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Abstract 
Background: Our goals are to develop a computational histopathology pipeline for 
characterizing tumor types that are being generated by The Cancer Genome Atlas (TCGA) for 
genomic association. TCGA is a national collaborative program where different tumor types are 
being collected, and each tumor is being characterized using a variety of genome-wide 
platforms. Here, we have developed a tumor-centric analytical pipeline to process tissue 
sections stained with hematoxylin and eosin (H&E) for visualization and cell-by-cell quantitative 
analysis. Thus far, analysis is limited to Glioblastoma Multiforme (GBM) and kidney renal clear 
cell carcinoma tissue sections. The final results are being distributed for subtyping and linking 
the histology sections to the genomic data.   
 
Results: A computational pipeline has been designed to continuously update a local image 
database, with limited clinical information, from an NIH repository.  Each image is partitioned 
into blocks, where each cell in the block is characterized through a multidimensional 
representation (e.g., nuclear size, cellularity). A subset of morphometric indices, representing 
potential underlying biological processes, can then be selected for subtyping and genomic 
association. Simultaneously, these subtypes can also be predictive of the outcome as a result of 
clinical treatments. Using the cellularity index and nuclear size, the computational pipeline has 
revealed five subtypes, and one subtype, corresponding to the extreme high cellularity, has 
shown to be a predictor of survival as a result of a more aggressive therapeutic regime. Further 
association of this subtype with the corresponding gene expression data has identified 
enrichment of (i) the immune response and AP-1 signaling pathways, and (ii) IFNG, TGFB1, 
PKC, Cytokine, and MAPK14 hubs.  
 
Conclusion: While subtyping is often performed with genome-wide molecular data, we have 
shown that it can also be applied to categorizing histology sections. Accordingly, we have 
identified a subtype that is a predictor of the outcome as a result of a therapeutic regime.  
Computed representation has become publicly available through our Web site. 
  

Background 
While molecular characterization provides average genome-wide profiling for each biopsy, it 
fails to reveal inherent heterogeneity that is only visible through tissue histology. Molecular 
characterization has the advantage of a standardized array-based measurement compared to 
the genome and other well curated databases. On the other hand, histology sections do not 
provide standardized measurements, yet they are rich in content and continue to be the gold 
standard for the assessment of tissue neoplasm. Because of inter- and intra- observer 
variations [1] and the absence of quantitative representation, some studies have leveraged 
genome-wide analysis for improved markers for predicting biological behavior. If hematoxylin 
and eosin (H&E) stained tissue sections can be characterized in terms of cell type (e.g., 
epithelial, stromal), tumor type, and histopathological descriptors (e.g., tumor specific necrotic 
rate), then a richer description can be linked with genomic information for an improved basis for 
diagnostic and therapy. This is the main value of histological imaging since it captures detailed 

 



morphometric features on a cell-by-cell basis and their organization. We have tested our system 
on Glioblastoma Multiforme (GBM), one of the most common and the least curable brain 
cancer, with glioma cells infiltrating the surrounding tissue with a median survival rate of 14.6 
month [2]. Figure 1 shows that the tissue section has a rich spatial composition (e.g., 
lymphocytes in the lower right side, tumor cells), which is lost through bulk genome-wide array 
analysis (e.g., microarray, copy number). Our goal is to identify morphometric subtypes, based 
on nuclear structure and organization, from a very large sample size. First, we provide a brief 
review of the current state of art and then proceed with the details of our computational strategy. 
Present techniques for morphometric analysis have focused on several different aspects of 
tissue characterization, and they are summarized below along with a review of the nuclear 
segmentation from the H&E sections.  
 
Brief review of analysis of H&E images: A comprehensive review of techniques for the analysis 
of the H&E sections is beyond the scope of this paper. However, a brief review can be found in 
[3]. From our perspective, three key concepts have been introduced to establish the trend and 
direction of the research community: (I) one group of researchers have focused on tumor 
grading through either accurate or rough nuclear segmentation [4] followed by computing 
cellular organization [5, 6] and classification. In some cases, tumor grading has been associated 
with recurrence, progression, and invasion carcinoma (e.g., breast DCIS) [7], but such an 
association is highly dependent on tumor heterogeneity and mixed grading (e.g., presence of 
more than one grade), which offers significant challenge to the pathologists as mixed grading 
appears to be present in 50% of patients [8]. A recent study indicates that detailed segmentation 
and multivariate representation of nuclear features from H&E stained sections can predict DCIS 
recurrence [9, 10] in patients with more than one nuclear grade. In this study, nuclei in the H&E 
stained samples were manually segmented and a multidimensional representation was 
computed for differential analysis between the cohorts. The significance of this particular study 
is that it has been repeated with the same quantitative outcome. In other related studies, image 
analysis of nuclear features has been found to provide quantitative information that can 
contribute to diagnosis and prognosis values for carcinoma of the breast [11, 12], prostate [13], 
and colorectal mucosa [14]. (II) The second group of researchers have focused on patch-based 
(e.g., region-based) analysis of tissue sections through means of supervised classification. 
These methods operate by representing each patch with color and texture features [15, 16] for 
training either a kernel or regression tree classifiers. A recent study evaluated and compared 
emerging techniques of sparse coding with kernel based methods (e.g., support vector 
machine, kernel discriminant analysis) on a GBM dataset to conclude that the kernel based 
method did equally as well, if not better, than sparse coding. Alternatively, some researchers 
have investigated how architectural features of tumor grades correlate with fractal dimensions 
[17]. Fractal dimensions differ from topological dimensions and has been shown to have the 
potential to elucidate irregularities by assigning a gross scalar value for discriminating benign 
and malignant breast cells from fine needle aspiration [18]. (III) A third group of researchers 
have suggested utilizing the detection of lymphocytes as a prognostic tool for breast cancer 
[19]. Lymphocytes are part of the adaptive immune response and their presence has been 
correlated with nodal metastasis and HER2-positive breast cancer, ovarian [20], and GBM. 
These cells often respond in larger quantity, and they can be easily detected because of their 
constant size (e.g., approximately 7 micron in diameter) and high chromatin content.  

Brief review of methods for nuclear segmentation: Complexities in delineating nuclear regions 
originate from both technical (e.g., non-uniform fixation and staining protocol, artifacts in a tissue 
section, non-uniform thickness in tissue sections) and biological (e.g., different cell types, 
overlapping compartment) variations. Present techniques have focused on adaptive 
thresholding followed by morphological operators [21, 22], fuzzy clustering [4, 23], level set 
method using gradient information [24-26], color separation followed by optimum thresholding 
and learning [27, 28], hybrid color and texture analysis that are followed by learning and 



unsupervised clustering [29], and representation of nuclei organization in tissue [30, 31] that is 
computed from either interactive segmentation or a combination of intensity, texture, and 
morphological operators. Some applications combine the above techniques. For example, in 
[32], iterative radial voting [33] was used to estimate seeds for the location of the nuclei and 
subsequently, the model interaction between neighboring nuclei with multiphase level set [34, 
35]. It is also a common practice that through color decomposition, nuclear regions can be 
segmented using the same techniques that have been developed for fluorescence microscopy. 
In recent papers, we [36, 37] and others [38] have reviewed those techniques. However, none 
of these methods can effectively address analytical requirements of the tumor characterization. 
Thresholding and clustering assume constant chromatin content for the nuclei in the image. In 
practice, there is a wide variation in chromatin content. In addition, there is the issue with 
overlapping and clumping of the nuclei, and sometimes, due to the tissue thickness, they cannot 
be segmented. The method proposed in [32] aims to delineate overlapping nuclei through 
iterative radial voting [33], but seed detection can fail in the presence of wide variations in the 
nuclear size; thus, leading to fragmentation. We should also note that many of the techniques 
that have been developed for analysis of cell culture models, imaged through fluorescence 
microscopy, are applicable to the analysis of histology sections. Accordingly, methods have 
been developed to quantify a variety of endpoints using iterative voting [33, 39], geometric 
reasoning [40, 41], evolving fronts [35, 37, 42], and Gabor filter banks [43].  
 
Having summarized the current state of computational histopathology, our objective is to use a 
large growing dataset of tumor sections and to identify intrinsic subtypes within this dataset. 
These subtypes can then be used for genomic association. In other words, we don’t seek to 
build a system to mimic histological grading. To meet this objective, it is essential to develop a 
pipeline for processing a large scale dataset, to overcome technical variations, and to 
incorporate methods that are extensible to other tumor types. Our testbed consists of 344 
sections of GBM, scanned with a 20X objective in a bright field, which are typically 40,000-by-
40,000 pixels.  
 

Method 
Morphometric analysis and multidimensional profiling: We evaluated a number of nuclear 
segmentation methods that included level sets [44] or their variants using graph cut 
implementation, and integration of these methods with seed selection using geometric methods 
[42]. But these techniques proved to be compute-intensive as a typical tissue section (of size 
40k-by-40k pixels) would take roughly a week of processing time on a high end desktop 
computer. Our experience led to a design of a pipeline that will delineate nuclei and compute 
morphometric features with a superior computational throughput. The computational model was 
first validated against synthetic data, then tested on annotated tissue sections, and finally 
evaluated by a pathologist. Below, we summarize three major components of our methodology.  
 
Analytical steps: Figures 2 and 3 show steps in converting an image into a multidimensional 
representation. (I) The first step removes heterogeneity associated with staining by normalizing 
against one  gold standard of H&E stain. (II) The second step performs color decomposition for 
further reduction of the computational load. The standard approach is a non-negative matrix 
factorization (NMF) [45], but it is iterative and a previous analysis has indicated NMF did not 
show superior performance [28]. Here, we used a linear transformation for separating stains [46] 
based on the orthonormal transformation of the RGB space. (III) The third step computes a 
threshold from the image corresponding to the nuclei signature. The threshold selection is 
based on the analysis of the histogram for the value that minimizes intra-class variance. Other 
techniques, such as modeling foreground and background as two Poisson distributions, yielded 
similar results. The important issue is fast histogram-based thresholding for subsequent 
refinement and validation. Refinement consists of enforcement of intensity and geometric 



constraints. Often, when nuclei are close to each other, either their intercellular contents can 
leak, the boundaries between the two adjacent nuclei can become perceptual, or the two 
neighboring nuclei, with completely different chromaticity strength, can merge. The refinement 
step performs two tasks: (i) it models the intensity distribution of each thresholded blob as a 
mixture of up to three Gaussians to examine if there is a variation in the background model and 
whether two adjacent nuclei, with a significantly different amount of DNA content, are merged 
together, and (ii) it uses the convexity constrain to partition blobs based on perceptual 
boundaries, as outlined in our earlier paper [40]. Once an image is segmented in terms of 
nuclear morphology, a multidimensional representation is generated for each nucleus that 
defines its signature and organization, as we defined in a previous publication [37] and 
summarized in Additional file 1. 
 
Computational pipeline: The significance of the pipeline, shown in Figure 4, is that it can 
process a large amount of data; thus, meeting TCGA data processing requirements. The 
pipeline has four components: (I) maintaining consistency between the remote and local 
registries, (II) visualization of tissue sections, (III) data processing and importing computed 
representation, and (IV) data summarization through normalization.  
 
(I) The pipeline maintains a local registry where consistency between images at TCGA (at the 
National Cancer Institute) and a local repository is constantly maintained, and new images are 
downloaded for processing. At present, NCI provides both frozen sections and those from 
paraffin embedded blocks. Although both types of images are registered and displayed through 
our system, only paraffin embedded blocks are processed. Each image is partitioned into strips 
of 1k-by-number of columns, then the strips are stored on the OME image server [47, 48].  
 
(II) Visualization of each large scale tissue section is realized through tiling and the utilization of 
Flash technology that enables a client to pan and zoom, similar to . Each image 
(of the order of 40k-by-40k pixels or higher) is partitioned into tiles of 256-by-256 pixels at 
different resolutions, and the tiles are then stored on a server. As the user drags and zooms on 
the image in the browser, the tiles are downloaded from the server and inserted into the browser 
page. Data and images are available through http://tcga.lbl.gov.  
 
(III) Each strip is subsequently partitioned into 1k-by-1k blocks, and blocks are submitted to a 
computer cluster for processing. The block size has been optimized for processing time and 
wait time in the queue. At the moment, the entire GBM data set of 344 images takes 4 days of 
processing. In addition to cluster-based computing, the computational methods of the previous 
section have a multithread implementation for a more efficient utilization of each computing 
node. Once each block is processed, computed features are imported into an imaging 
bioinformatics system, named BioSig [37, 49], for further analysis. Several java modules have 
been developed that run concurrently to access and update the database. The “Jobsubmitter” 
uses JSch (java version of ssh), and ExpectJ (java version of Expect) to drive shell scripts on 
the computing cluster. Computed representation (e.g., nuclear segmentation) can then be 
overlaid on the original image for quality control.  
 
(IV) The backend of BioSig uses PostgreSQL (PG) and summarization of feature-based 
representation is performed through procedural programming. For high performance 
applications, PG server programming interface (SPI) enables the transparent transformation of 
SQL queries. This is a critical component since it adds flexibility for computing morphometric 
and organization features, normalizing them, and analyzing underlying representation in a new 
way that was not anticipated. This capability has proven to increase productivity by testing 
alternative representations without reprocessing the original images. Given the entire GBM (or 
other tumors) datasets, we have designed a four-step process to normalize each computed 



feature (e.g., nuclear size, texture, cellularity) for subtyping and genomic association, which is 
implemented through SPI: (i) each feature is represented as a density distribution per tissue; (ii) 
feature-based distribution for all tissues, within a tumor type, are combined to construct a global 
distribution; (iii) the global distribution is then re-binned so that each bin has a similar population 
of cells of a given feature-value, and (iv) local density distributions are then remapped to 
computed global bins of equal weight. The net result is that the morphological indices can then 
be compared, in context, by reporting a distribution function for each feature. These data are 
downloadable and can be visualized for each tissue section. The rationale for this simplified 
analysis is that given a large number of cells in a tissue section, classical clustering analysis (for 
quantization) can be computationally intractable (e.g., computing similarity matrices). In cases 
where multiple tissue sections exist for a single patient, an average distribution is computed and 
archived.  
 
Subtyping and genomic association: Normalized representation of morphometric data are used 
for subtyping. Subtyping is based on consensus voting [50] by varying the number of subtypes 
and examining the similarity matrix. It has also been used in earlier papers for subtyping 2D and 
3D cell culture morphologies [43, 51]. Two gene ranking algorithms of moderated F-statistic and 
random forests are used for genomic association. (i) Moderated F-statistic [52] utilizes the 
empirical Bayes method for assessing differential gene expression. In this method, the 
denominator mean squares (e.g., variance) are moderated across genes through the empirical 
Bayes approach. The net result is an improved statistical stability given the limited number of 
samples. The p-value is computed for each gene based on the moderated F-statistic, and then 
adjusted for multiple hypothesis testing. The adjustment is based on Benjamini and Hochberg's 
method to estimate the false discovery rate (FDR) [53]. FDR controls the expected proportion of 
falsely rejected null hypotheses in multiple hypotheses testing to correct for multiple 
comparisons. The method is implemented through the R Limma package. The top genes that 
are differentially expressed between subtype 5 and others, with FDR adjusted p-value less than 
0.06, are included in Additional file 1 as a heatmap. (ii) Random forest is an ensemble classifier 
that consists of many decision trees [54]. In random forest, there are several policies for 
characterizing significance of each gene. One policy evaluates the decrease in classification 
accuracy by permutation values of a single gene between multiple samples  [55]. We used the 
R implementation of a random forest package [56], where the number of trees (ntree) is 
increased to 2000 to accommodate the original subset of genes (1740) that were used in an 
earlier TCGA publication [57]. To insure the robustness and stability of gene selection, the 
process is repeated by averaging over 100 randomly generated forests.  
 

Results 
The critical factors in our computational pipeline are the throughput, quality of segmentation and 
morphometric representation for subtyping, and genomic association. The throughput is 
significant since images need to be continuously processed with a newer version of the software 
with increased robustness. Presently, the total computational time for 344 large scale tissue 
sections (from 133 patients) is less than a week on a shared cluster. Because segmentation 
results are also important for quality control, a number of intermediate data are also released.  
 
Data, intermediaries, and limitations: Since nuclear segmentation provides the basis for 
morphometric analysis, subtyping, and survival analysis, it is being released for visualization 
through our web site at http://tcga.lbl.gov, where users can pan and zoom through the images 
and overlay segmentation results on original images. The web site also enables exclusion of 
specific tissue sections for subtyping and genomic association. Computed representations and 
subtyping is also released through our web site to the community.  

Present limitations are absence of (i) an improved nuclear segmentation method, (ii) patch-
based tissue-based labeling, (iii) a systematic evaluation of the multidimensional representation, 



as it relates to the underlying biology, and (iv) abstraction and complete automation in the 
computational pipeline. (i) Like others, our approach to nuclear segmentation is not perfect and 
introduces morphometric errors. The major limitation for introducing more powerful algorithms 
has been limited computational time for processing very large sets of data. However, given a 
very large number of cells in a tissue section, subsequent consensus-based clustering tends to 
treat segmentation errors as outliers. Figure 5 shows nuclear segmentation and region-based 
tessellation overlaid on images with diverse morphometric signatures, where the cellularity 
index (e.g., density of cells in a region) is computed as the inverse of each tessellated region 
area and its density distribution. (ii) In certain tumor types, nuclear segmentation is insufficient 
for characterizing tissue histopathology. For example, in GBM, apoptotic and necrotic rates are 
also important. There are also patches where the state of the tissue is transitory, i.e., both 
apoptotic and necrotic states coexist in a population of cells. This is a higher level of analysis 
that is difficult to deduce from a simple nuclear segmentation and additional prior knowledge is 
needed. (iii) Over 50 features are computed per cell, and we have only begun to evaluate some 
of those that correlate with the known pathology (e.g., nuclear size, cellularity). It is desirable to 
have an informatics layer for formulating a query and get a different view of the data. Possible 
use-cases are dimensionality reduction (e.g., PCA, MDS), or feature selection based on 
outcome or known pathology that is followed by subtyping. Each of these queries provide a 
unique insight and into the underlying biology for hypothesis generation. (iv) Ideally, all 
processes should be launched, monitored, and validated through the database. Although, 
images and computed features are registered with the database, additional queries and 
notification services are required to construct a more flexible system as required in items (ii) and 
(iii).  

Quality control: Three modules are tested in the computational pipeline: (i) segmentation, (ii) 
feature extraction, and (iii) subtyping. (i) We have created a subset of hand segmented images, 
which originate from a diverse set of tissue sections from TCGA GBM dataset. Even though 
most images are stained properly, the emphasis on this subset has been placed on blocks 
where the nuclear dye is heterogeneous. The recall and precision is at 78% and 65%, 
respectively; (ii) feature extraction and representation were tested against synthetic data with 
known ground truth; (iii) subtyping is evaluated qualitatively by displaying group similarity matrix.  

Subtyping based tissue histology and survival analysis: Our system represents each nucleus as 
a multidimensional vector in the tissue section. We have opted the policy to allow the 
pathologist to explore clinical questions in terms of selected morphometric indices. This is based 
on the fact that each morphometric feature can represent underlying biological processes. For 
example, when the cells are stressed, macromolecules are excreted into cytoplasm (or ECM) to 
create a textured topography as opposed to a smooth one in normal cells. In the following 
experiment, it was decided to investigate nuclear size and cellularity for subtyping, survival 
analysis, and genomic association. The rationale is clear given larger nuclear size and higher 
proliferation rate in tumor regions. In this experimental configuration, consensus voting revealed 
five subtypes through qualitative analysis and ordering of the computed similarity matrix, as 
shown in Figure 5. With respect to correlation with the outcome as a result of therapy, we 
analyzed patients that received more (e.g., concurrent radiation and chemotherapy or greater 
than 4 cycles of chemotherapy) or less (e.g., non-concurrent radiation and chemotherapy or 
less than 4 cycles of chemotherapy) [57]. Following the Kaplan Meier estimator, our analysis 
indicates that only one subtype with extreme high cellularity, shown in Figure 5E, has a 
significant p-value through pair-wise comparison of the survival curves using a log-rank test 
[58]. Figure 6F indicates that with a more intensive therapy (the red curve) life span is increased 
as compared to a less intensive therapy (blue line). The p-values of other subtypes were not 
favorable for survival analysis. A possible interpretation is that extreme high cellularity is more 
homogeneous and highly proliferative; thus, responding better to a more aggressive therapy.  



Genomic association: Given that the therapeutic regime has increased life span for the subtype 
with extreme high cellularity, as shown in Figure 5E, we queried for its molecular marker 
through differential gene expression analysis as well as random forest. Both gene lists are 
provided in Additional file 1, and a more detailed discussion of the gene lists through random 
forest follows. We have analyzed the top 100 genes for pathway and subnetwork enrichment 
analysis through Pathway Studio. Pathway analysis reveals enrichment of immune response, 
such as NK-cell (Natural killer cell) and T-cell activation, and AP-1 signaling with p-value of less 
than 0.05. In support of these findings, the literature suggests that GBM expresses antigens that 
is recognized by the immune system to eliminate virus infected cells and GBMs [59, 60]. Tumor 
associated antigen (TAA) indicates that glioma cells can be recognized by the immune 
response, but this process is hindered by the tumor location and evasion strategies developed 
by GBM. AP-1 (JUN oncogene) is a transcription factor is responsible for high level regulation of 
IL-13Ra2 that is expressed in GBM cells [61], and is also a highly ranked gene in the TCGA 
gene tracker.  

Subnetwork enrichment analysis has revealed six hubs, with p-values of less than 0.05 that 
regulate eight or more other components. These are IFNG, TGFB1, MAPK14, Cytokines, PKC, 
and IL1B. The union of these subnetworks is shown in Figure 7. IFNG and MAPK14 are shown 
to be highly scored by TCGA gene tracker; TGFB1 is known to be upregulated in GBM [62]; 
PKC (Protein Kinase C) is well established in cancer signaling and therapy as it is involved in 
proliferation, migration, and malignant transformation [63], and its isozyme has been suggested 
for chemotherapeutic targets in GBM [64]; and ILB1 is down stream of NF-kB and is known to 
play an important role in cellular response to stress [65] and is constitutively activated in most 
tumor types. In summary, bioinformatics analysis has provided hypotheses for new modes of 
potential therapy based on morphometric subtyping. 

Comparison with prior art: It is important to note that another laboratory [66] has analyzed the 
same dataset. There are difference in the outcome and methodologies. For example, they have 
reported four subtypes in the GBM dataset. We suggest the (i) addition of the cellularity index, 
(ii) utility of feature distributions as opposed to the feature means, (iii) selection of specific 
combination of features as opposed to all computed features, and (iv) absence of curation have 
been the deciding factors. Besides cell-based multidimensional representation, there are also 
differences in nuclear segmentation. It is difficult to assess the differences in segmentation in 
the absence of source code and computed results on a large dataset; however, color 
normalization (with respect to the gold standard) and separation of the touching nuclei has not 
been addressed in [66]. These differences, especially curation, can have a significant impact on 
morphometric analysis. Finally, we have designed and built an open system, where algorithms 
and software are going through constant improvement, and computed representation and 
intermediaries are being made available for each version of the software.  

Conclusions 
We have developed an integrated pipeline to process large scale tissue sections for 
morphometric analysis. The data are downloaded from the NIH web site, partitioned into blocks, 
and then processed on a cluster. Computed representation is then transferred to a database 
where (i) data can be downloaded for molecular association, and (ii) computed information is 
overlaid on the original image and that through panning and zooming, quality control can be 
performed. Thus far, GBM and kidney data have become publicly available.  
 
We have shown that through morphometric analysis and cellular organization of tissue histology 
of a large dataset, subtypes can be identified that are predictive of outcome as a result of 
therapeutic protocol. The main theme is that histological subtyping reveals intrinsic categories 
that are independent of supervised histological grades. In other words, TCGA’s large curated 
dataset offers potential for revealing subtypes based on intrinsic properties of tissue signatures 



as opposed to the classical tumor grading (e.g., Gleason ranking in prostate cancer), practiced 
by pathologists. In this context, TCGA’s histology database can provide a complementary 
repository for diagnostic and molecular underpinning for histological subtypes. Subsequently, 
molecular signature of a subtype can hypothesize a more effective targeted therapy. Our 
continued research focuses on addressing limitations that has been addressed in the Result 
section. Ultimately, we plan to develop a system that will process all tumor types.  
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Figure Legends 
Figure 1: A pinhole view of GBM tumor section indicates a rich spatial composition in terms of 
nuclear size, cellularity, and presence of lymphocytes.  
 
Figure 2: Steps in delineating each nucleus from an H&E stained tissue sections. 
 
Figure 3: Steps in delineation of nuclei. (A) Reference image for color normalization, (B) Original 
H&E image, (C) normalized image, (D-E) color decomposition for each stain, (F) thresholding, 
and (G) refinement and validation.  
 
Figure 4: Computational pipeline consists of four modules: downloads images from the NIH 
repository. Each image is partitioned into strips of (1k-by-number of columns), stored in the 
OMEIS image server. Each strip is partitioned into blocks of 1k-by-1k pixels, where each block 
is submitted to one of the two clusters at Berkeley Lab. Computed representations are then 
imported into a PostgreSQL database. 
 
Figure 5: Nuclear segmentation and region-based tessellation for preferred subtypes of Figure 
6E: (A) high cellularity, (B) low cellularity, (C) medium cellularity, (D) high cellularity with 
pleomorphism, and (E) extreme high cellularity.  
 



Figure 6: Steps in identifying subtypes from morphological descriptors of a tissue section. (A) 
Each patient may have multiple tissue sections, which are accessible along with the computed 
features and coded clinical information through BioSig in (B). (C) Each feature, from each 
tissue, is represented as a density distribution that is normalized in (D). (E) Subtyping identifies 
5 classes through consensus voting. (F) Following the Kaplan Meier test, only one subtype 
proved to have a significant p-value between pair-wise survival curves. 
 
Figure 7: Subnetwork enrichment analysis has revealed 6 hubs with p-value<0.05: IFNG, 
TGFB1, MAPK14, Cytokine, PKC, and ILB1. Union of these subnetworks and interactions 
indicates interactions between of these hubs.  
 

Additional files 
Additional file 1 
Title: Supplementary Material for Morphometic Analysis of TCGA Glioblastoma Multiforme. 
Description: Supplementary Material for Morphometic Analysis of TCGA Glioblastoma 
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