No- a*v\;,‘f 2 (e)e" Pn(E, B, T) o

o (2.19)
3/2 12,
. a*\l\)zf my P(E)(E-E ) n(EELT) de
Esp1
and
o E
F = NE. - a*W m3/2(x)x]/2dx h{E,E.,T) dF
F i o 1 F
. ° (2.20)

E
- atiy, ] ([ w200 (x - Eg )2 dx> h(E,Ep,T) dE .
E

Esp? spl

Note that the same Fermi level is used for both sets of bands, indicating
that both sets of carriers are in thermal equilibrium with each other.
This will be the case when the interband and intervalley scattering times
are short compared to the EHL Tifetime (in a steady-state experiment),

or when sufficient time has elapsed after EHL formation (in a pulsed
experiment), corresponding to the equilibrium limit of Kirczenow and

singwi.?*?% This may be contrasted with a situation’ 3> 237

in which
the recombination lifetime is shorter than the intervalley scattering
time and carriers may be observed in the upper bands with a different
Fermi level. Only the equilibrium 1imit is considered here,

Equations {2.19) and (2.20) can be used separately for electrons

and for holes, with

= - g h (z.21)
N Nh and Fos Fkin + Fkin .
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The electron and hole terms fﬁin and fﬁin in the kinetic energy

contribution f to the free energy per pair are obtained from Egs.

kin
(2.19) and (2.20). Note that if the temperature is fixed {and the
stress is fixed), then fEin depends only on the electron Fermi level

e h
EF’ ang f

Kin depends only on the hole Fermi level EE, In addition,

n, =0, depends anly on EE {or E?). Thus we note that

3f _ (of _of
('B'H)T,,N N (iﬁ)rwv - (‘56)1’ :

(2.22)
22.2. Hole Masses

In order to compute the kinetic emergy of the holes it is necegsary
to account for the warping of the valence bands through the energy-
dependent mass introduced in Eq. (2.15). In this section the calculation
of the density-of-states masses is outlined, and the related optical
mass is introduced,

The valence bands in strained Ge and Si have been calculated near

¥ = 0 using the k-5 formalism by Pikus and Bir.2-3%

The heavy and
light hole bands are warped due to their interaction. This in turn
arises from the degeneracy at zerc stress at ¥ = 0. At infinite stress
the bands are completely decoupled and are given by simple ellipsoids.
However, as we shall see below and has been pointed out by Markiewicz

2.23 2.26

and myself and by Liu, the residual nonparabolicity of the hole

bands affects the properties of the EHL at stresses much greater than
that required to merely depopulate the band raised in energy.
Measuring energies from k = 0 for the lower band, the valence bands

are given by2'38’ 2.39
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E(k) = AP+ | = VEG + E5 +EC (2.23)

where

2 _ g2, 4 2,.2,2
Ekk = B"%" + C (kxk.y + c.p.) (Z.Eﬁ?)
2 2
e2, = 8b [3(e,, + c.p.) - K]

+ ZDd(kxkygxy + ¢.p.) (Zfzﬁ?)
2 2 2 2r.2
B, = {1/2)b [(exx-syy) :H:.p.] + d [Exy+c.p.]

(2.égc)

Here A, B, and C are inverse mass band parametersn2°40 B = (382 + C2)1£2,
b and d are deformation potentials, exy and so on are strain componenyf,
=g + Eyy tE, s and c.p. indicates cyclic permutation of the crygtéi
coordinates x, y, and Z. G

A comment is in order on the labelling of the two hole bands. At
zero stress both bands are parabolic in a given direction {so the
warping is present as a function of angle); the designation heavy and
light holes is determined by the relative curvature of the bands.
Under compressive stresses (only compressive stresses are used in the
experiments in this thesis) the light hole band actually moves “through”

2,41, 2.42

the heavy hole band, resulting in strong mixing. However,

the band which is lower in energy and which remains populated at all
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stresses always has a larger mass; thus this band, corresponding to
the lower sign in Eq. {2.23), is referred to as the heavy hole band,
even though at high stresses it has the character of the zero-stress
tight hole band. The upper sign then gives the energy for the light
hole band, which becomes depopulated at high stress.

The strain components €55 in Eq. (2.24) are given by Hensel and

Feher2°43

for stresses along the principal crystallographic directions.
For example, for (001) stress, which is used here for Si, Egs. {(2.24b)

and {2.24c) simplify as follows:

Eee = b I/ (Cyy-Cyp) ; y
{2.25)

2 2 .2

£, - BE (3 i)

Here apgy is the stress along the {001) divection, which is the z-direc-
tion. For (111) stress, which is used here for Ge, Eqs. (2.24b,c)

simplify as follows:

Eee = d0939/(27/3 Cyy) ,

(2.26)
B2, = 2-DE_(kk + c.p.)
ek /3 €€ XY e s

where N1 is the stress along the (111) direction. In this representa-
tion the x, y, and z crystal coordinates are along (100) directions,
In order to observe the expected 3-fold symmetry around the (111)

direction, it would be necessary to perform a rotation of coordinates.
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For the calculation of the masses, however, this step is actually
ynnessary, since from £q. {(2.15) the mass involves an integration over
all angles. The values for all the parameters used for the calculation
are given in Table 2.1. Also given is the energy splitting between the
heavy and 1ight hole bands at % = 0 obtained from Eq. (2.25) for Si and
Eq. (2.26) for Ge where E'S‘p]= 2|E_| in Eq. (2.23).

It can easily be seen from Eqs. {2.23)-{2.26) that the valence
band energies scale with stress as E/fo and kzlo. Thus it is not
necessary to compute the mass in Eg. (2.15) for every energy and stress,
but only once as a function of reduced energy E® = E£/|c|, where o refers
to (111’ stress for Ge and (100) stress for Si. The calculations have
been performed for compressional stresses o, which are conventionally
taken to be negative. Both the local density-of-states masses, Eq.
{2.15), and the integrated density-of-states masses, Eq. (2.17), have
been calculated for heavy and light holes. The results for Ge are
shown in Fig. 2.1 and the results for Si are shown in Fig. 2.2, plotted
as a function of reduced energy £°. Note that the structure present
in the local masses is smoothed out in the integrated masses. -Also,
the local and integrated masses approach the same zero-stress values
(indicated by the arrows) and infinite-stress values,

It is also possible to define optical or conductivity masses, as

2.44

done originally by Lax and Mavroides. They found, for a single

band
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n 1 3 BE Bk 2
- L S L 2.27
g3 () 4ﬂaﬁ2f3ki 3 o (2.27)

where 1 and j are crystal coordinates x, y, z and the integral is taken
over the k-space surface with energy E. Transverse and longitudinal
masses can be defined, with reference to the stress direction, as follows.

For (001> stress, with the z-axis along <(001),
z2
{{001) stress) (2,28)
-1 1 -1 -1
m, 5 <mxx + myy) t

For (111) stress, using the same coordinate system as for the density-of-

states masses above,

2 ( -1 ~1 ~1
+ §-(mxy ¥ L A

(<1112 stress) (2.29)

28~

The longitudinal and transverse optical masses for the heavy and light
noles are shown in Fig. 2.3 for Ge and in Fig. 2.4 for Si as a function

of reduced energy E', defined previously. It is clear from Eq. {2.27)
that the optical masses scale with stress in the same way as the densitys.,
of-states masses. The light hole in Ge has a remarkable change in

the ratio mt/ml just as the band depopulates, but this might be difficuizm
to detect experimentally since less than 1/2% of the holes are in this
band. At most stresses the holes are more anisotropic in Ge than in Si,
The arrows in both figures indicate the zero-stress values, which are ‘
the same for transverse and longitudinal components for each hole band;&'v
This is a consequence of the cubic symmetry of the crystal. Consider Gl
for a moment the case of tension instead of compression. As the crystal:
passes through zero stress to temsion {c becomes positive) the symnetrx
is inverted. For example in Ge the hole is heaver in the transverse b
direction for compression and becomes heavier in the longitudinal .
direction for tension; for the same value of E/|c| the ratio mt/"k jug?h
inverts.

The components of the optical masses given above are combined as h

follows:
.1 -1 -1
opt '3"(2"‘1: sm') {2.30)

|1 HH LH (2.31)
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where nHH/n is the fraction of holes in the heavy hole band and

Mg * My = Ne The densities are calculated as described in the previous
section. The total optical masses P’ averaged over Tight and heavy
hole bands and over longitudinal and transverse components, are shown in
Figs. 2.3 {Ge) and 2.4 (Si}. Due to the increasing importance of the
light holes {with increasing E'), which is due in turn to the increasing
fractional occupation, there is actually a maximum in the total optical
mass. For Ge this occurs at E' ~ 0.6, but the maximum is not noticeable
in the figure. For Si the maximum occurs at E* = 0.30 and s much more
pronounced, partly because the light hole mass decreases more strongly
as a function of E' and partly because the fractional occupation is’l
larger compared to Ge. The total optical mass will be used later inv
one model for the correlation energy.

Some numerical resulis of the hole mass calculations are shown in
Table 2.2, A1l mass values are multiples of the free electron mass m-
The quantity fracLH is the fraction of holes in the light hole band
at zero stress. An overall density-of-states mass can be defined at

zerg stress, where the splitting between the two bands is zero, using

Egs. (2.16) and {2.19). Thus for zero stress

372
Tdh

32 . 372
Bann * ®arn

The values for the density-of-states masses at zero stress agree with those
caiculated by Brinkman and Rice.z'] Under infinite stress the valence
bands become elliposidal and can be completely characterized by longi-
tudinal and transverse components m, and m_. For this simplified cése,

[4 t
the density-of-states mass is defined via
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1/3
2
my = (mg my) s (2.33)

and the optical mass is defined as in Eq. (2.30). For the type of band
structure given by £q. (2.23), the infinite-stress masses reduce to

particularly simple forms:z“qw

-1
m/m, = (A - 1/2 B)
(100) stress (2.34a)
m/m, = (A + B)']
-1
D
m,/m = (A - ———-)
te 2/3
1 (111 stress {2.34b)
- RY
/Mo = (A ' /§>
-1 all stress
Mopt/Mg = A directions (2.35)

A check on the computer program s to note that the values in Table 2.2

agree with the experimentally measured mass parameters both for 692'42

2.41

and for S5i, as they should. A description and listing of the program

are given in Appendix 2.1.

22.3 Luminescence Lineshape

In order to compute the luminescence lineshape from the EHL in
stressed Ge and Si, it is necessary to include the nonparabolicity of
the valence bands, which involves the local density-of-states masses

calculated in the previous section. For an allowed transition, the
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luminescence intensity as a function of photon energy hv is given bands or for sets of degenerate bands; it has been used extensively

by2'45” 2.46 to analyze experimental lineshapes in unstressed Ge and Si.2'22 The
e > most intense luminescence is from the LA phonon-assisted transition

2.48

i{hy) = 1 ]dE f dE, D (E.) D, (E,) h(E_,E,T)
o A € % h"e’"e’ "h"h e F in Ge and from the TO phonon assisted transition in Si.

n Several refinements have been suggested for fitting experimental
x h(Eh,EFsT) S(hv - E_ - Eh + o~ EéB) {2.36) . 9
é P lineshapes but will not be considered here. In Ge the main luminescence

line is actually a composite, in which the intensity of the LO phonon

for a single conduction band and valence band. The matrix element assisted transition is approximately 8% of the intemsity of the LA
for the optical transition is independent of the electron and hole phonon-assisted tmmiﬁm.z.lw Similarly, in Si the main line is

) o 2,47 . . s
energies for an allowed transition and has been absorbed into also a composite, in which the LO component has approximately 10-15%
the constant IO, In this equation ﬁ“ph is the energy of the phonon of the intensity of the 10 component.z"sgw 2.51 If the lines are
emitted along with the photon in the indivect transition in order to’ analyzed as a single component, the e-h pair density is overestimated
conserve momentun and energy; and Egp is the energy of the bottom by a few percent. An additional contribution on the low-energy side
of the band within the EHL (see Fig. 1.1]. The deita function merely of the line is a tail due to Auger processes modifying the recombinatioh
expresses conservation of energy. The densities of states and Fermi energies of carriers deep inside the Fermi sea,2:82-2.85 . featurel,
distribution functions are defined in Eqs. (2.13) and (2.8). Thus jmproves the fit but does not affect the value of the deduced density.?'53

@

the luminescence lineshape for an allowed transition is given by The effect of a renormalization of carrier masses is discussed in

the joint density of occupied electron and hole states. The integral Section 23.3.
over E, can be performed immediately, giving in stressed Ge and Si the situation is complicated because the

hv! two hole bands are split by an energy Egp] and because v electron

1(h\’mn +hv') = 10‘;‘ dEhve(h“' - Eh) Dh(Eh) (2.37) valieys are lower in energy by EiP‘ than the other Yy valleys,
[+}
{Conduction band parameters are given in Table 2.3.} The contributions
B e h v
x by - Eh’EF’T) h(Eh*EFvT) . | must be added for transitions between each pair of bands. Thus
hv'

Here hv' is the energy above the minimum photon enmergy hy . = Efg -ﬁmph. l(hmin + hw') = IOJ{. (Ryy + R MRy + Ryl dEp (2.38)

This lineshape formula is appropriate for single conduction and valence e
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figure, in order to quantitatively analyze experimental Tineshapes,

where
the energy-dependent hole masses must be used.
Ryy = vy(hv' - Eh)?/z nlhv' - EhﬂEﬁﬂT) {2.39) In the above example, it was possible to choose an “appropriate”
average mass, since the actual masses have already been calculated.
, e 172 , e \ e However, up to now this has not been possible for spectra obtained
B »?(hv - Eh - Espl) hhv' - Eh,EF,T) hv' - £h>’Esp1 2.19.2.21 . o
ReZ = from {100)-stressed 5i, and as a result there are significant
' - E, <ES '
0 v h " spl ervors in the reported densities. In these papers, the experimental
Ry = mgés (Eh) Ei/Z h(Eh,Eg,T) lineshapes were fit using the infinite-stress hole mass, This seems
Tike a reasonable thing to do if the stress is significantly larger
372 h 172 h h than that required to completely depopulate the Tight hole band.
mapitEp) (B = Egp) 7 MERLERT) Ep > Espi ° )
R, = {As discussed in Section 23, this critical stress is -o ~ 35 kgf/mm".)
LH £ < gh 100
0 h spl t 2,20

For exampie, in the experiment of Gourley and Wolfe on the strain-

) L ) 2 )
In this equation the local density-of-states masses are used, and confined Tiquid, the stress was -o = 55 kgf/mm" and the full width at

half maximum of the luminescence line was 6.8 meV., Using the infinite-

some constants have been absovbed into Io.
17 -3
cm

Figure 2.5 illustrates the importance of including the stress mass, this linewidth corresponds to a density of 3.8 x 10

(T = 1.4 X). However, using the energy-dependent mass in Fig. 2.2,

the same FWHM linewidth corresponds to a density of 5.6 x 1017 cm"3n

nonparabolicity of the hole bands. Two calculations are shown for

2,28

typical conditions for the strain-confined EHL in Ge, which

will be discussed extensively in later chapters. {At low excitationy Thus by using the infinite-stress masses, the density can be under-

the 1iquid is in a region of essentially uniform (111) strain,2'31) estimated by as much as 30%, even when the stress is 1-1/2 times the
The stress is -5.6 kgf/mmz’ "= 0.50 x 1017 cm'3, and T = 1.8 K. The critical stress needed to depopulate the light holes. In the experi-
solid curve was calculated using the energy-dependent density-of- ment of Kulakovskii and TimOfeevzclg the maximum stress was

states hole masses shown in Fig. 2.1, while the dashed curve was 3 “J100 ~ 35 kgf/mmz, s0 their deduced densities have a larger error.
calculated using a constant hole mass. The particular mass was The case just discussed is illustrated in Fig. 2.6. Here the
deH(Eg) with E? = 2,28 meV from the previous case. The shape of solid curve represents the lineshape calculated using the energy-

the line changes, though in this example the full width at half dependent mass and -o = 55 kgf/mi, while the dashed curve was cal-

maximum AE only changes by about 0.1 me¥. As can be seen from the culated using the infinite-stress hole mass. In both cases the linewidth
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AE = 6.8 meV. The two curves have been adjusted so that the energies
vt = EE + E? coincide. Clearly the quality of the lineshape fit
should change (hopefully, improve) when the correct theoretical
Vineshape is used. The nearly linear portion of the constant-mass
spectrum occurs in the energy range E; <SS Ep, and the peak occurs
near hv' = E? (at low T}. The resulting asymmetry of the line is

rather pronounced here because the ratio E?/EE = 2.17 is fairly large.

Using Eq. (2.16) for both electrons and holes, at T = 0 we find

h
B0 Mg o3 (2.40)

e e
EF(O) "dn

1%
where for simplicity we only consider the zero and infinite stress

cases, The values are listed in Table 2.3 for both Ge and Si. The
asymmetry and pointed top should become very pronounced indeed in
highly stressed Ge at Tow temperature., It should be noted that these
features become rounded out with increasing temperature. Thus, for

example, the discrepancies noted by Hammond, et a1,2’50

in their zero-
stress lineshape fits in Si could possibly be explained by sample
heating.

22.4. {(alculation of the Kinetic Energy

Once the hole masses have been calculated as a function of reduced
energy £, as described in Section 22.2, they can be fit to simple
analytic formulas and used in other calculations. The local density-
of-states masses miéﬁ(E”) and mé{ﬁ(E‘) were fit to simple functions
over several ranges of E', matching the functions and first derivatives

at the crossover points between the ranges. Formulas for the integrated
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density-of-states masses were then obtained using Eq. (2.17) by
directly integrating the formulas for the local masses. Only in this
way are the local and integrated masses consistent with each other.

The total optical masses weve fit to a ratio of polynomials. The

PR

masses for Ge and Si were fit to the same functional forms, so that

in the final program it was only necessary to read in a new set of Y

data in order to change materials. The optical masses were used in
one model for the correlation energy, discussed in Section 22,5, The

integrated density-of-states masses were used in another model for

the correlation energy and in the zero-temperature kinetic energy. Thet.: .

local density-of-states masses were used in the calculation of the £

kinetic energy at finite temperature, as well as in fitting the
luminescence lineshapes, as described in Section 22.3.

The kinetic energy contributions to the free emergy per e-h pair %,
were calculated using Egs. {2.19) and (2.20) for electrons and for
holes. At finite temperature the exact calculation was performed,

2.7, 2.8, 2.27
In

rather than the TZ expansion used by other authors.
order for the 12 expansion to be valid, it is necessary that kT/EF <@l
or kT/(EF - Espl) << 1 for all occupied bands. At low temperature,
this will not hold for certain ranges of stress. MNear the critical
temperature, the above conditions are necessary at the critical density
and, as discussed in Section 24.2, are not true at any stqess.' At
T = 0 the calculation is much simpler; the integrals in Eqé, (2.19)
and {2.20) are trivial for electrons and involve the simple fitted

functions discussed above for holes. Inm all cases, the calculation

of Tin proceeded as follows: (1) the hole Fermi energy E? was chosen;
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(2) the density was computed using Eq. {2.19) for holes; (3) the electron

Fermi energy E? was computed by inverting Eq. {2.19) for electrons; {(4)

the electron and hole kinetic energy contributions fﬁin

computed using Eq. (2.23). For electrons, at T=0 fiin

h
and fkin were
_ 3
=z EF’ However,
h
for holes, fkin
The calculations reported here involve finding a minimum in the free

#-% E? except at zero and infinite stress.

energy per pair f{n} or, as discussed in Sec, 24.2, finding the disappear-
ance of a minimum in the chemical potential u(n), defined in Eq. (2.6b).
(In both cases the temperature is constant.) It turns out that the
minimum is very shallow: at T=0, for example, in order to find the
equilibrium density to within 1% it is necessary to calculate f{n) to
an precision of 1 part in 106° This is, of course, a mathematical Y
detail since the band structure is not known to such a high degree of
precision; however, some care should be used in fitting the hole masses
to ensure that the functions are sufficiently smooth. It is also
possible, as discussed in Appendix 2.2, to evaluate the integrals in
Egs. (2.19) and (2.20) at finite temperature so that the kinetic energy
contributions are adequately smooth.
22,5 Coulomb Energy

The free energy per e-h pair contains contributions from the

kinetic energy and the Coulomb energy:

f o= f {z.41a)

kin ¥ fTeomr

where the Coulomb energy is further separated into exchange and correla-

tion energy contributions:
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fCou’ﬂ - fex * fcorr : (2.41b)

At a given stress the Coulomb energy depends only on the density; in all

2.9 and

calculations to date it is taken to be independent of temperature
is calculated at T=0. A detailed calculation of the Coulomb energy, includ-
ing the band.structure of Ge or Si at arbitrary stress, would be extremely
difficult and has not been attempted. However, as we shall see here

and in Section 23, it is not really necessary: the Coulomb energy is

largely independent of band structure details, such as masses, degeneracies,
and anisotropy, as long as both the exchange and correlation energies

are calculated using the same band structure details, Markiewicz?" %8
has termed this statement the “ineffective mass theorem;" however, no
formal proof of this theorem is known, This point was first discussed

by Markiewicz and myse1f2'23

\lashishtaz'29 that the correlation energy should depend only weakly

and was based on a suggestion made by

on mass. The idea has been used more recently by Kirczenow and

2,25, 2.35

Singwi in their calculations of the ground state properties

of the EHL in stressed Ge. This apparent theorem may be illustrated
by considering several models for the Coulomb energy. For zero or

infinite stress the exchange energy is given by2’2

2 #(p,)
o T (3n2n)1/3{—ﬁ5—3 w(oh)} (2.42)
e

where Ve is the number of electron valleys., Combescot and Nozi%res2

found that for an ellipsoidal Fermi surface
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terms and is valid over a wider range of density. In Model 2, this

p1/6 sin'] [T-p_ o<1 detailed calculation of the correlation enmergy is replaced by a simple
-0 empirical correlation energy, which is taken to be the sum of Wigner-
= 2.43 .
ve) -1 ( ) type contributions from the electrons and ho1es:2 59
pV6ﬂm v p-1 o>1

! ‘ £ (2.44)
f = - - 44}
corr n-1/3 - a/moe n—1/3 g

*a/mo,

where p = mt/mz. At infinite stress the occupied hole band is also
In this model, as in Ref. 2.23, Mo is taken to be the infinite-stress
ellipsoidal, and for that case w(ph) is given by Eq. (2.43). For the
optical mass, which has been used in caluclations of the EHL ground
holes at zero stress, it is necessary to take into account both the 2.1, 2.3
. state for zero stress. - ° 7 The constants a and ¢ are chosen so
warping and coupling of the valence bands. This calculation has been
. 24 that the value and first derivative of Eq. (2.44) agree with Model 1
performed exactly by Brinkman and Rice.”"" The values for ¢(pe) and
. . 1 at the equilibrium density for the ideal systems described above; the .
w(ph) are listed in Table 2.3,
. values for a and ¢ are given in Table 2.3. The exchange energy is
A total of six models have been used for the Coulomb energy; the
X . X 2.23 : the same as for Model 1.
first three were used in an earlier paper on stressed Ge. Model 1 -
: Models 3 and 4 represent two attempts to determine the effect of ™
uses the exchange and correlation energies appropriate for ideal systems
allowing the correlation energy to depend on the hole mass, which will;
in which the electrons are treated as for infinite stress and the holes -
2.5, 2.6, 2.57 . ) vary with density and with stress. In Model 3 the correlation energy
: : In the present model the kinetic i

is given by Eq. (2.44), where my, s the total hole optical mass

as for zero siress. B
energy of both electrons and holes is computed correctly, so that these e
| described in Sec. 22.2 {see Figs. 2.3 and 2.4); the constants a and ‘e~
ideal systems do not correspond exactly to any value of the stress for i
are vrecalculated., Because the total optical mass is not a monotonic
Ge or for Si, The correlation energy of Model 1 is the result of a
function of veduced energy E°, this model undoubtedly overestimates

detailed numerical calculation in a fully self-consistent (FSC) i
2.3, 2.4, 2.7 . ) : the strain dependence of the correlation energy. In Model 4, the

° TP 77 including multiple scattering and band !
2.57 : otpical mass is replaced by an average density-of-states mass (for

approximation

anisotropy. The results were kindly provided by Dr. Vashishta.
both hole bands) calculated as an cbvious extension of Eq. {2.16); a
The correlation energy was fit to a polynomial in the density, matched
and ¢ are again recalculated. This mass (not shown in the figures)
to a Wigner form. It is very similar to the form given recently by
i 2.58 a monotonic function of reduced energy E'; however, there is greater
Kalia and Vashishta™ """ except that the power series portion has more
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variation between zero and infinite stress than for the optical mass
(see Table 2.2). Thus it might be expected that this model also over-
estimates the strain dependence of the correlation energy. In both
Models 3 and 4 the exchange energy is the same as for Model 1.

The last two models were chosen to illustrate two extreme cases }n
which the exchange and correlation energies ave calculated using the
same band structure details. Both models use FSC correlation energies
given in Ref. 2.58. Model 5 uses the Coulomb energy appropriate for
zero stress, while Model 6 uses the exchange and correlation energies
appropriate for infinite stress., Models 5 and 6 are very similar to
the two models used in Ref., 2.25 for Ge.

In order to compare the models, the Coulomb energies for Models/

1, 2, 5,and 6 are shown as a function of density in Fig. 2.7 for Ge

and in Fig. 2.8 for Si., Models 3 and 4 are not shown since the density
dependence varies with stress. In accordance with the general idea of
a universal Coulomb energy, it can be seen from the figures that for
both Ge and Si the variation between the four models shown is rather
small. Considering only the models based on the detailed calculations

of Vashishta et al,,2°3’ 2.4, 2.7, 2.57, 2.58

a slight trend is
apparent: at any density, the Coulomb energy increases in magnitude
in going from Model 5 (zers stress) to Model 1 ("intermediate” stress)
to Model 6 {infinite stress). It should also be noted that Model 2 is
very similar to Model 1 over practically the entire density range for
which the Model 1 detailed calculations were performed. Furthermore,

suppose that the Coulomb energies are the densities are expressed in

universal units (the excitonic Rydberg ERyd and the interparticle rs)

m e
eff
{2.45a)
Ryd 26?52
1/3
3
re = (35 /s (2.45b)
where
kh®
a, =T — (2.45¢)
X m o2
eff
is the excitonic Bohr radius and
-1 _ -1 B
Mogr = Moe * on T Moe * A (2.45d)

Then it is a remarkable fact that the Coulomb energies of all eight
wmodels displayed in Figs. 2.7 and 2.8 are spread by less than 15%

in energy over a range of nearly two orders of magnitude in density.
This simple comparison suggests that the Coulomb energy is relatively
insensitive not only to band structure details but even to the material,
as long as the entire calculation is done consistently. (The validity
of this statement is untested for polar materials.) Further comparison
between the models s made in the next sectiom, where the results for
the ground state properties are discussed. In addition, see the
discussion in Section 54.

23, Results: Ground State Properties

In the previous section the procedure was described for computing
the free energy per e-h pair as a function of pair density, for
arbitrary stress and temperature. The kinetic energy was calculated
exactly, taking into account the degeneracy and splitting of the

conduction bands and the splitting and warping of the valence bands.
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Six models were introduced for the Coulomb energy, and it was proposed
that the Coulomb energy is relatively independent of band structure
details. In this section the results will be presented for the ground
state properties of the EHL in Ge uniaxially stressed along (111} and
in Si uniaxially stressed along (100}, The six models are compared in
Section 23.1. In Section 23.2 a possible phase transition associated
with the emptying of the upper electron valleys in Ge is discussed.

The results of the calculations are compared with the available experi-
mental data in Section 23.3, including guidelines for extrapolation to
the infinite-stress limit.

23.1. Comparison of Models

The ground state of the EHL occurs at the density for which thé
free energy pe} pair f is a minimum, at T = 0, It is convenient to
have the computer search for the associated zero in the pressure,
given by Eq. {2.6a). In order to test out the proposed universality
of the Coulomb energy, the ground state equilibrium densities n, are
shown as & function of stress in Fig. 2.9 for Ge and in Fig, 2.10 for
Si. In both figures, part {a) shows the results for Models 1, 5, and 6,
which are based onthe detailed correlation energy calculations of

Vashishta, et Bl.;2'3” 2.4, 2.7, 2.57, 2.58

part (b) shows the resultis
for Models 2, 3, and 4, which are based on Wigner-type forms for the
correlation energy. All six models were described in Sec. 22.5. 1In
order to facilitate comparison between the models, arrows indicate the
"correct® zero-stress (Model 5) and infinite-stress {Model 6) values

for n_.
or ny
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Several conclusions may be drawn from these figures. First, as
expected, all the models show the same general trends with stress:
(1) A fairly rapid decrease in density occurs near the critical

stress a_, where E? = Egp] and the upper electron valleys become

e

depopulated. (In Ge ~o, ~ 2.6 kgf/mmz, while in Si -0, ~ 10 kgf/mmz,
as shown below; see Eqs. {2.49) and (2.50).) Hote that there is a
larger density change for Ge, due to the greater change in the number
of occupied valleys. (2) There is a region of nearly constant density
{the change is =~ 30%) between the stresses g and O where E? = E?p]
and the light hole band becomes depopulated. (As shown below in Egs.

(2.49) and (2.50), -o, ~ 6.5 kgf/ma® in Ge and -0, = 36 kgf/m’ in

h
Si.} (3) There is a slight kink at the stress O followed by (4)
a further gradual decrease in density which is still apparent at

stresses far beyond O e Indeed, the equilibrium density changes by

over a factor of 2 in (100)-stressed Si and by approximately a factor

N
et

of 4 in (311)-stressed Ge after the light hole band occupation goes A

2.23
a

to zero. This point was emphasized by Markiewicz and myself nd

by L1u2‘26 in preliminary calculations. In Models 1, 2, 5 and & the

e

entire change in the pair energy f{n) with stress beyond oy, comes
from the hole kinetic energy fiin and is due to the residual non-
parabolicity of the occupied valence band. The valence bands do not
become decoupled until they are split quite far apart in energy. Let
us then check the validity of ignoring the split-off band, especially

2.41, 2.42 that this band interacts with the

in view of the finding
valence band remaining populated at high compressional stresses, As

a result of this interaction the actual (bulk) masses differ from those
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calculated in Section 22.2. Using the theory of Hasegawaz‘60 to first
order, however, the density-of-states mass should decrease by =~ 3%

for 07 40 kgf/mm2 for Ge and ~%y00 ~ 180 kgf/mm2 for Si, with
smaller changes at lower stresses. For the stresses attained in experi-
ments to date, this change should be negligible.

In Figs. 2.9 and 2.10, Modei 3 shows an oscillation in the equilib-
rium density {noted in Ref. 2.23 for Gez“ﬁ?); this oscillation is
associated with the structure in the hole optical mass {Figs. 2.3 and
2.4). It is perhaps surprising that the oscillation is not more
pronounced in Si, since the structure in moh is more pronounced,
However, the contribution from the holes to the correlation energy 0
(see Eq. 2.44) is relatively less important, since the hole and electron
optical masses are more nearly equal. Model 4 does not exhibit an
oscillation, since the averaged density-of-states hole mass changes
monotonically with stress. The kink in the density vs. stress is
associated with the depopulation of the light hole band and is more
pronounced for Si since the fractional density of light holes is greater
at low stresses. Both Model 3 and Model 4 appear to predict too great
a decrease in density at high stress, due to the significant change
in the hole mass and its probable overemphasis in importance in the
correlation energy, Eq. {2.44). (Model 3 in Si is an exception, since
from Table 2.2 the change in the optical mass is smaller than for the
other cases in point.)}

Comparison may also be made between Models 1, 5, and 6, which
employ the detailed numerical calculations of Vashishta

2.3, 2.4, 2.7. 2.57, 2,58

et al., for different ideal systems. As might
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be expected from Figs. 2.7 and 2.8, at low stresses, the differences
between Models 1 and 5 are smaller than the differences between both of
these models and Model 6. The spread in zero-stress equilibrium
densities, which is nearly 50%, is perhaps surprising. At large stresses
all three models agree quite well; the infinite-stress equilibrium
densities differ by only about 10%. Thus the proposed universality of
the Coulomb energy is fairly well justified. The vesults of Kirczenow

and Singwi2‘25 2.26, 2.27

and of Liu et al., are in good agreement
with Models 5 and 6, which are nearly identical to the models used by
these authors.

The ground state energy per pair fG is shown in Fig. 2.11 for
Ge and in Fig. 2.12 for Si, including all six models. A rather sudden
change in slope occurs at the stress Ogo This kink is more pronounced
for Ge than for Si, due to the larger change in the number of occupied
conduction bands. The binding energy of the liquid ¢ with respect to

excitons is obtained from the following relation:

ffel = E .+ 0 . {2.46)

gl
where Ex is the exciton binding energy (see Fig. 1.1). It is of limited
value to describe the properties of the EHL if ¢ <0. Therefore let us
consider the stress dependence of E.. At zero stress the exciton
structure is rather complicated, due to the degeneracy of the valence

bands and the anisotropy of the conduction bands.2'62

2.63-2.65

In Ge, two

exciton states which are split by & =~ 1.01 meV
2.63, 2.64

and have a non-

parabolic density of states
2.62, 2.66

are observed, in agreement with

theory. This splitting is due to the conduction band
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2.62 2.67-2,69

In Si the splitting is found to be & = 0.35 meV,
2.62 t

anisotropy.

slightly smaller than the theoretical value & = 0.46 meV; he

2.64, 2.66

density of states is more nearly parabolic. The experimental

values for the binding energy of the lowest exciton state are as follows,

for unstressed Gez°70 and Si2°7x:
i
!
EX = 4.15 meV (Ge)
zero stress . (2.47)
E, = T4.7 meV (Si)

2.62

The most recent theoretical values are in good agreement with experi-

ment. In the infinite-stress limit the exciton binding energy is nearly

2,72

identical to the excitenic Rydberg defined in Eq. (2.45), due tiy the

simplified band structure. Thus

2z
i

2.65 meV (Ge)
infinite stress. (2.48)

EX

#

12.85 meV {Si)

At intermediate stresses the valence bands are split, and four

exciton states are observed in absorption experiments.2°39’ 2,69

Only
the lowest state is thermally populated in a low-temperature luminescence
experiment, The binding energy of this state may be estimated at
arbitrary stress by using an appropriate hole mass in the excitonic
Rydberg, Eq. (2.45). For high enough stress the energy-dependent heavy
hole optical mass moHH(E') from figs. 2.3 and 2.4 and Eq. (2.30) may

be used, where E'= E/|o]. The characteristic energy for excitons is

kT, whereas nisEFfm‘Wequ Even though this is a ground state

calculation we use kT = 0.17 meV to indicate the effect of a typical
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temperature, The results of this estimate are shown as dashed curves

in Figs. 2.11 and 2.12. From the absorption data,z‘ag’ 2.69

this
description appears reasonable for stresses greater than ~ 5 kgf/nm2
both for Ge stressed along (111} and for Si stressed along (100), In
the figures the dashed curves terminate at this stress. It should be
noted that the character of the lowest exciton state should change
with stress, Indeed, the associated change in the exciton structure

has been observed experimenta]ly,2’39’ 2.69, 2.73, 2.74

It can be seen
from Figs. 2.11 and 2.12 and Eq. (2.47) that ¢ is expected to decrease
rather rapidiy at low stresses; this has been observed in Ge by Ohyama

et a]ﬁZJS 2.76

and in Si by Ashkinadze et al. At high stresses ¢
remains positive and the EHL is bound with respect to excitons for
all models except Models 3 and 4 in Ge and Model 4 in Si.

For further calculations it is unnecessary to consider so many
models. Among Models 1, 5, and 6, Model 1 gives the best overall
agreement with the "correct” theories at both zero stress (where Model .
5 is "correct") and at infinite stress (where Model & is “correct®},
considering both the equilibrium densities and ground state energies
for Ge and Si. This is of course reasonable, since Model 1 is based
on an intermediate stress calculation. Thus Medels 5 and 6 will not
be considered further in detail. Models 3 and 4 apparently overestimate
the effect of the changes in the valence band on the Coulomb energy,
so they too will not be considered further. Thus Models ]band 2 will
be compared in detail. Numerical results for several selected values

of the stress are given in Table 2.4 for these models. In addition

the “correct" theoretical results are given for zero and infinite

=

pes
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stress, as well as experimental results for zero stress which are compiled
in Ref. 2.22. The first stress is slightly greater in magnitude than O
{see Eq. (2.49)), so that the upper electron valleys are depopulated;
this corresponds to the configurations Ge(1:2) and $i{2:2). Similarly,
the second stress is slightly greater tham o, (see Eq. (2.50)), so that
only one valence band is populated; this corresponds to the configurations
Ge{1:1) and Si(2:1). The final stress is just greater than the highest
stresses obtained to date in experiments and serves to illustrate that
further changes are expected before the infinite-stress limit s achieved.

23.2 Possible Phase Transition in Ge Involving

the Electrons

In performing the calculations of the ground state density for Ge
(Fig. 2.9) a surprising discovery was made: for Models 1, 5, and 6,/in
a very narrow range of stresses {Ac < 0.1 kgf/mmz) around the critical
stress Og» there are two pessible states for the EHL. That is, the
free energy per pair has two minima as a function of density just as
the upper electron valleys empty into the remaining {lower) valley.
The higher density phase corresponds to partial occupation of the upper
valieys, while the Jower density phase corresponds to their complete
depopulation. At T=0, the true ground state of the system is the phase
with the lowest ground state pair energy fG’ and there is a discontinuous
change in the density as a function of stress, as the pair energy of
the Ge(4:2)-1ike phase becomes greater than the pair energy of the
Ge{1:2)-1ike phase. This is indicated in Fig. 2.9 by dotted lines.
The possibility of such a discontinuous change in density has been noted
independently by Kirczenow and Singwi,2'25 but the sitution was less

clear in their less precise calculations.

~-50-

{This page for numbering sequence only.)
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[Note added in proof: [ have recently learned of another calculation by

Kastal'skiis 119

in which the possibility of two minima in the free energy
in considered. However, this is a Hartree-Fock calculation (i.e. the
correlation energy is omitted) and the changes in valence band structure

with stress are neglected.]

~B2~

It should be noted that the height of the energy barrier between
the two minima is very small, only ~0.004 meV ~ 0.05 K; so that for a
typical experiment at T = 1.5 to 2 K, it would be expected that both

minima would be accessible to the e-h pair system. Mathematically, the

double minimum can occur because the free energy is nearly constant o

of, . af
over a wide range in density, i.e., ( ;1n) ~ -(——%991) over a
nJy noJ/y

wide range in density. Whether two minima result, as in Model 1, or

only one minimum, as in Model 2, depends very sensitively on the details

of the correlation energy. Because the Model 1 correlation energy was =~

fit by a polynomial containing as many parameters as data points,2’57 i

it is possible that the double minimum is a mathematical artifact.
Whether or not a discontinuous change occurs in the density, it
is clear from Fig. 2.9 that the equilibrium density should change by a“=

factor of two in a very narrow range of stress, perhaps 0.2 kgf/mnz, i

e
spl”

to draw firm conclusions from the available experimental data (discuséed

showing very clearly the stress for which E? = E It is difficult
in the next section) in this very interesting range of stresses. s
For the corresponding case of S1 im Fig. 2.10, the density decreg;s
associated with the depopulation of the upper electron valleys is some-
what smaller and is more gradual than Ge. In order to understand this,
a series of artificial models was constructed for Ge-type bands. In
each model, the hole kinetic energy and the Coulomb energy were calcu-
Tated as in Model 1. The electron kinetic energy was computed in the

usual way, with the following exception: instead of three bands being
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raised in energy while the fourth band was lowered, Vo bands went up
while one went down. The ground state equilibrium densities for these

models are shown in Fig. 2.13. Thus, for example, the curve with v, =3

2
corresponds to real Ge. The curve with vy = 2 corresponds {qualitatively)
to Si, since the electron valley degeneracy changes by the same factor
of 3. It is clear from this figure that the most important ingredient
in the density change is related to the change in the degeneracy; more
precisely, it is the change in the fractional occupation of the Jowest
band(s) between low and high stresses. For the extreme case considered
in the upper curve, this fractional occupation changes between low and
high stresses by a factor of 10; the discontinuous change at -¢ ~ 3 kgf/mm2
invovles a factor of 2 change in the fractional occupation accompan%éd by
a factor of 5 change in the density. For real Ge, of course, the fractional
occupation changes by an overall factor of 4 and for real Si by a factor
of 3. Using similar reasoning we can also understand why there are only
slight kinks in the curves of Figs. 2.9 and 2.10 associated with the
depopulation of the light hole band. The fractional occupation of the
1ight holes at zero stress (see Table 2.2) is only 14% for Si and 4% for
Ge. Thus the heavy hole occupation is only stightly affected by the
emptying of the other valence band. Indeed, the kink in the curves for
Ge is even smaller than in the curves for Si.

It would be very interesting if nature provided a real system with
a very large change in the fractional occupation of a band. In a
particular alloy, Ge!~x Six, with x = 0.15 to 0.20, the four Ge-like

conduction band minima along (111) directions and the six Si-like
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2.77

minima along (100) directions are degenerate.”™” Thus this system

contains ten nearly equivalent electron valleys at zero stress {the

2‘78). With the application of

masses of the two types of bands differ
stress along the (111} direction, the (111} valley corresponding to the
stress direction would be lowered in energy by lEuc/3C44l with respect

to the average band shift, the other (111) valleys would be raised by
iEu0/9C44§ with respect to the average, and all the (100) valleys would

be unchanged with respect to the average°2°39 Thus the conduction band
degeneracy would change from 10 to 7 to 1 under increasing (111) siress
for this particular Ge-Si alloy. In such a system with a larger change

of fractional occupation than in Ge, an experimental study vs. stress
should give much insight into the nature of this proposed phase transition.

23.3. Comparison with Experiment: The Approach
to the Infinite Stress Limit

Figure 2.14 shows the equilibrium density as a function of stress
for Ge at T = 2K, a typlical temperature used in experiments. The two
curves correspond to Models 1 and 2. For this low temperature, it was
assumed that the {exciton) gas pressure outside the EHL was still
relatively lTow; consequently the equilibrium density of the Viquid
was assumed to be that corrvesponding to zero gas pressure, i.e. at the
minimum of f(n). It can be seen that Model 1 predicts a discontinuous
density change even at 7 = 2K, as discussed in Section 23.2 for the
ground state. Also shown in the figure are several sets of experimental
results, all obtained at temperatures in the range T = 1.8-2.1K. The
solid circles are the data of Feldman, et al.;z']6 the solid triangles

are the result of Thomas and Pokrovskii;2°18 the solid squares are the
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results of Chou et a1.2‘17 These experiments were all performed on

uniaxially stressed Ge. The *+ symbol indicates the average result

obtained in the Berkeley 9r0up2‘28’ 2.80

for the strain-confined liquid.
The data displayed in the figure were all obtained by fitting luminescence
spectra using Eqs. (2.38) and (2.39), using the energy-dependent hole
density-of-states masses from Fig. 2.1 {(or a reasonable approximation).
For the uniform-stress experimenis, the stress was determined from the
applied force and the cross-sectional area of the sample, while for

the experiments on the strain-confined liquid the maximum strain at

the bottom of the well was determined from the shift of the luminescence

spectrum, As can be seen from the figure, theory and experimenF
are in reasonable agreement over the entire range of stresses included
in current experiments. The rapid or discontinuous density change
associated with the emptying of the upper electron valleys is not as
pronunced as predicted by theory. However, it is possible that at
realistic experimental temperatures the rapid change is washed out due
to the finite temperature. A definitive conclusion about this interesting
range of stresses must await more detailed experiments and theoretical
analysis of the effect of the temperature, At greater stresses, the
general trend of the data is to decrease with stress more rapidly than
the theoretical predictions. This point is discussed in somewhat more
detail below.

A word is in order concerning possible sources of problems in
interpreting the experimental results, due to stress inhomogeneity.
It is always difficult to perform an experiment with really uniform

stress. A region of high stress near the surface will attract EHD to
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the surface, where there are rapid recombination centers. As a result,

the EHL Tuminescence should exhibit a short lifetime and should be
broadened due to the range of stresses being sampled. In the "uniform-
stress” experiments discussed here;2'16‘2'18 care was taken to assure

the uniformity of the stress. Any residual non-uniformity can be Yt

taken into account by noting that the demsities will represent upper
2,28

limits. For the case of the strain-confined liquid, the strain
gradient is understood2'3] and the spectra are fitted only when the
2.79

strain gradient has a negligible effect on the deducted density.

Experimental measurements of the ground state energy fG are

generally not available, since this entails a measurement of the exciton

binding energy EX as well as the binding energy ¢ of the EHL with )
respect to excitons {see Eq. (2.46)). However, a few measurements of
¢ are available for stressed crystals and may be compared with theory..

Ohyama et ai,2°75

found a reduction of several tenths of an meV between
zero stress and -o~ 4 kgf/mm2 in Ge. Quantitative comparison cannot
be made with theory, however, since the results of Ref. 2.75 were &

analyzed using an incorrect zZero-stress value for ¢. Furneaux et
al 2,28, 2.80

found ¢ = 1 meV for the strain-confined liquid at -0 =~ 6
kgf/mmz, which can be compared with a theoretical value of 0.89 meV
for Models 1 and 2. In uniformly stressed Ge, Feldman et a].z']ﬁ
measured ¢ = 0.65+0.07 meV for -o = 13 kgf/mma, compared to 0.64 meV
for Model 1 and 0.60 meV for Model 2. In 51, Wolfe and Gourleyz'z1
measured ¢ = 1.520.5 meV for the strain-confined ligquid at a stress
-g = 90 kgf/mmz; the theoretical values are 1.78 meV (Model 1) and

1.95 me¥ (Model 2). Agreement between theory and experiment is quite
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satisfactory. All of the experimental values were obtained spectroscop-
ically, by fitting the EHL and exciton luminescence spectra.

The electron and hole Fermi energies E? and E?, their sum EEOtg
and the luminescence linewidth AE, defined to the full width at half
maximum of a spectrum computed according te Egs. (2.38) and (2.39),
are shown for Model 1 at T=2K in Fig. 2.15 for Ge and in Fig. 2.16 for
Si. Also shown are the energy splittings Eg

and EE between the

pl pl
upper and Tower bands for electrons and holes. The critical stresses
A and g, are as follows, for both Models 1 and 2:
\ 2
Oy = 2.6 kgf/mm
2 Ge, T=0, (111 stress {2.49)
O, 6.5 kgf/mm
4

-0, ~ 10 kgf/m’

2 Si, T=0, (100> stress (2.50)
-0 = 36 kgf/mm
The general features in the two figures are similar. At low stress, the
electron Fermi energy is forced to increase the the upper electron valleys
depopulate; the hole Fermi energy remains nearly constant. For $i the

; is smaller, since the fractional occupation of

relative increase in E
the lower valleys has a smaller change. Before the stress S is reached,
however, the decrease in density becomes more pronounced and both Fermi
energies begin to decrease. For stresses greater {in magnitude) than Ggs
the electron Fermi energy decreases following the decrease in density,
since there are no further changes in the conduction band structure or
degeneracy. Between the stresses G and O, the hole Fermi energy
increases as the light hole band depopulates, but this is a smaller

effect than for the electrons at low stresses since the fractional
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occupation changes by a smaller amount, as discussed in Section 23.2.
The hole Fermi energy remains nearly constant between % and zZoh while
at the same time the density decreases, due to the residual nonparaboli-
city of the valence band. Eventually the nonparabolicity is reduced
sufficiently that the hole Fermi energy and the density both decrease
and finally level off, The origin of the decrease in density at high
stresses is the change in the hole mass, which is due to the residual
interaction between the valence bands., From Figs., 2.1 and 2.2, as the
stress increases the average density-of-states hole mass decreases.

When such a mass decrease occurs without a change in band degeneracy

{as discussed below in the context of mass renormalization), the
equilibrium density decreases and the Fermi energy decreases by a
smalier amount.

Experimental results for the Fermi energies and linewidth in Ge
have been omitted from Fig. 2.15, but the trends can be seen by
comparison with Fig. 2.14. An initial increase in the electron Fermi
energy is ohserved3'17’ 2.18 followed by a gradual decrease for
stresses greater (in magnitude) than O However, the magnitude of
the increase s reduced, and the hole Fermi energy is actually observed
to decrease, since the density decreases more quickly in experiment
than predicted by theory in this stress range. The hole Fermi energy
is found to be approximately independent of stress between ~0p and z2ch,
which approximately corresponds to the maximum stress used in the
experiments,

The comparison between theory and experiment for stressed Si is

Tess extensive than for Ge because less data are available. In addition,

as discussed in Sec, 22,3, luminescence spectra have been fit using the
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infinite-stress hole mass, with the resulting deduced densities sub-
stantially in errer. Comparison can still be made using the luminescence
Vinewidth, however, and the available data are shown in Fig. 2.16, The

2.50

square is the zero stress result of Hammond, et al; the circle is

from Kulakovskii and Timofeev® 1% for uniaxial stress; and the triangles

2.20, 2.21, 2.81

are the data of Gourley and Wolfe for the strain-confined

liquid. The stress is estimated from the shift of the luminescence

2.14
spectrum,

As for Ge, the equilibrium density apparently decreases
more rapidly with stress than predicted by theory.

The Fermi energies in Figs. 2.15 and 2.16 can be used to predict
the electric charge on EHD in stressed Ge and Si. An EHD can becomew
charged because the chemical potentials of the electrons and holes ;

2.82 the electron and hole contributions

differ. As discussed by Rice,
to the Coulomb energy are nearly equal, so the sign of the chemical
potential difference is given by the difference in Fermi energies. A

2,82

further contribution from the surface dipole layer should change

the magnitude, but not the sign, of the predicted difference and hence

of the charge,2‘58 According to this line of reasoning, if E? > E?,

then holes are less tightly bound to the EHD than electrons. More

holes than electrons will evaporate until the work functions and
evaporation rates become equal, and the EHD will attain a negative
charge. Thus from Fig. 2.15, EHD should have a negative charge for
stresses smaller in magnitude than ~2kgf/mm2 or greater than =5.5 kgf/mm2

and a positive charge for stresses between these two values, for Ge

uniaxially stressed along the (111) direction. Note that the stresses
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at which EHD are predicted to change sign are very close to the critical
stresses a, and ap- In addition, since the ideal system, Ge(}:2),

corresponds approximately to stresses just greater than OG> these

predictions are in agreement with those of Kalia and VaShiShtaz'58
for all the ideal systems they analyzed in detail. Pokrovskii and i
Svistunova2‘83’ 2.84 have measured the charge on EHD in Ge uniaxially

stressed along (111); they found that drops are negatively charged in

unstressed Ge,2'83 change sign at -0 =~ 2 kgf/mmz,z'84

charged at least until -o ~ 9 kgf/m’.2"8% The Tast result is difficult

and remain positively

to interpret since spectra obtained by the same authors at a similar

stress indicatez‘l8 that the hole Fermi energy is greater than the ”

electron Fermi energy. Further experiments at higher stresses are
needed to resolve this discrepancy. The results obtained at lower
stresses, however, are in excellent agreement with these predictions. ‘
The charge on EHD in $i can be predicted from Fig. 2.16, using the saﬁz
arguments. Since the hole Fermi energy is larger than the electron
Fermi energy for all stresses, EHD are predicted to be negatively
charged at all stresses, in contrast to the situation in Ge. Note
however that the difference E?-'Eg becomes rather small near O, SO .
that the magnitude of the charge should be greatly reduced. The ideal
intermediate-stress model, Si(2:2), considered by Kalia and Vashishta2‘58
does not correspond precisely to any point on the graph; however, their
prediction of neutral charge for this configuration is consistent with
the results presented here. There are no experimental results concerning

the charge on EHD in St.

1t should be noted from Figs. 2.15 and 2.16 that the total Fermi
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energy EEOt

and the Vinewidth AE do not have the same stress dependence.
The differences can be seen more vividly in Fig. 2.17, in which the
ratio E;at/AE is plotted as a function of stress for Models 1 and

2, both for Ge and for Si. The ratio tends to increase as

one or more bands empty out and to decrease as the valence band non-
parabolicity becomes less important. It is clear from this and from
the discussion in Sec. 22.3 that it is important to fit luminescence
spectra using the correct band structure at the actual experimental
stress.

We now consider the observation that the density decreases more
rapidly with stress than predicted by either Model 1 or Model 2. One
possibility is that the Coulomb energy may not really be a universal
function of density. It cam be seen in Figs. 2.9 and 2.10 that
Models 3 and 4 for Ge and Model 4 for Si predict significantly lower
densities than Models 1 and 2 at high stresses. It is also noteworthy
that for these models the EHL is unbound with respect to excitons for
stresses greater than 12 kgf/mm2 (Model 4) or 22 kgf/mmz {Model 3)
in Ge or 44 kgf/mm2 (Model 4} in Si, as in Figs. 2,11 and 2.12.
However, luminescence from the liquid phase has been observed in both
Ge and Si at stresses greater than that for which Model 4 predicis no
binding. A second possibility is that the masses used in the kinetic
energy could be incorrect, The masses described in Sec. 22 are
corrvect for bulk Ge and 57, ignoring the effect of the split-off
valence band, As mentioned in Sec. 23.1, the inclusion of the split-off

band would result in a slightly smaller hole mass at high stresses
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{for the bulk material). The possibility of the renormalization of
the electron and hole masses within the EHL due to many-body effects

2.85, 2.86 for the case of unstressed Ge. He

was considered by Rice
found that both the electron and hole masses should be ~10% larger
in the EHL than in bulk Ge and that the renormalization is approximately
isotropic. By studying luminescence spectra from unstressed Ge in

2,52, 2.87

magnetic fields up to 190 kOe, StBrmer and Martin found that

the electron and hole masses are indeed renormalized by about 10%

2,86, 2.87

in the EHL, in agreement with theory; a similar result was

obtained from a study of the magnetoplasma resonance in unstressed

Ge,2°88

Neither theory nor experiment has been performed for stressed
Ge or for Si,

1t is straightforward to estimate the effect of a systematic
(uniform) change in the carrier masses on the predicted ground-state
properties of the EHL and on their stress dependences. Suppose that
the electron and hole masses are multiplied by a factor 8 in the kinetic
energy, and that the Coulomb energy is unchanged; then the minimum in
the pair energy is recomputed as a function of stress. The resulting new
curves for n, vs. stress are qualitatively very similar to the curves in
Figs, 2.9 and 2.10 for both Models 1 and 2; however, for a mass increase
of 10%, the equilibrium density increases by ~30% and the Fermi energies
and luminescence linewidth increase by ~8%. On the other hand, in
extracting the density from a fit of the luminescence lineshape,
the experimental densities would increase by ~15% for the same line-

width. Thus, for example, in Fig. 2.14, the agreement between theory and
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experiment for unstressed Ge would be somewhat reduced but would still
be satisfactory.

The impetus for studying the EHL in stress semiconductors is that
the band structure becomes simpler and theoretical models become more
accurate; for "high enough" stresses even the valence band becomes
simple. However, in comparing experimental results obtained at finite
stresses to theoretical predictions for the infinite-stress limit, it
is of crucial importance to understand what constitutes a stress “high
enough” that the valence band nonparabolicity has a negligible effect
on the properties of the EHL, or else to have a good method for extra-
polation to infinite stress. An important conclusion drawn from the

preliminary calculation on 662.23, 2.26

and re-emphasized above is

that the ground state properties are still changing at stresses much
greater than O e This is illustrated in Figs. 2.18 and 2.19, where

the equilibrium density and the luminescence linewidth are plotted as

a function of 1/o for Models 1 and 2. In Fig. 2.18 the demsities for Ge,
including data points, are replotted from Figs. 2.9 and 2.14 along with
the linewidths from Fig. 2.15. MNote, for example, that the density is
still twice the predicted infinite-stress value at —a=¥-20kgf/mm2 for
todel 1 and at ~0==kgf/mm2 for Model 2. These stresses are greater
than the maximum achieved to date in experiments. In order to obtain
densities within 20% of the infinite-stress value, stresses greater
than -o = 80 kgf/mn2 would have to be obtained. In Fig. 2.19 the
densities for Si are replotted from Fig. 2.10 along with the

linewidths from Fig. 2.16, including data points. For both Models

1 and 2 the density is still twice the infinite-stress value at

-g ~ 35-40 kgf/mmz and approaches to within 20% of the infinite-stress
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value at -0 = 140 kgf/wmz. However, because the experimental densities
apparently decrease more quickly with stress in both Ge and Si than
predicted by theory, these guidelines for extrapolation to the infinite-
stress limit may require modification. In addition, the extrapolation

of Thomas and Pokrovskiiz']B for Ge, which was based on a model similar P

ot

to Model 2, must be regarded as approximate due to the relatively poor
fit to the data. Experiments at higher stresses are clearly desirable
in order to clarify the approach to the infinite-stress limit.

A further general observation can be made from Figs. 2.18 and
2.19. In part because the Fermi energy varies more slowly than the
density at a given stress, and in part because of the variation of W

E;Ot/AE with stress illustrated in Fig., 2.17, the linewidth AE

approaches the infinite-stress value more rapidly than the density.
Thus the apparent levelling off of the luminescence linewidth with
stress does not necessarily indicate that the infinite-stress limit
has been achieved.

24, Results: Finite Temperature

In the previous section the results fro the ground state (i.e., -
T = 0) properties of the EHL in stressed Ge and Si were presented L
and disucssed, For the purpose of comparison with experiment some
data, for example the luminescence linewidth at low temperatures,
were presented. In this section we extend the theory to the calculation
of the variation of EHL properties with temperature. At low temperatures
we shall be interested in the systematic variations, which involve
derivatives of the pair energy near the minimum, while at higher
temperatures we shall be interested in the critical point of the e-h

gas-~liquid system.
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24.1 Low Temperature Variations; Compressibility

As noted in Sec. 22.5, in all calculations to date of properties
of the EHL, the Coulomb energy has been taken to be independent of
temperature;g‘g the same assumption is made here. The entire temperature
dependence of the free energy per pair is contained in the kinetic

enerqy contribution:

F(n,T) = f 5 (nu )+ f (n,0) (2.51)

Cou1(

The procedure for calculating the kinetic energy exactly was outlined in
Sec. 22. At low temperatures, however, it is natural to treat the
finite temperature as a perturbation and use an expansion. For i

2.89

example, let

i1} = fg(E) h(E,Ep,T) dE (2.52)
0

where g{E) is any function of the energy E and h(E,EF,T) is the Fermi

distribytion function from Eq. (2.8). If 0< kT/EF(T) << 1 {i.e. if the
2.30

system is degenerate }, then
Ec(T)
(1) zf 9(E)E + & g" (£.(1)) (iT)?
0
E-(0) (2.53)

= [ s(e1de + o(e (0D (T - £, (0))
0

+ L g () (kT)?
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Here the prime denotes a derivative with respect to E, and g“(EF) =

g“(E)ePE ; the temperature appropriate for EF is indicated explicitly.
F

In the Tast Tine, it is assumed that |[g’(E4(T)) - 9" (E(0)) 1/0" (E;(0))

<< 1. Thus

HT) = 1(0) + g(E-(0)) (E(T)-E-(0))
. (2.54)
+ e gt (0) (k)P .

If g{E) = D(E), for example, then I(T) = I{0} = N ({see Section 22.1).

Note that if some bands are raised in energy by E then an additional

spl?
condition for the validity of this expansion is 0 < kT/(EF(T) —Esp])<311.

For a finite temperature T, there will be a range of stresses for which
this condition is not satisfied (see discussion below).
It is of interest to consider the low-temperature variations of

three quantities: the equilibrium density, the chemical potential, and

2.22

the total Fermi energy. It is customary to define the parameters

S ., 8 , and GE as follows:

n® “p

2 {2.55a)

- 2 . -
n(T) = n[1-6 (x1)°} 8, in mey

u(T)

()-8, (k0% 5, inmev!  (2.55)

E(T) = £0(0) D1 -6.(e0)%] , 5 inmev? . (2.550)

Because of the complications which are introduced due to the band

splitting and nonparabolicity, the derivation will be outlined. It is
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convenient to discuss the variation of the free energy with temperature
by introducing the heat capacity at constant volume, which is defined

as f0110w5:2°30

0= 6, 6

(2.56)
N,V hyv -

We wish to make use of the expansion derived above. If g(E) = D(E)E

then I{T) = Y(T) and

B(T) - U(0) = ELOID(EL(0)) (E(T) - EL(0))
2 (2.57)
+ I [D(Ep(0)) + Eg(0)* (B (O] (kT

In order to evaluate the quantity EF(T) -EF(U)s use the fact that N

is to be held constant; i.e., use Eqs. (2.52) and {2.54) again, giving:

2
DER(O)) (Eg(T) - E(0)) = - T D' (£ () (k1) . (2.58)
Substituting into Eq. {2.57), we obtain
“2 2
BTy -u(0) = = D(EL(0))(KT) (2.59)

and thus

2 2
¢, = % D(EF(O))k T . (2.60)

It is convenient to rewrite the heat capacity as follows:
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Cv = Ny T {2.61)
- 112 kz D(EF(O))
where Y =73 N ° (2.62)
From Eg. (2.56), if C,= T, then S= €, Furthermore, using Eqs. L

(2.59), (2.60), and (2.3}

u(T)

u(o) + 172 18

F(T)

i

o) - 1/2 1S = F(B) - 1/2 7S . {2.63)-

For the kinetic energy per particle, we obtain

2

fkin("’T) = fkin(n,o) - W2 ~T (2.64a)

il

fgn(m0) - 12(%m) + )18 . (2.68)

Note that vy is a function of the density via the Fermi energy, and that,
the contributions from the electrons and the holes must be included v
et

separately. The density of states may be written explicitly in Eq.

(2.62) from Eq. {2.18), yielding the following expressicn, for electrgﬁ§

or holes:
372 1/2
e [
(0
2 %‘)IJF( )ml3/2(E)E”2dE
A (2.65)
+ o A0 (Eg(0) £ )Y/?

E-0)
. %sz’ F "‘23/2“5)(E ) Esm)m dE
spl
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Usually the density of states per unit volume at the Fermi Tevel,
D(EF(O)/V, increases with density more slowly than the demsity

n = N/V. However, when the fractional occupation of the upper Vo

bands is small {but nonzero}, the denisty of states changes faster

than the density. Thus from Eq, (2.62) v${n) and yh(n) are monotonically

decreasing functions of the density except in a narrow range of densities

e h
spl spl”

As a vesult we might expect anomolous features in quantities depending

just greater than those corresponding to E§(0)= E ar Ep(o) = £
on y{n) at stresses just below o, and o, . The functions v&(n} and
yh(n) are continuous at all densities but have a discontinuity in slope
cee . e e h _ch

at the densities corresponding to Eg(0) =Eepy and E.(0) _Esp]’ "
respectively. For these special densities, then, the conditions for
the validity of the Tow-T expansion are violated. For all other densities,
the conditions may be fulfilled by restricting the expansion to
temperatures which are sufficiently low.

First consider the quantity Sng which describes the variation

in the equilibrium density with temperature. let
n{T) = ng *An {2.66)

be the equilibrium density at the temperature T (recall that n{0) = nu).
Using Egs. (2.51) and (2.64),

£(n,T) = £(n,0) - (1/2) v(n)7% . (2.67)
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At Yow temperature (gg) = 0 at the equilibrium density. Thus
T .

Fn +an,T) = 0 = £(n +8n,0) - (1/2)y" (n +on)T2
(2.68)
= Bnf*(n,0) - (1/2) v* (n)T°

to first order, where the primes denote derivatives with respect to
density with T held constant. | The curvature of the free energy for

the ground state is denoted

o f"(n,.0) (2.69)

This curvature is related to the isothermal compressibility KT’

which is defined 2.30 via
!
Kp o= - (V(EVVN,Y) (2.70a)
_ P -1
= (3R, ) (2.700)
= (2nff 4 adeyt (2.70¢)

The last line uses the definition of the pressure given in Eq. (2.6a},
Now Eq. {2.70c) is a genmeral definition valid at any density and

temperature. For the ground state

kplng) = (a3 )7 (2.71)

Using Eqs. (2.66)-(2.71) and the definition of 8, in Eg. {2.55a), we



-71-~

obtain
e’ h’
y (n) + vy (n)

5, = s
n an fék

b : (2.72)
g (g + )

2

2k

In order to understand 6,, it is necessary to understand what
happens to the compressibility as well as to Ye and yh; the latter
quantities are discussed above. Figure 2,20 shows the compressiblity of
the ground state of the EHL versus stress for Ge; Fig. 2.21 shows the
results for Si. In both Figs. Models 1 and 2 are shown. From £q. (2.71),
the compressibility depends on the density and on the second derﬂvaégve
fg of the free energy. The second derivative was caluclated numerically.
For Ge, the very large increase in the compressibility just below o,
is due to the fact that the free energy versus demnsity is nearly flat, as
discussed in Sec. 23.2; as & result fé becomes very small and KT
very large. Part of the increase in the compressibility is due to
the decrease in the density. This also gives rise to the increase in

KT just below g_ in S and just below S in both Ge and Si; the

e
subsequent decrease in KT is due to an increase in fg . Most experiments
which are sensitive to the compressibility do not involve a direct
measurement of KT. (It should be noted that the measurement for Ge
discussed in Chapter 5 requires a strain well and therefore only

involves the EHL at stresses greater than oe). Since the predicted
increase in the compressibility just below o, is so large both in

Ge and in Si, it would be very interesting to obtain direct experimental
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measurements in this range of stresses.

The results for 6 are shown in Fig. 2.22a for Ge and in Fig. 2.23a
for $i. The stress dependence appears rather complicated but is just
a combination of the components in Eq. {2.72). Hote that for most
stresses Ye and yh decrease with density, so that Sn is positive.
Thus, from £q. {2.55a), the EHL expands slightly with temperature. This&““
is of course the situation which is familiar from unstressed Ge and Si.

However, at stresses just below o_ and Op» dn becomes negative, implying

e
an initial increase in density with temperature, i.e. thermal contraction.
Because of the restricted range of conditions for which the thermal Lo
contraction is predicted, and becuase of the difficulties in the
measurement of all of the quantities describing the systematic changes
of EHL properties with temperature, the observation of a negative va]uékm
for §, would be very difficult indeed (but very interesting).
Next consider the quantity Gu, which describes the variation in

the chemical potential 1 with temperature. At low temperature

(%%%“mo, so that using Eqs. (2.6b}, (2.66), and {2.67) we have

2
w(T) = fn(T),T) = w0} -1/2 v(n )T {2.73)
to first order, Using the definitien in Eq. (2.55b),

h
s - Y(ng) _ ¥¥ng) + v (n) h (2.74)
u 2k 2k
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where the contributions from the electrons and holes are indicated
explicitly. The results for Ge and Si are shown in Figs. 2.22b and
2.23b. The enhancement just below the stresses O and S, shows the
behavior of +y{n) at the associated densities. The structure near O
in Ge occurs in a narrower range of stresses than in Si because the
large density change occurs in a narrower range of siresses, as seen in
Figs,-2.9 and 2.10. The discontinuity in Model 1 for Ge arises from
the discontinuity in the density, which was discussed in Sec. 23.2.
Finally consider the quantity GE’ which describes the variation
in the total Fermi energy E§°t = E§ + E? with temperature., Now the
Fermi energy actually depends on both the density and the temperature,

as can be seen from Eq. (2.19). Let

Ep(n(1),7) = E(n(0),0) + [E:(n(T),T) - Ec(n(0),T)]

+ [Ep(n(0),7) - Ec(n(0),0)] (2.75)

= EF(n(o),o) *OAE, 4 AE,

Thus there are two contributions to the change in the Fermi energy:

AE] is from the change in EF with density, at constant temperature,

while AEZ is from the change in EF with temperature, at constant density.

At Tow temperature, the contribution AE] is the same as that for T=0.

Using Egs. (2.66) and {2.55a}, we obtain

AE, = an maEF(na_nn"’?—) = s, maEF::O’O) (x1)?
(2.76)
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Hote that this expression is true for EE, E?s and their sum,
The second contribution may be obtained using Eq. (2.54) with

(T)=1(0)=N for g(E)=D(E), as follows:

D' (Eg(n_))
s, = 5 st ()

1]

z {2.77)

Separate contributions are reguired for electrons and for holes. Thus
the variation in the total Fermi energy with temperature may be written

as follows, using Egqs. (2.55c) and (2.75)-(2.77):

E £} E2 {2.78)
where
e h
EEng:0)  Ef(ng,0)
3n an
8 = §n (2.79a)
£l no e h
EF(NO,O) + EF(nO,O)
e h
s , R EE, QQ(EF(NO’G)) + Qh(EF(nO’O)) (2.79b)
E 6

e h
Ep(ng,0) + Ef(n ,0)

d (32 1/2 d (32 /2
V1 G, (% (0 %) + vy a, (my " e (Ep - £ p) )
Q . (E.) =
o0 Er 377 77 37 77
vy CER) BT b vomy H(ELNEL - E )

(2.79¢)

In the last expression the demsity of states is written explicitly.
The quantity 6E is dominated by the first contribution 6El’ due to the

change in the equilibrium density, except at stresses just below A
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and O where 5E2 becomes more important, due to the rapid change in the
density of states at the Fermi level. The results for GE are shown
in Figure 2.22¢ for Ge and in Figure 2.23c for Si. These curves are very
similar to the curves in Figs. 2.22a and 2.23a for Gn, with the exception
just mentioned. Note that it is easy to verify that the expressions given
in Eqs. (2.72), (2.74), and (2.78) for Gn, 6u° anddE simplify to the
usual expressionsz‘z2 for unstressed Ge and S5i.

Table 2.5 gives numerical results for these quantities at the
same stresses for which the ground state results were given in Table 2.4.
In comparing Models 1 and 2, it is useful o keep two things in mind:
First, the two models are supposed te be similar, as discussed in
Sec. 23.1. Secondly, however, the guantities displayed in Table 2‘5H
depend on derivatives of the free energy (and related quantities) and
sometimes on high powers of the equilibrium density. Agreement for
these quantities thus requires very detailed similarity between the
models. The second remark also applies to comparison between theory
and experiment. The experimental data are very sparse. Zero-stress
values are listed in Table 2.5 and are in reasonable agreement with
theory. Feldman et a].z']6 have measured §, at 13 kgf/mm2 in Ge and
find an =6.7+2.0 mev'z, to be compared with theoretical values of

2

5.1 and 3.4 meV “ for Models 1 and 2 at that stress. The agreement

is reasonably good. No other experimental measurements of &, éu,

or 6. have been published for stressed Ge or Si,

E
24.2. The Critical Point; Phase Diagram

At low temperatures, as seen in the previous section, the properties
of the electron-hole liquid vary as TZ. This is the usual situation

for a degenerate Fermi system, such as an ordinary metal at room
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temperature. For the EHL, at stresses which are not too close to %

or G, the properties vary as T2 over approximately the same temperature
range for which the gas pressure outside the liquid is low enough to

be considered negligible. At higher temperatures the gas in equilibrium
with the liguid cannot be neglected. (If enough is known about the e
properties of the gas, the entire phase diagram can be constructed R
theoretically, using Eq. {2.5); a crude attempt is discussed later in

this section). At sufficiently high temperatures, there is no longer a
separation into liquid and gas phases. The Viquid and gas become in-

2.30

distinguishable and the substance is usually called a fluid, The

temperature above which there is no phase separation is the critical

i,
temperature Tc’ and the equilibrium density of the fluid at that
temperature is the critical density ng- Thermodynamically, the
definition of the critical point is as fo]lows:z'ao
2 .
(92) A S (2.80)
Wi Aav?
? T.N :

Using the condition that the number of particles N is constant, the ..
derivatives with respect to V may be transformed to derivatives with
respect to n; then
3P »%
(&) (2B} -0 . (2.81)
i \on?
: T,

The definitions for P and u in Eq. (2.6) may then be used, yielding

a convenient definition of the critical point:
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77~
2 results for the two models are guite similar, considering the sensitivity
() - (&) - o . (2.82) _
T on T of the critical point to the details of the correlation energy. Both

models show behavior that might be expected: a gradual decrease in both

Thus the critical point corresponds to the inflection point in the T, and n_ with stress, including a more rapid change associated with the

chemical potential versus density. depopulation of the upper electron valleys. The reduction in T  follows

The critical point has been determined numerically as a function from the decrease in the magnitude of the ground state energy ngi {see

of stress for Ge and Si, using the exact calculation of fkin(”’T) below), and the decrease in n_ approximately follows the decrease in the

described in Sec. 22, a temperature-independent Coulomb energy, and ground state density Ny except in the immediate vicinity of O+

Egs. (2.6) and (2.82). In order to obtain meaningful resuits for Numerical results for the critical point at selected values of

Model 1, it was necessary to modify the correlation emevgy. The the stress are given in Table 2.5. Also included are experimental results

correlation energy was originally fit to a power series, similar to at zero stress. Only a few experimental measurements have been made of

those given in Ref. 2.58. As a result of this fitting procedure, 2.16

the critical point in stressed Ge and Si. Feldman et al. found

there are slight anomolies in the higher derivatives; note that the T =35+0.5Kandn_=7.7%2 lea‘s cm'3 at a stress of

¢ .5+ 0. c J oz 2,
definition of the critical point depends on the second and third -0 =13 kgf/mmz in uniaxially stressed Ge. Furneaux et a].z'BO found
derivatives of fcorr(n)' In order to avoid this mathematical problem, Tc = 8.7-5.7 K at a stress of -6 =~ 6 kgf/mnz for the strain-confined

the original correlation energy was fit to a Wigner form {corresponding 2.20

Tiquid in Ge. Gourley and Wolfe have revised an early estimate

to Eq. {2.44) with only a single term) at intermediate densities and of T_~ 4K {-o = 55 kgf/mmz) t02'21 12K ST < 22K at -0 = 90 kgf/rnm2
'] (v

extended to higher and lower densities. This is reasonable since the for the strain-confined liquid in Si. For Ge, the calculations presented

correlation energy should be of this form for densities less than

that corresponding to rs=2,2‘57 i.e., n = 5X10]5 cm"3 for Ge and

n=2.5x10"7 en”? for i (rg is defined in Eq. (2.45b)). This modified

here apparently overestimate TC and underestimate f.- This discrepancy

may be due to a temperature dependence of the Coulomb energy, which was

2.90 , 2.91

ignored here. The results for TC in unstressed Si are in

form for the Model 1 correlation energy was used only for the determi- vemarkably good agreement with the theoretical values given in the

nation of the critical point.
catl poin table. For stressed Si the situation is less clear due to the un-

ical iti i . ;
The critical temperature and critical density as a function of certainty in the data. It should be noted in comparing results for

stress in G e sh i igs. 2. . . I . . :
v e are shown in Figs. 2.24 and 2.25, for Models 1 and 2. the strain-confined Yiquid with theoretical or experimental values for

Simi . A
imilarly, the results for Si are shown in Figs. 2.26 and 2.27. The uniaxially stressed crystals that the presence of the strain well does
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not affect the critical point. This is easily seen from the form of the

definition of the critical point which is commonly used for ordinary

f]uids:2‘30

above TC only a single phase exists, no matter how great
the pressure. However, the experimental manifestation of the approach
to the critical point may be even more complicated than for uniaxially

stressed or unstressedz'92

crystals.
Comparison can alse be made to other theoretical calculations of
the critical point, which have been performed using Eq. (2.67), i.e.,
an expansion to T2 in the kinetic energy. The results for this cal-
culation are shown in Table 2.5 for Model 5 at zero stress and Model 6
at infinite stress. These models are practically identical to those used

2.7

by Vashishta et al. but the results are seen to differ substanti’lly.

This is due to an error in the calculation of Ref. 2.7, and those results

have now heen vevised, in agreement with the values in the tab]e.2'57” 2.6

2.8, 2.9, 2.93 and 312'8 are in

Other estimates made for unstressed Ge
remarkably good agreement with the values given here considering that
different approximations were used for the Coulomb energy and that the
critical point is so sensitive to the details of the Coulomb energy.

2.10

A calculation in which the kinetic and exchange energies were

calculated at finite temperature and the correlation energy was
neglected differs substantially, as might be expected. Liu and Liu2'27
have recently calculated the critical point at two values of the stress
for Ge and Si, using the T2 expansion of Eq. {2.67) for the kinetic
energy and a model similar to Model 6 for the Coulomb energy; taking

this into account, their results are in reasonable agreement with the

results presented in Figs. 2.24-2.27 at the same stresses. In an
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alternate type of approach, the effect of the temperature may be
approximated by including fluctuations in the density of the liquid and

2.94 2.95,2.¢

the gas at temperatures near the critical point. Reinecke et al.

have recently used this approach to estimate the critical point for the
jdeal systems Ge(4:2), Ge{1:2), Ge(1:1), Si{6:2), Si(2:2), and Si(Z:!).gi;
For all six cases, T_ is lower and n_ is higher than the values listed i
in Table 2.5, where the intermediate-stress model systems are compared
with the stress which is close to Og- In the droplet fluctuation
mode12‘94'2‘96 the calculation is based on a T2 expansion.

It must be emphasized, however, that for calculations at temperatures
near Tc the expansion in Tz is no longer valid and should be replaced .
by an exact calculation such as that described in Sec. 22 and used her;fw

The low-T expansion is only valid if 0< kT/EF and kT/(EF— £ .} << i

spl
for both electrons and holes. As discussed in Section 24.1, this
condition breaks down even at relatively low temperatures at stresses

just below G and Ope In addition, the condition breaks down at the

critical point for all stresses in both Ge and Si. The quantities

for Model 1 in Ge, and outside the range (0. to 0.75) for Model 2;
for Si these quantities fall outside the range (0. to 1.0} for both
models. It is surprising, then, that reasonable agreement is obtained
between calculations in which the kinetic energy is computed exactly

and those using the expansion.
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. Eq. (2. . d infinite stre h 1 for the exciton
In all of the calculations presented here as well as in the {see Eq. (2.45)). For zero and infinite stress, the values for xcito
E. from Eqs. (2.47) and (2.48) may be used, with a_ obtained
calculations by other authors discussed above, it is assumed that near ENergy by ' as. ) ( ) may ® X
Eq. (2.84) and T = T_ estimated from Table 2.5. The results are
the critical point the carriers can be considered to be an electron- from Eq. ( ) an c u r e

hole plasma in the form of a liquid, a gas, or, above Tc’ simply a fluid. as follows:

In order to determine the validity of such a calculation, even if the nMI(7'5K) = 3.0x 1015 cm‘3 {Ge: zero stress) {2.85a)
plasma is properly treated as (possibly) non-degenerate, it is

necessary to consider the possibility that the gas and fluid phases "MI(3’8K) = 6.3x 10]4 cm'3 (Ge: infinite (111D stress) , (2.85b)
are not simply an e-h plasma. At low temperature the gas phase in

equilibrium with the EHL consists primarily of excitons rather than . nMI(27K) = 5.6 x]o]ﬁ cm“3 {S4: zero stress) , (2.86a)
free carriers,z'zz {Because the gas pressure is very small, however,

this does not affect the low-T equilibrium properties of the EHL, s?yh as nMI(18,5K) = 3.0% ]016 cm'3 {Si: infinite (100 stress) . (2.86b)
those compared with experiment in Section 23.3.} As the temperature is

raised, the excitons are expected to ionize in some way, perhaps through i For unstressed Ge and Si, it can be seen that the metal-insulator

a finite-temperature analog of a Mott transition.2*¥ If the excitons ; transition is expected (for this model of the screening) te occur at a

are screened by Debye-Hllckel screening, then such a metal-insulator ; density which is approximately an order of magnitude below the critical
transition is expected to occur at a density given byz"92 density. Thus it is not surprising that other calculations 2+ 98-2-100

5 which attempt to treat both excitons and e-h plasma in the gas phase

ny(T) = ]°]3 %E ai_a {2.83) give results for the critical point which do not differ greatly from
those given in Table 2.5. These caleutations? 982190 L4 oners?-101-2.103
where are concerned with the mwechanisms by which excitons are screened. In
addition, Rice2°w4 and Sander and Fairobentz‘gg have addresseq the
Ex = Zizx (2.84) ; question of whether or not a metal-insulator transition occurs in

the gas phase, separate from the gas-liquid phase tramsition, possibly

associated with a second critical point.z']os

2.106

Far-infrared experiments

2,107 2,90, 2.91

on Ge and luminescence experiments on Ge and on Si
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have been interpreted in terms of an e-h plasma gas phase near the
critical point. On the other hand, the more detailed luminescence

experiments of Thomas et 61.2.92” 2.108

have been interpreted in terms
of excitens, excitonic molecules (biexcitons) and trions (charged
complexes of the form eeh or ehh); in the density range for which
spectra have been fitted, the luminescence intensity from free carriers

is expectedz'log

to be negligible. Apparently, excitons (and perhaps
complexes) are present at densities greater than nMI(T) from Eq. (2.83),
indicating that the real screening may be weaker than in this medel.

The situation for stressed Ge and Si is less clear. According to
Egs. (2.85b) and (2.86b) and Table 2.5, for the case of {static) l
Debye-Hiickel screening the metal-insulator transition is predicted éé
occur at a density which is only approximately a factor of 2 below the
critical density, for infinite stress. If the screening is reduced,
analogous to the zero-stress case, then the metal-insulator transition
would be expected to move to a density greater than s in which case
the gas phase near the critical point would consist of excitons {or
excitons, trions, and biexcitons).
Thus experiments near the critical point at high stresses,z'mg
while extremely difficult, would be very interesting. If it is the

case that a revised "MI(TC) > n_, then for high stresses the critical

c
point cannot be computed as described above, i.e., considering the gas
to be an e-h plasma.

A related consideration involves the small values expected for
¢ at T = 0 and high stresses, which can be seen from Figs. 2.11 and,

2.12. If the gas phase is considered to consist entirely of excitons,
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then, unless kT is less than ¢(T), boiloff of excitons would occur
so rapidly than EHD embryos would be prevented from growing to macro-
scopic size. This could result in a reduction of Ic from the estimates

given in Figs. 2.24 and 2.26. The quantity ch/¢(Tc) may be roughly

ot

estimated using a finite-temperature analog of Eq. (2.46), an assumption
that E, is independent of T, and Eq. {2.55b) for the ground state energy.im;
This quantity ranges from =0.38 to ~0.46 for Ge and Si under infin%te
stress, where the critical point is estimated as for the figures for

Models 1 and 2. Thus this consideration apparently does not require a
revision of Tc to lower values than those already given. More detailed L.

understanding is needed of screening mechanisms in both stressed and &
sl

unstressed Ge and Si. ’
If the nature of the gas in equilibrium with the EHL is understood, ~
then a phase diagram can be constructed using the equality of the gas ..
and liquid pressures and chemical potentials from Eq. (2.5). Although c
it is clear from the discussion in the preceding paragraphs that the )
gas is not yet well understood, a few qualitative remarks can be made. e
The simplest description of the shape of the phase diagram near the =«
critical point is in terms of the law of corresponding states,z'”O
which is obeyed very nicely by many simple classical fluids for
T/TC 2 0.60. The shape of the phase diagram has also been computed
for the EHL in unstressed Ge using a spin-1 lattice gas modeiz‘}lk and
is very similar to the law of corresponding states. The droplet
fluctuation modelz'g4 has also been used and, while the results are

again similar to the law of corresponding states, small systematic

variations have been foundz‘gs’ 2.96 for different model systems for
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Ge and $i under zero, “"intermediate,” and infinite stress. Using the
plasma model described above, with the finite-temperature kinetic energy
computed exactly and the Model 5 correlation energy for unstressed Ge,
the phase diagram turns out to be somewhat broader than that predicted
by the law of corresponding states; the liquid density is larger by

a factor of ~1.3 and the gas density is smaller by a factor of =2.0

than the law of corresponding states prediction for T/TC = 0.9. Thus
the plasma model gives substantial deviations on both liquid and gas
branches from the model for simple fluids. Two independent measurements

2.9, 2.107

of the liquid branch in unstressed Ge agree well with the

Yaw of corresponding states for different values for TC; the possibility
of systematic differences in the methods of determining the temperaﬁﬂre

should not be overlooked. In addition, two sets of data for the gas

2.92, 2.107

branch, which are interpreted using different models for the

composition of the gas phase, give lower densities than those predicted

by the law of corresponding states or the plasma model. The deviation

2.112

from the simple fluid model had been suggested earlier. It should

be noted that the law of corresponding states was in\/(-:‘n'tedz'”0 to
explain data on simple fluids, in which the particles have pairwise
interactions. This simple model should not really be expected to be
valid for the electron-hole fluid in a semiconductor, in which the
correlations among all the particles are important.

Finally, let us briefly consider a different type of scaling. It

2.22

has been suggested that certain combinations of properties of the

electron-hole Tiquid should scale from one system to another. For

2.22, 2.23 172

example, the quantities ST, Te/ng’ <o n/ng and nef"

0 o G
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have been proposed as approximate scaling quantities. More recently,

Reinecke et 31.2'95 have suggested on the basis of theoretical
arguments that the quantities n /n . [fGi/ch, and kTCK/nl/4 should

scale rather well between systems. The validity of these ideas

can easily be tested by computing these quantities as a function of
stress for Ge and Si, using both Models 1 and 2. The quantities which
are found to scale reasonably well in all of these systems are as

follows:

~£ o~ 0.1 . (2.87a)

- | (2.87b)

(2.87c)

The variation in these quantities is about x15%, with somewhat larger
deviations for stresses near Op> as might be expected from the previous
discussions. Smaller systematic variations are found between the
models. Thus the ideas of scaling which were originally proposed for
model systems are found to work rather well at all stresses for Ge

and Si.
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APPENDIX 2.1.  COMPUTER PROGRAM FOR THE HOLE MASSES | in the second line the integral is performed over the k-space surface
with energy EF' Using the definition of the integrated mass in

The computer program used to generate the hole masses was written
% Eq. (2.16), then
{

in a general format in order to facilitate changing the stress direction

or the material. It would be very easy, for example, to generate 372 o e
) mgint(E) = —— 5 | K'da (2.1.2%~

masses for (100} stress in Ge, although this has not been done. The 4w (2€)

parameters listed in Table 2.1 are supplied as data, along with a para-

where the surface now has energy E. Other quantities computed in the
meter specifying the stress direction (¢100) , <110}, or 113}, The

) program include the density in each band and the fractional density
value of the stress is also supplied as data, allowing calculations

. in the light hole band. The program was written in FORTRAN IV and
for tension {stress > 0) as well as compression (stress < 0). To obtain s

was run on the Berkeley CDC 6400 computer. A listing of the program
output as a function of reduced energy E' = Ef|stress|, a value 21 is
follows.
generally entered for the stress. (The program does not perform th%;
calculation using the unit E°.) However, other reduced units are

used internally: k is given in units of k0 = 106 cm_]

and energies

are in units of E = ﬁzkgl(Z mu) = 2.6247 meV. In all output the energy

is expressed in mey. The integrals are computed as described in

Sec. 22.2. The optical mass components are calculated as in Eq. (2.27)

and combined according to Fgs. (2.30) and (2.31). The local density-of-

states masses are calculated as in £q. (2.15). The integrated : i
density-of-states mass is computed directly, not by integrating the

local mass. Equation (2.9) can be written as an integral over k

instead of energy:

y ¥
N o= ——-j szdkdsz
47°
0

(2.1.1)
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APPENDIX 2.2. CALCULATION OF THE KINETIC ENERGY AT FINITE TEMPERATURE

The evaluation of the integrals in Egs. {2.19) and {2.20) to the

necessary precision at finite temperature is described in this Appendix.

For electrons, the integrals are simply Fermi-Dirac integra]s,2'313
where
Fily) = ij(ex"y+ 17! ax {2.2.1)
o

is the Fermi-Dirac integral of order j. (There should be no confusion
in notation with the total free energy F.) For y < 0 and for y >> 1
asymptotic expansions which coverge rapidily can be used. In the inter-
mediate range, a 25-point Gaussian quadrature was found to be accurate.
The crossover points separating the ranges of y were chosen so that the
final functions were adequately smooth.

In the calculation of fﬁin’ the electron Fermi level is calculated
given the density n, via Eq. (2.19). The inversion of this eguation is

equivalent to solving an equation of the form

g{x) - const. = 0 . (2.2.2)

The Newton-Rapson iteration scheme,z‘]IQ for which

g(xn) - const. |
X = X - e {2.2.3
ntl = Xn g »
dx (Xn)

converges very rapidly since g{x) is a monotonic and "nice® function.
The derivative dg(x)/dx 1is easily evaluated by noting that for j>0
{Ref. 2.113)
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dF .
](y)

dy 3F ) (2.2.4)

The evaluation of Eqs. (2.19) and (2.20) for the holes involves

the computation of "modified Fermi-Dirac integrals,” in which xj is
replaced by a more complicated function. A 25-point Gaussian quadrature
works very well for most values of E?/kT. Because of the functional
form used for the masses, asymptotic forms are not available; for

E?/kT >> 1 it was necessary to use brute force {i.e., the trapezoidal

rule) in order to avoid overflow on the computer.
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CHAPTER 3. EXPERIMENTAL DETAILS

This chapter contains a description of the apparatus used in the
experiments described in this thesis. All of these experiments involve
the observation of recombinatio; luminescence from the electron-hole
tiquid and from free excitions in stressed and unstressed Ge. The
basic apparatus used here is standard for such luminescence experiments.
However, a special imaging technique was used in order to study
luminescence from small selected regions of the crystal. In addition,

some effort was required to obtain a sensitive and reliable detector

for monitoring small signals.

e
A

Yt

The Ge samples are described in Section 31, including their preparation,

mounting, and the application of stress. The overall setup is described
in Section 32. The detector is described in Section 33. Finally, the .
imaging technique and related calibrations are described in Section 34.
31. Samples
The samples used in the experiments described in this thesis were
cut from large single crystals of ultra-pure Ge grown by W. L. Hansen and

E. E. Haller3']

at the Lawrence Berkeley Laboratery. The starting material
was zone-refined. The single crystals were pulled from the melt by therAm
Czochralski method in a pure hydrogen atmosphere. The samples were cut
from crystals which were dislocation-free; such crystals always contain

hydrogen-vacancy c]usters.3']° 3.2

The Ge grown at LBL is used primarily
for gamma ray detectors, and much effort has been expanded in the
characterization of the crystals. Information about electrically active
centers is presented here. The role of these centers as recombination

centers and the resulting effects on the {nonradiative) EHL lifetime
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are discussed in Section 55.

Shallow impurities may be studied by far-infrared Fourier Transform
Spectroscapy.3'] The main acceptor is Al {jonization energy 10.2 meV) and
the main donor is P (ionization energy 12.0 meV). The material is not
highly compensated, i.e.,

N, + N

A D .

My hyl 10 s (3.1)
where NA and ND are the concentrations of acceptors and donors respectively.

in addition, for the samples studied here,

mno -3
fHy-Ngl < 1077 cm . (3.2}
Y
Deep levels may be studied by means of Hall effect measurements
or Deep Level Transient Spectroscopy;3‘3 {This is important for particle
detectors, since deep levels trap free carriers effectively.) An acceptor

level at ~80 meV is always present in dislocation-free crystals grown

in hydrogen; this level is be]ieved3‘2 to be due to the hydrogen-divacancy

complex. The concentration of these acceptors is ~2-4 x 101] e:m'3 in

as grown crystals. This is the only deep acceptor which occurs at a
measurably large {22 x 109 cm‘3) concentration.

Other impurities which are known to be present include 0 {concentration

13 6 -3
an V)

<5 x 10 cm”a), Si {concentration <10

, and H {concentration

<10'® w3

). The concentrations given are appropriate for crystals pulled
from quartz crucibles in hydrogen. None of these impurities is electrically

active.

-98-

The samples used in this thesis are listed in Table 3.1. They
were cut from LBL Boule No. 145 or 146. These two single crystals
(boules) were grown under the same conditions and have the same character-
istics {see Egs. (3.1) and (3.2) above). The samples were cut with
a diamond saw, with the edges oriented along crystal symmetry axes
as described below. The results presented here were primarily obtained
from crystals shaped like rectangular parallelopipeds and stressed along
the (111) direction, although a few experiments were performed on disc-
shaped samples stressed along (110%. A (1112 stress geometry results in
the production of a single strain weﬂ,3‘4 which is necessary for
measuring density profiles. For these samples, the face used for
excitation had edges parallel to the (111} and (112> directions, with
dimensions approximately 4 mm x 4 wm (see Table 3.1). The direction
perpendicular to this face was (110), and the thickness ranged from
~1.4 to ~2.8 mm. The primary samples were CR38 {thickness 1.75 mm)
and CR50 {thickness 2.8 mm). The latter sample was selected for
studying density profiles because the strain well was well separated
from all surfaces so that a good baseline was obtained in the imaging
experiments. Samples used in (110) stress experiments were cut into
~4 mm-diameter discs with a (100) face, using an ultrasonic cutting
tool. These samples were stressed off-center along the thickness, so
that only one strain well was formed within the crystal. A1l samples
were first lapped to remove saw damage, then etched in a 3HN03:HF
solution (“White" etch) for 1 to 2 min, followed by a methanol rinse.

In certain cases the faces being used for imaging were further polished

with Syton. Different surface preparations had surprisingly little
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effect on the image quality, as discussed in Section 34.

Samples with square faces were mounted in a samplie holder shown
in Fig. 3.1. The sample rested on a flat quartz plate and was stressed
from above by a nylon rod with a rounded tip. This nylon plunger was
threaded on the opposite end and screwed into a brass plug on the end
of a piece of thin-walled stainless steel tubing, in order to facilitate
changing plungers. The force on the plunger was transmitted by the
stainless steel tube from a calibrated spring arrangement outside the
helium cryostat, shown in Fig. 3.2. The force applied to the sample
could be varied up to approximately 23 kgf, depending on the spring
which was used.

The success of the experimental measurement of density profi]eg}
was contingent on the formation of a strain well with a “nice” shape, as
symmetric as possible. When two objects are pressed together, the
shear strain maximum occurs in the interior of the objects, rather than
at the surface. This is part of the solution to the Hertz contact
prob1em,3'5 which is discussed more fully in Refs. 3.4 and 3.6. The
distance between the shear strain maximum and the contact surface
depends on the contact area. Thus for experiments using a nylon plunger,
the following precautions were taken. The end of the rod was carefully
machined to provide a rounded surface with a radius of curvature of
several mm. The sample was stressed at voom temperature, typically
with a force of =9 kgf. This procedure resulted in a contact area of

z1 mmz.

For the density profile measurements a plunger with an ex-
ceptionally large radius of curvature was used, a larger force was

applied initially (=18 kgf), and a thicker sample was used; as a result
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the contact area was larger, and the strain well formed in this sample

was well separated from all surfaces and had a large volume (see Section 52).

For experiments in which a nylon plunger was used, after the sample and

plunger were cooled to helium temperatures the contact area remained

S’

relatively insensitive to changes in the applied force, as discussed

in Section 42.2. In one experiment described in the same section a
slightly rounded brass plunger was used to contact the sample through a
thin (0.002 in.) sheet of mylar, in order to provide a good contact
area; the stress was again applied at room temperature. In this case
the contact area was found to increase considerably with applied force. "y
If the mylar sheet was omitied with the brass plunger or if the stress ¢
was applied after cooling, it was usually found that small regions of

high strain were formed very near the contact surface, which attracted

EHD to rapid recombination centers at the surface. In many such cases

a strain well did not form at all., Thus the procedure described above

was necessary for the experiment to work.

The sample holder shown in Fig. 3.1 was arranged so that the samplé;v
could be viewed from three different mutually perpendicular directions. & :
Luminescence was collected directly from the square face (“face view"),
from the bottom via a mirror oriented at 45° and located below the
sample {“end view" or “bottom view"), or from the side via another
mirror oriented at 45° next to the sample (“side view"). The 45°
mirrors were constructed from glass prisms with right triangular
cross section cut to appropriate size with a diamond saw. The surface
corresponding to the hypotenuse of the triangle either had been
*silvered” commercially or was coated with an evaporated Ag layer

25000K thick to provide a highly reflective surface. The prisms were
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oriented to be front-surface mirrors. The sample holder and side
mirror were designed to accommodate samples up to ~9x9x4 mm3. The
viewing arrangement allowed the selection of the view or views most
suitable for a particular type of experiment and thus gave increased
experimental flexibility.
32, OQverall Setup

A schematic diagram of the overall setup is shown in Fig. 3.3. The
light source used for the creation of e-h pairs was a Coherent Radiation
Model 52 argon-ion laser, operated CW. The laser has been equipped with
several different plasma tubes; the most recent one had a maximum
output of approximately 4 W when new. Immediately in front of the
laser was mounted a glass microscope slide oriented at 45°, in order“
to direct a small fraction of the laser cutput into a Spectra Physics
Model 401 C power meter equipped with a S3 photocell. It was important
that the laser output remained stable throughout an entive set of
scans, up to a few hours in total duration. For this purpose a laser
stabilizer constructed by A. D. A, Hansen3'7 was used, which eliminated
laser drift for virtually indefinite periods of time. The laser
output was filtered through at least 2.5 cm of HZO to attenuate
infrared radiation from the plasma tube.

A special mechanical chopper ("laser razor") was constructed to
modulate the laser Vight. The chopper contained a 6 in. diameter Dural
wheel driven by an 1800 rpm synchronous motor. The wheel had several

windows with razor edges made from 0,001 in. stainless steel shim stock

supported from both sides. Thus there was a well-defined chopping plane.

The laser was focused onto the chopping plane and then brought back to

paraliel by a pair of 12.5 mm focal length Schneider-Kreuznach /2.7
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movie camera lenses. After a good deal of use it was found that the
laser was significantly attenuated by these lenses {possibly due to
degradation of the cement between elements of compound lenses), so¢ they
were recently replaced by a pair of 10 mm focal length, 8 mm diameter,
single element planc-convex lenses. These lenses are mounted on
translators which facilitate positioning the lenses properly. In
particular, the distance from the input lens to the chopping plane must
be determined very precisely, as discussed below.

For studies of the EHL in stressed Ge it was desirable to have
the length of a laser pulse be ~2 msec, with the turn-on time At $
a few usec, so that kinetic studies on the latter time scale would be
possible. The turn-on time is given by the time required for the razor
edge to pass through the laser beam and can in principle be made shorter
either by speeding up the wheel or by making the laser beam diameter
smaller. However, in practice the motor speed given above was held
fixed. The beam diameter may be estimated as follows. Suppose that
the intensity profile of the laser beam is Gaussian (this should be
the case if the laser operates in the TEMOO or fundamental mode). The
beam emerges from the Taser with wavelength A and diameter Dys measured
to the radial distance at which the intensity is reduced from its peak
value by l/ez. Suppose that a lens with focal length f is placed a
distance LK from the laser. Then the laser beam will be focused to a

diameter D2 given by3'8

2 -1/2
Dz = E(]‘Q’X ) (3.33)
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where
4A(L] - f)
X E ey {3.3b)
nD]

For the case at hand, use A = 514.5 nm, D1 = 1.5 mm, and L1 -f = 30 cm.
This gives
4 f

Dy = 4.4 x 107 (3.4)

Thus for f =12.5 mm, D2 = 5.5 ym. The turn-on time At may be estimated

as follows:

At = Doty . (3.5)

where v is the velocity of the razor blade edge as it passes through,
the laser beam. Suppose that the laser beam is positioned 5 cm from
the axis of rotation of the wheel. Then from Egs. (3.4) and {3.5),

v = 940 cm/sec and At =~ 0.6 psec. Another important parameter is the
depth of focus: how accurately the first lens must be positioned
relative to the chopping plane, or how accurately the chopping plane
must be defined, in order to obtain an acceptable value for At. The
depth of focus may be described by the confocal parameter b, which is
twice the distance from the focal plane {where the beam diameter is D2)

to the point where the beam diameter is J?‘DZ. The confocal parameter

is given by
2
o - WDZ )
2 2X (3.6)

For the above numerical exampie b2 = 92 ym ~ 0.004 in. Thus the
turn-on time should have an extremely well-defined minimum as the

position of the first lens is varied with respect to the chopping
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plane. In practice the minimum was not so well-defined, and the
turn-on time At was measured to be <4 psec, considerably longer than

predicted above. However, it should be noted that the laser does not

operate only in the TEMy, mode, and it is known™*8 that higher modes -
are broader spatially. In any case, the observed At was fast enough -
for all experiments described here. e

Several wheels were made for the chopper. The wheel used for
studies of the EHL in stressed Ge had 8 windows. The resulting waveform
was a square wave. The on-time was measured to be ~2.2 msec, which ’

corvesponds to a chopping frequency of 227 Hz and a rotation frequency *w .

of ~28 Hz. This is slightly slower than the nominal freguency mentionedg ;
previously, due to loading by the wheel. MNote that this window length
is nearly optimum: if the EHL lifetime T = 500 usec (see Sections 43,1
and 55) then the laser stays on (and then off) for about 4.4 1.
Assuming exponential decay, for example, the sianal would be reduced tq:
e’q"4 ~ 1.2% of its original value before the laser came on again. A .
second wheel with 24 windows was constructed for studies of unstressed o
Ge, where the lifetime is much shorter. The lifetime-to-window Tength{,™
ratio is not as favorable from the standpoint of optimizing signal
collection; however, it was impractical to have more holes.

Just after the chopper another glass microscope slide was located
at 45° with respect to the laser beam in order to select a fraction of
the (chopped) beam for use as a reference signal. This secondary beam
was detected with a Hewlett Packard 5082-4220 §i planar PIN photodicde.
An amplification circuit is shown in Fig. 3.4. In some cases the reference

signal was further amplified, as required by the subsequent electromics.
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Location of the chopper in the excitation path rather than in the
luminescence path served two purposes. First, it was possible to perform
either steady-state or time-resolved experiments without moving com-
ponents in the optical path. (An AC signal is required for maximum
detector sensitivity.} In addition, since the laser was actually incident
on the sample only half of the time, sample heating was reduced.

In the experiments presented in this thesis the laser excitation
was varied over nearly 5 orders of magnitude. The laser output could
be varied by a factor of =250 using the laser stabilizer to regulate the
power supply current. Additional attenuation was obtained by the use
of up to 3 Corning 7-98 glass neutral density filters, each with
transmission ~15%. b

The laser beam was steered by a mirror {Fig. 3.3) into the optical
cryostat and was focused to a 2100 pm spot on the Ge surface by a lens.
Several lenses were used throughout the course of this work, with focal
Tengths 8-12 cm. For the experiments veported here, the spot size on
the Ge surface was not critical. The focused spot was accurately
positioned on the excited Ge face by translating the laser focusing
Tens and was usually positioned near the strain well, so as to yield
the maximum drop size.

The Ge sample was located in an optical helium cryostat designed
by L. F. Mollenauer and constructed by the Physics Department machine
shop. Special features of this cryostat include two strain-free quartz
windows3'g mounted on opposite sides of the Dewar, allowing a light
collection cone with half angle 6 ~ 14°, and a built-in split-coil

superconducting magnet which required 1.2 Amp/kOe and routinely produced
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magnetic fields up to ~25 kOe. The magnetic field is directed along

the optical axis. The sample holder must fit into a slot with dimensions
1.190 4n. x 0.333 in. Helium bath temperatures as low as T = 1.6 K

were achieved by mechanically pumping the vapor above the helium bath;
the bath temperature was determined using a Hg manometer or a Zimmerli
gauge. Most experiments described here were performed either in the
range T = 1.7-1.9 K or at T = 4.2 K. At the lower temperatures the
properties of the strain-confined EHL are nearly independent of
temperature, and the bath temperature drifted by up to =0.2 K during

the course of a day's run.

Luminescence from the Ge sample was collected through the window
opposite to the excitation. For most of the experiments described in
this thesis, a precision lens (Fig. 3.3} formed a magnified image of
the luminescence on the entrance plane of a spectrometer, steered by
a deflection mirror. The imaging system is described in detail in
Section 34. A Corning 7-56 glass filter was used to remove visible light.
In addition, for the largest luminescence signals obtained, it was
necessary to attenuate the luminescence via a 10dB neutral density filter,
in order to prevent saturation of the electronics. The spectrometer
was a 1/4-meter /3.5 scanning grating spectrometer, Jarrell-Ash Model
82-410, equipped with a 590 grooves/mm grating blazed for 1.2 ym
radiation. Although efficiency vs. wavelength data were not provided
for this grating, it may be estimated from the data for other gratings
that the efficiency is ~60% for x = 1.75 um radiation.

Standard spectrometer slits were used for obtaining luminescence
spectra. For studying power dependences, 250 um slils were used,

with resolution (full width at half maximum of the s1it function)
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0.66 meV¥. When spectra were to be fitted, 150 ym slits were usually
used, with resolution 0.40 meV.

The output of the spectrometer was contained in a Tight-tight tube
arrangement, collected by a 2-1/2 in. focal length, 2 in. diameter,
plano-convex quartz lens, and focused onto the front surface of a cooled
Ge photodiode using approximately 1-1 optics. This detector and the
first stage of amplification typically had a combined response time
of 10 usec and are discussed in Section 33. The amplified signal was
then fed into a signal averager, in conjunction with the reference signal
from the photodiode located just after the mechanical chopper. The
signal averager output was routined to one or more of the following
devices: a strip-chart recorder, a teletype terminal, or paper tapg}
punch.

Several different signal averaging systems were used, depending on
the experiment and the available equipment. In order to obtain steady-
state spectra or spatial images, such as much of the data shown in
Chapter 4, a PAR single-channel (Model 160} or dual-channel (Model 162)
boxcar integrator was used, with a gate width of ~0.5 msec. In order
to obtain images at discrete times after turn-off of the excitation the
boxcar gate width was reduced to 10 psec. The delay times ranged from
5 psec to 2 msec. Note in addition that this time resolution is fast
enough to allow some useful kinetic information to be obtained for EHD
clouds in unstressed Ge {see Section 44.3).

In order to obtain the density profiles shown in Chapter 5, several
changes were made. Since steady-state images were required, a PAR
Model 186A synchro-het Lockin Amplifier was used. In order to reduce

the effect of the phase shifts due to the diffent lifetimes in different
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regions of the drop, the chopper (wheel and lenses) described above
was replaced with a simple wheel having a window Tength of =5.9 msec;
this chopper also provided a reference signal. The lockin output was

fed into an 8-bit A/D converter and then punched onto paper tape. The s

St

gain of the lockin was always selected to be the maximum possible without
saturating the A/D converter. The paper tape was read into the Physics b
Department’s IBM 1620 computer and punched onte cards. Further pro-
cessing was performed by the University of California’s CDC 6400 computer.
This cumbersome two-step process was necessary because the final program’
was too large for the 1620 computer and it was not possible to read :
paper tape inte the 6400 computer. L
The data discussed in Section 55 on the EHL lifetime were obtained
using a Tracor-Northern Model 575 Signal Averager. This unit had a h
20-bit 2048-channel memory which could be divided into quarters, and a:;
minimum time per channel of 10 usec. For these experiments the original
chopper was used, so that the turn-off time was well-defined. When the
memory was filled, its contents were printed on a teletype terminal. h
Several photographic images of the strain-confined EHL are shown ?ﬁd
Chapters 1 and 4. In order to obtain these photographs, the setup shown
in Fig. 3.3 was modified as follows. The deflection mirror was removed.
The imaging lens and a 75 mm focal length f/1.9 Wollensak Oscillo-amaton
oscilloscope camera lens were used to form an image of the luminescence
on an infrared-sensitive vidicon equipped with a Hamamatsu type N214 Pb
salt vidicon image tube. The tube has maximum sensitivity for visible
wavelengths, but has =10% of its maximum sensitivity at 1.75 pm. A
polished 0.5 wm thick Si disc filters out visible-wavelength radiation.

The vidicon signal is fed into a CRT video monitor and then photographed.
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33. Detector
In order to study EHL luminescence at low excitation levels it is
necessary to have a sensitive and stable detector. As discussed below,
the detector used here was somewhat less sensitive than another one
used in this group for studying low-temperature threshold phenomena;3'm
however, it is still significantly more sensitive than cooled, commercial
PbS detectors commonly used in other laboratories. It has the added
advantage of faster response time, allowing sensitive studies of the
kinetics of droplet phenomena. (PBS detectors have response times
>100 psec.)
The detector used in the experiments presented in this thesis was

a cooled Ge PIN device made from ultrapure Ge by E. E. Haller of thg

Lawrence Berkeley Laboratory. The dimensions were approximately
4-172 x 4-1/2 x 9-1/2 mm3. Two opposite 4-1/2 x 9-1/2 mﬂz faces

had diffused Li n+ and evaporated Cr Schottky barrier contacts.

The procedure for making the detector is exactly the same as for
making a nuclear radiation detector and is outlined in Ref. 3.1. The

detector was mounted between sheets of In foil, with a small amount
of Galn eutectic on the Li contact, in a cold-finger Dewar equipped
with a quartz window. Figure 3.5 shows the mounting arrangement.

The mounted sample was attached to a Cu plate, with a thin piece of
mica for electrical isolation and thermal contact. This sample
mounting plate was partially thermally isolated from the liquid

nitrogen cold finger by stainless steel tubing standoffs. The degree

of thermal jsolation was determined by the length of the standoffs,

which could be varied. Because of black-body radiation from the
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room-temperature walls of the Dewar and because of the imperfect vacuum,
the temperature of the detector crystal was higher than 77 K. Additional
temperature increases could be provided by a heater, which consisted

of a Zener diode. The temperature was monitored using a chromel-alumel
thermocouple attached to the sample mounting plate.

The operation of the detector for EHL luminescence is similar in
some respects to its operation as a nuclear radiation detector. The
device is operated as a reverse biased photodiode. Free carriers
created in the region depleted by the bias voltage are swept to the
contacts by the internal electric field. The depletion width is given

by:3:11
(.Z____~E°K(vb" +v)>‘/2 {3.7)

el

Here ¢ is the dielectric constant, Vbi is the built-in potential in the
Junction, V is the applied reverse bias voltage, C is the net impurity
concentration in the intrinsic region of the crystal (}NA - ND§ in cm'3),
€ is the permittivity of vacuum, e is the electronic charge and ¥W is

the depletion width in cm. For Ge, Vbi ~ 0.2 Volt which is <<V in most

cases, and k = 15.7 for T~ 160 K,%*'2 5o that

W= (173 x 10 w2 (3.8}

10 a3, and the voltage is

For a typical detector crystal C =~ 10
chosen to be large enough that the entire crystal is depleted

{e.g., W>4.5mm if ¥ 2 120 Yolt). A bias voltage of -180 V was
actually used (see Fig. 3.7). The time t required for carriers to be

collected may be estimated as :follows:
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t = Div s (3.9}

where D is the thickness of the device and v is the carrier drift
velocity. The drift velocity increases with the internal electric

3.13

field but saturates at v ~‘1O7 cm/sec. For the parameters given

above, the internal field E ~ 400 V/cm, for which v ~ 2 x ]06 cm/sec at
the operating temperature T ~ 160 K‘3’]3 Thus the collection time

t ~ 0.2 psec. (Note that if no external bias voltage is applied, the
buitt-in junction potential VM ~ 0.2 Yolt would result in an estimated
collection time t ~ 110 psec for this device.}

In order to sustain voltages of the magnitudes given above without
inducing breakdown via conduction across the surfaces of the device, it
is necessary to house the crystal in a clean vacuum system. Hydrocgrbons,
COZ’ abd H20 are particularly undesirable. The detector used here was
housed in a brass Dewar equipped with standard O-ring seals. The
vacuum space was continually pumped by a mechanical roughing pump through
a room-temperature molecular sieve trap, in addition to the cryopumping
provided by the nitrogen-cooled surfaces. The cold finger was kept
filled with liquid nitrogen in order to keep the detector as clean as
possible and to minimize thermal cycling. Although a better vacuum
could be obtained using other methods, the detector mounted in this
Dewar was found to have satisfactory and stable performance for over
two years.

The previous paragraphs have ipdicated some features of the detector
which are similar to those of a nuclear radiation detector. Features
relating to the detection of EHL luminescence are described next.

The possibility of using a Ge crystal to detect radiation emitted
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below the indirect gap at liquid helium temperatures is a result of the
decrease in the band gap with increasing temperature. Whereas Ge is
transparent to EHL luminescence at ~4 K, at higher temperatures this
radiation can be absorbed via an indirect transition and the rate of
thermal generation of carriers across the gap can still be reasonably loafﬂ
Figure 3.6 shows the relative detector response as a function of wave-
length for several different detector temperatures. The light source

was an incandescent lamp. The light was filtered to remove the

visible portion of the spectrum and then run through the spectrometer

to the detector. The temperature of the detector was varied using the s
heater shown in Fig. 3.5. The peak wavelengths for free exciton (FE) <
and electron-hole droplet {EHD) luminescence are indicated by arrows

in Fig. 3.6. The detector response falls off for wavelengths greater
than ~1.66 um because of the change in absorption length, due im turn &
to the indirect gap. Acceptable quantum efficiency can be obtained :
if the absorption length is < the depth of the detector crystal, here “
~Y cm. The quantum efficiency can be increased by raising the temperaE”
ture of the detector, at the expense of an exponential increase in the
dark current due to thermally generated carriers. It turns out that

the signal-to-noise ratio is a maximum when the absorption length is

~ the depth of the crystal and when the noise due to the thermal dark
current is comparable to the noise from the first amplification stage.
For this detector, the optimum temperature was that of thevﬂowest

curve in Fig. 3.6, labelled T = 141 K. If the quantum efficiency is
taken to be 1 for X < 1.66 pm, then for EHD in unstressed Ge the

quantum efficiency is ~41% under operating conditions. The quantum
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efficiency was marginally lower for the strain-confined EHL for

typical stresses studied here, due to the reduction in the energy gap
with stress. By comparison with Ref. 3.10 and with the absorption data
of Macfarlane et ai‘,3"4 apparently the detector crystal was about 20 K
warmer than indicated by the thermocouple readings. Thus the actual
operating temperature was T ~ 160 K.

The change in the detector response with wavelength was found to
have a negligible effect on the fitting of luminescence spectra.
However, it is necessary to take the change in detector response into
account when comparing signals with widely differing wavelengths, for
example different phonon replicas or the same phonon replica for
substantially different stresses. Y

Note that because the absorption length is ~1 cm, electron-hole
pairs are created throughout the volume of the detector crystal.

This is necessary in order to obtain the short collection times
indicated above. If the absorption length is too short the collection
time can become much longer, ~1 msec, due to surface channels which
create undepleted areas near the surface. The electron-hole pairs

are then created in field free regions and get collected slowly by
diffusion.

The detector was connected {via DC coupling) to a sensitive current
amplifier designed by Jan DeVries of the Space Sciences Laboratory,
as shown in Fig. 3.7. The amplifier was shielded to reduce magnetic
pickup. The response time is given by the feedback resistor and
capacitor, usually 10 MQ and 1 pF respectively, for R.C. = 10 psec.

FrF
Throughout this thesis the luminescence intensity or signal is given
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as the output of this amplifier, in mV. Although the signal is in
general amplified further, e.g., by the boxcar or the lockin, this
reference was chosen because it can be related to the luminescence

flux incident on the detector, as follows:

Vout = PrupPneRe/mv . (3.10)

Here P]um ts the luminescence incident on the detector, hv = 0.71 ey
is the photon energy, A is the fraction of the luminescence absorbed
into the Ge due to the index of vefraction, n =~ 0.4 is the quantum
efficiency of the detector discussed above, and RF =10 Mq.

The quantity A may be estimated using

2
_ n-1
A = 1 '(n+1> R
where n =~ 4.1 is the index of refraction of Ge at 0.71 eV and T ~ ]60)(.3']5
10

Thus an amplifier output of 1 mV corresponds to 2.8 x 107~ W incident
on the detector.

An absolute measurement of the sensitivity of this detector has
not been made. However, some experiments were performed using the
apparatus described here and the apparatus described in Ref. 3.10, with
the same sample. These experiments indicated that the sensitivity
of this apparatus is about 6 times less than that of the other apparatus.

Thus the detectivity may be estimated to be

*

p* = 3x10'% en oy g2 ’ {3.11)

for the detector used here. It should be noted that the detector

output was quite reproducible from day to day. For a series of runs
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extending over several weeks to collect the data presented in Chapter 5,
the daily normalization factor varied by only ~25%.
34. Imaging Technique

In order to measure density profiles for the EHL confined in a
strain well, it was necessary to obtain detailed information about the
spatial distribution of the luminescence emanating from the sample.
As shown in Fig. 3.3, a precision imaging lens formed a sharp, 3x mag-
nified image of the crystal onto the entrance plane of the spectrometer.
In early experiments on unstressed Ge, Pokrovskii3‘l6 and Martin3']7
obtained spatial profiles by translating the laser spot across the
sample, thus moving the image of the cloud of small EHD across the“
entrance slit of the spectrometer. Because the strain-confined liquid
remains fixed in the crystal, it was necessary to modify the technique,

as fo]lows:3’]8’ 5.19

The Tuminescence image of the entire sample

was translated across the front of the spectrometer, using a deflection
mirvor (Fig. 3.3) precisely controlled by stepping motors. A scanner
control circuit allowed precise digital positioning and recording of the

mirror tilt, or image position. The motor-driven mirror and scanner

control were constructed by J. E. Furneaux. A spectrometer s1it could

be mounted either vertically or horizontally, permitting only luminescence

from a narrow strip of the crystal to enter the spectrometer. A
luminescence profile obtained by scanning the luminescence image across
a §1it is called a slit scan. Alternatively, both vertical and
horizontal slits could be mounted simultaneously, permitting only
luminescence from a small region of the crystal o enter the spectro-

meter. Such a profile is called a box scan, since the crossed slits

-116-

were usually the same width. Box scans were used to obtain density
profiles, as discussed in Chapter 5. This technique allowed the
possibility of obtaining time- and wavelength-resolved image scans

or spatially-resolved wavelength scans.

S1it scans and box scans could be obtained along three orthogonal
spatial directions, using the mirrors (Fig. 3.1) to obtain different
views of the sample. The views and the conventions for the labelling
of crystal coordinates are shown in Fig. 3.8. A z-scan is obtained
by scanning either the face view or the side view of the image
vertically across a stit or box aperture. A y-scan is obtained by “
scanning either the face view or the end view horizontally across the .
aperture. An x-scan is obtained by scanning the end view vertically
or the side view horizontally past the aperture. The zero-point of
these scans is as follows: z = 0 at the face of the crystal
contacting the plunger; y = 0 at the center of the crystal (below
the plunger); and x = 0 at the face of the crystal illuminated by the
laser. The distance the image was translated by one step of the -
stepper motor was different in the vertical and horizontal directionsy
these distance were about 8 um {e.g., z-scan) and 12 um (e.g., y-scan)
respectively. Because the optical path lengths were slightly
different for face, end, and side views, the step sizes were also
stightly different.

The spatial resolution of the luminescence images deperded on several
factors: {1} the resolution of the lens and the focusing accuracy,

(i1) the size of the slit or box aperture, (iii) the sweep speed used
for the scans, and (iv) the optical quality of the crystal surface.

Each of these factors is considered below.
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A Zeiss Tessar 105 mm focal length £/3.5 camera lens was used to
obtain high quality images, with the f/stop fully open for maximum
sensitivity. The resolution of such a lens is, at the very worst,

50 Vines/mm or 20 ym. The lens was mounted on an xyz translator equipped
with micrometers and was positioned along the optical path to give the

best focus, with the sample and spectrometer fixed. The best focus

was indicated by the narrowest drop profile, for moderately low excitaqlon.

The focusing procedure was repeated for each view, due to the differing
optical path iengths. It is necessary that the focusing be done using
EHL Tuminescence, since the focal length of the lens changes with
wavelength, due to the change in the index of refraction of the glass.
Indeed, the characteristics of many optical glasses are simi]ar;z‘zo
the focal lTength is about 5% longer at 1.75 um than at 0.5 pm.
The image blur resulting from an error in the lens position may
be estimated as follows. The optical system consists of an object and
an image plane separated by a fixed distance, and a lens with a
particular focal length and aperture. At optimum focus for 1.75 um
radiation, the setup results in image magnification M = 2.9. Suppose
that the lens is positioned a distance 8 from the correct position.
As a result of this misplacement, the plane actually containing a
focused image is displaced from the intended image plane and the
image is slightly blurred on the spectrometer slit. This image blur

3.21

depends on the lens aperture A, on M, and on §, and may be referred

back to an object size. The object blur b then refers to the

object
minimum apparent object size and is given by
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b, - M-1)
object MAIR

8 . (3.12)

Here AIR is the lens aperture for 1.75 um, which is about 5% greater
than the value for visible light due to the change in focal length

mentioned above. A reasonable upper limit for § is 0.25 mm, from the
focusing data. For the other parameters given above, the resulting

object blur b < 45 ym.

object
A slightly different imaging problem occurs because the image planes

for vertical and horizontal slits are displaced from each other by

a distance A =~ 3 mm, while the focussing procedure was performed for

only one slit orientation. It is much more important to refocus for

the different views, because in that case the error would be in the

object distance {which is shorter than the image distance, due to the

magnification). As mentioned above, the lens was indeed repositioned

each time a different view was desived. The object blur resulting from

a change A in the image distance is given by

- A
bobject - MiM-rliAIR : (3.13)
For the values given above, the resulting object blur bobject = 70 um.

For future experiments using box scans it would be desirable to use a
single-plane pinhole aperture, since the object blur given by Eq. (3.13)
is greater than the effective aperture size given below.

In order to estimate the effect of the finite slit width, consider
a spherical {or ellipsoidal) object with constant density. The
luminescence profile from a s1it scan of such an object {single drop of

strain-confined FHL or cloud of small EHD in unstressed Ge) should be
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g0 = (28 (3.14)

where x 1s the slit position and R is the radius. The full width at

half maximum (FWHM) of the slit scan W, related to R by
R o= W//Z . (3.15)

These two relations are true if the width of the slit function is
sufficiently small compared to R. For a slit {or box) scan, the slit
function is rectangular, with width s equal to the slit width measured in
sampie coordinates. Equation (3.15) is true to within a few percent if
$ < 0.7 W . For the case s = 0.7 W_ the shape of the profile is affected
by the finite stit width, but the width (FWHM) of the profile is notl
significantly changed. The data presented in Chapter 4 were obtained
using standard 250 pm or 150 um spectometer slits, allowing resolution of
radii 2 85 um or 50 um respectively, due to image magnification. In
addition, Eq. (3.15) is used in Chapter 4 to cbtain radii for the strain-
confined EHL as well as for clouds of small EHD in unstressed Ge. This
procedure is adequate for the semi-guantitative analysis presented there.
For the data presented in Chapter 5, however, standard 100 pm spectrometer
slits were used in order to provide the possibility of increased resolution
(=35 ym, including image magnification). Further, since the deviations
from uniform density are considered in detail im this chapter, drop sizes
are usually given in terms of Hs’

The sweep speed was always chosen so as not to affect the width
of the scans. Indeed, in Chapter 5 the sweep speed was selected so that
the dwell time per point was =4 times the instrumental time constant,

in order to measure the shape of the profiles as accurately as possible.
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The optical quality of the Ge crystal surface is the most difficult
parameter to estimate quantitatively. In addition, it is very difficult
to prepare an optically flat surface. Even with the most careful polishing
procedures, scratches significantly larger than the nominal grit size are-
nearly always introduced. Further, since the index of refraction of
Ge is ~4, the gptical flatness is degraded by a factor of ~4 compared o
the physical flatness. The problem is compounded by the fact that a
relatively small intensity anomaly in a box scan is transformed into
a much larger anomaly in the resulting density profile (see Section 54),
Two different surface preparations were used on the two primary samp}es.i"“
For sampie CR38, the primary sample used in Chapter 4, after the etchingls
procedure described in Section 31 the faces through which luminescence
was collected were polished with Syton. For sample CR50, the primary
sample used in Chapter 5, the sample was prepared only as described
in Section 31.

R

The overall spatial resolution may be estimated as follows. STit

scans along the x, y, and z directions are recorded and the radii Rx’ Ry

and R, are computed using Eq. (3.15). Then the drop volume V = 4/3 « R;R&RZ

s

is computed as a function of excitation level, as shown later in Fig. 5.2
for sample CR50. The break in the slope for small drop sizes is evidence
for loss of spatial resolution. From these data it can be seen that the
s1it scan FWHM is a good indicator of drop size for W 2 100 pm

{or R 2 70 um) for sample CRS0 and for ws Z 140 ym {or R 2 100 um) for
sample CR38. The difference between these values could be due to the
surface preparation or to the other factors mentioned above. Because the

variation in density with position is smaller for small drop sizes
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(see Chapter 5), this resolution is satisfactory for the experiments
described here.

This chapter is concluded with a discussion of several calibrations.
The excitation level is given throughout this thesis by the actual
laser power Pabs absorbed into the Ge sample. This was obtained by
measuring the laser ocutput at various points in the optical path using
a Scientech calorimeter, which has flat response from the ultra-violet to
the far infrared. 1t was verified that no significant infrared radiation

from the laser plasma tube was transmitted through the H,0 filter.

2
The procedure was repeated both with and without the laser razor equipped
with lenses, as well as with and without the neutral density filters

in place, since the transmission of the filters depended slightly og’
taser output. The laser output was measured before and after the

helium cryostat so that the correction for only the entrance windows
could be made. The transmission into the Ge sample was computed using
the optical constants n = 5.06 and k = 2.50 at ~5145% and 120 k.3 1°
These coefficients are not expected to change appreciably at lower

temperatures.3'22

Thus only 47% of the incident laser light is absorbed
into the Ge sample at 4 K.

The absorbed power Pa was varied between 0.02 wi and 850 mW. For

bs
the higher excitation levels, the question of sample heating must be
considered. Indeed, in order to interpret the experimental results
obtained at the highest excitation levels, it is necessary to show that
the EHL was not heated above the critical temperature, which is calculated

in Section 24.2 to be Tc =~ 5 K for an appropriate value of the stress

2,
-0 = 5 kgf/mm~ in Ge. The most extreme temperature increase would occur
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if all the absorbed energy in a "pulse” of excitation went into heating

of the sample. In this case the energy per pulse

abs

The lattice heat capacity at Tow temperatures is given by™

= 2+ n ()

X At = 0.85 w 1 6 msec =

5.1 md

3.23

(

3.16)

where V is the sample volume, n, = 4.47 x ]022 cwf3 is the number of Ge

atoms per cm3, and GD = 360 K is the Debye temperature for Ge. The

temperature increase is then obtained from the following expression:

R
hWolo =71 - ¥
¢ 3n nak

1.3 x 10°

agfen

(

3.17)

Here T0 is the initial (bath) temperature, T] is the final temperature,

U is in Joules and V is in cm3.

this results in a final sample temperature Tl ~ 19 K!

For a sample with dimensions 4x4x3 mm”,

However, for

3

such

Tong pulse lengths the situation should be considered as for continuous

excitation. In this case the temperature increase AT is given by3'

- RR

AT 5

2

(

4

3.18)

where P is the power input, A is the surface area of the sample, and R

is the Kapitza resistance, which is the thermal resistance between the

sample and the bath. FollowingRef. 3.24, if the value R = SO/Tg cm

2

for a Cu-liquid He? interface is used, where T, ~ 1.9 is the bath

temperature, then AT = 7.7K, so that the sample temperature would

still be predicted to rise to T

1

=~ 9.6K.

deg !
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Clearly a more direct measurement would be desirable. The most
direct method to test for a relatively large temperature increase is via
fitting the EHL luminescence limeshape. However, as discussed in detail
in Chapter 5, for the highest excitation levels the density varies by a
vactor of ~3 with pesition in the drop, and a composite theoretical
lineshape must be used in order to interpret the experimental lineshape.
Thus far a satisfactory model for the composite lineshape has not been
devised. If the high-energy half of the luminescence spectrum is
instead fit to a single density (which would correspond to some average
density), a crude estimate can be made of the EHL temperature by Tooking
at the high-energy tail of the lime. Such an amalysis indicates that
the EHL temperature may be slightly above the bath temperature of ~{f9 K
but is certainly less than 4 K.

In addition, it may be noted that Hansen3‘7 measured the temperature
increase in a carbon resistance thermometer attached to a Ge sample with
dimensions similar to the samples used here. Under 200 m¥ continuous
incident excitation, which corresponds to Pabs ~ 100 mW, he measured a
temperature increase of ~0.15 K. If this temperature rise is simply
scaled with excitation, as in Eq. (3.18), then for the highest excitation
Jevels used here a temperature rise AT =~ 1.3 K and a final temperature
Tl ~ 3.2 K would be expected. Thus it seems probable that the EHL
temperature is somewhat higher than the bath temperature, perhaps by
~1 K, but that it is certainly less than the liquid critical temperature
TC ~ 5 K.

Finally, an estimate may be made of the collection efficiency of

the imaging optical setup, in order to relate the measured luminescence
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signals to the actual radiated power. Consider the drop to be a radiating
object imbedded in a medium with index of refraction ~4. When the
radiation reaches the interface, some is transmitted and the rest is
reflected back into the Ge. It is assumed that only the radiation which,...
is transmitted on this first pass contributes to a well-defined image b
of the drop; the rest results in a diffuse background. Then the ]umines%@nm
intensity incident on the detector depends on the effective collection cone
of the optics within the Ge sample, as well as the transmission of the
various optical elements. The collection cone is determined by the

imaging lens and has half-angle 8 = 5.6°, which corresponds to a collection
cone with half-angle 6 = 1.4° within the Ge, due to the index of Lol

refraction. The transmission of the windows, lenses, and mirror in

the Tuminescence collection path was measured for visible light from the

laser, as described previously. The spectrometer efficiency was b

estimated above to be =~60%. Thus

_ -5
Prum = 2-4 X 1077 ¢ Poy R (3-J§I

where PMm is the luminescence power incident on the detector as in s
Eq. {3.10), and Prad is the power radiated by the EHL. The factor ¢

has been included to indicate that the transmission of the lenses and
windows should be corvected for 1.7% um radiation; the value of ¢ is

not precisely known but is approximately 0.5. Equation (3.19) may be

combined with Eq. (3.10) to yield

vout =85 ¢ Py . (3.20)

This calibration is used in Section 55 to estimate the radiative efficiency

of the strain-confined EHL.
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CHAPTER 4. PROPERTIES OF THE STRAIN-CONFINED
ELECTRON-HOLE LIQUID IN Ge
41. Introduction

The properties of the electron-hole liquid are expected to vary with
stress, as discussed extensively in Chapter 2. Due to the reduction in
the band gap with stress, the tiquid energy is also reduced under stress.
Thus in a non-uniformly strained crystal, EHD are attached to regions of
maximum shear strain. It has been shown that, by applying a contact
stress over a portion of the crystal surface, it is possible to create
one or more energy minima within the interior of the crystaﬂ.4’1_4‘3

The contact stress is produced by applying a moderate force to Fhe
sample with a rounded plastic plunger, as discussed in Section 31. é%al]
EHD produced near the light excitation point are attached to the potential
wells and coalesce into large masses of electron-hole liquid. The potential
minima are located in regions of the Ge crystal where the local strain
tensor is approximately equivalent to a (111) uniaxial strain,4‘]’ 4.2
since the deformation potential is largest for uniaxial strain along the
(1113 axis. If the contact force is applied along a direction other than
(111), potential minima occur along (111) axes radiating out from the
point of contact. Thus, one, two, or four drops are produced when the
contact force is applied along (111), (110), or (100) directions,

respectively.4‘]'4“3

These multiple drops are found to have similar
properties irrespective of the direction in which the contact force is
applied, consistent with the idea that in each case the potential minima

correspond to a local (111) uniaxial strain.
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In addition, it has been shown® ' %2

that the shear strain
maximum results in an energy lowering for the EHL only if the maximum
(111) stress is greater in magnitude than Ogs where the conduction band
degeneracy is completely removed. As shown in Chapter 2, this occurs
at “Oy = 2.6 kgf/mmz. Thus the strain-confined liquid is only observed
if the maximum stress fop| > }oe[. At stresses greater in magnitude

than o, {(where -o,_ =~ 6.5 kgf/mmz) the valence band degeneracy is also

h h
removed., For most of the experiments described in this chapter, Oy is
between % and Opys thus corresponding to the intermediate stress regime
or Ge{1:2), in the notation given in Chapter 1.

The drop size is found to increase with excitation level.
At moderate excitation levels, then, corresponding to drop radii
$150 um, the liquid occupies a region of strain sufficiently uniform
that the equilibrium properties of the liquid may be studied. The
results presented here are in reasonable agreement with the theoretical
calcuylations presented in Chapter 2. At higher excitation levels and
for larger drop sizes, the liquid is actually compressed by the strain
well. A detailed description and understanding of this phenomenon is
presented in Chapter 5. Since the compression affects many of the
experiments, in this chapter only a semi-quantitative discussion is
given of the results for large drop sizes.

The formation of macroscopic volumes of strain-confined liguid
is a phenomenon quite distinct: from the usual EHD formation in un-
stressed Ge. In this chapter, the strain-confined liquid is termed a
y-drop, in contrast to the small (~1-10 um in sizea'4) a-drops in

unstressed Ge. If an unstressed sample of Ge is illuminated by a laser
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beam focused to a point, the EHD produced by the Tight will form a

4.5.4.6 of small dropiets; this cloud increases in size as the

cloud
laser intensity is increased. Experimental results presented in this
chapter--infrared imaging, kinetic studies, and spectroscopy--show

that a cloud of small drops is readily distinguishable from the strain-
confined liquid. Experiments have been performed on both stressed and
unstressed ultrapure dislecation-free Ge crystals. Where possible,
dirvect comparisons are made between the y-drop and a cloud of a-drops
produced in the same sample when the stress is removed. Most of the

4.7, 4.8 The measurements may

results have been published previously.
be grouped into Several categories:

1) Spectroscopy of the electren-hole liquid. The recombination'’

Tuminescence was measured vs. wavelength at 1.8 K and 4.2 K for various
laser excitation levels. The luminescence linewidth from the y-drop

is constant at low excitation levels, indicating a constant e-h pair
density in the liquid. From these data at intermediate stresses an
estimate is made of the equilibrium density ny(].BK -g =~ 6 kgf/mmz) =

0.50 x 10]7 cm"3, compared to the a-drop density na(l.BK =

2.2 x 1017 cm°3.4'9 Luminescence from excitons in equilibrium with
the strain-confined liquid was observed, giving an estimate of the
exciton condensation energy, ¢ ~ 1 meV. Aside from the spectral
differences between o- and y-drops, the intensity of the y-drop
Tuminescence was observed to be relatively independent of temperature
between 1.8 and 4.2K, indicating that the strain gradient inhibits
boiloff from the liquid. In addition, many of these properties have

been studied as a function of stress. Evidence is presented that

only one conduction valley is occupied in y-drops.
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2) Decay kinetics. Time dependence of the total luminescence
yields the volume decay time TY =400 to 600 usec, compared to Ta:=40 usec
for a-drops at 1.8 K. This enhanced TY is relatively constant below
4.2 K, consistent with a reduced density and inhibited evaporation from
the strain-confined liquid. The y-drop lifetime is found to be greatly i

reduced in dislocated Ge.

3} Imaging of the recombination luminescence. Time-resolved spatial

profiles of y-drops and a-clouds are obtained by scanning the crystal
image across the spectrometer slit. Under certain conditions, small

EHD are observed flowing into the strain well in a sharply-defined streamir.
Taking into account the difference in y~drop and a-cloud lifetimes,
comparisons can be made between the y-drop density and the average

e-h pair density over the a-cloud. The cloud density is two orders of
magnitude smaller. Under square-wave modulated excitation, decays of
these luminescence profiles have been observed at 1.8 K. The radius of
the y-drop decays in time, as expected, whereas the cloud radius does :
not. Results are in agreement with previous Alfvén wave measurements.4*mgﬂ
The change in shape of a y-drop in a magnetic field is described,
including steady-state and kinetic behavior.

The experimental techniques were previously described in
Chapter 3. In Section 42 the spectroscopic properties of y-drop and
free exciton luminescence are discussed, including the measurement of
the y-drop density and the exciton condensation energy ¢. The stress
dependence of the luminescence is also discussed. The lifetime and
temperature dependences of the luminescence are discussed in Section 43.

In Section 44 the spatial properties of y-drops and a-clouds are compared,
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including the dependence on the excitation level and on the time after
turn-of f of the excitation source. The section concludes with a
discussion of the magnetostriction of y-drops.

42. Spectroscopy of the Recombination Luminescence

In Ref. 4.1 it was shown that y-drops form in 3-dimensional potential
wells created by the inhomogeneous strain. The luminescence spectrum
is shifted by the strain to lower energy than the spectrum of a-drops
in unstressed Ge. Figure 4.1 shows a complete spectrum for a sample
stressed in the (111) direction, showing the T0-, LA-, and TA-assisted
phonon replicas. For the applied force of 9 kgf the spectrum is
shifted by about 2.5 meV from the a-drop spectrum. In this seclion the
intensity, lineshape, and energy of the y-drop luminescence are stué{ed
under various experimental conditions.

42,1, The Liquid-Gas Phase Transition

In order to establish the existence of a liguid-gas phase transition
it was necessary to observe the excitonic gas in equilibrium with the
electron-hole liquid. At 1.8 K, however, the number of free excitons
(FE) evaporated from the liquid was not sufficient to observe their
radiation. The number of FE was presumably reduced by backflow into
the Viquid, caused by the stress-induced potential gradient at the 1iquid
surface. Thus to observe the equilibrium excitons it was necessary to
raise the temperature and reduce the excitation level, thereby creating
a small drop in the shallow portion of the strain gradient. Figure 4.2
shows the luminescence spectra for several excitation levels at 4.2 K,
revealing the existence of two distinct spectral lines which are
interpreted as the liquid and gas phases. The EHL and FE peaks are

closer than in an unsiressed sample, indicating a reduced exciton
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condensation energy.

The onset of the liquid-gas phase transition is clearly observed.
At the Jowest excitation levels only the exciton Tuminescence at
710.7 meV is present. As the exciton density is increased a distinct
pumping threshold in the EHL luminescence intensity is observed.
Figure 4.3 shows the EHL and free exciton intensities vs. excitation
power showing that once the nucleation of the liquid phase has occurred,
additional e-h pairs added to the system go predominantly into the liquid
phase without greatly increasing the number of excitons. A similar

41 gor small EHD

threshold phenomenon has been studied extensively
in unstressed Ge and is a characteristic property of drop nucleation
from the saturated gas.

To confirm that both phases occur in the same region of the crystal,
luminescence image scans were performed as described in Sections 34 and 44.
Figure 4.4a shows a scan in the x-direction for the exciton phase near
threshold, and Fig. 4.4b shows a similar scan for the liquid phase at
a higher excitation level. It can be seen that both phases are
spatially localized in the strain well.

The liquid, which has a higher equilibrium density, is concentrated
near the center of the well, whereas the gas occupies the entire well.

From the spatial distribution of the excitons, the shape of the strain
well can be estimated. By treating the excitons as an ideal gas and
setting the chemical potential equal to a constant, the gas density

profile is expected to be

E _(r)
nir) = n(0) exp{- —py— . . (4.1)
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As in Ref. 4.1, the strain energy is taken to be parabolic: Es(r) = arz
where v = 0 is the center of the strain well. It follows that the

Juminescence intensity in a slit scan is

a(x—xo)2
I{x) = 1{x,} expi- —7— . (4.2)

where Xq is at the center of the well. The open circles in Fig. 4.4a
represent Eq. (4.2), with o = 11 meV/mmz. This value is in reasonable
agreement with the 2-dimensional calculation of the EHL energy vs position
presented in Ref. 4.1. However, o does vary with experiment, depending

in particular on the stressing rod; see Section 52. Thus the shape of

the free exciton distribution is satisfactorily explained in terms of

an ideal gas, at the lattice temperature, in a potential energy gradient.

Because the free excitons are localized in the strain well, the
effective volume of the gas is smaller than that which can be obtained
in unstressed Ge with uniform pumping over a large surface area. Thus
the exciton luminescence intensity at threshold is smaller for in-
homogeneously-stressed samples, and the free excitons have so far been
observed only at temperatures T > 3.3 K.

From the gas and liquid energy spectra, it is possible to measure
the condensation energy ¢ lost by an e-h pair in the gas-liquid
transition. As discussed in Section 23.3, it is theoretically expected
that ¢ will be smaller in samples under (1112 stress than in unstressed
Ge. This is evident in Fig. 4.2, from the greatly reduced separation
between the EHL and exciton luminescence lines, as compared to unstressed

Ge. However, ¢ cannot be simply measured by the splitting between these

-132-

two lines: At such high temperatures, the EHL spectrum is broadened
even near threshold, due to the enhanced compressibility of the liquid;
and at all temperatures, the shape of the FE luminescence line must be

corrected for broadening due to the strain gradient. A preliminary value

of ¢ =~ 1 meV has been measmr'ed""“]2 from the EHL and FE luminescence

-

Hersie

lineshapes and separation at a somewhat lower temperature (T=3.3 K},

using these modifications of the analysis. A similar value for ¢ was

4.12

also measured thermodynamically, from the temperature dependence of

the exciton density at the threshold for drop formation. A detailed stddy

of the strain-confined electron-hole fluid phase diagram would be G

4.13

interesting. The value ¢ = 1 meV should be compared with ¢ =~ 2 meY-

(T=3.5K) 1in unstressed ge. b-14: 4.15

42.2. Stress Dependence of the Luminescence

Figure 4.5a shows the variation of the luminescence peak energy as.
a function of applied force F. It can be seen that the peak energy
shifts linearly with F, above a critical force F ., similar to experi-

ments on uniformly stressed Ge.4']6 However, the origin of the dis-

%

continuity in slope is believed to be different in the two experimentsy.,
A (111)-uniaxial stress splits the conduction band degeneracy in

Ge, raising three valleys in energy and lowering the fourth. At the

critical stress A this strain splitting becomes equal to the electron

Fermi level inside the liquid {see Section 23.3}). At higher stresses

only the lowest valley is occupied, and the luminescence peak shifts

to lower energies parallel to the shift of this conduction band edge.

At lower stresses, when all four valleys are partly occupied, the

Tuminescence peak position is almost independent of stress, and apparently
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shifts slightly to higher energies. Only for stresses larger in
magnitude than g, are EHD attracted by strain gradients toward regions
of higher strain.

In the inhomogeneous stress experiments (Fig. 4.5), when the
applied force is small, the maximum stress oy, is smaller than O in
magnitude, so that EHD are not attracted to the point of maximum Stress;
indeed, they may be slightly repelled. For these low applied forces,
the luminescence is due not to carriers inside the well, but to small
droplets in a cloud near the laser spot. Thus the luminescence peak
{Fig. 4.5a) is only weakly shifted by the stress, while the linewidth
AE {defined as the full width at half maximum of the luminescence
spectrum} (Fig. 4.5b) and lifetime v (Fig. 4.5¢) are characteristic v
of o~-drops in unstressed Ge.

Once F exceeds some critical value Fes however, the drops in the
cloud are attracted to the stress maximum, forming a y-drop with very
different properties, as seen in Fig. 4.5. The force FC is in general
not the same as the force at which Oy = Ogs since the cloud of drops
is localized near the crystal surface and will not be attracted into
the well unless SaMI is somewhat larger than ]oeﬁ. Once small drops
are attracted into the well, a y-drop forms, with a greatly enhanced
recombination 1ifetime (Fig. 4.5¢) and peak luminescence intensity

(Fig. 4.5d), and a reduced linewidth (Fig. 4.5b), all characteristic

of a reduced e-h pair density {see discussion in Sections 42.3 and 42.4).

For F > Fc’ the luminescence is due to carriers inside the well,
and the stress-dependent properties of y-drops can be studied. The

luminescence peak is seen to shift to lower energies approximately
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Tinearly with F(F > FC). The magnitude of the strain at the bottom of

the well cannot be measured directiy,4'17

but is estimated from the shift
of the y-drop luminescence peak, assuming that the stress at the bottom
of the well is essentially a (111)-uniaxial stress. As shown in
Ref. 4.1 and in Section 52, this is a reasonable assumption. Using the
peak energy vs. uniaxial stress ‘data taken from Ref. 4.16, the resultant
stresses are calculated and shown at the top of Fig. 4.5.

The changes in the properties of y-drops with stress (for F > FC
in Fig. 4.5} are not yet understood in detail. As shown in Section 23.1,
the y-drop density is theoretically expected to decrease with (111)-stress;

4.18-4.20 where

this result has been observed under unmiaxial (111r-stress,
the Tuminescence Tinewidth was seen to decrease with increasing stress.
In the strain well there are complications which can make this density
change harder to observe. As discussed semi-quantitatively in the
next section and in detail in the next chapter, the drop tends to
compress, increasing the average pair density above the equilibrium
value. The compression should be more significant at higher stresses
for two reasons: Tirst, the strain gradient is larger, and second,

the compressibility of the liquid increases with stress, as the
equilibrium density decreases {see Fig. 2.20). The luminescence
linewidth, Fig. 4.5b, does not decrease as in the uniform stress

4.18-4.20 However, the pair recombination time does increase

experiments.
with increasing stress (Fig. 4.5¢c), suggesting a corresponding decrease
in pair density, which may be masked in Fig. 4.5b by an inhomogeneous
line broadening {see Section 42.3). Because of these complications,
the lineshapes in Fig. 4.5b have not been analyzed to yield the

liquid density. A systematic study of n{c) and t(c) for the
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strain-confined EHL would be useful, both to complement the uniform-

stress experiments4'18"4'20

and to compare with the theory presented in
Chapter 2. It should be noted that the sharp decrease in lifetime or
intensity, which had been reported in earlier uniaxial stress experiments
(Ref. 4.21}, is not cbserved.

In Fig. 4.5a, the Yinear energy shift with applied force suggests
that the contact area is relatively constant, unlike the classical

Hertzian contact prob]em.q’zz’ 4.1

An explanation of this is that the
nylon plunger undergoes a plastic deformation when the 9 kgf force

is initially applied at room temperature. The nylon becomes stiffer

at liquid helium temperatures and retains the initial contact area for

a wide variation in force. This conclusion is supported by birefringence

data4‘]

which show that the position of the strain maximum is only
weakly dependent on force.

By contrast, Fig. 4.6 shows the results of a different experiment,
in which the stress was applied through a metal plunger. A slightly
rounded brass rod contacted the crystal through a thin sheet of mylar.
{The mylar interface reduced the effect of small high stress regions
at the contact, caused by surface irregularities.) This case more nearly
resemblied the classical contact problem: an increase in the contact
area with stress was observable in the birefringence, and the maximum
stress point moved deeper into the crystal with increasing stress. The
brass, being less deformable than nylon, made contact with the Ge over
a smaller area A. This caused a larger maximum stress Gy = F/A and
strain gradient for a given force, and accordingly a smaller threshold
force for the formation of y-drops. Note that the luminescence for

F = 9 kgf has shifted as much as for F = 18 kgf with the nylon plunger.
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{This is especially significant since the force was here applied
along (110); see below). From the solution of the classical problem

of two perfectly elastic contacting spheres, it is expectedq'22 that

2/3 1/3

A«F For this case Oy = F/A <« F77, which is plotted as the e

solid curve on Fig. 4.6a. In this curve, the point F = 0 was shifted toww

give the best fit. Possible reasons for this shift are: (a) it was :

difficult in the experiment to determine precisely the point at which

the rod first made contact with the crystal; and {b) at liquid helium

temperatures, the mylar interface may have been distorted, giving an

apparent minimum value of A>0. s
The effects of compression of the liquid are more evident in this .

metal-plunger experiment: the strain gradient is larger, and the drop

size is larger due to an increased Pabs‘ The Tuminescence linewidth -

{Fig. 4.6b) increases and the lifetime (Fig. 4.6c) decreases with

stress, corresponding to an increasing density with stress. Also the ¢

total luninescence decay is quite non-exponential, indicating that theﬁ )

density decreases as the drop size decreases. h
In Refs. 4.1 and 4.2 it was shown that 1, 2, or 4 energy minima i

for the EHL can be formed by stressing along <1113, (110}, or 100}

respectively. It was found that all of these cases actually correspond

to drops forming in regions of local (111} strain, so that the properties

of the strain-confined liguid should be independent of the direction

of the applied force. Figure 4.7 shows a comparison of y-drvop

luminescence spectra obtained for approximately equal applied forces

along (111>, (110), and <100) directions, as well as for o-drops in an

unstressed sample. (The force is applied via the "permanent” stress
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geometry as in Fig. 17a of Ref. 4.1.) Because y-drops form in regions
of local (111 strain, the energy shift should vary with the projection
of a particular (111) axis on the applied force direction. This
conclusion is qualitatively verified in Fig. 4.7 where the shift in

the (100) and (110) stressed crystals is considerably less than for
ain stress.4'23 The magnitudes of the shifts are approximately in
agreement with the predictions of Ref. 4.1. Note that for all three
stressed samples the luminescence linewidths are similar, and are
narrower than the linewidth from the unstressed sample.

Because the properties of the strain-confined EHL are independent
of the direction of the applied force, most of the experimental results
presented in this thesis are for samples stressed along (111), sincé}
only a single drop forms. The rest of this thesis wil} deal with
the properties of y-drops at (approximately) a fixed value of the
stress, loM{ = 5-§ kgf/mmz, corresponding in the experimental arrangement
to an applied force F =~ 9 kgf.

42.3. Luminescence Linewidth; Compression of the Strain-Confined Liquid

Assuming that a relatively constant fraction of the photoexcited
carriers go into a single y-drop, the properties of the strain-confined
Tiquid can be studied as a function of drop size by simply varying the
excitation level. Figure 4.8 shows the luminescence linewidth AE {full
width at half maxtmum of an energy spectrum) plotted vs. absorbed laser
power Pabs‘ The crystal was stressed along the (111) direction, with
F ~ 9 kgf and ch§Q=5-6 kgf/nmz, estimated from the energy shift of
the Juminescence spectrum. At Tow excitation levels, i.e., for

sufficiently small drop size (PabS < 5 mW, R £ 200 uym), the linewidth
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is constant, indicating a constant density within the liquid. In this
regime the lineshape is used to estimate the e-h pair density, as
discussed in Section 42.4. For higher excitation levels, i.e., larger
drop size, the linewidth increases with Pabs‘ For comparison, Fig. 4.8
also shows the Vinewidth of the luminescence from a-drops in unstrained
Ge. As anticipated, this width is independent of excitation level.

Several factors contribute to the power dependence of the y-drop
Tinewidth., The total luminescence s a superposition of the luminescence
from different parts of the drop. Since the magnitude of the stress is a
function of position in the well, the luminescence is shifted to higher
energies near the surface of the drop, where the magnitude of the stress
is lower. From Ref. 4.1, the strain energy is approximately parabolic,

with

- 2
ES(r) = g (4.3)

measured from the bottom of the well, with a = 8 me\l/mm2 for typical
experimental conditions. Thus for a 400 um radius drop, the luminescence
energy would vary by ~1.3 meV across the drop.

Since the strain gradient acts as a restoring force on electrons
and holes, a deep potential well also acts to compress the liguid,

resulting in an increased pair density and luminescence ]inewidth.4'24

It can be shown4‘25

that for small variations from the equilibrium
density ny» the density variation within a y-drop is approximately

given by

a(r) = o[+ ae-A] (4.9)
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where R is the drop radius, & = a/ngE; and E; = (dZE/dnz)n:no is
related to the compressibility of the liquid. The quantity

ngE; ~ (.36 meV for a stress -o = 6 kgf/mmz, using Model 1 in

Chapter 2. Thus the density is greatest at the center of the drop

and falls te the equilibrium value fy at the surface of the drop.
According to Eq. (4.4), for a 400 um-radius drop, n{r=0) = 4.5 n,-
For such a large drop the deviatien from the equilibrium density is no
longer small; Eq. (4.4) must be regarded as only approximate and
should be replaced by the exact theory described in Chapter 5. The
density variation across a 100 um-vadius drop, however, is only about
20%. It is clear that such a large compression has an important effect
i

on many properties of the y-drop; indeed, it is the subject of the

next chapter. In the following sections of this chapter, however,

several instances where the data show evidence of compression are noted.

Figure 4.9 illustrates the effect of the strain inhomogeneity
at the highest light levels. Trace {a) is the spectrum from the
center of a large drop at moderately high excitation, Pabs = 58 mi;
spectrum (b) is from a small region near the edge of the same drop;
and spectrum {c} is from a smaller drop for which PabS = 1.4 md. The
narrowest spectrum is from the small drop, where the density and
strain are uniform to within ~10%. Spectrum (b) represents the
liquid near the surface of the drop: Here the luminescence line is
still somewhat broadened by the strain gradient over the observed slit
aperture. The peak of the luminescence is shifted to higher energies,
since the local strain is smaller than that at the bottom of the well.

Spectrum {a) is a superposition of spectra from liguid at all depths
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in the well. Spectra (b) and {c) may be used to give another estimate
of the strain well parameter a, as follows: Since trace (b) was obtained
at r = y =~ 320 um (see Sec. 34 for definition of coordinates), Eq. (4.3)

yields a = 7 meV/mmZ. This is in reasonable agreement with the estimate

S

in Section 42.1 and the prediction in Ref. 4.1. These data clearly
illustrate the role of spatial inhomogeneities in the line broadening s
at higher excitation levels.

42.4. Determination of the Pair Density

Figure 4.8 showed that at low excitation levels the luminescence
Tinewidth AE, which is a measure of the electron plus hole Fermi energieib
is independent of power. This means that for sufficiently small drops =
(R < 150 um}, the strain is relatively uniform across the drop and the
e-h density is constant. This constant density is characteristic of a
Tiquid phase.

The luminescence linewidth of y-drops obtained for Pabs < 5 mh is g
actually =30% smaller than the linewidth of a-drops, measured from the k
same sample with the stress removed. This occurs in spite of the fact -
that in stressed Ge the electron degeneracy is reduced. The electron .

Fermi level depends on the density n as
e n
EE « (.1 (4.5)
P (5)

where Ve is the conduction valley degeneracy. Since the y-drop does
not form until the electron degeneracy is removed (ve reduced from
4 to 1), the observed decrease in AE for the y-drop implies that the
density must be considerably lower than in a-drops. Indeed, such a

reduction in density 1s predicted theoretically in Chapter 2.
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The equilibrium e-h pair density in a y-drop may be determined by
fitting the luminescence lineshape at low laser pump intemsity. The
tuminescence intensity for the LA phonon-assisted line is given by
£q. (2.38) and {2.39), which include the splitting of the conduction
and valence bands with strain and the nonparabolicity of the valence

bands. Figure 4.10 shows a fit of the LA phonon-assisted Tuminescence

4.26
-0y

theoretical points are for a density of n = 0.50 x 10

= 6.8 kgf/mn2, and T = 2.0 K. The
17

Tine for pabs = 0.17 mld,
an”. By
analyzing several lines, the following average value was obtained:

3

n = 0.50 £ 0.05 x 1077 e (T = 1.8-2.0 K,

Y
- oy = 5-7 kgf/mn’) . (4.6}

This is in good agreement with the theoretical result according to
Model 1 from Chapter 2: n = 0.43 x 10‘7 cm-3 for -0 = 6 kgf/mm2
and T=2K.

The low-energy tail in Fig. 4.10 is present in all y-drop spectra,
and is more pronounced than the tail observed in unstressed Ge (see Fig.
5.7). In unstressed Ge, as discussed in Section 22.3, this tail has been
interpreted as partly due to Auger processes modifying the recombination
energies of carriers deep inside the Fermi sea.4‘27 Also, an additional
contribution may arise from a “forbidden” luminescence line associated

4.28

with 1.0 phonons. It is not Tikely that the magnitude of either

effect could be enhanced in y-drops.
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In addition to an analysis of the luminescence lineshape, other
methods have been used to estimate the e-h pair density. In a magnetic
field, the carrier energy is guantized into Landau levels, and many
properties of the carriers have a quasi-sinusoidal modulation with period
«l/H. That is, the property undergoes a change whenever (j +1/2)ﬁwc = Eps
where w, = eH/mzc is the cyclotron frequency, mg is the cyclotron mass
of the carrier and j is an integer. In experiments on a-drops in
unstrained Ge, periodic osciliations have been observed in the luminescence

4.29, 4.30 4.31, 4.32 4,31

intensity and far-infrared absorption and emission.

There should be separate sets of oscillations due to electrons and

4.33

holes, but so far only oscillations due to electrons have been resolved. '~
Similar magneto-oscillatory effects are expected for properties of y-drops.
Indeed, magneto-oscillations in the luminescence intensity of y-drops

4.34

have been observed by Furneaux. These oscillations are apparently

due to oscillations in the pair recombination time T, as in unstressed
Ge.4'29’ 4.30 The data were analyzed assuming that the oscillations were
due to the electrons and that only one electron valley was occupied. From
the analysis the electron Fermi energy was fTound to be E; = 2.3x0.12 meV
(T = 1.6 K) for low excitation (Pabs ~ 3 mW} and a stress Ty = 6 kgf/mmz;
this yielded a value n, = 0.52:0.05 10" ¢ ? for the e-h pair density,
in good agreement with the fit of the luminescence lineshape. At higher
excitation levels the period of the oscillations was observed to increase,
corresponding to a larger electron Fermi energy and a‘higher average
density, due to compression of: the liquid.

4.35

Ohyama, Hansen, and Turney observed oscillations in the attenu-

ation of longitudinal ultrasound by y-drops in a magnetic field. These
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oscillations should have the same period as the oscillations in luminescence
intensity. From the period of the oscillations they derived the electron

Fermi level and hence the density inside the y-drop. The density they

abtained was nY = 0,62 £ 0.04 x 10}7 cm“3 (T = 1.8K). However, they

were using moderately high excitation (Pabs ~ 20-40 wW), so that com-~

pressional effects should have been significant, explaining the higher

4.36

value. Indeed, they too found that the period of the oscillations

varied with excitation.

The pair density has also been estimated by Markiewicz, et a]ﬂ.Z,Q.IO,

4.37-4.40 from Alfvén resonances in the microwave absorption of y-drops.

Standing electromagnetic waves are set up inside the drop, and a

i
resonant absorption occurs when the Alfvén wavelength approximately
matches the drop diameter. The resonant magnetic field should provide

a measure of the quantity (nsz). Determining R from a simultaneous

imaging experiment, these data imply nY = 0.7 % ]017 cm"3 {T=1.8 K).4'41

This represents some kind of an average value, since the dependence of

the density on drop size was not considered in the anmalysis. As such

it is in reasonable agreement with the estimate of Ohyama, et a1.4'35

However, the analysis is compiicated since the theory has only been
done for spherical drop shape, while the y-drop becomes markedly
non-spherical in a magnetic field, as discussed in Section 44.4.

The y-drop density has also been estimated from experiments on the

4.42-4.44

absorption of 3.39 um infrared light. The densities quoted

are higher than those observed in other experiments: Pokrovskii and

4.42, 4.43 3 44

Svistunova found no= 1 x 10V a3, Mattos et a1. 5% found

nY =2 X 10]7 cm'3. However, the results rely on an absolute measure

~-144-

measure of the hole interband absorption cross-section %, at 3.39 um,

and the two groups disagree on the appropriate vailue to use.Q'45

{1t

is even possible that this cross section changes with stress.) Until

this point is clarified, it is difficult to know the accuracy of these o
results. It should be noted that the drops observed in Refs. 4.42 and
4.43 were large enough that there could have been some compression,

and apparently the stress was not determined.

Finally, the pair density was measured by Aurbach, et 31.4’46 from.
observation of far-infrared plasma absorption. This experiment yie]ded“
nY =4 x 10]6 cm'3 for F ~ 9 kgf. The size of the drop could not be
readily determined, although the peak position of the IR absorption G
did not shift significantly when the power was reduced by an order
of magnitude, suggesting n = constant. HNo correction was made for
additional absorption due to transitions between the two hole bands
{Refs. 4.47-4.51). Consequently, this value may require some modification.

With the qualifications mentioned above, these measurements of tbg
equilibrium density are in reasonable agreement. The most reliable ;
and accurate measurement is obtained from the fit of the luminescencegw
lineshape, however, and that value agrees well with the theoretical

prediction made in Chapter 2.

42.5. Conduction VYalley Degeneracy

Theoretically, it is clear that a large (111)-stress should split
the four conduction band valleys by a large enough amount that only a
single band is occupied. This gives a clear explanation of the break
in the slope of EHD peak luminescence vs. stress, observed by

4.21

Alekseev, et al. and Benoit 2 la Guillaume, et a].4']6 Similarly,
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it explains the sudden jumps observed in nonuniformly stressed samples
in Eo’ AE, 1, and I as functions of applied stress {Figs. 4.5 and 4.6).
That is, the point of maximum shear stress in the sampie does not become
an energy minimum for the EHL until after the conduction valley
degeneracy is removed. However, it is of interest to consider the
direct experimental evidence that only one conduction valley is occupied
in y-drops.

The most direct evidence is given by the angle dependence of the

4.52 The data were taken in

ultrasonic attenuation, reported by Hansen.
a {110)-plane over a range within 20% of the (100)~direction, and show
only a single series of magneto-oscillations. The angle dependence of
the oscillation peaks is consistent with the variation of cyclotron Wass
{Ref. 4,53) in the occupied valley. If all four valleys were occcupied,
there would be two other sets of peaks, corresponding to the cyclotron

masses of the other valleys.

The conduction valley degeneracy Ve Can also be inferred indirectly

by comparing the data on the luminescence limewidth and the magneto-
oscillations of the Tuminescence {Sec. 42.4). The first measures the
sum of the electron and hole Fermi energies Eg + EE, while the second

measures only the electron Fermi energy Ei. Specifically,

EF = E§ + E? ~ 4.66 meV from the Tuminescence Tinewidth, and
E; =~ 2.30 meV from the magneto-oscillations. This yields E? = 2.36 meV
which corresponds to n =~ 0.47 x 10‘7 cm"3 (for T = 2.0K and
Oy = -6.8 kgf/mmz). This density in turn corresponds to E? = 2,15 meV
{for Vg =1), 1.35 meV (for Ve =2}, or 0.85 meV (for Vg =4). (These

calculations all contain the assumption that the masses are unchanged
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from bulk Ge.d's4

} Assuming for the moment that E? may be approximately
described by a scalar hole mass L this argument can be restated more

quantitatively. Llet y = mde/mdh' Then

E = E§ {l+y v§/3} . (4.7}

Using the values EF = 4.66 meV {luminescence linewidth), EE = 2.30 meY
(magneto-oscillations), Mo = 0.22 s and Tah = 0.201 m {the average
hole density-of-states mass for the lineshape calculation of Fig. 4.10),

Eq. (4.7) gives vy = 0.91.4:55

Thus the values measured for EF and EE
are consistent only if Ve =1.

This degeneracy Vg =1 can also be inferred from the angle dependence
of the Alfvén resonances. The experimental result is quite striking:q'SG
The resonance approximately follows the angle dependence of the electron
cyclotron resonance in a single ellipsoid, having 180° symmetry in a
{110)-plane characteristic of Ve = 1, rather than the 90° symmetry which
would occur if Ve =4. This angle dependence is expected theoretica11y5'4o

Finally, the cyclotron resonance of electrons outside the drop has

been observed by Markiewicz.q'z’ 4.7

This experiment showed that most
of the electrons are located in a single valley corresponding to the
same (111) direction as that associated with the drop. The experimental
result is interpreted4”7 as further evidence that Vg = 1 for the strain-

confined Tiquid.
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43. Lifetime and Temperature Dependence

43.17. Enhanced Lifetime for the Strain-Confined Ligquid

The lifetime of the liquid phase is governed by several processes:
{1) direct radiative recombination of electrons and holes; (2) (non-
radiative) Auger recombination of an e-h pair, whereby kinetic energy
is given to other carriers; (3) non-radiative recombination due to
impurities or lattice defects; and (4) evaporation of free excitons or
carriers from the surface of the EHL. In unstressed Ge, surface
evaporation has been observed above about 2K and is characterized by
a non-exponential decay .and a cutoff time; below this temperature
the volume decay mechanisms usually predominate. Even though the
binding energy ¢ of the EHL with respect to FE is reduced under stréés,
the boiloff of excitons is less important, because of the much larger
drop size and increased volume-to-surface ratio and because the strain
gradient inhibits boiloff. A cutoff time is not usually observed for
the strain-confined liquid, due to the difficulty of observing luminescence
from a single drop of sufficiently small size. Thus the effects of
boiloff will be neglected in this section. (See, however, the end of
Section 43.2.)

In addition, it is known that the oa-drop lifetime is unchanged in

-3 4.57

samples containing a density of up to ]0]5 cm ~ shallow impurities,

2 dislocations.4‘58

or up to ~IO3 em The samples used in this thesis

are ultrapure and dislocation free, as discussed in Section 31. Thus the
impurity and defect contributions to the e-h pair recombination time

will also be neglected in this section. This will allow a semi~

quantitative understanding of the y-drop lifetime. A more detailed
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analysis is undertaken in Section 55.

In this section, then, only radiative and Auger processes are
considered. To first order, the two-particle radiative recombination
rate depends linearly on the e-h pair density of the Viquid phase,
whereas an Auger rate depends on higher powers of the density. A e
reduced e-h pair density in the liquid, obtained by stressing the L
crystal, would diminish the Auger contribution to the total recombination
rate more than the radiative contribution. Thus the lifetime would .
be expected to become longer and the radiative efficiency would be
expected to increase.

Figure 4.11c shows the decay of the total EHD luminescence for an o
unstressed sample after the light was switched off. The a-droplet ]ife§MM
time at 1.8 K was found to be 36 psec for this sample, in good agreement..
with published values.?- 16, 4.59-4.61

Figures 4.11a and 4.11b show the much Tonger decay times
characteristic of y-drops. At low excitation levels (Fig. 4.11a,

?abs = 1.1 mW) the decay is exponential, with T =~ 530 sec. At higher™.

excitation levels (Fig. 4.11b, P

abs = 119 mi) the decay is noticeably .,

non-exponential. A non-exponential decay is expected if the liquid i
is compressed: Initially, when the drop is larger, the decay is faster,
suggesting a high average pair density. As the drop shrinks, the
average density decreases and the instantaneous decay rate becomes
slower. For very long delay times, the decay typically becomes
exponential, with a time constant comparable to that found in Fig. 4.11a

for smaller drop size. Figure 4.12 shows the change of initial decay

time T with pumping power. If the decay were purely radiative
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(1 = n']), such a change in T would suggest that the average density
is approximately doubled in the largest drops (R = 400 um). For
smaller drop sizes the density becomes uniform and F approaches an
equitibrium value. This value is somewhat sample dependent, but Ty=:550
usec as shown in Fig. 4.12 is typical.

Considering only radiative and Auger processes, a simple model
may be used to understand the increased y-drop lifetime. The volume

decay rate is written as the sum of two terms:

-1 _ -1 -1 s 4.8)
T = Trad + TAug Bn+Cn . (

The coefficients B and C are considered for the present to be constqqts,
and s=2 or greater, depending on the dominant type of Auger process.

The radiative efficiency is defined as follows:

€ = 1/t (4.9)

rad rad

For a-dvops, estimates of the radiative efficiency ¢
z80%.4.30, 4.62-4.64

f
rado Tange from

~25% to In order to be specific, Pokrovskii's

more recent va!ue4'65 ~30% will be used in this discussion, along
with standard values™ 2 n, ~2.2x 107 ™3 and T, ~ 80 psec. These
values and Fq. (4.8) yield values for B and C, which may be used along

with n, = 0.50 x 16%7 en2 from Eq. (4.6) to predict the y-drop lifetime.

Using s=2, this analysis gives T = 380 usec and € rady = 65%, while

ad

for s=3, TY = 520 usec and € 90%. For both cases the radiative

rady ®
efficiency of y-drops is found to be considerably higher than for.
a-drops. In addition, the lifetime is predicted to be greatly enhanced,

in semi-quantitative agreement with the measured Tifetimes.
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The simplified model discussed here neglects several things: (1) the
density dependence of the radiative enhancement factor p, which is a
measure of the spatial electron-hole correlation; (2) other possible
stress dependences of the coefficients B and C; (3) a density-independent
nonradiative decay process present both in stressed and unstressed Ge,
which might be negligible for a-drops but not for y-drops. A more
detailed model of the recombination processes is the subject of Section
55, in which the density variation discussed in earlier sections of
Chapter 5 will be utilized.

43.2. Temperature Dependence of the Luminescence

So far results have been presented for samples in superfluid liquid
He4 (T~ 1.8K}). At higher temperatures, the a-drop lifetime is
considerably shortened due to boiloff of excitons.a'59 For y-drops
the effects of boiloff are greatly reduced by the strain gradient:
an exciton which boils off the surface of the y-drop will be pulled
by the strain back into the drop in a time short compared to the exciton
recombination time.a‘2 The force of an exciton due to the strain
gradient is approximately [ —Za;, where a is the strain parameter of

Eq. {4.3). The exciton thermal velocity v, = \/3kT/mx ~ 6.4)(106 cm/sec

T
at T = 4.2K, using m, = 0.05 M If an exciton evaporates from a y-drop
of radius R = 100 uym and moves radially away at the thermal velocity Vs
then it will be accelerated back into the drop in 0.02 psec, or less

than 12 of its lifetime, assuming a = 8 meV/mmz. Thus, even at 4.2K,
shortening of the y-drop lifetime due to boiloff of excitons is

greatly inhibited. This explains the very small number of FE

observed in the well even at 4.2 K (see Section 42.1). Figure 4.13

shows the Tuminescence intensity vs. temperature for y-drops and for
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a-drops at two different light levels. The y-drop signal is relatively
independent of temperature, while the a-drop signal is strongly
temperature-dependent, due to boiloff.

Figure 4.14 shows the initial decay time T; 35 2 function of excitation
level at 4.2 K, for the same (111) stressed sample as in Fig. 4.12
(Sample CR38). The shorter initial time at higher excitation levels
is evidence of compression. At all powers the lifetime is longer at
4.2K than at 1.8K (Fig. 4.12), and it levels off to around 670 psec for
small drop size. An increase in lifetime is expected to accompany a
decrease in the y-drop equilibrium density at higher temperatures; the
temperature dependence of the density is discussed in Section 24.

The lifetime of y-drops at 4.2 K depends sensitively on the deféils
of the strain well configuration. In sample CR38, when the stress was
reduced by 1/2, the decay was nonexponential, qualitatively having the
characteristic time dependence for boiloff-1imited ]ifetime.4‘59
For crystals stressed along a (100)-dirvection, the strain well is
usually guite shallow, and strongly temperature-dependent lifetimes
have been observed.4'46

44. Luminescence Profiles

The spatial position, size and shape of a y-drop in Ge are observed

4.66 of the recombination luminescence.

most directly by a vidicon image
Figure 4.15 shows a series of y-drop photographs obtained at different
excitation levels for (111)-stressed sample. At low excitation levels
an approximately spherical mass of liquid is formed in the bottom of

the potential well. At higher excitation levels, the increased volume

of e-h liquid fills a larger portion of strain well, displaying a

-152-

non-spherical shape. For typical values of the liquid surface tension

-4 erg/cm2)4'67

(os ~ 10 and strain parameter (o =~ 8 meV/mmz), the strain
and surface energies are equal when the drop radius R ~ 30 um. Since
the strain energy increases as RS, while the surface energy increases
only as RZ, for large drops the strain energy dominates. Consequently o
the drop shape conforms to a surface of constant strain energy.

A more quantitative measurement of the luminescence intensity as
a function of position in the sample is obtained by the slit-scanning
method described in Section 34. This technique also permits a time-
resolved observation of the luminescence profile after the excitation

is switched off.

44.1. Spatial Profiles of y-Drops

Figure 4.16 shows a set of p-drop slit scans at two different
Taser excitation levels. These slit scans, obtained with =85 um
spatial resolution, clearly show a large increase in the volume of the
EHL as the excitation is increased. The boundaries of the crystal ’
are well defined by scattered luminescence light.
using Eq. (3.12) to obtain R from the FWHM of a slit scan. For ccnst;At
e-h pair density and laser production efficiency the simplest model

would predict that the drop volume is proportional to Pps® OF

1/3 P1/3

R« Pabs: abs

The measured radii deviate from the simple power
dependence at both the highest and lowest excitation levels. The
apparent leveling off of the drop radius at low laser levels is likely
due to the finite s1it width and the irregular etched surface of the

sample, which limit the resolution. (From Alfvén resonances in a
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similar sample, the radius was measured down to ~30 um.} It is observed
that the drop is not spherical, i.e., Rx ] Ry 2 Rz‘ refiecting the
anisotropy of the strain well.

in order to observe the total Tuminescence from the whole drop
without spatial selection, the total EHL Tuminescence intensity was
measured with no slits in place. This "total” luminescence intensity is
plotted as a function of absorbed power in Fig. 4.18, which shows that
the total intensity varies approximately linearly with Pabs over nearly
three orders of magnitude. This is expected for the case where the
production efficiency Eorod {the number of e-h pairs in the drop per
photon absorbed) and the radiative efficiency €rad {the fraction of
pairs which decay radiatively) are constant. For constant €

prod® the

number of e-h pairs in the drop is simply proportional to Pab it

5
can be seen from Fig. 4.17 that for Pabs 2 10 mi the drop volume V « RnyRz
increases more stowly than Pabs’ while the total Tuminescence intensity

in Fig. 4.18 is still Tinear with Pabs‘ This is further evidence that

the liquid is compressed by the strain well for R 2 150 ym, and is
consistent with the increased luminescence linewidth, reduced lifetime,

and shifted magneto-oscillations observed at higher Pabs“ For comparison,
Fig. 4.18 also shows the total EHL luminescence intensity for the same
crystal after the stress was. removed; this represents the total luminescence

intensity from a cloud of a-drops. The deviations from linearity are

undoubtedly due to the complex mechanisms of cloud formation.
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An estimate of the e-h pair production efficiency can be made
from the data obtained for low excitation. For a steady-state experi-

ment the number of e-h pairs in the drop is given by

N - Fy - —abs™%prog (4.10)

Eph

where n is the average pair density, V is the drop volume, ™ is
the initial decay time for N, and Eph is the energy per photon

of laser light. For low excitation, where the density is constant,
Fen~0.50x 10" en> from Eq. (4.6) and Ty = v, ~ 550 psec from

Fig. 4.12. For this sample (sample CR38) ¢ =~ 30% + 10%, when

prod
the laser was focused to a position close to the strain well. The

value of ¢ decreases as the laser spot is moved further from this

prod
position or if the beam is significantly defocused.

At the very highest excitation levels, interesting new phenomena
occur as the strain well becomes nearly filled with liquid. In Fig. 4.15,
the final photograph shows the drop obtained for PabS = 800 md. The
shape of the drop is non-spherical, reflecting the shape of the strain
well, In addition, there is a well-defined "tail" of luminescence
extending below the drop, approximately parallel to the (111) stress
direction. This luminescence tail is rather sharply defined both in
the face view shown in Fig. 4.15 and in the side view (not shown). It
probably consists of small EHD, originally created near the laser spot,
being collected into the strain well.

This explanation s supported by the following considerations. At

such high excitation levels the EHD created near the laser spot are
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propelled throughout a 4x4x3 mm3 crystal, as discussed in the next
section for the case of zero stress. Consider those droplets which
are driven into the lower part of the crystal. They are attracted to
the well by the strain gradient, with the channeling of their motion
induced by the carrier mass anisotropy, as discussed by Markiewicz.4'68
This is illustrated by Fig. 4.19, which is reproduced from Ref. 4.68.
Figure 4.19a shows the results of a two-dimensional calculation of the
EHL energy shift in a crystal non-uniformly stressed along (111).
The force on a droplet would be normal to these constant energy
contours. However, because of the carrier mass anisolropy, the
acceleration of an EMD is not necessarily parallel te the force.
Figure 4.19b shows contours of constant "acceleration potential® gx
The droplet acceleration should be normal to the contours shown in
Fig. 4.19b. Thus droplets in the lower part of the crystal first
move perpendicular to the stress direction, as they cross several
acceleration potential contours rather rapidly; then they move
parallel to the stress axis into the well, moving more slowly across
fewer contours.

This channeling has been observed4'68 at lower excitation levels
by positioning the laser below the strain well. However, in Fig. 4.15
the tail was observed with the laser spot close to the well. If the
excitation point is chosen in the lower portion of the sample and
translated in the y direction {perpendicular to the stress axis}), the
bottom of the tail is observed to move also. However, the tail moves

away from the laser spot, as illustrated in Fig. 4.20. This figure

shows three spatial y-scans, obtained with spatial resolution =35 um
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in the y direction and ~700 ym in the z direction, with the image
centered at Zy = 2.8 mm below the top of the crystal. The scans were
obtained for different laser pump positions, shown on the inset.

For Fig. 4.20c the laser was positioned near the well, while for

Figs. 4.20a and 4.20b it was positioned near the bottom of the crystal
near opposite sides. The broad features in scans (a) and (b) are

part of the cloud surrounding the excitation point. It can be seen
that the EHD tail shifts by ~0.4 mm when the laser is translated from
point a to point b. It seems clear that a directional force associated
with the laser pumping position is invelved. Such a force could be
provided by a wind of phonons coming from the excitation point. The
interaction of EHD with phonons has been the subject of a number of
recent experimental and theoretical studies?‘69"4'74 primarily in
connection with the formation processes of a cloud of EHD in unstressed
Ge. It is likely that a phonon wind is responsible for the motion

of the EHD tail illustrated in the figure.

44.2. Comparison with Clouds of a-Drops

The results for unstressed samples are considerably different
from the results of the previous section. Previous experiments have
shown that in unstressed Ge a cloud of small drops {each with radius

4.5, 4.6, 4.75, 4.76

1 to 10 ym) is formed, for point excitation. The

average density of e-h pairs in the cloud has been estimated by light

15 cm_3, indicating ~1% filling factor of gwp. -5

scattering to be ~10
The cloud size increases with increasing excitation level, contrary to
a simple medel of EHD or FE diffusion into the crystal. The mechanisms

of the cloud formation are not presently understood in detail,
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although there is increasing evidence that a phonon wind, originally

69

proposed by KeIdysh,a' is responsible for many general features of

4.70-4.74, 4.77 In addition, if the excitation is very well

4.73

a-clouds.
focused, striking anisotropies have recently been observed in the
cloud shape, which are reasonably well explained by the channeling of

4.72

phenons in elastically anisotropic Ge, and by the anisotropy of

the electron-phonon interaction.4'74’ 4.78

The results presented in this section illustrate some general
features of o-clouds and show that they are easily distinguishable
from y-drops via the spatial distribution of the luminescence.

Figure 4.21 shows a set of slit-scans for the same sample before and
after the stress is removed, for Pabs = 2.8 md. The a-cloud peak i
intensity is much lower, and the size of the profile is significantly
larger, than for the y-drop, indicating a much lower average density

of e-h pairs in the cloud than in the y-drop. For the stressed samples,
the largest drop was always cbtained when the laser was focused near
the strain well. For the scans taken after the stress was removed,

the laser spot was tramslated to a position near the center of the
pumped face of the crystal.

Luminescence profiles for the cloud in the unstressed sample are
shown in Fig. 4.22 for three different laser intensities. For low and
moderate excitation “st = 0.45 mW and 5.1 w in the figure) the
cloud has a fairly well-defined surface, as observed by others
(Refs. 4.5, 4.6, 4.75, 4.76}. Figure 4.23 shows a profile for the
x direction under increased spatial resolution {=~50 um, compared to

~85 ym in Fig. 4.22}, for moderate excitation Uzbs= 11 mW). The peak
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of the distribution is distinctly separate from the edge effect peak
at x=0, the surface on which the laser is incident. This result

is in contrast to earlier results,a‘ﬁ’ 4.76

in which no such separation
from the crystal surface was observed.
At higher excitation levels (Pabs =47 mM in Fig. 4.22), the cloud

3

seems to nearly fill the 4x4x2 mm” crystal. (The lumps on these

siit scans may be due to imperfections on the crystal face or possibly

to anisotropy in the cloud shape.4'73

} The increasina effect of the

contribution to the phonon wind associated with the excitation point is

illustrated in Fig. 4.24, which shows three x-scans for %bs = 29, 83, and

290 mM. As the power is increased, the droplets are more forcefully

blown away from the pumped surface. 1t should be noted that some of the

phonon wind effects are observed here only at high excitation because

the laser was not very well focused; when the laser is focused more

carefully, the peak of the distribution moves well into the crystal

and the cloud anisotropies are apparent at lower excitation 1evels.a‘73
Figure 4.25 shows the measured dependence of the cloud radius

on excitation level, for low and moderate excitation only. The radius

in the x direction was obtained from the half-width at half maximum

of the slit scans, measured from the peak of the distribution deeper

into the sample. It is clear from these data and from the above

discussion that the shape of the a-cloud is complex: it is neither

spherical nor hemispherical, and it does not scale in a simple way with

excitation. However, a hemispherical cloud model is least inaccurate

at Tow excitation and provides a concrete way to estimate the average

e-h pair density within the cloud by comparison with the y-drop. The
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scans in Fig. 4.21 give a-cloud and y-drop radii at the same {low)
excitation level, Pabs = 2.8 md. Using these radii, the measured
Tifetimes Ty © 36 psec and T, = 450 psec, and the measured y-drop
equilibrium density and estimated production efficiency, Eq. {4.10)

gives n__ / =1 x 10]5 cm~3 for the cloud of a-drops. This is con-

ave Epmd
sistent with the result of Voos, et al.,* % if €orog 1S Close to 100
for a-drops.

In addition to the above analysis, an estimate can be made
concerning the relative radiative efficiencies for a-drops and y-drops,
as follows. The integrated luminescence intensity, measured with the
slits removed, is proportional to Pabs X Eprod X € ad This quantity

i}
can also be estimated from the area under a slit scan. The areas under

the curves in Fig. 4.21 indicate that IX ~ 3.8 Ia, and hence

€ €
ade g3 Rrody (4.11)
rady prodo

The total intensities IY and Ea are both nearly proportional to Pabs
over a wide range, so Eq. {4.11) holds over a wide range. Widely

differing estimates have been given for e
4.79

proda for the case of surface

excitation, ranging from =~15% to ~100% (above). However, it should

be noted that the production efficiency is likely to be lower for y-drops
than for a-drops, due to the added difficulty of getting into the well.
Thus Eq. (4.11) shows that the radiative efficiency of a-drops is unlikely
to be greater than about 30%, somewhat lower than previous estimates

(Refs. 4.30, 4.62-4.65). Indeed, using the estimates g = 30% and

prody

Eproda =~ 100% given above, Eq. (4.11) has a value =0.1, which must
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beconsidered to be a lower limit on the ratio of radiative efficiencies.
In addition, it is important to note that the comparison is made here
for y-drops and o-drops produced in the same sample in a single run,

in order to eliminate sample dependences and signal variations between
runs.

44.3. Kinetics of the Luminescence Profiles

The size of y-drops and a-clouds has also been observed as a
function of time after the laser light is turned off. In the experiments,
the taser 1ight was square-wave modulated at 225 Hz, and the Tuminescence,
vas samplied with a boxcar integrator at discrete times t after laser
cut-off. Typical luminescence x-scans are shown for y-drops in
Fig. 4.26 (t=0 and t=1000 usec) and for a-clouds in Fig. 4.27 i
{t=0 and t=100 usec), while Fig. 4.28 shows the radius vs delay
time for x-, y-, and 2-scans for both cases. It is clear that the
time behavior of y-drops and a-clouds is quite different.

In Figs. 4.26 and 4.28a the y-drop radii are measured at a
relatively high light level Pabs = 100 mW. The decay is precisely
what would be expected for the quasi-equilibrium decay of a single
drop: as the drop shrinks, its shape approximately corresponds to the
steady-state shape of successively smaller drops (Fig. 4.17). The
radius decay is non-exponential, analogous to the decay of the total
Tuminescence at a similar excitation level (see Fig. 4.11b).

Figure 4.29 shows the decay of the y-drop radius for a sample
stressed along (110}, with Pabs = 96 mW. This sample was stressed in
the “"permanent stress” geometry described in Ref. 4.1, so that both

luminescence imaging and Alfvén resonance experiments could be done,
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using different experimental setups, for the same strain conditions.
Shown also is an average radius inferred from Alfvén wave resonance
(Refs. 4.2, 4.10, 4.38, 4.40). The resonant absorption occurs at a
magnetic field (H | (100) which varies with the drop size: H « R; and
so the resonance shifts to lower fields as the drop decays. The Alfvén
resonances were detected in a pulsed excitation experiment which
resuited in a smaller initial drop size. The resonance decay times
measured in these two experiments are in good agreement. As expected
(if compressional effects are not large), the radius decay time is
approximately equal to three times the luminescence decay time.

On the other hand, the cloud of o-drops in unstressed Ge decays in
a quite different manner, as shown in Figs. 4.27 and 4.28b. The sizéjof
the cloud does not decay in time at low temperature, implying that
after the initial cloud formation the droplets individually decay at
a retatively fixed position in the cloud. In Fig. 4.27, after 100 usec
delay the width of the luminescence profile is unchanged, even though
the peak intensity has decreased by over a factor of 10. In Fig. 4.28b,
the line corrvesponds to exponential decay with © = 105 usec. This is

three times the Tuminescence decay time, which would be the expected

radius decay time if the cloud decayed as a single body with Mve™ constant.

Clearly the cloud does not shrink in time: 1in fact, the data indicate
the interesting possibility that the cloud size may initially grow after
the Tight is switched off. Indeed, this can be understood using a

recent phonon wind theory of Markiewicz.4'74
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In principle, the same techniques described here to study the
decay of y-drop and a-drop profiles can also be used to study their
buildup. However, the buildup process is much more compliex than decay:
In unstressed Ge, the rate of cloud expansion has been observed to
depend on excitation level for a square wave excitation experiment,4'73
while a kind of ballistic expansion at ~ the speed of sound has been

observed for intense pulsed excitation.4'80

In nonuniformly stressed

Ge, the buildup is complicated still further, because the small EHD
created near the laser spot must collect in the strain well. Preliminary
studies of the total Juminescence intensity show that for the square-wave
excitation used in this thesis the buildup time varies with %bs’
somewhat similar to the decay time {e.g., Fig. 4.12). However, at the
highest excitation levels buildup occurs more rapidly than decay.

a8 by arevén

In a pulsed experiment, the y-drop has been observe
wave resonances to grow from zero to final size within =1 psec. Clearly
much remains to be learned about the formation of y-drops; however,
greater understanding is first needed of the processes by which

a-drops are propelled in unstressed crystals, before the details of

their collection in the strain well can be understood.

44.4. Magnetostriction of y-Drops

In a magnetic field the shape of a y-drop has been observed to
change,4'82'4“85 as illustrated in Fig. 4.30. Part b shows vidicon
images for zero field for Pabs ~ 50 mW. Both face and end views are
shown, for the viewing arrangement of part a. Parts ¢ and d show that
in a field of 20 kOe the drop flattens along the applied field direction,
for HIK312) and for HIKITO). Figure 4.31 shows the distortion more

quantitatively as a function of magnetic field for low excitation,
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Pabs = 3 s, and for the field orientation of Fig. 4.30d. The radii
parallel and perpendicular to the magnetic field direction were measured
using luminescence slit scans, as in Section 44.1. The shape was
observed to begin to change in fields of a few kOe and to saturate at
fields <20 kOe. This general behavior has been observed for different
field orientations, values of the stress, and drop sizes.4‘82 The field
at which saturation occurs depends on the last two variables, as does
the saturated drop shape. In Fig. 4.31, for example, at 20 kOe the
ratio RL/R" = 2.3, for a zero-field drop radius of =170 um. Since the
strain gradient acts as a restoring force, it may be expected that in a
shatlower strain gradient the magnetostriction would be more pronounced.
This is indeed the case. In the sample and configuration of Fig; 4ff5
the strain well parameter o of Eq. (4.3) was relatively small. For an
excitation level comparable to Fig. 4.3, at 20 kOe the ratio Rl/Ru ~ 3
to 4, measured approximately from a vidicon image.

The observed shape change may be understood as follows. Because
of the continuous recombination of e-h pairs within the bulk of an EHD,
a drop can be maintained in steady state only if there is a net flow
of e-h pairs inward from the surface, supplied from the cw laser
excitation. This recombination current was proposed by Keminskii and

Pokrovskii4'86

and is illustrated in Fig. 4.32 for the case of
spherically symmetric collection of pairs onto the drop surface.
Figure 4.32a shows the electron and hole recombination currents for
zero field, while Fig. 4.32b shows how they are deflected by the
Lorentz force in an applied magnetic field. Electrons and holes ave

deflected in opposite directions, giving a net current azimuthal about

the magnetic field axis. This current in turn results in a net positive

-164-

(paramagnetic) magnetization ﬁR’ with a contribution E, = -V/2 ﬁR°ﬁ to

the drop energy. Thus the drop can lower its energy by increasing the
magnetization, i.e., by flattening along the magnetic field axis and
growing perpendicular to that axis. The flattening is balanced by
restoring forces due to the strain gradient and the surface energy. A S
detailed magnetohydrodynamic theory has been developed by Markiewicz -

ot a].4“68’ 4.87

which describes the magnetostriction quantitatively,
including high-field saturation and the effect of nonuniform flux onto
the drop surface.

The decay of y-drops is strongly affected by the fact that
carriers can move parallel to the field much more easily than perpen-
dicular to it. Very shortly after the square-wave excitation is
switched off, there is no net particle flow into the drop, and the decay “~
of an isolated drop in a magnetic field can be determined. Figure 4.33 ¢
shows the drop radii parallel and perpendicular to H as a function of
time after the excitation was switched off, with =85 um spatial
resolution. The drop dimension parallel to the field decays more rapidly s
than the dimension perpendicular to the field. (For smaller drops R has
been observed to decay, having a decay rate comparable to that for Ru
at long delay times.) It is clear that the y-drop shape depends on the
dynamic internal particle currents, which can be affected by an external
magnetic field.

Magnetostriction is also expected4‘68 to occur in a-drops in
unstressed Ge. However, it is more difficult to observe because of the
extreme difficulty of studying individual droplets. If EHD are in motion

in a lossy medium, the magnetic field could damp droplet motion perpen-

dicular to the field axis. Although the size and shape of a-clouds
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have not been observed to change significantly in a 20 kOe fie?d,4‘68

p-n junction experiments4'88 may have shown evidence for such damping

of motion. It would be desirable to perform an experiment in which the
a-drop motion was well-defined but which avoids the complications of
junction fields. The last photograph in Fig. 4.15 shows a large drop
with a stream of small EHD flowing into the well in a sharply-defined
direction. When a 20 kOe magnetic field was applied perpendicular to

the direction of the EHD flow, the vidicon image of the tail was observed
to become brighter, indicating that the drops were moving more slowly.

in this case, then, dropiet motion transverse to the field was damped.

It is possible that the crystal was lossier due to a larger concentration

of free carriers at the very high excitation level which was used,

compared to the usual a-cloud experiments in unstressed Ge.
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CHAPTER 5. DENSITY VARIATION AND COMPRESSIBILITY OF THE
STRAIN-CONFINED ELECTRON-HOLE LIQUID IN Ge
51. Introduction

Chapter 4 of this thesis presented a discussion of some of the
properties of the strain-confined electron-hole liquid (SCEHL) in Ge.
In particular, it was shown that the equilibrium density and lifetime
can be measured for the small drop sizes obtained at low excitation
intensities. In addition, evidence was presented that at higher
excitation levels the Tiquid may actually become compressed by the strain
well: the luminescence linewidth was found to increase and the
luminescence decay time was found to decrease with increasing drop
size.

In this chapter the compression of the SCEHL by the strain well
is investigated in detail. The theoretical background is presented,
and experimental results are presented for two samples. Sample CR38
was studied in Chapter 4; however, because the experiments for the
present chapter were performed under different stress conditions,
the strain well was not completely characterized. On the other hand,
Sample CR50 was carefully characterized.

Some qualitative evidence for the compression of the SCEHL is
reviewed in Figs. 5.1-5.4, all of which show experimental results for
Sample CR50. Figure 5.1 shows the total luminescence intensity Itot
from the entire drop without spatial selection, the peak luminescence

intensity in a s1it scan | it and the peak luminescence intensity

st

in a box scan Ibo , all as a function of absorbed power Pabs' The

X
procedure for obtaining siit and box scans is indicated schematically
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in the inset and is discussed in Section 34. Figure 5.2 shows the
drop size and drop volume vs. power. The drop size is given by the
full width at half maximum of a slit scan. As discussed later, this
is related te the drop radius via Eq. (3.15) if compressional effects
are not important. The drop volume is obtained from the radii for
three mutually perpendicular directions: V¥ = 4/3m R,R)R,. To aid
in the interpretation of these data, straight iines are drawn in
Figs. 5.1 and 5.2 to indicate the trends, for Pabs
Consider the trends expected for the case of spherical drops with a
constant e-h pair demsity. The total luminescence intensity is a measure

of the drop volume and thus should vary with power as R?’.S'“l

The peak
intensity in a slit scan represents a slice through the center of the
sphere and should vary as RZ. Similarly, the peak intensity in a

box scan represents a core section through the center of the sphere

and should vary as R. It is clear from the slopes given in the figures
that these simple relationships are not found to be true. Firstly,

the two measures of the drop size, I and %;, have very different

box
power dependences (the slopes are 0.67 and 0.41 respectively). Secondly,

the two measures of the drop volume, I and V, also have different

tot
power dependences (the slopes are 1.44 and 1.24 respectiveﬂys']).

Thirdly, the slopes for Xbo » Is]it’ and I T have the relation

X to

0.67:1.12:1.44, which does not correspond to the expected relation
1:2:3. It will be shown later in the chapter that these apparent
inconsistencies can be explained in terms of a compression of the
liquid. It may be noted that in order to obtain valid comparisons of

the luminescence intensities, as in Fig. 5.1, it was necessary to have

between ~0.1 and ~5 mi.
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a detector which was reliable and stable and gave reproducible results.

Some of the requirements for such a detector are discussed in Section 33.
Additional qualitative evidence is shown in Figs. 5.3 and 5.4.

Figure 5.3 shows the full width at half maximum AE of luminescence

spectra for the LA-assisted line as a function of absorbed power. As Lo

was the case in Fig. 4.8 for Sample CR38, the linewidth is found to g

increase at high excitation levels. This broadening is due to the strain

gradient as well as to an increase in the {average) density with drop

size. In addition, fig. 5.4 shows the initial luminescence decay

time 1. as a function of absorbed power, analogous to the data in

i .
Fig. 4.12 for Sample CR38. The Tifetime is again observed to decrease

Hagting

with excitation level. Such a change in the lifetime must be
accompanied by a change in the e-h pair density. Thus the average
density must increase with drop size.

In order to interpret the above luminescence data, as well as the
data presented in later sections of this chapter, it is necessary to
characterize the strain well. The strain inhomogeneity which is
known to be present must be accounted for in some way, and the
variation in the EHL energy with position must be measured. This
procedure is discussed in Section 52.

in Section 53 the theovetical background is presented. The idea
that the e-h pair density should vary with position is presented in
Section 53.1, including the origin, form, and magnitude of the
density variations. This is found to be a large enough effect to
account for the kinds of effects shown in Figs. 5.1-5.4. The mani-

festations of the density variation in Tuminescence experiments are
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discussed in Section 53.2. Predictions are made concerning the shapes
and power dependences of spatial s1it and box scans. A method is
described which is later used to measure density profiles directly.

It is shown that the density measurements can be used to measure the
EHL chemical potential as a function of density, thus providing a
sensitive test of the theories used to describe the EHL. 1In addition,
it is shown that the liquid compressibility can be measured, since

the density is varied by squeezing the liquid at a fixed temperature.

The experimental results for Samples CR50 and CR38 are presented
in Section 54. Measured e-h pair density profiles are shown for
different drop sizes. The form of the density variation with position
is found to be in good agreement with the theoretical predictions, '4s
is the magnitude of the variation with drop size. The measurements
of the chemical potential and compressibility are presented. These
constitute the most stringent tests of the theory which was presented
in Chapter 2. Since some differences are observed, this may be an
indication that a modified model for the Coulomb energy should be used.
However, the differences are not considered to be serious.

Finally, in Section 55 a discussion is presented of the density
dependence of the EHL lifetime. Vavrious models are presented in order
to explain the observed lifetime variation with drop size. The lifetime
of the SCEHL is found to vary more slowly than the density, in contrast
to the case for unstressed Ge where Auger recombination dominates..

A density independent recombination mechanism is shown to be possible.
However, it appears that in order to explain the experimental results
for both unstressed and stressed Ge, the Auger coefficient must be

rather sharply reduced under stress.
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Some of the material presented in this chapter has been published

in preliminary or abbreviated form.5‘2° 5.3

More complete discussions
of the density variation and compressibﬂitys‘4 and of the density-
dependent iifetime5'5 are curvently in preparation.

52. Characterization of the Strain Weil

In order to quantitatively understand the variation of the e-h
pair density with position in the SCEHL, it is necessary to characterize
the strain well. This requires several steps which are described
in this section, along with additional information presented in
Section 53.1. First the degree to which the stress is uniaxial is
discussed. Next the maximum Stress %y at the center of the well is
determined, along with the equilibrium density nos for Sample CR50,
which is the sample discussed in the greatest detail in this chapter.
Then the shape of the strain well is discussed, both for excitons and
the electron-hole Tiquid.

It is clear that the stress geometry used here and described in
Section 31 results in a distribution of stress which is highly

nonuniform. Indeed, MarkiewiczS‘G’ 5.7

has numerically calculated

the distribution of shear strain components in inhomogeneously strained
Ge. Other quantities may be calculated once the shear strains are
known. Figure 5.5 shows the result of such a calculation, which

was performed using a two-dimensional model of the system. Thus

part (a) of the figure represents a sliice parallel to a 4x4 mm2
(110) face of the Ge crystal, while part (b) vepresents a slice
paraliel to a 4x3 mm2 (112) face of the crystal. (These are approxi-

mately the dimensions of Sample CR50.}) In each case the slice is
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selected which passes through the center of the well. Information about The next step in characterizing the strain well is to determine the

the actual three-dimensional distribution can be inferred from the pair maximum stress oy at the center of the well. For the inhomogeneous

of two-dimensional distributions. Figure 5.5 shows 0,4y, the component geometry used here the siress cannot be simply obtained from the

of stress along the (111) direction, as a function of position. The applied force and the contact area. Instead, as discussed in Section 42.2,

parameters of the program were chosen to approximately reproduce two 0y may be estimated from the Shift of the peak energy of a luminescence®-r

experimental Teatures of the well: the maximum stress Oy ~ 5 kgf/mmz spectrum measured at Tow excitation, by comparison with the uniaxial

(see below), and the position z, = 0.8 mm of the well relative to the stress data of Benoit et ai‘S‘g This procedure is illustrated in

face where the plunger touches the sample {see also Fig. 4.15). As Fig. 5.7, which shows a luminescence spectrum from Sample CR50 for

noted in Section 31, for this sample a plunger with a rather large Pips = 0.8 md and a spectrum from an unstressed Ge crystal for

radius of curvature was used, and the initial force applied at room Pips = 25 mH. The shift of the Tuminescence peak AEpeak = ~1.83 mey.

temperature was greater than usual. As a result the contact area The (1117 stress data of Bemoit et a1.%5? can be fit by the following

between the plunger and the sample was ~2 mn, and the well was an V expression (see Fig. 4 of Ref. 5.7): h

unusually large distance below the stressed surface. s
AE = 1.62 + 0.68c (2.5 $ -0 £ 13) (5.1)

The computer program also evaluates other stress components. If peak

the stress divection is 2 and the perpendicular dirvection is y, the where o is measured in kgf/mm2 and AEpeak is in meV. Using this method;

program computes the stress components o, Iyye and o, = Oy The gy = 5.2 kgf/mmz for sample CR50.

component of stress along the (111) direction is given approximatelys'8 It is really more fundamental to measure the change in the liquid:

by oy9y = 0,,» and the component of stress along other directions ground state energy, which is given by PVain * EE * E? in the notatioe

is given approximately5'8 by Opon-111 ~ - Ggy + 2052 (recall that of Section 22.3. This spectroscopic energy Espec {sometimes called u‘w“

compressional stresses are negative). Thus a measure of the deviation ' in the ]iteratures'lo) is measured from an energy ﬁwph above the valence

from uniaxial stress is given by the ratio lonon—l]]/011]l' This band maximum, where ﬁmph is the energy of the phonon emitted with the

quantity is shown in Fig. 5.6 for the geometry and parameters of photon in the indirect transition {see Fig. 1.1). The phonon energy

Fig. 5.5. It can be seen that the stress is very highly uniaxial: is assumed to be independent of stress. The data of Benoit et al.s‘g

even for the largest drops studied, the quantity |o have not been analyzed in sufficient detail to yield the spectroscopic

< -
non-111/91771 = 0.3.
Thus the assumption of uniaxial (111} stress throughout the region of energy Espec as a function of stress. However, the shift of ESpec with

the crystal occupied by the SCEHL is well justified. stress can be calculated using the resuits of Chapter 2, as follows:



-173-

Al = AE - AfG . (5.2)

Espec © ““gap

Here Egap is the change in the minimum band gap with stress, and

the ground state energy fG is measured with respect to the lowest
conduction band minimum. For Ge the change in the minimum gap is given
byS.li

_ pchean e h
AEgap = AEgap + 3/4 Espﬂ + 172 AEspﬁ . (5.3)

mean

The mean band gap Egap is. the energy difference between the mean of

the conduction bands and the mean of the valence bands. It changes

mean 5.1

s _ N h e s
with stress as AEgap = - $.098 o, while Esp] and EspY are given
in Tables 2.1 and 2.3 respectively. Thus AEgap = 0.87 ¢. The ground
state energy fG is shown in Fig. 2.11 for Ge. The change in this quantity
with stress, Afg, is nearly identical for Models 1 and 2 and may be fit

over range of stresses to yield the following:

= - < o -
AESpec 1.8Y + 0.770 {2.5 S -0 £ 9) (5.4}

The spectroscopic energies shown in Fig. 5.7 were cobtained from a fit
of the Juminescence linmeshapes (see below) and yield AEspec = «2.67 meV.
Using this method, Uy T 5.8 kgf/mmz. The reasonable agreement with

the result of the first method indicates that the change in f) with stress

G
is described well by Models 1 and 2 of Chapter 2. The two methods thus
give an average value ~Oy: = 5.5 £ 0.3 kgf/mm2 for the stress at the
center of the well in Sample CR50. It is shown in Section 53.1 that
the analysis of this chapter is not sensitive to small variations

in Oy Thus the theory is presented for ~Oy = 5.0 kgf/mmz.
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The Tuminescence spectra in Fig. 5.7 were fit to the Tineshape
formula given by Eqs. {2.38) and (2.39). In both cases the slit
resolution (0.66 meV FWHM) and the detector response versus wavelength
were included. For the unstressed sample the best fit was obtained for

n=2.20:0.05%x10" emo

5.10

, in reasonable agreement with other published

values. For the stressed sample the best fit was obtained for

17

no= 0.47 £0.03 % 10" cm3 (-oy = 5 kgf/mn, T = 1.9K). (5.5)

Since this spectrum was measured at Tow excitation, the deduced density
is the equilibrium density for this stress. The density obtained for
this sample is typical for samples stressed under similar conditions
{see also Section 42.4). In the figure the open circles give the
theoretical lineshapes.

The shape of the strain well may be characterized by the shape of a
Tuminescence spatial slit scan for excitons. As described in Section 42.1,
if the exciton energy is parabolic in the distance r from the center
of the well, then the luminescence intensity in a slit scan is given by

the following:
- SR S A
I{x) l(xo) exp < o ) ) (5.6)

where x = %o is the center of the well. Here the excitons are assumed to
act as an ideal gas. This assumption has been justified in studies of

free excitons in a strain well in Si,5‘12

Figure 5.8 shows exciton siit
scans for the x, y, and z directions as defined in Chapter 3 {see Fig. 3.8).
These scans were obtained at ¥ = 4.2K at an excitation Tevel Pabs = 1.1 mH,

which was below the threshold for EHL formation. The spatial resolution
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was ~85 ym. The open circles show Eq. (5.6) corrected for the spatial
resolution. The data for the x and y directions (Figs. 5.8a and 5.8b
respectively) are in excellent agreement with the theoretical profiles,
showing that the strain well is quite accurately parabolic in these

two directions. (This parabolicity is expected from the two-dimensional
calculations such as in Fig. 5.5.) A more precise fit gives “:x =
lﬂtOJumeF mdaéx=2ﬂiolrme¥. The stated errors

include the differences between the left and right halves of the scans,

which were larger than the uncertainties for the individual half-scans.

For the upper half of the z-scan (z-—zO < 0 in Fig. 5.8c) the well is

z

reasonably parabolic, with oy

© = 5.5¢0.5 meV/ng. However, the lower
half of the scan {z- z, > 0} is not so accurately parabolic. (Thg;lack
of parabolicity is also expected from the two-dimensional calculations.)
This must be kept in mind when comparing theory and experiment. However,
as a starting point the well may be considered to consist of two hemi-
ellipses {actually a hemi-ellipse and a hemisphere).

Finally, it is necessary to relate the variation of the exciton
energy with position to the variation of the stress and the EHL spectro-
scopic energy with position. This is straightforward if the exciton
energy is just a constant less than the band gap. The data used by

Ba]slevs'}}

to deduce the deformation potentials of the band edges
actually correspond to the exciton deformation potentials at T=0.

It may be noted from Fig. 2.11 that at finite temperature the exciton
binding energy has a slight stress dependence, especially in the range
of stresses of interest (2.5 < -g £ 5.5 kgf/mmz). However, this is a

small correction and will be neglected here. Thus the changes in the
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band gap and the exciton energy with stress are taken to be equal. The

well parameter o , which describes the variation of the EHL spectro-

spec

scopic energy E with position, may be simply obtained from L using

spec
Eq. (5.4) and the gap deformation potential given above. Thus

aspec 0.89 Goy (5.7?

or = 3.7+0.2 meV/wnz‘ It is useful to estimate the change in

%spec
stress over the volume of the largest drop size obtained, R = 700 ym
(see Fig. 4.15 and later sections of this chapter). Using Eq. {(5.4) it _
is easily found that the stress only varies by £1.1 kgf even for the

largest drop size studied here.

53. Theory

In this section the theoretical background is presented for the
understanding of the variation of e-h pair density with position in tﬁe
SCEHL. In Section 53.1 it is shown how the density variation arises.;,

A first-order version5'13

of the thoery is presented in order to gain_
physical insight. Then a more exact theory is presented. It is noté&;
that the density variation can be exploited to study the compressibi?ﬁty
of the SCEHL and to study certain properties of the SCEHL as a function
of density. In Section 53.2 the manifestation of the density variation

in luminescence experiments is described, including a method for the

measurement of density profiles.

53.1. Prediction of the Variation in Pair Density with Position

The theoretical basis for understanding the variation in e-h pair

density with position lies in two facts: the pair energy varies with
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density in the electron-hole Tiquid, and the liquid sits in a potential
energy well. In the absence of the potential well, i.e., for uniform
(or zerc) stress, at low temperature the equilibruim density is that
for which the pair energy is a minimum. The Tiquid can have a density
other than the equilibrium density only at the cost of an increase in
energy. In the presence of the strain well, however, the energy varies
with position in the crystal. For small drop sizes, the energy variation
is small and the density is nearly uniform with the equilibrium va]ug.
As the drop grows larger, the average pair energy is forced to increase
as the liquid occupies regions of higher strain energy. However, it
turns out that the total drop energy can be reduced if the liquid
becomes more dense at the center, where the strain energy is Tower
Thus the pair density varies with position, with densities higher than
the equilibrium value occurring at the center of the drop. The condition
which determines the density distribution is that the chemical potential
is a constant throughout the drop volume.

It may be noted in advance that the variations in density as well
as in stress are reasonably gradual. For example, even for a relatively

large well parameter, = 10 meV/mmZ, in the steepest part of the

“spec
well for the iargest possible drop size, the stress changes by less
than 0.4% over a distance 1 ym; for the same conditions the demsity
changes by less than =1.5%.. This may be contrasted with a calculation
of the EHL surface structure, in which the density falls to zero over a
distance approximately equal to an exciton Bohr radius, or ~0.02 pm.

In the latter case calculations are usually done using an expansion in

514-517

the density gradient. However, for the present calculation
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this is unnecessary.
In order to be more guantitative, suppose that the ground state
free energy per pair is given by the following Taylor series expansion

about the minimum:5‘13

" 2
E = E, + %Eo(n-no) + Es(r) . (5.8)

(Because this is a simplified derivation, E instead of f is used for
the pair energy.z Here n, and Eo are the ground state equilibrium
density and energy, and E; = dZE/an{n . The strain energy is assumed
to be parabolic in the distance r fromothe center of the well:

2

Es(r) r . (5.9}

%spec

The well parameter o was discussed in the previous section and

spec
measures the variation in the Viquid energy with position relative to
the valence band. Thus if Eo is measured relative to the valence band
rather than the conduction band, so is the total energy E. Because of
the energy variations with position, it is necessary to know the zero

of energy and convenient to use the valence band maximum as that zero.

Using Eg. (2.6a) the pressure is given by

2 &

P = n an

= nZE;(n-nO) . (5.10)

The chemical potential is given by Eq. (2.6b). To first order in the
deviation from the equilibrium density, (n- no), it can be written as

w = E+% - EO«rnOE;(n-no)*rotSpec o (5.11)

The chemical potential is constant throughout the drop volume.

This just means that the liquid is in diffusive equilibrium: the time
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required for particles to travel across the drop is much less than the
drop lifetime. This may be verified by estimating the electron Fermi

velocity

v = Voeeim ~ 6x10° anysec {5.12)

using E? ~ 2.2 meV for the equilibrium density at -oc = 5 kgf/mm2 and
the electron density-of-states mass m=0.22 mo. {The hole Fermi velocity
is not very different.) Since the Fermi velocity increases with density,
this represents a minimum value for Ve The greatest distance to be
traveled is the diameter of the largest drop studied, 2R=1.4 mm. Thus
the transit time is less than ~0.023 usec, which is much shorter than
the drop lifetime 1 = 500 usec, and u = constant is well justifiedﬂi

In order to obtain an expression for the density as a function of
position, Eq. (5.11) may be written for an arbitrary position r as well

as for r=R. This may be solved to yield

&g ec(Rz— rz)
a{r) = n(R) J1+ 3B8C . (5.13)

n(R)nOE0

The density at the surface, n{R), may be obtained by noting that the

change in pressure crossing the drop surface is given by5”18

p =

P]iquid ~ Tgas (5.14)

=jQ

where here o is the surface tension rather than the stress. For the
“ideal" intermediate stress corresponding to the Model 1 correlation
energy of Chapter 2, the surface tension has been calcu]ateds‘]g to be
o= 1x 10'4 erg/cmz. Even for the smallest drops studied here,

R ~ 50 um, the pressure difference ~0.02 dyne/cm2 corresponds to a
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negligible correction in the liquid density, at least at low temperature.
(At higher temperatures, near the critical temperature, the system
becomes more difficult to describe, as discussed in Section 24.2.)
In addition, at low temperature the gas pressure itself can be neglected.

Thus for the liquid at low T, P=0 at the drop surface and from Eq. (5.?0&

afR) = n, (5.15)-

i.e., the density at the surface of the drop is the equilibrium density..
Actually, it is the equilibrium density for the value of stress corre-
sponding to the drop surface and therefore changes with R. However, h
this density does not change very much over the relevant range of
stresses for a typical experiment: the equilibrium density increases ..
by 20% as the stress is reduced from -5 to -3 kgf/mm2 and by only 10%
as the stress is reduced from -5 to -4 kgf/mmz, for Model 1. -
It was noted in Section 52 that the latter stress range correspoﬁés
to the range of drop sizes studied in Sample CR50. This small changegr
in the equilibrium density with drop size will be neglected, since it
is much smaller than the density variation implied by Eq. (5.13), as o
will be shown shortly. [N
Equation {5.15) may be substituted into Eq. {5.13) to yield the

following density distribution:

r2
n{r.,R) = "0 1+ B(R) (] - E‘Q‘) (5.16)
where 2
%spec R
B(R) = 5o . (5.17)
nOEO

Here the dependence of the'density profile on drop size as well as on
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position within the drop is noted explicitly. It is easily seen that
the density increases from the equilibrium value at the drop surfaée

to a higher value at the center, confirming the qualitative ideas
presented at the beginning of this section. For this first-order theory
the density distribution is parabolic. The density at the center of the

drop is given by

n(o,R) = nf1+8(R)] . (5.18)
This can be estimated for Sample CR50 by noting that ngE; ~ (.42 meV
for ~o = 5 kgt’/mm2 and T=0, according to Model 1. Using o = 1.7

spec
me\l/mm2 from Section 52 it can be seen that the density is unifrom to

within 10% if R < 160 um, while for the largest drop sizes (R= 700t$m)
n{0) ~ 3.0 n . The values given here differ from those given in Section
42.3 because the well parameter uspec was smaller for Sample CRS0 than
for Sample CR38. It is clear, however, that the density variation with
position is a large effect and should be evident in many experiments.
Indeed, evidence of compression of the SCEHL has been pointed out in
Chapter 4 and in Sectiom 51; direct measurements are presented in
Section 54.

The magnitude of the density variation for large drop sizes is
perhaps surprising. Generally one thinks of a liquid as having a
uniform density. In addition, it is relatively difficult to change
the density appreciably; i.e., most Tiquids are not very compressible.
This is because the interparticle spacing in the liquid is nearly the
size of the sphere, using a hard-sphere model to describe the liquid
molecules. In the electron-hole liguid the interparticle spacing still

"

corresponds approximately to the size of the gas "atom,” i.e., the
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exciton Bohr radius. However, in contrast with ordinary liquids, the
constituent particles {e-h pairs) can interpenetrate one another. A
hard-sphere Timit for electrons and holes would correspond to a density
many orders of magnitude greater than the equilibrium density, and in
fact is never attained due to the Coulomb interaction. It can be seen,
however, that the compressibility of the EHL could be much larger than
the compressibility of ordinary Tiquids.

An analogy may be drawn between the SCEHL and the ocean. The water
at the bottom of the ocean is denser because of the weight of the column
of water above any ocean-floor area. Consider a simple model in which
the ocean is isothermal. The pressure exerted by a column with height
h 1is P=phg, where p =~ 1 gm/cm3 and the change in g with height is
neglected. The greatest ocean depth is ~10 km. Thus the pressure at
the bottom of the ocean is ~309 dyne/cmza The compressibility of water
is =4 X 10'H cmzldyne at 20°C and P=1 atmosphere,s'20 nearly independent
of P. Using the definition of the isothermal compressibility from
Eq. (2.70a) it can be seen that

- %‘L = P K = 4% {5.19)
At the bottom of the deepest part of the ocean, then, the water is only
4% compressed, according to this simple model. Note from Fig. 2.20 that
the compressibility of the EHL is I<T = 2.7 x 10”2 cmz/dyne for -o =
5 kgf/mmz, T=0, and Model 1. Thus the EHL is nearly ]09 times move
compressible than water! A fairer comparison may be made by noting
that the (particle) density for water is greater than the EHL density
by a factor ~6.6 X 105. The product "KT is still larger for the EHL

by ~800. Even for liquid He3, which is considered to be a highly
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compressible liquid with KT = 3.9 x 10'8 cmzldyne at T=1K and saturated
vapor pressure,S'Z] the product nKT is smaller than for the EHL by about
a factor of two. Thus the electron-hole liquid may be nature's most
compressible liquid.

it is clear that the first-order theory given by Egs. {5.16) and
{5.17) is not valid for the largest experimentally accessible drop
sizes, since the deviations from n, are no longer small. Hence a more
exact theoretical treatment is necessary. Before turning to the more
exact theory, however, additional physical imsight may be gained from
the first-order theory. It is useful to estimate the effect of changing
the temperature on the density profile. In particular, in attempting
to study the phase diagram of the EHL and an exciton gas in a stra?p
well it is mecessary to account for the compression of the liquid at
the smallest observable drop sizes at elevated temperatures. This may
be accomplished approximately by using a low-T expansion for the pair

energy in Eq. (5.8), following Eg. (2.67):

E = £+ uEn(n-n)? - ay(n) T2 Bgpec T - (5.20)
This expression is equivalent to the following one:
" 2
E o= E T + EL(T) (n-n (TP + Ggpec ™+ (5.21)

in which the temperature dependence is distributed among the other

terms. The formalism of Section 24.1 may be used, i.e.,

n (1) = nf1- an(kT)Z] (5.22a)
£(T) = E, - g n ) ‘sn(lar)2 (5.22b)
T = £ [1- 36 (k1)F) (5.22¢)
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ving)
8, = . {5.22d)

n
3n0 Eo

2/3_

Here it is assumed that v{n) = n~ This is true only for parabolic

bands; however, it is accurate enough for the present discussion as
s

h
which are defined in Chapter 2. Using Eq. (5.21), the density profile i .

long as the stress is not too near one of the c¢ritical stresses G, or g

may be immediately obtained as previously:

2
a{r,R,T} = n (T) [1 + B(R,T) (1 - LZH (5.23a)
R
where Lo
2
Q R
BRT) = B < ar,0) [1+ &6 am?] (5.230)

nZ(T) EL(T)

to first order in Tz. This equation may be used to estimate the }argégi
drop size for which the density is uniform to within a certain fraction
at finite temperature, e.g., to within 20% at T=4.2K for -0 = § kgf/mmz.
According to Model 1, for this stress én = 3.8 mev"z. Using the infor—‘
mation given above for g(R,0), it is easily seen that this drop size 1§
R ~ 130 um for the conditions of Sample CR50. It should be noted thit
for a sample with a steeper well, the requirement is more stringent:
if aspec ~ 8 meV/mmz, as is more typical, then 20% uniformity is achieved
only if RS 60 um. Thus at high temperatures the 1iquid may already be
appreciably compressed at the smallest drop sizes for which enough
luminescence can be collected for an accurate lineshape fit.

The density at the center of the drop can be obtained for finite

temperature from Eq. (5.23) and rewritten as follows:
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n(O.R,T) = ng[1+8(R,001 + n [§B(R,0)-116 (kD? . (5.24)

The sign of the temperature coefficient of the density at the center
depends on the drop size through 8(R,0). For small drop radii the
coefficient is negative and the density decreases with temperature;

this is the usual behavior, as expected from Eq. (2.55a). For larger
drops, however, where the density s larger at T=0, the compressibility
is more important and n(0,R,T) actually increases with T. For the
conditions of Sample CR50 the temperature coefficient changes sign

at R~ 300 um, while for the conditions of Sample CR38 (larger aspec)

it changes sign at R~ 140 ym. Finally, it may be noted that the
temperature dependence of the compressibility way be obtained using/

Egs. (2.71) and {(5.22):

k(D = ko) e B an? (5.25)

Here KT(T) is evaluated at the equilibrium density nO(T). Note that
the temperature coefficient is nearly five times as large as that for
nO(T); see Eg. (5.22). Thus the compressibility increases very rapidly
with temperature.

The preceding remarks have been intended to give some physical
insight into the variatien of the e-h pair demsity with position in
the SCEHL. While numerical examples were given, these must in some
cases be taken as guidelines rather than as fixed values, since the
first-order theory is not valid for large deviations from the equilibrium
density. In order to be more quantitative, a more exact theory must be

used. Instead of the Taylor series expansion given in Eq. (5.8) and
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used up to this point, the full calculation of the pair free energy
¥ versus density developed in Chapter 2 must be used. Figure 5.9
illustrates the differences between the two models. The free energy per
pair and the chemical potential are shown as a function of density for
-5 =5 kgf/mm2 and T=1.9K, corresponding to Sampie CR50. This seolid
curves show the full calculation according to Model 1, while the dashed
curves show the first-order theory given by Egqs. (5.8) and (5.11). Here
the strain energy term is omitted. It is clear that the full calculation
must be used when the density deviates significantly from -
In order to properly determine the density distribution, it is
necessary to take into account the variation in stress with position.
It was shown in Section 52 that the stress is very nearly uniaxial,
with the magnitude varying parabolically with the distance from the
center of the well. The liguid ground state energy was also shown to

be parabolic in r, with a well parameter o The next step is to

spec’
consider the variation in the free energy (or chemical potential) versus
density over the range of stresses accessible to the SCEHL. Figure 5.10
shows the chemical potential as a function of density for the stresses

-g = 3 and & kgf/mmz, using Model 1 at T=1.9K. The difference between
these two stresses is more than the stress range included in the largest
drop studied in Sampie CR50. To facilitate the comparison, the curve
for ~o = 3 kgf/mm2 has been shifted vertically to coincide with the curve
for -o = § kgf/nm2 at approximately the equilibrium density. It can be
seen that the two curves are very similar over a very wide density range
{except for an additive constant). Combining this information with that

given above, it is concluded that the strain well may be described
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fairly accurately via a strain energy term Es(r) = aspec rz, in addition
to a uniform stress with magnitude OM, the value at the bottom of the
well. This was actually assumed implicitly in the discussion of the
first-order theory.

The pair free energy can now be written as a function of density
and position, measured from the valence band instead of from the conduc-
tion band. To make this distinction more clear, energies measured from

the valence band are labeled with an asterisk. Thus the free energy per

pair 1s given by

(. T.oyr) (o) + fn,Too) + E(r) . (5.26)

[
gap
Here Egap(cM) is the {(minimum) gap for the stress Oy f(n,T,cM) igjthe
Model 1 calculation measured as usual with respect to the conduction

band, and Es(r) is from Eq. (5.9). The pressure is given by

2 af*(n,T,0,,r) N af(n,T,aM)

= , (5.2
P(n,T.oy.r) n - - (5.27)
while the chemical potential is given by
. 3f(n,T,oM) 2
winTogur) = Egplog) + fn.Tooy) +n ———= 4 ag,, v
{5.28a)
2
Egap(oM) *ouln,Tooy) *ag,. v {5.28b)

As discussed above for the first-order theory, the chemical potential
v* is constant over the drop volume, with the value determined by the
condition in Eq. (5.14). As long as the surface tension is negligible,

P P at the surface and

Tiquid N gas
n(RR,T) = n (T) . {5.29)

-188-

This is the true equilibrium density for the temperature T, as determined
by Eq. (2.5). That is, at low T this corresponds to the minimum in
f(n,T,cM); however, at higher T it does not correspond to the minimum

in f, due to the pressure of the gas outside the drop. Fquations {5.28b)

§

and {5.29) may be used to write the chemical potential u; for a drop bt
with radius R, which is equal to the chemical potential for the

position r=R:

2 (5.30)

*
up = Egap("m) +uln (T).T,0,) + ®gpec R

Note that the first two terms correspond to the limit of zero drop size:

*

Yo = Egap

(og) + ulny(T)sTooy) - (5.31)

Thus it can be seen that the chemical potential varies quadratically

with drop radius, i.e.,
* * 2

Hp T oMy o R

{5.32)

This equation is true as long as the strain well is parabolic; deviatfﬁns
may be expected for very large drops. Equations (5.28b) and (5.30) mdy.

be combined as follows:

e,

B(0(rRTLT.0) = wlng(T), T + ag (R -+P)

spec (5.33)

In the LHS of this equation the dependence of the density on position is

included explicitly: because the variation of the chemical potential

with density depends on position, the density must vary with position.
The density profile n{r,R,T) can now be obtained by solving the

implicit equation, Eq. (5.33). Note that the spatial dependence is

2y

given by (R2 -r Instead of expressing u as a function of density,
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it is convenient to express the density difference n{r,R,T) —no(T) as

a function of the chemical potential difference u(n) —u(no). (This is
equivalent to turning Fig. 5.10 om its side.} Thus n-ng may be fit to

a power series in aspec(Rz-rz). The series should have enough terms so
that it is accurate over the range of densities and drop sizes which are
accessible. The maximum drop size Rmax which is energetically possible
for a given stress may be determined from Egs. (5.31) and (5.32) by

noting that the chemical potential u; cannot exceed the value for

* . P s
g appropriate for a lower value of stress min: This is because for

stresses smaller in magnitude than o . .

the ground state energy u;
{measyred from the valence band) does not decrease with stress, and it
is not energetically favorable for the liguid to be in that part of!

the crystal. The stress o

min is very close to Ogs the critical stress

at which the upper conduction bands become depopulated. Thus

2 _ * *
%spec 'max uo(omin) - “o(GM)
Eqap(Omin) = Egap(O) * (0o (To0nin)sTo0ni0)
- ulng(T,ou),Toogd - (5.34)
For -o. = 5 kqf/mi and -o_. = 2.6 kgf/m®, at T=1.9K, a__ Ro =
M g min -0 X9 * TThe Yspec max

1.8 me¥. Thus for Sample CR50, Rmax ~ 1 mm, which is greater than the
largest drop size obtained experimentally. This means that the well was
not completely “filled up.” The expression in Eq. {5.33) was actually
fit for chemical potential differences up to 2 meV, using ten terms in

the series, so that

10 2 2.
n(r.R,T) = 0y (T) +£Ai[aspec(R -1 (5.35)
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The values for no(T) and the coefficients Ai are given in Table 5.1 for
-5 = 5 kgf/mm2 and T=1.9K. Several density profiles calculated
according to Eq. {5.35) are shown in Fig. 5.11 for aspec =2 meV/mmZ.
In the figure the position variable x 1is normalized to the drop radius.
As expected from the first-order theory presented above, the variation
in density with position is still a very large effect when calculated
exactly.

The density at the center of the drop may be computed easily using
Eq. (5.35):

G L (5.36)

10
a{0,R, T} = nD(T)+§]Aﬁ[aspec

3

This is shown in Fig. 5.12 for the same conditions as in Fig. 5.11. For
comparison, n{0) is also shown for the corresponding first-order calcu-
tation, using Eq. {5.23) with ni(T)E;(T) = 0.34 meV. Thus the first-
order theory overestimates the increases in density. (This can actually
be anticipated from Fig. 5.9.) It should be noted that the results in
Figs. 5.11 and 5.12 can easily be reinterpreted for other values of uspec’
since the density at a given value of x/R depends only on aspecRZ'
For example, from Fig. 5.12, when aspecR2 = 1 meV the density increase
n(())/n0 is 2.8 for the exact calculation and 3.85 for the first-order
calculation; this is true both for Upee =2 meV/mnz, f =700 ym and for
aspec = 8 meV/mmZ, R =350 um.

In order to understand how to measure the density profiles predicted
here and how to interpret other experimental measurements on drops with
a density distribution, it is useful to try to simplify Eq. {5.35) in

some way. The density profiles in Fig. 5.11 appear qualitatively to
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be parabolic in shape. In fact, the profiles are very nearly parabolic,
as illustrated in Fig. 5.13 for the case aspech =2 meV. In this case
the parabola was chosen to have the same values for n{0) and n{R) as

the exact calculation. Since the agreement is so good the calculations

of the next section, which include some measureable manifestations of

the density variation, are performed using parabolic density distributions.

It should be noted, however, that n{0) must be computed using Eq. (5.36)
for the appropriate drop size. Thus the calculations of the next section

are based on the following density profiles:

2
a(r,RT) = n (1)1 +8R,T) {1 -5 (5.37a)
[ R2

4
(5.37b)

where 10 .
8{R, T} = n—o—%ﬁ Ei A, [aspec RZ} i
i=

In this approximation, which should be an excellent one, B(R,T) is not
simply proportional to R2, as in the first-order theory of Eq. (5.23).
Recall from Eq. (5.11) that in the first-order theory the chemical
potential p is simply linear with density. The parabolic approximation
of Eq. (5.37a) then corresponds to a linear approximation for p between
the densities nO(T) and n{0,R,T), where the latter density is properly
adjusted as the drop size changes. It can be seen from Fig. 5.9 that
this is reasonable for the range of densities considered here.

Before turning to the experimental manifestations of these density
variations, it may be noted that the range of accessible densities is
finite and depends on the maximum stress gy at the center of the well.

t(O

o }, where o_. is the

*
A i .
s discussed above, uR(UM) cannot exceed p (o ;. win
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minimum stress for which the EHL energy is lowered. This limits the drop
size to Rmax given by Eg. {5.34). The maximum density which can be
obtained, n(O,Rmax,T), is in turn Timited. This maximum density can be

determined by using Eqs. (5.28b), (5.30), and (5.31) to obtain

e
St

u(n{0,R 7). To0y) = Egap(omin) - Egaplog) * ulng(Toop).T00 )
(5.38%.
and then by computing u versus n for the stress Oy For example,
using “Tpin = 2.6 kgf/mm2 as before, at T=0 the maximum density increasés

with stress from ~2.2 x 10°7 en? at 0y = 5 kgf/mm2 to ~4.5 x 107 o3

at -oy = 10 kgf/mmz. In fact, over the stress range Oy = 3 to 15 kgf{gmg
the maximum density increases nearly linearly with stress. At the same
time the minimum density, nD(T,aM), decreases {more gradually) with
stress. Thus the range of densities available for a given stress [
increases with Sy

Because a range of densities can be obtained for a given value of
the stress, it is possible to study certain properties of the SCEHL as”
a function of density by changing the drop size, i.e., by changing the ;
excitation level. In particular, as shown in the next section, the
chemical potential can be measured versus density. This in itself ig”w
of fundamental importance, since it is the chemical potential or free
energy versus density which is calculated in all theories, such as the
theory of Chapter 2. Because a wide range of densities can be studied,
at a fixed value of the stress, this provides a very sensi;ive test of
the many-body theories which are used in the calculation of the Coulomb
energy. In addition, the EHL compressibility can be measured, using

Eq. (2.70). Another problem of fundamental importance is the under-
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standing of different recombination mechanisms and their density
dependences. A kinetic study of the SCEHL provides information on the
relative importance of these different recombination mechanisms.

Because the depsity variations occur within a single electron-hole
drop, an experimental measurement will in general involve a superposition
from all densities which are present. This is of course a complication
in the interpretation of experimental results such as the luminescence

lineshape or decay time. However, the density profiles can be measured

directly, as shown in the next section, and the appropriate superpositions

can be synthesized for comparison with experiment. Further, the entire
range of densities is available for fixed temperature, fixed stress,
and fixed magnetic field. Thus other complications which may occur/

as the stress or magnetic field are varied arve eliminated; and larger

density variations are possible than by changing the temperature.

53.2. Manifestation of the Density Variation in

Luminescence Experiments

Because the density variations predicted in the last section can be
so large, it may be expected that many types of luminescence experiments
would be affected. Indeed, it was already noted in Section 42.3 that
the variation of the density as well as the strain energy with position
contribute to the increase of the Tuminescence Tinewidth with power
illustrated in Figs. 4.8 and 5.3. Density changes alone can account
for the decrease of the drop Tifetime with power in Figs. 4.12 and 5.4
and the non-exponential decay in Fig. 4.11. However, these experiments
only indicate that an average density increases with drop size; they do

not indicate the density distribution. It may be noted, for example,
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that if the density changes were due only to the change in equilibrium
density with stress, the liquid would be denser at the surface rather
than at the center of the drop. Furthermore, these density changes
are too small to explain the experimental results -- indeed, it was
argued in the last section that they may be neglected entirely. Power
dependences of the peak Tuminescence intensity in a slit scan, on the
other hand, when combined with size measurements as in Figs. 5.1 and
5.2, can be interpreted if the density increase occurs at the center
of the drop, as shown in Section 51. In this section it is shown how
to interpret luminescence experiments of the types described above.
More importantly, a method is described to measure the demsity variations
directly.

Since the measurements o be described here involve EHL luminescence,
the first step is to introduce a guantity which indicates the rate at
which e-h pairs decay radiatively from a small volume dV¥ located at a
particular position r in the liguid:

di(r) = TJKE(% . (5.39)

rad

This may be integrated over a finite volume and multiplied by the
tuminescence photon energy ~0.71 eV to yield the radiated power Prad’
which is related to the luminescence signal or amplifier output via

Eq. (3.20). The radiative 1ifetime is given by
-1 _
Trad(n) = Bn (5.40)

(see Eq. (4.8)), where B 1is a constant which is proportional te

]DIZ[Hii/]AEiZ. Here D 1is the optical matrix element, H 1is the



-195-

electron-phonon matrix element, and AE is an energy denominator. For
simplicity B 1is generally assumed to be independent of stress and
magnetic field, since its stress and field dependences are unknown but

expected to be sma]l.5'23

Actually, B should depend on density through
the radiative enhancement factor, i.e., B = Bop(n), where B, is really a
constant and p{n) is the enhancement factor. In this thesis p{n)

is omitted, although it should be included in a more complete treat-

ment.5‘4’5'5

Many of the results of this chapter are not gquantitatively
affected by this omission, however, and no results are modified
qualitatively.

The results of several types of luminescence experiments can be
modeled using Eqs. (5.39) and (5.40) and the density profiles from Yhe
previous section, Eq. (5.37). In particular, luminescence spatial
profiles can easily be modeled. For example, a s1it scan profile is
given by
x+s/2 R R

Ige0) = B] dxfdyfdz nl(r) (5.41)
Xx-8/2 xR

where s is the effective slit width on the sample, rz = x2 +y2 +22,

and R 1is the drop radius. The procedure for obtaining spatial slit and
box scans is described in Section 34. Figure 5.14 shows the effect on a
slit scan of the density distribution predicted in the previous section.
The outer curve shows a theoretical slit scan for constant density, for
which xs]it(x) ~ (R2 -xz) for small s1it widths. The inner curve uses
the density distribution from Eq. (5.37), with n{0) = 2.8n0. This

condition should be readily obtainable in an experiment. For both curves

-196-

the slit width is 0.05 times the drop radius, so the effect of the finite
slit width is small. It is immediately apparent that a density distri-
bution which includes a sizeable density variation gives a luminescence

profile which is significantly modified from the constant-density case.

The profile is more peaked in the center, and the full width at half
maximum of the profile (W) is reduced. e
A similar calculation may be performed for a box scan profile.

In this case,
X+ 5/2 R s/2

Ty (020) = Bf dx | dy | dz o%(r) (5.42)
%-$/2 -k -g/2 o

-

where all quantities are as in Eq. (5.41) and the two crossed slits ha%é“
the same width. Figure 5.15 shows theoretical box scan luminescence
profiles for the same conditions as for the slit scans in Fig. 5.14.
(x) ~ (RE-x%)%,

So that the edge of the drop is very well defined. The density variation

For constant density and for a small slit width, Ihox
over a factor 2.8 in the inner curve has an even larger effect on a box:
scan than on a slit scan. Indeed, the full width at half maximum, Nb’~
of the box scan has become . almost as narrow as W, These qua]itativé\d
features should be readily observable experimentally, as long as the
slit width is small compared to the drop radius.

The primary factor, then, which determines the shape of the
Yuminescence profiles in Figs. 5.14 and 5.15 is the density distribution.
Because the observed luminescence depends only on the radiated term,

Eq. (5.39), for a given drop size the profile shape is completely
independent of the relative importance or density dependence of the

non-radiative processes.
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It may be noted that for a given drop size the actual luminescence

intensities also depend rather strongly on the density distribution.
Thus, for example, in Fig. 5.14 the peak intensity in the s1it scan

Is}it = Islit(o) should be 2.9 times as large for the inner curve as

for the constant density curve. The corresponding ratio for the peak
intensity in the box scan Tpox = Ibox(0,0) in Fig. 5.15 is =3.7. (These
differences are not seen in the figures because the curves are normalized
to the same peak intensity.] These large differences are easily under-
stood gqualitatively: the drop having n{0) = 2.8 n contains considerably
more e-h pairs than the drop having n(r) = Ry in fact, that ratio is

~1.7. A spatial region containing more e-h pairs emits more intense

Tuminescence. In addition, it may be noted that the ratios of Tumisescence

intensities given above depend on the geometry of the selected spatial
region: the ratio for the box is greater than the ratio for the siit,
which in turn is greater than the ratio of total e-h pairs in the drop.
This trend can also be understood qualitatively. The quantity Islit
corresponds to a slice taken through the center of a sphere ,while Ibox
corresponds to a core section through the center of the sphere. The
central region, where the density is greatest, is relatively more
important in the core section than in the slice, and in turn in the
slice than in the entire sphere. Thus the effects of g density distri-
bution im which the density is greater at the center of the drop are
most pronounced in Tuminescence box scans.

Some of the features of Figs. 5.1 and 5.2 can be more fully under-

stood by applying the types of reasoning given above. The total

luminescence intensity Itat is a measure of the number of e-h pairs in
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the liquid. Its greater than linear power dependence in Fig. 5.1

indicates that the production efficiency is probably changing rather

5.24

rapidly over that range of excitation levels. For the case of

constant-density spherical drops, it would be expected that Ib ~ R ~

OX
1/3

(Pxe and that I RZ ~ [ *Eprod)2/3° using the geometrical

prod) stit
arguments presented in Section 51. For the case of a density distribu-

tion, W, should change more slowly than R while Ibox should change more

2

rapidiy thanm R. In addition, should change more rapidly than R

2
box”

Is]it

(and thus more rapidly than Wi) but Tess rapidly than I And xtot

should change more rapidly than R3 {and thus more rapidly than Wz or the

3/2 3
slit box”

actual drop radii are not displayed in Figs. 5.1 and 5.2, it is neverthe-

"volume” of Fig. 5.2} but less rapidly than I or 1 While the
iess clear that the relationships just given are true. A more detailed
interpretation of these figures is difficult due to the complications

of the power-dependent production efficiency. (For example, this can
depend on the excitation geometry in a complex manner.) However, these
kinds of complications can be avoided by plotting quantities as a function
of drop size. A convenient measure of the drop size is ws’ the full width
at half maximum of a s1it scan.

Some of the ideas presented above are summarized in Fig. 5.16. This
figure shows the effect of the density distribution of Eq. (5.37) on the
peak luminescence intemsity in a box scan, the peak luminescence intensity
in a slit scan, and the total luminescence intensity. These gquantities
are shown as a function of NS for three cases: constant density {(n= no),
“spec =2 mev/mmz, and “spec =8 meV/mmz. 1t should be noted that a
particular value for W, corresponds to different radii for the three
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cases, for the larger drop sizes. The calculations were performed
using a siit width s = 35 pm. As expected, for the constant density

case the I curve is essentially a straight line with slope =1, the

box

I curve has slope =2, and the ltot curve has slope =3. (Deviations

slit
occur for small drop sizes as the slit width becomes important.} The
deviations from the constant-density case become more pronounced as the
strain well becomes steeper and as the drop size increases. In addition,
the deviations are more pronounced for Ibox than for Ish?‘t’ and for Ish‘t
than for Itot‘ These trends are all expected from the discussion above.
Curves such as those shown in Fig. 5.16 can be directly compared to
luminescence data such as those shown in Figs. 5.1 and 5.2 (see Section
54). Indeed, if the theoretical density distributions are correct, such
a comparison can be used to estimate a value for the well parameter

uspec without studying the spatial distribution of the exciton lumine-
scence. However, in order to test the correctness of the theory, Qspec
was measured in Sample CR50 by an analysis of the exciton luminescence,
as described in Section 52.

One further point may be made about the curves in Fig. 5.16. These
curves were calculated assuming spherical drops. From the fit of the
exciton slit scans discussed in Section 52, it was determined that for
Sample CR50 the well could be adequately represented by a =~ 2 meV/mn2
for the x and y coordinates, while for the z coordinate one half
Tooked like a = 5.5 me\l/mm2 and the other half looked {rather poorly)
like a = 2 meV/mmZ« Thus the drop shape is approximately a hemisphere

plus a hemi-ellipse, rather than a sphere. The curves of Fig. 5.16

should thus be modified according to the following line of reasoning:
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In the sphere (and in the ellipse), the dependence on spatial coordinates
is parabolic and is determined by a well parameter {or several well
parameters). A certain density range, say nl to n +An, corresponds

to a spherical or elliptical shell. The fractional volume of that shell
is the same for the sphere as for the ellipse. Thus, for examplie, a b
scan would have the same shape for any scan direction, if plotted as i@lv
Fig. 5.15 as a function of a normalized coordinate (x/RX, y/Ry, Z/Rz)

and normalized to the same peak intensity. This is because the lumine-
scence signal would contain the same relative amounts corresponding to
the different densities. However, the absoclute amounts would be

determined by the absolute volumes. If ay is the well parameter of

the sphere and o oy and a, are the well parameters of the el]ipse,<

]ﬂ
then the total volume of the ellipse is '/al/a2 times the total volume
of the sphere. For a hemi-ellipse plus a hemisphere, the volume ratipo

becomes (1 + JTI;EEE)/Z . The total luminescence intensity Itot
appropriate for a sphere must be multiplied by this ratic, in order t6

be appropriate for the hemi-ellipse plus hemisphere; so must the quantity
Is]it’ if the slit scan is taken along one of the directions represgnted
by o However, if the box scan is taken along one direction repregedfed
by o and integrated through the other direction represented by o {as
will be the case in Section 54), then Ibox does not need to be corrected.
For the conditions in Sample CR5Q, i.e., oy = 2 meV/mm2 and a, = 5.5
meV/mmZ, the ratio is =~0.8. Thus in the quantitative comparison with
experiment this adjustment should be made.

The analysis of experimental results corresponding to the theoretical

curves in Fig. 5.16 can yield much useful semi-quantitative information



-201-

about the e-h pair density distribution in the SCEHL. However, it is
actually possible to measure the density profile directly using a careful
measurement of the luminescence intensity versus position and an Abel
transform to convert the luminescence intensity to density. The
technique is borrowed from plasma physics and astrophysics, where
cbservations of plasma radiation are analyzed to yield the radial distri-

bution of the emission.5'25

The plasma is assumed to be optically thin
(no reabsorption of the radiation by the plasma) and to have cylindrical
or spherical symmetry. These conditions are applicabie for the case of
the EHL; the requirement of circular symmetry is easily relaxed to
elliptical symmetry, as will be seen shortly. In addition, the technique
has been used in order to study the e-h pair density distribution fn the

5.26

EHD cloud in unstressed Ge and in a single drop confined in a strain

well in inhomogeneously stressed Ge.5’26’5'27

In these experiments the
absorption of 3.39 um light was studied, rather than luminescence.
Thus the technique is rather general. Because of its extensive use in
plasma diagnostics and astrophysics, many numerical methods have appeared
in the 1iterature.5‘29
For the case of luminescence, the determination of the density
distribution is based on the measurement of a Tuminescence box scan.
For the mathematical formalism, consider the ideal case for infinitely

narrow s1its:

R
olx) = Bf dy n?(r) . (5.43)
b

This expression is obtained from Eq. (5.42) by omitting the x and y

integrations over the s1it width and by dropping the explicit designation
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z=0. {The generalization to nonzeroc 2z is obvious.) It may be noted
that the integrand depends on y only as y2 and that n{r)=0 for r>R.
In addition, if the distribution is circularly symmetric in the x and

y dimensions, then Eq. (5.43) may be rewritten as follows:

©

2
$lx) = zaf f;?,(__——l)é——wdw , (5.44)
WE - X
X

where wl = x2<fy2. For the case of elliptical symmetry velating the

coordinates x and y, w2 would be equal to x2 %ay2 and the RHS of Eq.
{5.44) would be multiplied by 2% here a = ayfoy.  Now ¢{x} is simply

5.30,5.31

the Abel transform of nz(w). Thus in order to obtain the

density distribution it is only necessary to perform the inverse

transform. This may actually be done in two ways:5'30’5'31
2 _ 1 o (x)
nflw) = - = A dx 5.45a)
) “Bj /3wl (
W

o

14 000 4y
~ wBw dw /xg_wz *

L

(5.45b)

where ¢'{x) = do(x)/dx . The primary difference between the two forms
is whether the differentiation is performed before or after the integra-

tion. The first method, Eq. {5.45a), appears to be more common in the

5.25,5.29,5.31

Titerature. However, because the derivative ' {x) is

required and because in a real experiment the data points contain noise,

5.25,5.29 in order

much effort has been expended in the numerical methods
to smooth out the noise. In order to make this problem less important,

the second method,s'30 Eq.{5.45b), is used here, along with an extremely
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simple smoothing method described in the next section. This method was

found to give satisfactory results, even in the presence of rather large
noise (i.e., when the signal was very small). The two methods were not

directly compared.

A few details of the computation should be noted. The inverse Abel
transform, £q. (5.45b), was performed numerically on the Berkeley campus
CDC 6400 computer. It may be noted that the transform appears to be
singular at w=0 and that the integrand is singular at x=w. The first
problem was solved by making a change of variables: u =w2, v = xz, S0
that V

b

Umax
nllu) = - b 3‘%] el 4, (5.46)
u

Here the integrand is zero for u {or v) greater than some maximum value.

For this ideal case Upax = RZ; however, below this will change. The

ax
singularity in the integrand can be removed by writing ¢{v) = [o(v) - ¢(u)]

+ ¢(u); then, after some rearrangement

Uma x
O

AR x4 ) (5.47)

2 - 1 d
nlu) = - g du
u
The transform was evaluated using this equation.
In a real luminescence experiment the slits have a finite width,

and ¢(x) must be replaced by I, (x). As a result, the deduced density

box
profile has the same slit width folded in as do the luminescence profiles.
For s sufficiently small, the main effect is to wash out the abrupt

density change which occurs at the surface of the drop: in the transform

of a real box scan, the density appears to go smoothly to zero (see
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Figs. 5.22 to 5.25). Also, for a real box scan, u in Eq. (5.47) is

max
not Rz, but rather the square of the last point, where the luminescence
intensity Ibox(x) has gone to zero.

It should be noted that the evaluation of Egq. (5.47) gives density
profiles whose values can be directly compared for different drop sizesf“5
different scan directions, or different values of the stress. The density
scale is determined by the fit of the luminescence lineshape for small
drop size. This method for determining the absoclute scale for the
density is thus quite accurate, i.e., as good as the lineshape fits er';
£5-10% from Egs. (4.6) and {5.5). This may be contrasted with the

density determinations using the absorption of 3.39 um radiation,5'26”§;2?’

5.32,5.33 which rely on an absolute measurement of the hole absorpti0n1WH'
cross section at 3.39 um. Values of the cross section varying over a ‘o
factor of 5 have been used; in addition, values measured for unstresseg
Ge have been used to analyze absorption measurements in stressed Ge,

530 e

since the stress dependence of the cross section is unknown.
as discussed in Section 42.4, measurements of the density using the
absorption of 3.39 um radiation have rather large uncertainties. The_
absolute accuracy of the density measurements reported here is crucial
in the interpretation of the other measurements of properties of the EHL
as a function of density.

The measurements of density profiles for different drop sizes can
be used to determine how the EHL chemical potential changes\with density.

Equation (5.33) can be written for r=0 and r=R to yield

2
u(n{0,R,7),T.0,) = |1(nO(T),T,cM)+ozSpecR " (5.48)
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using Eq. {5.29). Note that the drop radius R is needed, rather than
the FUHM of a siit scan W. : The determination of R from the experimental
measurements is discussed in the next section. FEquation (5.48), then,
gives a recipe for the change in p (measured with respect to the conduc-
tion band) with the density n{0,R}. This may be compared directly with
theory, such as the calculations of Chapter 2. As already mentioned,
this provides a very sensitive test of the many-body theories used in

the Coulomb energy. The measurement of u{n) can be used to obtain the

compressibility as follows, :using Egs. {2.70c} and {2.6b):

-1
d 5T
2 _u’_) (5.49)

Kr(n) = (n an

Vi
Note that this determines the compressibility as a function of density.
Thus a series of measurements at different temperatures could in principle
be used to determine KT versus n and T. This may be contrasted with the
case for unstressed Ge, where the measurement55'35 determine KT only for

the ground state density nO(D).

54. Experimental Results and Discussion

In this section the experimentally observed manifestations of the
variation of the SCEHL pair density with position are presented. Results
are presented both for Sample CR38 and for Sample CR50, including
detailed measurements of density profiles at several excitation Tevels.
The deduced value for the compressibility, however, is more reliable for
Sample CR50, since this sample was fully characterized (see Section 52).

These results are compared with the theoretical predictions of Section 53.
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A first type of experiment which shows cleariy that density vari-
ations do occur in the SCEHL is the dependence of the luminescence
intensity on drop size. Figure 5.17 shows the results for Sample CR38
from the set of runs discussed in Chapter 4. The total Juminescence
intensity without spatial selection, Xtot’ and the peak intensity in a
slit scan, Islit’ are shown as a function of the FWHM of the slit scan,
WS- The stit scan measurements arve shown for y-scans {obtained from the
face-view as shown in Fig. 3.8) and for x-scans (obtained from the end
view). For each point Islit and HS were obtained from the same scan.
The measurements of Itot are shown versus ws for the y-scans, for
concreteness; however, the values for ws for y-scans and x-scans at the
same excitation level were virtually identical. Some of these measure-
ments were shown previously in Figs. 4.17 and 4.18 as a function of
excitation Tevel. The curves in Fig. 5.17 are the results expected from
the calculations of the last section for %pec ~ 8 me\l/mm2 and stit
resolution s = 85 ym. This value of the well parameter is very close

to the estimates made earlier: ~ 7 meV/mn2 from luminescence

0')s/pec
spectra of the center and the edge of a large drop (see Section 42.3),
and Qépec ~ 10 meV/nm2 from an exciton slit scan {see Section 42.1 and
Eq. (5.7)). The agreement over three orders of wagnitude in the total
luminescence intensity is excellent. Deviations can be seen for Islit
for small drop sizes. These deviations occur .for both samples (see
Figs. 5.17-5.20) and are due to a loss of resolution on a scale which
apparently is larger than the slit resolution; see Section 34 for a
fuller discussion.

From Fig. 5.16 it may be noted that the curves for Ktot and Is]it
should be related by a specific scale factor. However, in this set of
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experiments the measurements of Itot and Ks]it were performed in different
runs, and the relative calibration of the collection optics was unknown.
Hence the theoretical curves have been adjusted individually for the best
fit. In addition, an overall loss in luminescence intensity for the

end view is evident in the reduction in I for the x-scans. These

stit
comments are intended to indicate the types of information which can be

obtained from plots such as Fig. 5.17.
A more complete set of measurements is shown in Figs. 5.18 and
5.19 for Sample CR50. Figure 5.18 shows the total luminescence intensity

Itot’ the peak intensity in a s1it scan Islit’ the peak intensity in a

Tuminescence wavelength spectrum I , and the peak intensity in a

A-scan
box scan Iy .. all obtained using the side view. These quantities 'dre

shown as a function of drop size, given by the FWHM of the s1it scan

{x-scans}. In Fig. 5.19 the quantities [ and 1 are shown as a

slit box

function of W, for y-scans obtained using the face view. In both cases,
the curves show the theory of the previous section for aspec = 2 meV/mmz,
which is very nearly the value obtained in Section 52 from exciton slit

scans at 4.2K. (The theoretical curves for the correct values, a:pec =

1.7 me\l/mm2 and aﬁ . 1.8 meV/mmZ, differ only negligibly from those

pe
shown.) In addition, in these two figures the theoretically predicted
relative intensities of the curves are kept intact. This means that the
calculated curves were all shifted together along the intensity scale in
order to show the best agreement with the data. This was possible because
the {small) daily variations in the overall system sensitivity were

monitored and were taken into account in the display of the data. Here

again, the agreement is excellent over nearly an order of magnitude
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variation in drop size and three orders of magnitude variation in Itotﬁ.36

Finally, Fig. 5.20 shows a partial set of data for Sample CR38 for
different conditions from the results of Chapter 4 and Fig. 5.17. These
data were obtained from the same scans used to obtain the density profiles
shown below. The figure shows Ibox versus drop size for y-scans using o
the face view. In this case the drop size was estmated by the FWHM of al..
box scan, Wy, since slit scans were not obtained in this set of runs.

In addition, since the well parameter was not measured using either of
the methods discussed in Chapter 4, these data are used to estimate aspéé'

The curve shown in the figure corresponds to a =4 meV/nm2 and agrees’

spec
very well with the data. An estimate of the accuracy of such a determi- |

K7 N

nation of % pec can be made from Fig. 5.16, which shows thecretical

curves for o = 2 and 8 meV/mmZ. (The changes in the curves as a

spec spec

is varied are much more important than the changes which result from

plotting versus W rather than wb,) Thus this estimate of o should

spec
be correct to within a factor ~between 2/3 and 3/2.

The luminescence box scans used for Figs. 5.18 to 5.20 were alsg'-
analyzed as described in the last section in order to cbtain measurem?qf§
of the e-h pair density as a function of position within the SCEHL. The
scans were recorded automatically as described in Chapter 3. A1l data
processing was handled by computer, i.e., no smoothing or baseline
corrections were done by hand. However, a constant baseline correction
was made by the computer. In addition, the raw data were smoothed as
follows: each data point was replaced by the average of m points

centered on the original point. For the data from Sample CR38, m=5,

while for the data from Sample CR50, m=3. The density profiles were



~209-

obtained from the inverse Abel transform of the box scans, according to
Eq. (5.47). Two scan directions were selected for analysis: side-view
x-scans and face-view y-scans. These choices were deliberate. In a
side-view x-scan the luminescence is integrated through the y-direction,
while in a face-view y-scan the luminescence is integrated through the
x-direction. Thus for both types of box scans the scanned and integrated
coordinates are related via elliptical (indeed, essentially circular)
symmetry, and the Abel transform is mathematically correct. This is not
the case where the scanned or integrated coordinate is z, so scans
involving 2z are not analyzed heve.

An example of a box scan is shown in Fig. 5.21, while its transform
is shown in Fig. 5.22. These data were obtained from Sample CR50, with
pabs = 400 mW. The resulting drop size, as seen here or in Fig. 4.15,
is R~ 0.7 mmn. Several points are illustrated in this pair of figures.
First, it may be noted that an asymmetry occurs in both figures at the
surface of the drop. The density measurements should appear to go smoothly
to zero, as on the right-hand side of Fig. 5.22, due to the finite slit
width, which smears out the :ideally shapr density change at the drop
surface. (Note that this means that the density n{(R), which should be
=n,» cannot be measured from such a density profile.) However, the base-
line on the left-hand side of Fig. 5.21 is higher than on the right.

The extra luminescence comes from small droplets flowing from the
excitation point into the well. The coordinate position x=0, or x-x  ~
-1.5 mm, corresponds to the crystal face where the laser is incident
(refer to Fig. 3.8). This extra baseline was not subtracted out before

the data were transformed; as a result, the density does not appear to
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go to zero at the left of Fig. 5.22.

In addition, it may be noted that the raw data in Fig. 5.21 show
several small wiggles, which are apparentiy due to small imperfections
on the crystal face through which the image was collected. These
relatively small anomalies appear much larger in the transformed data.
This is easily understood: the box scan is a superposition of Jumine-
scence from different densities through the depth of the well. In
order for a dip {for example) in the box scan intensity to be real,
it must correspond to a much larger dip in the density. Thus the
transform automatically magnifies small anomalies in the raw data.

The most important feature of Fig. 5.22 is, of course, that the e-h
pair density is found to have large variations with position. The density
at the center of the drop is approximately three times the uncompressed
density. (The determination of the absolute density scale is discussed
below.)} The form of the spatial density variation also agrees well with
the theoretical prediction: the solid curve shows the transform of a
theoretical box scan computed using Eq. (5.42) witha = 2 meV/nmz, R=0.7
mn, and s = 35 um. For comparison, the figure also shows the expected
form of the transform if the density were actually uniform, but still
compressed over the equilibrium value. The dashed curve shows a "best
fit" for such a constant density case. The essential validity of the
density variations given by Eq. (5.37) is thus confirmed.

Figure 5.23 shows density profiles for Sample CR38 at a series of

three excitation levels: P s = 2.5, 15 and 94 mW. A1l three sets of

ab!
data are plotted on the same scale and show the increase in the density

variation with drop size. The curves show transforms of theoretical
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box scans computed according to Eqs. (5.42) and {5.37), with n{0,R)
adjusted for a reasonable fit. The agreement is very good. Note that
for the smallest drop size displayed in the figure, the liquid is already
somewhat compressed above the equilibrium density n, =~ 0.5 x10]7 cm'3.
For such a small drop size, when the radius is only a few times the slit
resolution, it is difficult to tell from the transform of a single scan
whether or not the density varies significantly with position, due to
the scatter in the data and the finite slit width. This may possibly
explain the null result of Mattos et 31,5‘27 who found that the density
appeared to be uniform in a drop with radius R = 150 um, using a probe
with resolution =70 um. For Sample CR38, the sample of Fig. 5.23,
however, the density was lower for a smaller drop size, showing that!/the
liquid was already compressed in the scan shown here. Thus it is
important to study the density profiles for a range of drop sizes.

It may be noted that the density profiles shown in the figures are
not perfectly symmetric. This is because the raw data are not quite
symmetric — probably due to noise — and alsoc because the left and right
halves of the box scans are processed separately. In other situations,
where the cylindrical symmetry is expected to be rigorous, it is commons'25
to simply average the two halves of the original scans. Here, in order
display any true asymmetries, the halves are processed separately.
However, note that this requires that the center be accurately chosen.
Figure 5.24 shows the effect of choosing the center of the box scan
incorrectly. This is a transform of the same set of data for Pabs = 94 my
as in Fig. 5.23, except that the center, i.e., the point u=0 for the

transform, is displaced from its true position by =35 um. HNow the density
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n{0) should be the same whether determined from luminescence emitted from
one half or the other of the drop. It is clear that unless the true drop
center is located accurately, the resulting density profile is meaning-
less. Thus the center was chosen very carefully for all the scans
analyzed in this thesis.

Finally, Fig. 52.5 shows a series of density profiles obtained for..
Pabs = 0.22, 7.4, and 400 mW in Sample CR50. The latter scan is the
same as in Fig. 5.22. This illustrates the fact that it is possible to
measure density profiles over more than three orders of magnitude in
excitation intensity, corresponding to approximately one order of (R
magnitude variation in drop size. The density at the center of the drop |
is found to vary by a factor of approximately three for this range of o
drop sizes.

The density profiles shown in Figs. 5.22 to 5.25 show conclusively
that the e-h pair density varies with position in the SCEHL and that the
magnitude of the variation increases with drop size. The form of the b
density profiles is in good agreement with the theoretical prediction of
Eq. (5.37). A more gquantitative comparison with theory is shown in o
Figs. 5.26 and 5.27. Here the density at the center of the drop n{0)
is plotted as a function of drop size for the two samples studied here .
One set of scans was ana]yzed for Sample CR38, while two more complete
sets were analyzed for Sample CR50. The curves show the theoretical
results for the values of the well parameter obtained previously: aspec s

4 meV/mm® in Fig. 5.26 for Sample CR38, and o, ~ 2 meV/mm® in Fig. 5.27

spec
for Sample CR50. Note that the calibration of the density scale for the

profiltes was performed using the data for these figures. The data were
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plotted in arbitrary units; then the scale was adjusted to give the
best agreement with the curve for the appropriate (measured) value of
aspec’ normalized to the appropriate (measured) value for the equilibrium,
uncompressed, density. The measured densities are slightly high for
intermediate drop sizes and somewhat low for the largest drop sizes in

Fig. 5.27. The latter result may be due to the shape of the strain

well deviating from being truly parvabolic; this is expected for
sufficiently large drops. Overall, however, the agreement between
experiment and theory is excellent.

The measuvements of the density at the center of the drop versus
drop size can be used to determine the variation of the EML chemical
potential with density, using Eq. (5.48): the chemical potential b
difference u{n) —p(nu) is simply given by “specRZ' For the data from
Sample CR38 shown in Fig. 5.26 the drop radius R was obtained from the
drop size Wy using the theoretical relationship between Wb and R expected
for Unee 4 meV/mmz. Since the form and magnitude of the density
variations are well described by Eq. (5.37), the drop radii obtained
in this way should be correct to within $10% even if uspec if off by a
factor up to £1.5. The results for Sample CR38 are shown in Fig. 5.28
using Spec T 4 meV/mmz. The solid curve shows the theoretical chemical
potential as a function of density according to Model 1. Here the data
and theory appear to be in excellent agreement. However, it must be
cautioned that the uncertainties in the values for the chemical potential
are rather large, due to the uncertainties both in ”spec and in R. Indeed,

the uncertainty in a is amplified, rather than reduced, in the chemical

spec
potential.
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On the other hand, the measurement of the chemical potential
difference for Sample CR50 is much more accurate, since aspec was
measured rather carefully, as discussed in Section 52. The result is
shown in Fig. 5.29, including both sets of data. Here the drop radius
was determined using two methods: for large drop sizes the diameter was
given by the points where the density profiles went to zero, with an
appropriate correction for the finite s1it width; for smailer drop
sizes R was obtained from ws using the theoretical relationship expected
for “spec = 1.7 meV/mmZ, the correct valye. As in Fig. 5.28, the solid
curve shows the chemical potential difference u{n) *u(no) given by Model 1.
Here the accuracy of the measurement is greater, but the theory does not
appear to agree with the experimental results. In fact, the disagreement
appears to be outside the experimental uncertainty.

Indeed, from Fig. 5.29 the difference between the experimental and
theoretical chemical potential versus density appeavs to be quite substan-
tial and serious. Between n=0.5 and 1.5x ]017 cm"3, the experimental
chemical potential changes by ~0.35 meV less than the theoretical
chemical potential, whereas the total measured variation is =0.75 meV.
However, this discrepancy is actually not as serious as it initially
appears to be. Recall that the pair free enrergy consists of kinetic
and Coulomb energy terms, that the kinetic energy is positive, and that
the Coulomb energy is negative. Since the discrepancy occurs in the
sum, the relative error in either quantity is much smaller. To be more
specific, suppose that the theoretical kinetic energy is correct and that

the error occurs in the FSC Coulomb energy used in Model 1. Then,

according to Fig. 5.29, the theoretical Coulomb energy contribution to
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the chemical potential, Yeour? varies too slowly with density by =~0.35 meV

v cm'3. But the total variation

over the density range 0.5 to 1.5x 10
of Mooyl is =2.85 meV in this density range, so the relative error is
only =12%. Further, it may be noticed from Fig. 2.7 that the Coulomb
contribution to the pair free energy fCouY varies more rapidly with
density in Model 6 than in Model 1. Indeed, over the density range in
question, fCoul changes by =~0.25 meV more in Model 6 than in Model 1;
and this difference should increase slightly for Heguy OVer the change
for fCoul‘ Thus it may be possible that the discrepancy between theory
and experiment in Fig. 5.29 is no greater than between Models 1 and 6.
If this is the case, then perhaps a different universal Coulomb energy
should be used in the theory; or perhaps the universality proposed Y
Chapter 2 must be modified.

In order to test these possibilities in more detail, it would be
desirable to measure the chemical potential using another method, For
example, it should be possible to obtain the drop chemical potential
u; {measured relative to the valence band) from an analysis of the
luminescence spectrum. This is of course complicated by the density

distribution and the energy variation with position. Thus far a model

has not been developed to describe the composite luminescence Tineshape

for a drop whose density varies with position. i
It should also be noted that the box scans were converted into

density profiles neglecting a density-dependent radiative enhancement

factor p{n). The radiative lifetime in Eq. (5.40) should actually be

written as follows:

agln) = 8 pln)a (5.50)
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where BO is a constant. The enhancement factor is the ratic of the
probability of finding an electron and a hole at the same position within
the EHL to the probability for an uncorrelated plasma. Thus the enhance-

ment factor is a measure of the electron-hole correlation. It is

s
-

5.38 that p{n) decreases with increasing density. This means

expected
that the density variations indicated in Figs. 5.22-5.29 actually
underestimate the true density variations. An apparent density variatioq
of 3 actually corresponds to a variation of 3 in the quantity p%n,
according to Egs. {5.39) and {5.50). Thus, for example, if p ~ 0

then the true denstiy variation would be ~4.3 — a significant difference. .
Thus the discrepancy between theory and experiment in Fig. 5.29 would
actually become more pronounced.

Keeping the above points in mind, the chemical potential measuremeéhts
in Figs. 5.28 and 5.29 yield values for the compressibility of the SCEHL,
according to Eq. (5.49). Although KT can be determined for any density
in the range for which there are data, the analysis here is restrictedw
to KT(nO(T)), where no(T) is the equilibrium density for the temperatuve
T= 1.9K at which the density measurements were made. As mentioned
previously, this is a quite accurately isothermal measurement. The
derivative du(n)/dnlno is determined by fitting a straight line to the
data of Figs. 5.28 and 5.29; because of the curvature, only the points

7 a3 are used. The best fit is indicated in the

17

for which n < 1.0x 10
figures by a dashed Tine. ‘Using the estimated value nD(T) ~ (.5x%10
Cm"3, for Sample CR38 the resulting value for the compressibility is
KT = 0.023 cmz/dyne. Because of the possible errors discussed above,

the uncertainty in this value is nearly a factor of 2. For Sample CR50,
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the compressibility is given by

expt +0.024 2
(P = 0.058(15:573) cn/ayne

(-0 = 5.5 kgf/mn’,

(5.51)
n=0.47x10"7 cm'3,
T=1.9¢)
The uncertainty includes 5% for D 5% for du/dn if aspec is assumed
to be correct, 5% for a , and +20% to allow for the demsity-dependent

spec
enhancement factor. Note that the uncertainties are so large primarily

because several factors enter into the final result. This is a
disadvantage of this method for measuring the compressibility: a

series of careful 5% measurements result in a £20% estimate. However,
the measurement of any property of the EHL which depends on the curvature
of the free energy E; is very difficult. Thus the final uncertainty is
not excessive. The theoretical value for the compressibility is as

follows for Model 1:

KIPE0 - 0.041 cn/dyne
(-0 = 5.5 kgf/mmz, n, = 0.46 x10t7 cm—3,
T

2K, Model 1} - (5.52)

In view of the comments made above concerning different models for the
Coulomb energy, the agreement between theory and experiment is quite
satisfactory.

Two points should be made concerning the experimental value for KT
in Eq. (5.51). First, this represents a significant modification of a
5.2

preliminary value KT ~ (.03 cmz/dyne obtained for the same sample.

Several factors enter: the densities and drop radii have been re-checked;
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the equilibrium density has been measured more carefully; the well
parameter has been measuved more carefully; the slope du/dn has been
measured in a more controlled way; and a second set of data has been
included. Each of these factors has contributed to the modification
of the final result. The value given here in Eg. (5.51) is believed
to be correct, within the stated limits.

Secondly, a comment is in order concerning the rather large
difference between the values for KT for the two samples. It may be
noted that the ratio of the two values for KT is a]most exactly the same
as the ratio of the well parameters. In other words, the guantity
]/aspec dufdn = dRZ/dn(O,R) is nearly the same for the two samples.
Similarly, the graphs of n{Q) versus drop size (WS or wb) are nearly
identical for small drop sizes, although significant differences are
evident for the larger drop sizes which are not used to determine the

slope dy/dn. The results for n(0) versus drop size actually should vary

slightly for small drop size, depending on the value of o However,

spec’
it is evident from these sets of data that it is extremely difficult to

measure these guantities for small drops with sufficient accuracy to

distinguish between different values for o Thus the well parameter

spec”
must be determined separately.

56. Density Dependence of the EHL Lifetime

In this section the density variations measured in the previous
section are exploited in order to obtain information about the density
dependence of the EHL \ifetimé and about the relative importance of
different recombination mechanisms. The EHL lifetime varies with density

as follows:
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-1

T'](n) R PH T;;d(n) —_—

Aug(n) {5.53a)

= A+Bn+Cn . (5.53b}

Here the first term represents processes independent of density; the

second term represents the usual radiative recombination process; and

the third term represents Auger processes, where s is expected to be

2 or 3. This expression is similar to Eq. (4.8), except that a density-
independent term has been added. The analysis of this section will

omit a density dependent enhancement factor; the implications of that
omission will be discussed briefly at the end of the section. Efficiencies

may be defined for the recombination processes, as follows:

edi(n) = T(n)/Tdi N i
€aatt) = wlnl/T(n) (5.54)
CaugtM = Tnd/Ty, (0}

In addition, the rates at which e-h pairs in a small volume dV located
at a particular position r within the SCEHL decay in the different

recombination processes can be written as follows, following Eq. (5.39):

dl(r) = o) gy

Tai

n{r
*‘(ly av s 5.55
Trad ( )
d1 - el

Aug(r) C dv

it is possible, then, to model the decay of a drop with a given size

dlrad(r)

3
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using Egs. {5.53) and (5.55), the density distribution in Eq. {5.37),
and various assumptions about the coefficients A, B, and C {or the
efficiencies).

First, however, a description of the experiment and the experimental
results is in order. Actually, two types of experiment will be discusse&ZQ
here. In the first experiment the initial luminescence decay time was
measured for different drop sizes. The luminescence was collected from
the entire drop, without spatial or spectral selection, and recorded as
a function of time after laser cutoff for a series of different excitation
levels. Because the average density increases with drop size, the decax
of a large drop is markedly non-exponential, as shown for example in )
Fig. 4.11b. Therefore the initial decay time was measured, as well as e
the initial drop size, given as usual, by Ns‘ The results of this
experiment are shown as the dots in Fig. 5.30 for Sample CR50. MNote that
the same data are shown as a function of excitation level in Figs. 5.2 ;
and 5.4. The initial decay time is found to decrease from =500 usec to~
~300 usec with increasing drop size.

The change in T with drop size may be modeled using the density
distributions of the previous sections as follows: Note that the rate™ *
dN/dt at which e-h pairs decay via all processes is given by

AN L oaln) n{r) n{r) N
at Ty dy +,[T,-ad“ dyv + P - dy T . {5.56)

Aug

The first line uses Eq. {5.55), while the second line defines e the
effective (initial) decay time for the number of e-h pairs N in a drop.

The total luminescence intensity is proportional to

I [Jﬂ{% v o, (5.57)
rad Trag P
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which represents the radiated portion of dN/dt. The initial rate at A, B, C change with stress, or the coefficients are determined incorrectly
which the total luminescence signal decays in time is given by for unstressed Ge, or both.
dxrad , It may be noted that a slightly refined value for the ratio of the
i —%%g > (5.58) radiative efficiencies for stressed and unstressed Ge can be obtained

]

. . . using Eq. (5.54), as follows:
following Eq. (5.56); this defines T4 The left-hand side of Eq. (5.58)

must be calculated numerically: Irad is evaluated at times t=0 and At, | Erad(n]) = T(n])Trad(no) (5.59)
where the radius R{At) is obtained from N(At), which is in turn calculated % Erad(no) Trad(n])T(no) ‘
from Eq. {5.56). This procedure is necessary because of the density ; : T(nl)nl (5.59)
distribution. For the case of a constant density, v; is simply equal j ) T(“O)“O ’ ’
to TN However, for the density distributions expected and observed
here, the initial luminescence decay time T3 is shorter than Ty where ny and n, are two EHL densities. Using the values appropriate

The curves in Fig. 5.30 represent different sets of values foﬁ‘the for unstressed Ge and for the SCEHL, the ratio is found to be
coefficients A, B, and € in Eq. (5.53). The dot-dashed curve represents
the case for which e4;(n ) =0,  (n)=0.75, g5, (n )=0.25, and s =2 Erad(“"szgz;ﬁ‘j EHL) _— (5.60)
in Egs. {5.53) and (5.54). Here n, is the uncompressed density Frad
n, = 0.47x 107 an3. Note that the equilibrium 1ifetime is T(ﬂo) b This value is found directly from measured quantities and does not
485 psec. This model was formulated using the indications discussed depend on the production efficiencies; thus it represents an improvement
in Section 44.2 that Erad(SCEHL) ~ 3 e g (unstressed EHL), along with over £q. (4.11). The value for this ratio puts an absolute upper limit
the evidence obtained by Betzler et a15’39 that A is negligible and that on the radiative efficiency for the EHL in unstressed Ge.5'42
€pag ™ 0-25 for unstressed Ge. This model is clearly unsatisfactory; The dashed curve in Fig. 5.30 represents Edi(no)= g, erad(n0)= 1.0,
the initial decay time decreases too much as the average density and eAug("o) =0. 1In this model, the change in T;i with drop size
increases, indicating that the Auger term is too large. Thus an Auger corresponds to the change in a kind of average demsity. This model is
process is not dominant here, in contrast to the case of unstressed also unsatisfactory. In the first two models, a density independent term
Ge.5'39'5’41 It can be seen that this represents a problem: the best was omitted, following the situation for unstressed Ge.5'39 It is clear,
available information for unstressed Ge cannot simply be scaled to the however, that within the framework of Fgq. (5.53b), it is necessary to

densities appropriate for the SCEHL. FEither some of the coefficients include a recombination process which is independent of density.
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The solid curve in Fig. 5.30 represents an approximate fit to the

data: Edi(no)= 0.75, € (no)= 0.24, eAug(" }=0.01, and s=2. uhile

0
some adjustments are possible in these efficiencies, two points may be

rad

made. First, the density independent recombination mechanism actually
dominates. Secondly, the Auger term is severely reduced. For example,

31

if EAug ~ 0.75 for unstressed Ge, then € = 3.94x 10 cmﬁ/sec; however,

if EAug ~ (.01 for the SCEHL, then the Auger coefficient is redqced to
¢=~9.3x157%3 cms/sec.

Additional supporting evidence is obtained from a Second experiment.
In this experiment the Tuminescence intensity from the entire drop was
monitored as a function of magnetic field at discrete times after a short
(=0.2 psec) pulse from a GaAs laser. Under these conditions the dypp
grows very rapidly, within a time much shorter than the EHL ]ifetime,5‘43
to a maximum size; it then decays in the same way as a dvop formed by
cw excitation. The total energy per pulse was chosen to produce a drop
with radius R = 125 um, so that the density was essentially uniform.
The application of the external magnetic field provides a second method
to vary the density, similar to the case for unstressed Ge, where the
density oscillates with magnetic field as electron Landau levels pass

through the Fermi level.? 3%

Density oscillations of ~10% are obtained
for H < 20 kOe. For the SCEHL, for the relatively small drop size given
above, an essentially uniform density is varied without the complications
of compression. The magneto-oscillations of the luminescence from Sample
CR50 are shown in Fig. 5.31 for H < 18 ke at several delay times.

It can be seen that at t=1 msec the oscillations are reduced in amplitude

but have not changed sign; note that t=1 msec is approximately twice the
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zero-field decay time T(no) ~ 485 uysec. This is in contrast to the

case for unstressed Ge, where the oscillations change sign after approx-

5.39

imate one-third of the zero-field decay time. These two results

give information about the relative importance of the different decay

mechanisms.
To understand the significance of these results it is necessary to...
consider the kinetics of a pulsed experiment. Because the drop lifetime
is much Tonger than the laser pulse width (~500 psec compared to ~0.2
usec), the drop initially contains a constant number N{t=0} e-h pairs,‘
if the efficiency of pumping carriers into the strain well is independent

of magnetic field. The luminescence intensity as a function of time is

given by
- N(t) Ey
I{H,t) = ;;;a(ﬁ(gyy (5.?}a)
= 8 () no) & /M) (5.61b)

Here it is assumed that the density variation with position can be
neglected, so that only the density variation with H is important. &.-
For the experimental situation, the average density for H=0 is expected
to be =1.03 s less than the magneto-oscillations; thus this assumption
is justified. At a magnetic field for which the equilibrium density
n(H) is higher than the zero-field value Ny the initial luminescence
intensity, I{H,0), is greater than 1(0,0) and the lifetime t{n) is
shorter than r(no). Therefore at some later time tT the luminescence

intensities are equal:

I(H,tT) = I(O,tT) . (5.62)
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At this turnover time t. the magneto-oscillations change sign. As long

T
as |(n(H) -no)/nol <<1, it is straightforward to show from Egs. (5.61)

and {5.62) that

t = n (5.63a)

" s
= Bno + ano . {5.63b)

It is convenient to rewrite this equation slightly in order to define

a useful quantity:

w{n_) -1
- o’ _ di '(n
€= % - nyeln) 'de ) (5.64a)
ti
erad(no) + s EAug(no) . (5.64b)

The quantities & and5'44

1-( = Edi("o) - {s -1)eAug(n0) (5.65)

appear throughout the analysis of magneto-oscillatory phenomena. Other
combinations of recombination efficiencies cannot easily be obtained
from these experiments. If £<1.0, it can be seen from Eq. (5.64a) that

0

T“‘(n) varies more slowly with density than nT‘ , i.e., that the density

independent mechanism is more important than the Auger wechanism.

1.0 and

Conversely, if £>1.0, then T'I(n) varies more rapidly than n
the Auger mechanism s more important than the density independent
mechanism {for s =2).

The data displayed in Fig. 5.31 give direct information about &,

using Eg. (5.64a}. Since the turnover time tT 2 ZT(HD), it must be the
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case that

£ < 0.50 (Sample CR50). {5.66)
In addition, using Eq. (5.65}, Edi(na) 2 0.50, in agreement with the
results of Fig. 5.30. On the other hand, the data of Betzler et 315‘39
indicate that

£ ~ 2 {unstressed EHL). {5.67)

This indicates that the Auger mechanism dominates the decay in unstressed
Ge. In addition, note from Eq. {5.64a} that
E<s (5.68)

the value of s for the Auger term cannot be smaller than the value for £.
This has important consequences for unstressed Ge. Some of the experi-

mental results of Betzler et a]5'39

indicate that £ may be greater than 2.

In this case, or if the enhancement factor is inciuded in the Auger

process, then it is necessary that the Auger exponent s is greater than 2
A comment is ip order concerning the omission of a density indepen-

5.39

dent mechanism in the analysis of Betzler et al. They concluded that

€45 < 0.1 eAug for unstressed Ge and therefore set €di =0. However, in
the present analysis for the SCEHL, €44 =0.75 corresponds to T4~ 645
usec. For the EHL in unstressed Ge the same density independent decay
time corresponds to €44 0.056. It is clear that such a process which
can be neglected in unstressed Ge can at the same time dominate the
decay of the SCEHL.

It should be noted that if a density-dependent enhancement factor

is included in the analysis, somewhat different values for the efficiencies

will be required for a good fit to the SCEHL data, compared to the values
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corresponding to the solid curve in Fig. 5.30. The value for Edi(no)
will decrease, while the values for arad(no) and EAug(no) will increase.
However, it is likely that Edi("o) will still be substantial, while
eAug("o) will still be smaller than expected simply by scaling from

the results for unstressed Ge. There is also a question of what
enhancement factor is appropriate to use. From a theoretical.point of
view, the calculation of Vashishta et a15'38 corresponding to the Model }
Coulomb energy of Chapter 2 is probably the most appropriate. Recently

Chou and wongs'45

claim to have actually measured pl{n). However, in

their analysis they omitted a density independent recombination mechanism.
Consequently, in order to interpret their results they proposed such a
rapid density dependence for p{n) that Trad(n) was nearly independant

of density. However, the experimental results of Chou and Wong are
essentially consistent with those presented here: 1i.e., they can be
interpreted using a term independent of density and a term 1inea} in the
density, with negligibly small higher order terms. Further theoretical
work as well as experiments on different types of samples will be required
to resolve this question.

Some of the experimental results for Sample CR&0 can be used to
estimate the radiative efficiency of the SCEHL. Consider drop sizes which
are small enough that the effects of compression are not large. Then the
number of e-h pairs which decay radiatively per sec is given by Eq. (5.57),

and the radiated power is given by

n_ Y

- 0o
Prad = ™ium 7 Sradl) (5.69)

where hv is the energy of a luminescence photon, =~0.71 eY¥. The

Tum

-228-

quantity Prad is related to the actual recorded Juminescence signal via
Eq. (3.20). The data for drop sizes Ws between ~700 um and 200 um yield
the following result:

Erad(no) = 0.32/c , o
where the value of c is estimated to be between 0.5 and 1.0. In view
of the difficulty of measuring the absolute detector sensitivity ’
{indeed, such a measurement was not performed), this value is consistent
with the other values proposed here.

Returning once again to the density independent recombination
mechanism, a recombination time Tgi ™ several hundred usec seems reason-
able for Ge. Possible recombination sites include shallow traps and Lo
deep traps. While a detailed calculation is beyond the scope of this
thesis, crude estimates can be made of the required concentrations oflm
shallow or deep recombination cemters. First, it may be noted that :

5.46-5.48

several groups have measured the EHL decay time in doped -

unstressed Ge. While there is some variation in the results, the iifee

time generally Starts to decrease when the impurity concentration Ni

15 to ]016 cm°3. 5.48 M

is greater than ~10 For example, Zhurkin et al
report T=24 psec for Nj = 2 X10]6 cm'3 As impurities. If the e-h pair
density remains constant at these doping levels, the decrease in 1ife-
time may be attributed to ‘impurity-induced recombination. The change
in lifetime then corresponds to T4 70 usec for Ni = 2% ]0]6 cm'3.
Assuming further that this recombination time is inversely proportional
to the impurity concentration, Tgi ™ 1 msec would correspond to Ni ~

1 xl()15 cm'3 of shallow impurities. As discussed in Section 31, it is

known that the concentration of shallow impurities is S]Ol] cm'3 in all
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the samples studied here.:  Thus shallow impurities are not responsible
for the observed density-independent lifetime in Sample CR50.
An estimate can also be made for deep levels, where nonradiative

5.49

recombination could take place via multiphonen emission. Experimental

values for nonradiative capture cross-sections at room temperature have

5.50 2

been tabulated for Ge and lie in the range ocap ~ ?0'14 to 10']6 cm.
A simple model consists of a three-step process: very rapid capture of
the first carrier, slower capture of & second carrier, followed by rapid

recombination of the e~h pair. The rate for the slowest step is given
byS.SI

T (5.71)

where v is the carrier velocity, which can be taken to be the Feréﬁ
velocity for carriers in the EHL (see Eq. (5.12)). In this case Tgq ™ 1
msec would correspond to Ni ~ ]0‘0 to 10¥2 cm”3. The level associated
with the divacancy-hydrogen complex is present in approximately this
range of concentrations, as discussed in Section 31, While it is
premature to suggest that these levels may be responsible for the
observed density independent decay time, an experiment should be
performed in which the concentrations of these and other deep levels
are varied in a controlled manner. It may be noted that there are
preliminary indications that the quantity £ does vary between samples
(e.g., for Sample CR38, & appears to be 21). Thus the study of the

SCEHL in differently prepared samples may prove to be a sensitive test

of impurity-induced recombination.

~230-

CHAPTER 6. SUMMARY AND CONCLUSIONS

In this chapter the main results of this thesis are summarized.
In addition, some suggestions are made for further work.

Chapter 2 presented the results of a detailed calculation of
properties of the electron-hole liquid in uniaxially stressed Ge and Si.
Results were presented for a number of properties as a function of (111)
stress in Ge and (100) stress in Si. These properties included the
ground state (7=0) equilibrium density, the ground state pair energy,
the electron-hole drop charge, the electron and hole Fermi energies,
the luminescence linewidth, and the compressibility. The importance
of including the non-parabolic valence band density of states in the
fitting of Tuminescence lineshapes was emphasized. The possibility was
discussed of a phase transition in Ge as a function of stress, as the
upper electron valleys are depopulated. Either a phase transition should
occur between two types of EHL, or the liquid shouid exhibit rather large
density fluctuations. A careful series of experiments in this very
interesting range of stresses would be highly desirable.

Theoretical results for the systematic variation of the liquid
density, Fermi energy, and chemical potential with temperature were also
presented. In addition, the high temperature properties were discussed,
including the critical temperature and density. The theoretical results
were found to be in reasonably good agreement with the available experi-
mental data. However, a more extensive experimental study of the stress
dependence of EHL properties should be done, especially in Si, where
Tess data are currently available. As discussed here, of particular

interest are the EHL properties in the infinite-stress limit, the
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approach to the infinite-stress limit, and the nature of the gas in
equilibrium with the liquid at high temperatures. Finally, the theoret-
ical machinery developed here can also be used to calculate the stress
dependence of EHL properties for the other primary stress directions:
(100) and (110) in Ge, and (111> and (110) in Si. The availability of
theoretical predictions will hopefully encourage experimental studies
to be made.

In Chapter 4 the properties of the strain-confined electron-hole
tiquid in Ge were studied experimentally, and comparisons were drawn
with clouds of small EMD formed in unstressed Ge. These properties were
determined from spectrally, spatially, and time resolved measurements of
the recombination Juminescence as a function of excitation level, magnetic
field, and, to a lesser extent, temperature and stress. The luminescence
linewidth was found to increase at high excitation levels, and the
recombination lifetime was found to decrease, indicating qualitatively
that the liquid becomes compressed. For small drop sizes, however
(R 5 150 um), the equilibrium properties may be studied. From a fit of
the luminescence Vineshape the density was found to be 0.50t0.05x10”
cm'3 for stresses ~o =~ 4 to 7 kgf/mm2 and T = 1.6 - 2.0K, neariy a factor
of 5 lower than in unstressed Ge. The lifetime was found to be 500 50
usec at the above stresses and temperatures, over ten times longer than
in unstressed Ge. This enhanced Tifetime is qualitatively expected
when the density is reduced.

Spatial luminescence profiles of the strain-confined liquid were
studied for different conditions, thus providing information about how

the drop size changes with excitation level, magnetic field, and time.
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The drop radius was measured in this way from less than 100 pm up to the
largest drops studied, R = 700 ym. The drops were found to flatten in
a magnetic field. The size and shape of drops confined in strain wells
were contrasted with the size and shape of clouds of EHD in unstressed
Ge. The SCEHL was found to decay as a single entity, while the cloud e
retains the initial size or even grows slightly after laser cutoff. e

The compression which was hinted at in Chapter 4 was investigateq
in detail in Chapter 5, both theoretically and experimentally. It was
shown theoretically that the e-h pair density should vary with positidﬁk
in the strain-confined EHL. For small drops the density should be L
uniform to within 10-20%, depending on a parameter describing the strigp
well. However, for the largest drops the density should vary by = a
factor of 3 with position, depending on the maximum stress at the ‘
bottom of the well. The density is largest at the center of the dropy
decreasing to the equilibrium value at the surface of the drop. Experi-
mentally, density profiles were measured directly using luminescence S&g
scans and an Abel transform. The magnitude and form of the density
variations with position and with drop size were in excellent agreemefnit:
with the theoretical predictions. This experimental technique could be
extended to study density profiles at higher temperatures, where the
compression becomes even stronger, and in a magnetic field. Such
magnetic field studies could be compared with recent theoretical
predictions by Markiewicz.

In addition, it was shown that the density variation can be
exploited to study properites of the SCEHL as a function of density.

in particular, the liquid chemcial potential versus density was measured
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in Chapter 5. This provides a very stringent test of the many-body
theories used to describe the EHL, in particular of the Coulomb energy
used in the calculations of Chapter 2. The deviations from theory
which were observed experimentally indicate that some modifications in
the theoretical Coulomb energy may be necessary to describe the EHML at
finite stress. The density dependent chemical potential also provided

a measurement of the EHL compressibility. The experimentally measured

vatve is kPt = 0,058 *0-92 co?/qyne (o ~ 5.5 kgf/m’, n = 0.47x10"7
cm"3, T=1.9K), compared to the theoretical value K%heo = 0.041 cmzldyne.

These values are an order of magnitude larger than the EHL compressibility
in unstressed Ge, due largely to the reduction in density. While the
experimental and theoretical values are in reasonable agreement, their
difference directly reflects a difference in the density-dependent
chemical potential. It would be useful to have an independent measure-
ment of the chemical potential: a proper analysis of the composite
Tuminescence lineshape from.a drop with varying density would provide
such a measurement.

Finally, the EHL Tifetime was studied as a function of density
via the analysis of the Tuminescence decay time for different drop sizes.
The data indicated that for the equilibrium density, the radiative
efficiency €rad ~ 0.24, the Auger efficiency EAug = .01, and the
efficiency for a density-independent recombination mechanism €43 ~ 0.75.
The analysis here omitted a density-dependent enhancement factor p(n).
Although the inclusion of p{n} would change the above values for the
recombination efficiencies, the following conclusions may be drawn:

{1} the lifetime changes more slowly than the density; (2} a density
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independent recombination mechanism appears to be significant; (3) the
Auger recombination coefficient is significantly reduced from its value
in unstressed Ge. The importance of a density independent mechanism
could be studied by varying the concentration of deep levels, particu-
larly those associated with a divacancy-hydrogen complex which is known
to be present in the samples studied here. In addition, it should be
possible to obtain a direct measurement of the enhancement factor at the
equilibrium SCEHL density, by studying both excitcns and the EHL at 4.2K.
Because of the geometry of the strain well, the number of pairs can be
measured for either phase. This would provide a useful comparison with

theory.
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Table 2.1. Values for parameters used in the calculation
of hole masses.

Parameter Ge Ref. Si Ref.

A 13.38 a,b 4.28 <]

B 8.48 a.b 0.75 e

¢ 13.14 a,b 4.85 c,d

b 2.21 eV a,e 1.36 eV c,e

d 4.40 ev a,e 3.09 eV c,e

¢, 13360 kgf /mn’ f 17100 kgf/mn’ g

¢, 4996 kg /mn’ 5 7093 kgf /m’ ¢

C44 7018 kgf/mmz f 8180 kgf/mmz g
a7 S 1

%J. C. Hensel and K. Suzuki, Phys. Rev. B 9, 4219 (1974),

bReference a gives values for Yyo Yo and Y3» where A = “Yy»

are negative. Following convention in EHL calculations, the signs of
A and B have been changed in order to make the energies positive

{C enters only as Cz). These quantities are expressed as multiples
of (h%/2m ).

€J. C. Hensel and 6. Feher, Phys. Rev. 129, 104} (1963)

dThe value for C obtained from Ref. ¢ was later updated in P. Lawaetz,
Phys. Rev. B 4, 3460 (1971). The value given here is generally used
in EHL calculations at zero stress.

“References a and o give values for Du and D;, which are related to
b and d via b = -2/3 Du and d = -2//§‘D;. Again, following conven-
tion for EHL calculations, the signs are changed to make the energies
E(k) positive.

8 = -2y, ¢?- lz(yg - Yg). Defined in this way, valence band energies
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fﬁ. E. Fine, J. Appl. Phys. 26, 862 (1955). The values used are from
the lowest temperature of the experiment, T = 1.7K.

9H. J. McSkimin, J. Appl. Phys. 24, 988 (1953). The data were
extrapolated to helium temperatures from 78 K by multiplying by
1.002, a factor obtained by comparison with data for Ge in Ref. f.

MEor (111) stress (Ge), Ezm/lc{ = 4/(/3 €4y). For (100 stress

{si), Ei‘mlgci = /(- Cyp)-
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Table 2.2. Selected numerical results for hele masses.

Quantity Ge s
ZERO STRESS

0.347 0.523}
it/ o

0.0423 0.1548
LA

.3568 0.5778

an'™s 0

0.2244 0.3354
Mon Mo

0.0410 0.1387
fracLH

INFINITE STRESS
mht/mo
mh}’,mo
B/ Mg

moh/mo

(111> STRESS
0.1301
0.04038
0.08809

0.07474

(100> STRESS
0.2561
0.1988
0.2354
0.2336
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Table 2.3. Other parameters used in the calculation.
Parameter Ge Ref. Si Ref.
Electrons
met/m0 0.08152 a 0.1905 b
me]/m0 1.588 a 0.9163 b
mde/m0 0.2193 a 0.3216 e
moe/mo 0.1192 d 0.2588 d
. E 16.6 eV e 8.6 ey e
Ey/ 1ol 1.05 meV/(kgf/mn’) f 0.86 mev/(kaf/mn’) f
0 olp,) 0. 8401 g 0.9490 g
Zero Stress
Ve 4 6
vloy) 0.710 R 0.746 h
ER(0)/EE(0)  1.55 i 1.84 i
infinite Stress
vy T {11 stress) 2 {Q100) stress)
wloy) 0.9698 g 0.9986 g
EP(O)/EE(0)  2.50 : 2.17 i
Miscellaneous
« 15.36 J 11.40 J
a {(Model 2} 0.1917 k 0.2128 k
¢ (Model 2}  4.461 k 8.552 k

“B. u. Levinger and D. R. Frankl, J. Phys. Chem. Solids

bJ. C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev. 138, A225 {1965).

CUse Eq. (2.33).

20, 281 (1961).

sl

Sl
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4. F. Brinkman and T. M. Rice, Phys. Rev. B 7, 1508 (1973).
“Yse Eq. (2.40)

JR. A. Faulkner, Phys. Rev. 184, 713 (1969).
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its of 10]7 cm

in un
and the masses as multiples of the free electron mass, then a is

if n is expressed

>

kModel 2 is described in the text

V.

is in me

dimensionless and c
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Table 2.4 {continued)

Mggﬁ;2239 G i ?0 ofe Eg E? Eéﬁt E;
direction (kg /) Mode (107, cm”B) {meV) {me¥) {meV) {meV) (loﬁyzmsv cms)
100 1 5.22 14.60 5.20 9.94 15.14 0.0616
2 5.41 14.78 4,74 9.17 13.91 0.069%
infinite 1 &.74 14.09 4,34 9.46 13.80 0.106
2 4,20 14,35 4.01 8.73 12.74 0.131
6 4,46 14.71 4.17 5.08 13.25 0.118

The experimental data at zero stress are compiled from J. C. Henmsel, T. G. Phillips, and G. A. Thomas,
Solid State Physics, ed. by H. Ehrenreich, F. Seitz, and D. Turnbull, Vol. 32 (Academic Press, 1377), p.88.

b
i
Table 2.5. Selected numerical results for properties of the EHML in stressed Ge and Si at finite temperature.
s , !
Direction (kgf/mmei Mode] (mevmz} (mev°}) (mevwz) (1) (1017 a3
Ge, (1110 Zero Expt. 0.9-1.4%° 2.2:0.97  0.7120.14° 6.5-7.0524:7 0.5-1.075957
5 1.26 1.69 0.92 8.187 0.507
1 0.98 1.47 0.73 6.95 0.28
2 1.15 1.67 0.85 7.96 0.3
3 1 2.9] 2.41 1.91 5.08 0.065
, 2 2.25 2.37 1.52 5.92 0.087
N 7 1 3.90 2.75 2.47 4.59 0.042
' 2 2.67 2.57 1.76 5.39 0.062
20 1 5.65 3.53 3.6 3.95 0.018
2 4.19 3.07 2.66 4.53 0.028
Infinite 1 5.94 4.53 4.52 3.6 0.010
2 5.41 4.14 4.07 3.99 0.014
6 6.8 4.23 5.05 3.729 0.0177
Si, €100)  Zero Expt.  0.055:0.02079  0.3.1.7%%¢ 0.05:0.005%% ¢ 26-30%% 10-14%
5 0.104 0.508 0.078 28,67 5,17
1 0.117 0.513 0.086 27.4 3.7
2 0.110 0.542 0.082 26.7 3.5
1z 1 0.136 0.599 0.094 23.2 1.7
2 0.152 0.613 0.104 22.6 1.6



Table 2.5 (continued)
Material, -0 ¢, éu 55 'TC ne
Stress 2 -2 -1 -2 17 .3
direction (kgf/mm")  Hodel {meV™ ") (meV™") {(me¥™ ") (k) (10" cm™7)
40 1 0.169 0.685 0.113 20.4 0.90
2 0.202 0.727 0.146 20.0 0.82
100 1 0.193 0.750 0.135 19.2 0.63
2 0.246 0.823 0.175 18.8 0.58
Infinite 1 0.231 0.829 0.174 18.6 0.52
2 0.258 0.898 0.196 18.3 0.48
6 0.246 0.864 0.186 24.4% 0.78¢

7. K. Lo, Sol. St. Comm. 15, 1231 (1974). !
N
bg. a. Thomas, T. 6. Phillips, T. M. Rice, and J. C. Hensel, Phys. Rev. lLett. 31, 386 {1973). T
ep. p. Hammond, T. C. McGill, and J. W. Mayer, Phys. Rev. B 13, 3566 (1976).
dﬁ. A. Vouk and E. C. Lightowlers, J. Phys. € 8, 369 (1975).
€5, F. Dite, V. D. Kulakovskii, and V. B. Timofeev, Zh. Eksp. Teor. Fiz, 72, 1156 (1977)
[Sov. Phys. -~ JETP 72, 604 {1977)].
fG. A. Thomas, T. M. Rice, and J. C. Hensel, Phys. Rev. lLett. 33, 219 (1974).
9. Miniscalco, C.-C. Huang, and M. B. Salamon, Phys. Rev. Lett. 39, 1356 {1977)
hG. A. Thomas, J. B. Mock, and M. Capizzi, Phys. Rev, B 18, 4250 (1978).
id. Shah, M. Combescot, and A. H. Dayem, Phys. Fev. Lett. 38, 1497 (1977).
jComputed using 72 expansion. The values differ from those given in P. Vashishta, S. G. Das, and
K. S. Singwi, Phys. Rev. Lett. 33, 911 {(1974), as explained in the text.
Table 3.1. Ge samples and characteristics
LBL Single
crystal . . Stress Surface
Sampte number & Dimensions (mm) direction Face preparation
CR50 145 3.85 x 3.95 x 2.80 a1y (?30) "White" etchb
CR38 146 3.85 x 3.85 x 1.75 a1 (170) "White" etch,
followed by
Syton for
imaging faces
CR37 145 4x4x2 am (1307 "White" etch
CR36 145 or 146 4x4x2 (mmn (150)  "Wnite" etch !
CR16 1 ( ) 5
45 3.95 (dia}, (110) 100 "White" etch '
1,40 {thick) (100) ore
CR14 145 3.95 (dia), (1100 (100) "White" etch
1.40 (thick)

a N
LBL single crystals 145 and 146 are virtually identical, with a net acceptor
concentration Ny ~ 2 x101] cm°3 due to a hydrogen-divacancy complex; both are
dislocation-free.

buynite" etch is a 3HNO4:HF solution.
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TABLE 5.1. Coefficients for Density Power Series.

10
a(rRT) = (1) + 35 Alag (R - r9)]

i=1

~-g = 5 kgf/nmz, T=1.9K
Coefficient Value Unit

n (1) 0.493 107 cn?
A, 1.391 107 cn™3 mev™!
A, -1.703 10" cn™3 mev™?
Ay 3.413 10" ca3 mev3
A, -4.524 10" 3 mevh
A 3.651 10" a3 mev™®
A -1.725 107 o mev®
A 0.49) 107 en3 mev?
Ag -0.125 10" a3 mev 8
Ag 0.0401 10" w3 mey™?
Ao -0.0070 1617 w3 mev 10

Fig. 1.1.
Fig. 1.2.
Fig. 1.3.
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CHAPTER 1 FIGURE CAPTIONS

Schematic energy band structure for Ge along the {111)
crystallographic direction. The valence and conduction

bands are shown, along with bands for free excitons {FE) and
the electron-hole liquid (FHL). Several characteristic L
energies of the system are shown: the FE and EHL ground

state energies Ex and —fG measured down from the conduction

band edge, the liquid condensation energy ¢, and the liquid

Fermi energy EF. The quantity hmph is the energy of the phonon
emitted with the photon in the radiative recombination process.
Thus the energies E;, u', and EéB are photon or spectroscopigg‘
values for the FE ground state energy, the EHL ground state &
energy, and the energy of the bottom of the EHL band respectiyg]y.
Luminescence spectrum of FE and EHD in unstressed ultrapure
Ge at 2.10 K. The LA phonon assisted lines are labelled FE -
and EHD; the small bump at the low energy side of the EHD &
line is the TO replica of the FE line. From Ref. 1.20.
Splitting of the conduction and valence bands for uniaxial
compression along the (111} direction in Ge and the (100)
direction in Si. The configurations Ge (ve:vh) and

Si (ve:vh) indicate the number Vg of electron bands and

v, of hole bands which are {partially) below the Fermi level.



Fig. 1.4.
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Photograph of the luminescence from the electron-hole liquid
confined in a strain well in a 4 mm x 4 mm x 3 mm crystal of
Ge inhomogeneouslty stressed along the (111) direction. The
large central bright region is a single electron-hole drop
with diameter ~1.4 mm. The edges of the crystal and the
stressing rod are marked by scattered luminescence. Sample

CR50, absorbed power 400 mi, T = 1.9 K.

Fig. 2.1.
Fig. 2.2.
Fig. 2.3.
Fig. 2.4.
Fig. 2.5.
Fig. 2.6.
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CHAPTER 2 FIGURE CAPTIONS

Local and integrated density-of-states masses for heavy and
Tight holes in stressed Ge, as a function of reduced energy

E' = E/lcllﬂﬂ' The arrows indicate the values at zero stress.
Local and integrated density-of-states masses for heavy and
Tight holes in stressed 51, as a function of reduced energy

£ = E/tolooﬂ. The arrows indicate the values at zero stress.
Longitudinal and transverse optical masses for heavy and

light holes and total optical hole mass for stressed Ge, as

a function of reduced energy E' = E/|01115- The arrows
indicate zero-stress values for the heavy and light masses.
Longitudinal and transverse optical masses for heavy and light
holes and total optical hole mass for stressed Si, as a function
of reduced energy E' = E/BU]OOI- The arrows indicate zero-
stress values for the heavy and Tight masses.

Theoretical Tuminescence lineshapes for Ge, for o T

17 cm“3

5.6 kgf/mnZ, n = 0.50 x 10 ,and T = 1.8 K. Solid

line: uses energy-dependent density-of-states mass from

. N N h
Fig. 2.1. Dashed curve: uses constant mass My = MdHH(EF)

with E? = 2.28 meV from the previous case. The Fermi energy

e h .

EF + EF is shown.

Theoretical Juminescence lineshapes for Si stressed along

¢100), with the Fermi energy chosen so that the full width

at half maximum AF = 6.8 meV (T = 1.4 K). Solid curve: uses

energy-dependent density-of-states mass from Fig. 2.2, with

17 -3
om .

-g = 55 kgf/mm2 and n = 5.53 x 10 Dashed curve:



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2.7.

2.8.

2.9.

2.10.

2.12.

-283~

uses infinite-stress mass and n = 3.79 x 1017 cm'3. The

electron and hole Fermi energies E? and EE are shown for the
dashed curve. The sum E? + E? is also shown, in each case
measured from the low-energy edge of the curve.

Coulomb energy per e-h pair vs. pair density for several models
of the Coulomb energy in Ge. The models are discussed in the
text.

Coulomb energy per e-h pair vs. pair density for several models
of the Coulomb energy in Si. The models are discussed in the
text.

Equilibrium density vs. stress for the EHL in Ge uniaxialiy
stressed along (111). (a) Models 1, 5, and 6; (b) Models 2, 3,
and 4. The models are discussed in the text. Compressioval
stresses are negative. Arvows indicate the “correct” zero-
stress {Model 5) and infinite-stress {Model 6) densities.
Equilibrium density vs. stress for the EHL in Si uniaxially
stressed along (100). {a) Models 1, 5, and 6; {b) Models 2, 3,
and 4. The models are discussed in the text. Compressional
stresses are negative. Arrows indicate the "correct" zero-

stress (Model 5) and infinite-stress (Model 6) densities.

. Ground state pair emergy versus stress for the EHL in Ge

stressed along (111), for the same models as shown in Fig. 2.9.
The dashed curve is the exciton binding energy, estimated as
described in the text.

Ground state pair energy vs stress for the EHL in Si stressed

along (100), for the same models as shown in Fig. 2.10. The

Fig. 2.13.

Fig. 2.14.

Fig. 2.15.

Fig. 2.16.
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dashed curve is the exciton binding energy, estimated as
described in the text.

Equilibrium density vs. stress for Ge-like bands. The cal-
culation is identical to Model 1 (see the text for a description)
except that as 1 conduction valley is lowered, it is assumed Bt
that vy valleys are raised, in the calculation of the electron
kinetic energy. The magnitude and abruptness of the change

in density associated with the emptying of the upper valleys
thus depends on the magnitude of the change in fractional
occupation of the Tower valley. ({The curve with vy = 3
corresponds to “real” Ge.)

Equilibrium density as a function of (111> stress for Ge at fox

T = 2K. The curves are the results for Models 1 and 2. The

data points are taken from Refs. 2.16 (&), 2.18 (&), 2.17 (®),

and 2.28 (+).

Electron and hole Fermi energies E; and E?, total Fermi o
e

energy E;Ot = EF + Eg, and luminescence linewidth AE as a ”

function of (111 stress for Ge at T = 2 K, using Model 1.
The arrows show the results for the zero and infinite stress
Timits. The dashed lines are the energy splitting between

upper and lower bands for electrons (Eip]) and for holes

h
(Espl)'
e
Electron and hole Fermi energies EF and E?, total Fermi
e
energy E;Ot = EF + EE, and luminescence linewidth AL as a

function of <100} stress for Si at T = 2 K, using Model 1.

The arrows show the results for the zero and infinite stress
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Fig.
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Fig.
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.22.
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Vimits. The dashed lines are the energy splittings between
upper and lower bands for electrons (Eip?) and for holes
(Egpl)' The experimental values for AE are from Refs. 2.50
(O, zero stress), 2.19 { o) and 2.20, 2.21 and 2.81 (&),
The ratio of the total Fermi energy to the luminescence
tinewidth as a function of stress for Ge ({111} stress) and
Si ({100) stress} at T=2K for Models 1 and 2.

Equilibrium density n and Juminescence Tinewidth AE vs. /o
for Ge at 2K, for Models 1 and 2. The data points for n
are replotted from Fig. 2.14.

Equilibrium density n and luminescence linewidth AE vs /¢
for Si at 2 K, for Models 1 and 2. The data points for AF are
plotted from Fig. 2.16.

Isothermal compressibility KT of the EHL ground state as a
function of (111} uniaxial stress in Ge, for Models 1 gnd 2.
Isothermal compressibility KT of the EHL ground state as a
function of (100) uniaxial stress in Si, for Models 1 and 2.
(a) 8y (b) ﬁu’ {c) 8¢ vs. stress for the EHL in Ge stressed
along (111>, Models 1 and 2 are shown.

{a) én’ {b) Gu, {c) GE vs. stress for the EHL in Si stressed
along <100). Models 1 and 2 are shown.

Critical temperature TC vs. {111) stress for the electron-
hole liquid in Ge, for Models 1 and 2. )
Critical density e vs. (111} stress for the electron-hole
Tiquid in Ge, for Models 1 and 2.

Critical temperature TC vs, (100> stress for the electron-hole
Tiquid in Si, for Models 1 and 2.

Critical density n. vs. (100) stress for the electron-hole

Tiquid in Si, for Models 1 and 2.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.
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CHAPTER 3 FIGURE CAPTIONS
Diagram of sample head, showing arrangement for stressing a Ge
sample and for viewing the sample from three different
mutually perpendicular directions. The diagram is to the
scale shown.
Apparatus for applying stress via a calibrated steel spring.
This apparatus was outside the helium cryostat and allowed
changing the stress while the sample and holder were immersed
in liquid helium.
Schematic plan view of the experimental apparatus. The
deflection mivror can be automatically scanned about two axes,
vertical and horizontal, thus translating the image of the
crystal in the image plane of the spectrometer.
Circuit for Si photodiode and amplifier used with mechanical
chopper.
Method for mounting Ge detector in cold-finger Dewar. The
temperature of the detector is higher than that of the cold
finger, due to the low thermal conductivity of the standoffs.
Detector response versus wavelength for several detector
temperatures. The peak wavelengths for free exciton (FE) and
electron-hole droplet (EHD)} luminescence from unstressed Ge
are indicated by arrows. The actual detector temperature was
estimated to be ~20 K higher than the thermocouple readings

given here {see text).




-2817- -288-

Fig. 3.7. Reverse bias and amplifier circuits for the Ge detector. The
CHAPTER 4  FIGURE CAPTIONS

amplifier response time is given by RFCF” chosen here to be . ; .
Fig. 4.1. Luminescence spectrum of a y-drop in sample CR38 of Ge at

10 psec.

T=1.8K, Pa s = 11 md and applied force F = 9 kgf, along

Fig. 3.8. Definition of the coordinate system used in this thesis. In a ° :
(111), showing the three phonon-assisted lines. The absolute

z-scan, either the face view or the side view is scanned . . e
intensities have not been corrected to account for a wavelength-'-~e

vertically across a slit or box {crossed slits) aperture.
dependent detector sensitivity. Monochromator resolution

In a y-scan, either the face view or the end view is scanned
{FWHM) is 0.66 meV¥. The shift of about -2.5 meV from the

horizontally past the aperture. In an x-scan, the end view is 2
a-drop spectrum corresponds to a stress o = -6.4 kgf/mm™,

scanned verticelly or the side view is scanned horizontally. timated in Fig. 4.5. (Compressional stresses are taken
estimated as in Fig. 4.5. el r &

The zero poin.s for the x, y, and z coordinates are as shown.
to be negative.)

The face view is obtained directly, while the end and side ;
Fig. 4.2. Luminescence spectra from a stressed Ge sample at 4.2K, showing

views are obtained using the 45° mirrors shown in Fig. 3.1. . :
both the EHL and FE Yines (LA phonon-assisted). The stress

was approximately -5.5 kgf/mm2 along (1113, A sharp exci-
tation threshold in the liquid luminescence is observed.
Sample CR38.

Fig. 4.3. Dependence of the EHL and FE peak intensities on excitation e
level, at 4.2 K. A sharp threshold at Pabs =~ 0.15 W in the
EHL luminescence is observed, characteristic of the gas-liquid
phase transition. The pumping efficiency is different from
that in Fig. 4.2 due to a translation of the excitation
point. Sample CR38.

Fig. 4.4. Spatial luminescence profiles at 4.2 K, showing that the gas and
liquid are both in the strain well in the sample. The laser
is incident on the face at x = 0. Spatial resolution =80 um.
{a) FE gas phase, near threshold. The open circles are

Eq. {4.2) with a=11 meV/mmz‘ {b) Liquid phase, at a somewhat

higher excitation level. Sample CR38.



Fig. 4.5.

Fig. 4.6.

Fig. 4.7.

Fig. 4.8.
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(a) Luminescence peak energy vs. applied force F in kilograms
force (kgf), for a sample stressed along (111). The deter-
mination of the o-scale is discussed in the text. The y~drop
is formed above a threshold force FC ~ 3 kgf. (b) EHL line-
width AE vs. applied force. The linewidth is the full width

at half maximum of the luminescence spectrum. (c} EHL lifetime
v vs. applied force, taken from the tail of the decay curve, as
described in Section 43. (d) Total luminescence intensity vs
applied force. Pabs =3.2m¥, T=1.8K. Sample CR38.

(a) EHL luminescence peak energy, (b} Tinewidth AE, and

(c) decay time 7 vs, applied force F for a sample stressed
along (110)., Because the force was applied with a metal rod,

the stress was not limearly proportional to the applied force
1/3

(see text). The solid curve in (a} corresponds to F

P s = 25 md, T = 1.8 K. Sample CR 16.

ab
EHL Tuminescence spectra from samples with approximately equal
applied stresses (permanent stress geometry) and for unstressed
Ge. {a) Force #(111), (b) force § (110), {c) force ¥ (100),

and {d) unstressed Ge.

Comparison of the FWHM Tinewidths AE for the o- and y-drop
LA-assisted lines as a function of excitation level. At low
powers both AE are constant, as expected for a constant-
density liquid phase. At Pabs 2 5 mW, corresponding to

RY > 200 ym, the y-drop linewidth becomes noticeably broadened
by the strain gradient and by compression of the liquid, as

explained in the text. T = 1.8 K. Sample CR38.

Fig. 4.9.

Fig. 4.10.

Fig. 4.11.

Fig. 4.12.

Fig. 4.13.
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(a) EHL Tuminescence spectrum from a slit centered on a large
drop, with R = 350 um at Pabs = 58 mhl; {b) spectrum from a
region near the surface of the same drop; (c) spectrum from a
smaller drop with R ~ 150 pm, at PabS = 1.4 md. The effective
s1it resolution on the samplie is 80 ym. 7T = 1.8 K. Sample
CR38.

Experimental Tuminescence spectrum from a sampie stressed in
the (111) direction. The stress is o ~ -6.8 kgf/mn2 from the
shift of the peak energy. P ™ 0.17 ml, T = 2.0 K. Sample

ab
CR36. The open circles are the theoretical lineshape using

Eqs. {2.38) and (2.39), with o = -6.8 kgf/mmz, n = 0.50 x1017 cm

T=2.0K.

(a) EHL luminescence intensity as a function of time after the
light source is switched off, for a sample stressed along
A1y (F = 9 kgf), for Pibs = 1.1 sW. (b) Same as (a}, with

Pabs = 119 md. (c) a-drop luminescence intensity vs. time for

the same sample after the stress was removed, for Pabs = 19 mW.

T=1.8 K. Sample CR38.

Initial Tuminescence decay time T; 85 a function of absorbed
power Pabs for the same sample and strain configuration as in
Figs. 4.1%a and 4.11b.

Luminescence intensity vs. temperature. (a} y-drop in a (111}

stressed sample, P bs = 1.2 md. (b) a-drops in the same

a
sample after the stress was removed, Pabs = 24 wd. {c) Same
as (b}, except Pabs = 2.2 wid. Sample CR38. Directly above

the A-point of Tiquid helium, 2.17 K, the luminescence

3

»



Fig. 4.14.

Fig. 4.15.

Fig. 4.16.

Fig. 4.17.

Fig. 4.18.
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intensity is reduced, apparently due to light scattering by Fig.

helium bubbles.

Initial Tuminescence decay time T; as a function of absorbed
power PabS for the same sample as in Fig. 4.12, with

T=4.2K.

Luminescence images from a sample stressed in the (111) direction,
for a series of excitation levels.
through a {110) face and displayed using an infrared vidicon
and standard TV monitor. T = 1.8 K. Sample CR50.
Luminescence profiles {slit scans) at two different excitation

levels for a sample stressed along (111). The small peaks,

e.g., at y = 1.9 mm, are due to scattered light from the Fig.

edges of the crystal. The upper row of scans is for

P = 55 mW; the lower row is for Pabs =0.26md. T=1.8K.

abs
Sampie CR38.

y-drop radii vs. absorbed power Pabs for a (111)-stressed
sample. Sample CR38.
80 um, which equals the slit width divided by the image
magnification. The solid line has a slope of 1/3.

Integrated luminescence intensity vs. absorbed power for the

same sample as in Figs. 4.16 and 4.17 (e), and for the same Fig.

sample after the stress was removed {o). The solid line has

a slope of 1. The relative intensities of the two sets
of data cannot be directly compared due to a change in

detector sensitivity between the two runs.

The image is viewed Fig.

The effective spatial resolution was Fig.

4.19.

4.20.

4.23.
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Results of a two-dimensional calculation of (a) the EHL energy

shift and (b) the "acceleration potential® E* for a crystal
inhomogeneously stressd along the <111) direction.
on an EHD s normal to the curves in (a}, while the droplet
acceleration is normal to the curves in (b), due to the
carrier mass anisotropy in Ge.

Luminescence slit scans showing motion of the EHD tail
observed in Fig. 4.15 at the highest excitation level.

The image 1s obtained from a region centered approximately
2.8 mm below the top of the crystal, for three different
laser pumping positions shown in the inset.

Luminescence profiles for a sample before and after the
stress is removed. The upper row of scans is for a y-drop
in the stressed sample, while the lower row of scans is
for a cloud of a-drops after the stress is removed.

P s = 2.8 mW, T = 1.8 K. Sample CR38.

ab

Luminescence profiles for an unstressed sample. The upper

row of scans is for Pabs = 47 mid, the middle row is for

P = 5.1 ml, and the lTower row is for Pabs = 0.45 mid.

abs
T = 1.8 Sample CR38.

Luminescence x-scan for an unstressed samplie at moderate
excitation, Pabs = 11 mM, showing the peak of the cloud to
be separated from the face at x = 0, where the laser is
T=1.8K.

incident on the crystal. Resolution is ~50 um.

Sample CR38.

The force




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4.27.
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tuminescence x-scans for an unstressed sample at 3 moderate
to high excitation levels. The laser is incident on the
crystal face at'x = 0. The extra small peak at x =~ 2 mm is
due to light scattered from the edge of the end-view mirror
(see Fig. 3.1). T = 1.8 K. Sample CR38.

Radius of the a=cloud in unstressed Ge vs. absorbed laser
power xgbs’ The solid Tine has a siope of 1/3. T = 1.3K.
Sample CR38.

tuminescence profiles for t = 0 and 1000 usec for a sample
stressed along (111>, F}b$= 100 mi, T = 1.8K  Sample CR3S.
tuminescence profiles for t=0 and 100 usec for an unstressed
sample. B%bs: 11w, T =1.8K Sample CR38. Due to decreased
spatial resolution (~330 ym) the edge effects at x = 1.8 mm

are particularly broad.

Radii obtained from luminescence profiles. (a) y-drop radii,
for the same sample and conditions as in Fig. 4.26.

{(b) a-cloud radii, for the same conditions as in Fig. 4.27.
The solid line assumes exponential decay at 1/3 of the total
Tuminescence decay rate, Fig. 4.1lc.

Radius as a function of time for a sample stressed along
<110y, in the “permanent stress" geometry of Ref. 4.1. (This
stress direction would usually result in two strain wells.
However, in this experiment the stress plunger was applied
close to one edge of the sample, so that only a single
minimum actually occurred inside the crystal.) e , o from

= 96 mW.

bs ® from Alfvén

Tuminescence profiles, for Pa

Fig.

Fig.

Fig.

Fig.

4.32.
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resonances, in a pulsed excitation experiment with

0.75 pd/pulse, giving a smaller initial drop size; the radius

was obtained from the resonant field as in Refs. 4.38 and 4.81,
using n = 0.5 x 10'7 cn™>. T = 1.8 K. Sample CRI4.

(a) Drawing of the crystal mounting and orientation.

(b) Infrared vidicon images showing face and end views for
zero field. {c) Distortion in drop shape when Hi (112> axis.
(d} Distortion in drop shape when Hi (1102 axis. Pabs = 60 mW,
T=1.7 K. Sample CR37.

Field dependence of the drop distortion. The y-drop radii

R“ and R1 are measured parallel and perpendicular to H. These
data correspond to the geometry of Fig. 4.30d. Pabs = 3 oM,
T=1.7 K. Sample CR38.

(a) Schematic diagram showing recombination currents of
electrons {solid arrows) and holes {dashed arrows) in zero
magnetic field. (b) Modification of these drift currents
caused by the Loventz forces in an applied magnetic field
parallel to the x-axis. A net circulating current results.
Paraliel and perpendicular radii as a function of time in a
magnetic field H = 20 kOe # ¢<111) ¥ stress. Pabs = 90 oM,

T=1.7 K. Sample CR37.
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CHAPTER 5. FIGURE CAPTIONS

Fig. 5.1. Total luminescence intensity Xtot’ peak intensity in a slit

i i i s abso
scan Xslit’ and peak intensilty in a box scan Ibox versus absorbed
power Pabs‘ The inset shows the schematic arrvangement for slit
and box scans. The straight lines are drawn in for the same
range of excitation levels; the slopes are discussed in the texi.

Sample CR50, T = 1.9K.

Fig. 5.2. Drop size and volume versus absorbed power. The drop size

Fig.

Fig.

Fig.

Fig.

Fig.

is given by the full width at half maximum of a slit scan,
which is related approximately to the radius via Eq. (3.15).
The volume is obtained from the measured radii for three mutually
perpendicular directions. The straight lines are drawn as in
Fig. 5.1 and are discussed in the text. Sample CR5Q, T =.1.9K.
5.3. Full width at half maximum AE of Tuminescence spectra as a
function of excitation level. The curve is a visual aid.
Sample CR50, T = 1.9K.
5.4. Initial luminescence decay time T; @5 a function of absorbed
power Pabs' The curve is a visual aid. Sample CR50, T = 1.9K.
5.5. Two-dimensional calculations of the (111 component of
stress o]]], with parameters chosen to reproduce experimental
conditions. ({a) Corresponds to face view of sample.
{b) Corresponds to side view of sample.
5.6. Two-dimensional calculations of the deviation from uniaxial
(111} stress |Gnon—111/cli}“ (a}) Face view. {(b) Side view.
5.7. Luminescence spectra from stressed and unstressed Ge samples.

The open circles give the theoretical lineshapes for the best fit,

Fig.

Fig.

Fig.

Fig.

Fig.

v

(521

o1
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including the spectrometer slit resolution and the change in

detector response with wavelength. Unstressed Ge: Pabs = 25 i,
n=220:0.05x10"7 cn3. Stressed Ge: (Sample CRSO) P =

0.8 mH, n = 0.47:0.03x10"7 cm’3, ~gy = 5 kgf/m’. The shift

of the Tuminescence peak energy AE and the shift of the

peak

are indicated. T = 1.9K.

spect i
pectroscopic energy AEspec

.8. Exciton sTit scans obtained at 4.2K and Pabs = 1.1 mW, below

the threshold for EHL formation. The open circles are Eq. (5.4)
with the values of Gy indicated on the figures. (a) x-scan,

(b} y-scan, {c) z-scan. Sample CRS50.

-9. Free energy per e-h pair and chemical potential versus density

calculated for -0 = § kgf/mm2 and T=1.9K. {a) Free energy --
full Model 1 calculation. (b) Free energy -~ first order theory.
{c) Chemical potential -- full Model 1 calculation. {d} Chemical

potential -- first order theory.

-10.  Chemical potential versus density for two values of the

stress. The curve for -g = 3 kgf/m2 has been shifted vertically
to coincide with the curve for -g = § kgf/mm2 at approximately

the equilibrium density.

-11.  Theoretical density profiles for different drop sizes,

calculated according to £q. (5.35) for - = 5 kgf/mmz, T=1.9K,

and aspec =2 meV/mmz. Note that the position X is normalized

to the drop radius R.

-12. Calculated density at the center of the drop versus drop size

for the same conditions as in Fig. 5.11. Exact calculation:
uses £q. (5.36). Simple parabola: uses Eq. (5.23) with the same

values for nO(T) and E;(T) as in the exact calculation.




Fig.

Fig.

Fig.

Fig.

Fig. 5.17.
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&
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.13. Comparison of a theoretical density profile using the exact

calculation and a simple parabolic profile. For the simple
profile, both n{0} and n{R} were chosen to agree with the exact

calculation.

.14. Theoretical s1it scan luminescence profiles according to

Eq. {5.47}. Outer curve: uniform density. Inner curve: uses
the density distribution given in Eq. (5.37), with n(0) = 2.8 g

The slit width is 0.05 times the drop radius R.

.15. Theoretical box scan luminescence profiles according to

Eq. (5.42). Outer curve: uniform density. Inner curve: uses
the density distribution given in Eq. (5.37), with n{0) = 2.8 -

The slit width is 0.05 times the drop radius R.

.16. Calculation of the peak luminescence intensity im a box

scan (I, _}, the peak luminescence intensity in a s1it scan (Is1it)’

box
and the total luminescence intensity (Itot) as a function of drop
size, which is determined by the full width at haif maximum of a
s1it scan (WS). These quantities are shown for a constant
density n= N and, for the density distributions of Eq. (5.37)
with two values for the well parameter o. The slit width was

35 pm.

Total Tuminescence intensity (ltot) and peak intensity in a
s1it scam (Islit) for both y-scans and x-scans, shown as a function
of drop size (W,). The drop size is given by the full width at
half maximum of a slit scan. The curves are the theory of

Section 53.2 with a =8 meV/mm2 and slit resolution 85 um.

spec
Sample CR38, T = 1.8K.

Fig. 5.18.

Fig.

Fig.

Fig.

Fig.

o
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Total Tuminescence intensity (ltot)’ peak intensity in a
siit scan (Xs1it)’ peak intensity in a luminescence wavelength

)5

The drop size is given

spectrum (I }, and peak intensity in a box scan (I

A-scan box

shown as a function of drop size (ws).

by the full width at half maximum of a s}it scan. The curves are

the theory of Section 53.2 with aspec = 2 me\l/mm2 and s1it resolu-

tion 35 ym. Sample CR50, x-scans obtained from the side view,

T=1.9K

.18. Peak luminescence intensity in a slit scan (Is1it) and in a

box scan (I, )}, shown as a function of drop size (ws). These

box
data are similar to Fig. 5.18 except that they were obtained from

y-scans using the face view.

.20. Peak luminescence intensity in a box scan (Ibox) as a function

of drop size. Here the drop size is given by the full width at

half maximum of a box scan, Nb- The curve is the theory of

Section 53.2 with %pec

Sample CR38, y-scans from the face view, T = 1.9K.

=4 meV/nm2 and s1it resolution 50 um.

.21, luminescence box scan obtained by scanning the luminescence

image of the Ge crystal across a small aperture. Sample (RS0,

Pabs = 400 mi, T = 1.85K.

.22. Electron-hole pair density profile obtained by performing

an Abel transform on the box scan in Fig. 5.21. The solid curve

shows the transform of a theoretical box scan, Eq. (5.42), including
a finite s1it s ~ 35 ym. The dashed curve shows a "best fit" for
a constant density. The uncompressed density is indicated by the

arvow.
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Fig. 5.23. Electron-hole pair density profiles obtained as in Fig. 5.22

Fig. 5.

Fig.

Fig.

Fig.

Fig.

Fig.

&N

1221

for a series of excitation levels: Pabs = 2.5, 15, and 94 mW.
The curves show transforms of theoretical box scans with s1it
resolution =50 um using the density distribution given in £q.
(5.37). Sample CR38, T = 1.9K.

24. The effect of choosing the center of the scan incorrectly.
The raw data corresponding to the largest drop size in Fig. 5.23
were transformed with y=0 assumed to be displaced by =35 um from
its true position (shown by the arrow). The density at the drop

center, n{0), should be the same for both the left and right

halves of the scan.

.25. Electron-hole pair density profiles obtained for a series
of excitation levels: Pabs = 0.22, 7.4, and 400 mW. Sample CRS50.

.26. Density at the center of the drop n{0) versus drop size W,

for Sampie CR38. The curve shows the theoretical result for

a 2
mspec = 4 meV/mm .

.27. Density at the center of the drop n{D) versus drop size

HS for Sample CR50. Two sets of data are shown. The curve

shows the theoretical result for “spec = 2 meV/mmZ.

.28. Chemical potential difference wu{n) -u(no) versus e-h

pair density n, using the results from an entire set of density
profiles. The solid curve is the theoretical chemical potential
using Model 1. The dashed line is used to obtain the compressi-

bility, as discussed in the text. Sample CR38.

.29. Chemical potential difference n{n)-u{n )} versus e-h pair

)
density n, using the results of two complete sets of density

Fig. 5.

Fig. 5.
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profiles. The solid curve' is the theoretical chemical potential
using Model 1. The dashed line is used to obtain the compressi-
bility as discussed in the text. Sample CR50.

30. Initial decay time 15 for the total luminescence intensity
plotted as a function of the FWHM of a slit scan. The dots
represent the experimental results; the three curves are calcu-
lations discussed in the text. Sample CR50, T = 1.9K.

31. Total luminescence intensity as a function of magnetic field
H for several different delay times after a short excitation
pulse. The vertical scale is offset from zeroc by an arbitrary
amount. The symbols at the right indicate 10% of the total

zero-field intensity. Sample CR50, HH(]?O), T=1.6K.
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