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Introduction
De novo assembly of the transcriptome is crucial
for functional genomics studies within bioenergy
crops, since many of them lack high quality
reference genomes. Plant gene annotations are
often generated using limited experimental
evidence, and largely rely upon the accuracy of
gene calling algorithms. Previously, we developed

Improvements to the annotation
Through our assemble-then-align annotation strategy,
we improved the existing gene models significantly,
correcting or improving ~10% of the current maize
annotation (Figure 5).

Anti-sense transcriptionEvaluation of the assembly

a. new splicing variants

Transcripts transcribed from opposite strand of the
genome are known to play a role in gene regulation.
Since our data was mostly strand-specific, and
Rnnotator retains the strand information, we searched
our data for interesting cases of anti-sense
transcription and compared to other grasses to better
understand how anti-sense transcripts may have ariseng g g y, p

a de novo transcriptome assembly pipeline,
Rnnotator [1,2], for assembling transcriptomes in
lower eukaryotes using only Illumina RNA-Seq
data. However, extensive alternative splicing,
present in most of the higher eukaryotes, poses a
significant challenge for current short read
assembly processes. Gene duplications retained
from ancestral polyploidization events also present
challenges in assembly of distinct transcripts from
homologous genes Using the reference genome

b. novel genes (not in the genome)

p y
in plant genomes (Figure 7).

homologous genes. Using the reference genome
and annotated gene models we estimated the
accuracy, completeness and contiguity of the de
novo assembled transcripts to be 93.4%, 78.2% and
63.4%, respectively.

Data generation strategy Deep sequencing a single sample
We generated 341 gigabases (2.7 bil. reads) of both
stranded and non-stranded RNA-Seq data by
sequencing four libraries made from a seedling mRNA

Often, only 20 million uniquely mapped reads are used
for a typical RNA-Seq experiment. However, many
important genes, such as transcription factors, are

Figure 7. An example of anti‐sense transcription in maize. By comparing the same
locus from rice (a) and sorghum (b), we see that this anti‐sense transcript may have
arisen from a deletion of part of the anti‐sense gene in maize (c), while keeping the
promoter of the anti‐sense transcript in tact. Further studies are needed to
comprehensively evaluate how this anti‐sense transcript (red) in maize affects the
expression of the sense transcript (blue).

Figure 3. Quality assessment of the de novo assembly. The assembly
(prior to PASA) was evaluated for accuracy (a), completeness (b), and
contiguity (c), compared to the reference genome and annotation. We
also evaluated the assembly of paralogs [4,5] (d), and found that
below 95% identity we see very good resolution of pairs.

c. missed genes

d. partial genes

In summary we have generated a very accurate and 
comprehensive maize transcriptome exclusively from 
short RNA-Seq reads. Current ongoing analysis of this 
transcriptome will greatly improve the current maize 
gene annotation, and comparative analysis with rice 
and sorghum transcriptomes will reveal the set of 
genes from the maize lineage

Conclusions

Additional observations

sequencing four libraries made from a seedling mRNA
sample (Figure 1).

important genes, such as transcription factors, are
missed when samples are not sequenced deep
enough (Figure 4).

a

Figure 5. Improvements to the current maize 5a,b annotation. (a) 4,842 new
alternative splicing variants, (b) 201 novel genes, (c) 212 new genes, and (d) 299
partial CDS were extended in our new annotation. We believe that these estimates
are conservative, since they only include new annotations with full‐length ORFs.

b. Assembly

genes from the maize lineage.
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Figure 4. The effect of sequencing depth on gene discovery. (a) The number of
genes detected (> 2 reads), complete (> 20 rpkm), and contiguous (> 53 rpkm) at
increasing sequencing depth. (b) Functions of genes often missed by only shallow
sequencing of the transcriptome and found to be over‐represented by BiNGO[6].Label precursors

Figure 6. A potential gene fusion, or miss‐annotation, in maize when compared to
other closely related grass species. Current annotations in rice (a) and sorghum (b)
are shown alongside the current maize annotation. In all three grasses this locus is
annotated as two separate genes, even though there are reads spanning the gap
between the genes in sorghum and maize.


