
Scaling the Earth System Grid to 100Gbps
Networks∗

Mehmet Balman†and Alex Sim

Computational Research Division

Lawrence Berkeley National Laboratory

1 Cyclotron Road, Berkeley, CA 94720

mbalman@lbl.gov asim@lbl.gov

Abstract

The SC11 demonstration, titled Scaling the Earth System Grid to 100Gbps
Networks, showed the ability to use underlying infrastructure for the movement of
climate data over 100Gbps network. Climate change research is one of the critical
data intensive sciences, and the amount of data is continuously growing. Climate
simulation data is geographically distributed over the world, and it needs to be
accessed from many sources for fast and efficient analysis and inter-comparison
of simulations. We used a 100Gbps link connecting National Energy Research
Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory
(LBNL), Argonne National Laboratory (ANL) and Oak Ridge National Laboratory
(ORNL). In the demo, the Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report (AR4) phase 3 of the Coupled Model Intercomparison
Project (CMIP-3) dataset was staged into the memory of computing nodes at ANL
and ORNL from NERSC over the 100Gbps network for analysis and visualiza-
tion. In general, climate simulation data consists of relatively small and large files
with irregular file size distribution in each dataset. In this demo, we addressed
challenges on data management in terms of high bandwidth networks, usability
of existing protocols and middleware tools, and how applications can adapt and
benefit from next generation networks.

∗Disclaimer:This document was prepared as an account of work sponsored by the United States Govern-
ment. While this document is believed to contain correct information, neither the United States Government
nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Government or any agency thereof, or the Regents
of the University of California. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof or the Regents of the University of
California.
†contact: mbalman@lbl.gov

1



The Need for 100Gbps Networks
High-bandwidth connections help increase throughput of scientific applications, open-
ing up new opportunities for sharing data that were simply not possible with 10Gbps
networks. However, increasing the network bandwidth is not sufficient by itself. Next-
generation high-bandwidth networks need to be evaluated carefully from the applica-
tions’ perspectives. In this section, we explore how climate applications can adapt and
benefit from next generation high-bandwidth networks.

Data volume in climate applications is increasing exponentially. For example, the
recent ”Replica Core Archive” data from the IPCC Fifth Assessment Report (AR5) is
expected to be around 2PB [8], whereas, the IPCC Forth Assessment Report (AR4) data
archive sums up to 35TB. This trend can be seen across many areas in science [2, 7].
An important challenge in managing ever increasing data sizes in climate science is
the large variance in file sizes [3, 15, 9]. Climate simulation data consists of a mix of
relatively small and large files with irregular file size distribution in each dataset. This
requires advanced middleware tools to move data efficiently in long-distance high-
bandwidth networks. We claim that with such tools, data can be treated as first-class
citizen for the entire spectrum of file sizes, without compromising on optimum usage
of network-bandwidth.

To justify this claim, we present our experience from the SC11 ANI demonstra-
tion, titled ‘Scaling the Earth System Grid to 100Gbps Networks’. We used a 100Gbps
link connecting National Energy Research Scientific Computing Center (NERSC), Ar-
gonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL). For
this demonstration, we developed a new data streaming tool that provides dynamic data
channel management and on-the-fly data pipelines for fast and efficient data access.

Climate Data over 100Gbps
Climate data is one of the fastest growing scientific data sets. Simulation results are
accessed by thousands of users around the world. Many institutions collaborate on the
generation and analysis of simulation data. The Earth System Grid Federation1 (ESGF)
[8, 7] provides necessary middleware and software to support end-user data access
and data replication between partner institutions. High performance data movement
between ESG data nodes is an important challenge, especially between geographically
separated data centers.

In this study, we evaluate the movement of bulk data from ESG data nodes, and state
the necessary steps to scale-up climate data movement to 100Gbps high-bandwidth net-
works. As a real-world example, we specifically focus on data access and data distribu-
tion for the Coupled Model Intercomparison Project (CMIP) from Intergovernmental
Panel on Climate Change (IPCC).

IPCC climate data is stored in common NetCDF data files. Metadata from each
file, including the model, type of experiment, and the institution that generated the data
file are retrieved and stored when data is published. Data publication is accomplished
through an Earth System Grid (ESG) gateway server. Gateways work in a federated

1Earth System Grid Federation esgf.org

2



manner such that the metadata database is synchronized between each gateway. The
ESG system provides an easy-to-use interface to search and locate data files accord-
ing to given search patterns. Data files are transferred from a remote repository using
advanced data transfer tools (i.e. GridFTP [1, 6, 15]) that are optimized for fast data
movement. A common use-case is replication of data to achieve redundancy. In ad-
dition to replication, data files are copied into temporary storage in HPC centers for
post-processing and further climate analysis.

Depending on the characteristics of the experiments and simulations, files may have
small sizes such as several hundreds of megabytes, or they can be as large as several
gigabytes [8]. IPCC data files are organized in a hierarchical directory structure. Di-
rectories are arranged according to experiments, metadata characteristics, organization
lists, and simulation models. In addition to having many small files, bulk climate data
consists of many directories. This puts extra burden on filesystem access and network
transfer protocols. An important challenge in dealing with climate data movement is
the lots-of-small-files problem [11, 16, 6]. Most of the end-to-end data transfer tools
are designed for moving large data files. State-of-the-art data movement tools require
managing each file movement separately. Therefore, dealing with small files imposes
extra bookkeeping overhead, especially over high latency networks.

The Globus Project also recognized the performance issues with small files, and
added a number of features to their GridFTP tool to address these [6]. This includes an
option to do multiple files concurrently (-concurrency), and an option to do pipelining
(-pipeline). They also have the -fast option, which reuses the data channel operations.
Other similar parallel data mover tools include FDT [13] from Caltech and bbcp from
SLAC [10].

Climate Data Distribution
Scientific applications for climate analysis are highly data-intensive [5, 2, 8, 7]. A com-
mon approach is to stage data sets into local storage, and then run climate applications
on the local data files. However, replication comes with its storage cost and requires a
management system for coordination and synchronization. 100Gbps networks provide
the bandwidth needed to bring large amounts of data quickly on-demand. Creating
a local replica beforehand may no longer be necessary. By providing data streaming
from remote storage to the compute center where the application runs, we can better
utilize available network capacity and bring data into the application in real-time. If we
can keep the network pipe full by feeding enough data into the network, we can hide
the effect of network latency and improve the overall application performance. Since
we will have high-bandwidth access to the data, management and bookkeeping of data
blocks would play an important role in order to use remote storage resources efficiently
over the network.

The standard file transfer protocol FTP establishes two network channels [14, 16].
The control channel is used for authentication, authorization, and sending control mes-
sages such as what file is to be transferred. The data channel is used for streaming the
data to the remote site. In the standard FTP implementation, a separate data channel is
established for every file. First, the file request is sent over the control channel, and a

3



data channel is established for streaming the file data. Once the transfer is completed,
a control message is sent to notify that end of file is reached. Once acknowledgement
for transfer completion is received, another file transfer can be requested. This adds
at least three additional round-trip-times over the control channel [6, 16]. The data
channel stays idle while waiting for the next transfer command to be issued. In addi-
tion, establishing a new data channel for each file increases the latency between each
file transfer. The latency between transfers adds up, as a results, overall transfer time
increases and total throughput decreases. This problem becomes more drastic for long
distance connections where round-trip-time is high.

Keeping the data channel idle also adversely affects the overall performance for
window-based protocols such as TCP. The TCP protocol automatically adjusts the
window size; the slow-start algorithm increases the window size gradually. When the
amount of data sent is small, transfers may not be long enough to allow TCP to fully
open its window, so we can not move data at full speed.

Figure 1: Climate Data Mover Framework

On the other hand, data movement requests, both for bulk data replication and data
streaming for large-scale data analysis, deal with a set of many files. Instead of moving
data from a single file at a time, the data movement middleware could handle the entire
data collection. Therefore, we have developed a simple data movement utility, called
the Climate Data Mover, that provides dynamic data channel management and block-

4



based data movement. Figure 1 shows the underlying system architecture. Data files
are aggregated and divided into simple data blocks. Blocks are tagged and streamed
over the network. Each data block’s tag includes information about the content inside.
For example, regular file transfers can be accomplished by adding the file name and
index in the tag header. Since there is no need to keep a separate control channel, it
does not get affected by file sizes and small data requests. The Climate Data Mover
can be used both for disk-to-disk data replication and also for direct data streaming into
climate applications.

Climate Data Mover
Data movement occurs in two steps. First, data blocks are read into memory buffers
(disk I/O). Then memory buffers are transmitted over the network (network I/O). Each
step requires CPU and memory resources. A common approach to increase overall
throughput is to use parallel streams, so that multiple threads (and CPU cores) work si-
multaneously to overcome the latency cost generated by disk and memory copy opera-
tion in the end system. Another approach is to use concurrent transfers, where multiple
transfer tasks cooperate together to generate high throughput data in order to fill the
network pipe [18, 4]. In standard file transfer mechanisms, we need more parallelism
to overcome the cost of bookkeeping and control messages. An important drawback
in using application level tuning (parallel streams and concurrent transfers) is that they
cause extra load on the system and resources are not used efficiently. Moreover, the use
of many TCP streams may over subscribe the network and cause performance degra-
dations.

In order to be able to optimally tune the data movement through the system, we
decoupled network and disk I/O operations. Transmitting data over the network is
logically separated from the reading/writing of data blocks. Hence, we are able to
have different parallelism levels in each layer. Our data streaming utility, the Climate
Data Mover, uses a simple network library. It consists of two layers, a front-end and a
back-end. Each layer works independently; so, we can measure performance and tune
each layer separately. Those layers are tied to each other with a block-based virtual
object, implemented as a set of shared memory blocks. In the server, the front-end is
responsible for the preparation of data, and the back-end is responsible for the sending
of data over the network. On the client side, the back-end components receive data
blocks and feed the virtual object, so the corresponding front-end can get and process
data blocks.

The front-end component requests a contiguous set of memory blocks from the
virtual object. Once they are filled with data, those blocks are released, so that the
back-end components can retrieve and transmit the blocks over the network. Data
blocks in the virtual object include content information, i.e. file id, offset and size.
Therefore, there is no need for further communication between client and server in
order to initiate file transfers. This is similar to having an on-the-fly ‘tar’ approach
bundling and sending many files together. Moreover, by using our tool, data blocks
can be received and sent out-of-order and asynchronously. Figure 2 shows client/server

5



Figure 2: Climate Data Mover Server/Client Architecture

architecture for data movement over the network. Since we do not use a control channel
for bookkeeping, all communication is mainly over a single data channel, over a fixed
port. Bookkeeping information is embedded inside each block. This has some benefits
for ease of firewall traversal over wide-area [12].

In our test case, we transfer data files from the NERSC GPFS filesystem into the
memory of ANL/ORNL nodes. The Climate Data Mover server initiates multiple front-
end and back-end threads. The front-end component reads data, attaches a file name
and index information, and releases blocks to be sent to the client. The client at the
remote site receives data blocks and makes them ready to be processed by the cor-
responding front-end threads. For a disk-to-disk transfer, the client’s front-end can
simply call file write operations. The virtual object also acts as a large cache. For
disk to memory, the front-end keeps the data blocks and releases them once they are
processed by the application. The main advantage with this approach is that we are not
limited by the characteristics of the file sizes in the dataset. Another advantage over
FTP-based tools is that we can dynamically increase/descrease the parallelism level
both in the network communication and I/O read/write operations, without closing and
reopening the data channel connection (as is done in regular FTP variants).

Test Results
Figure 3 represents the overall system details for the SC11 demo. We used 10 host
pairs to achieve 83 Gbps of bandwidth. Each host was connected to the network with

6



a 10 Gbps link. We used TCP connection between host pairs; default settings have
been used so that TCP window size is not set specifically. We have tested the network
performance between NERSC and ANL/ORNL with various parameters, such as, total
size of virtual object, thread count for reading from GPFS filesystem, and multiple
TCP streams to increase the utilization of the available bandwidth. According to our
test results, we have manually determined best set of parameters for the setup. Specific
host tuning issues about IRQ binding and interrupt coalescing described in [17] have
not been applied, and are open to future explorations.

Our experiment moved data stored at NERSC to application nodes at both ANL
and ORNL. We staged the Coupled Model Intercomparison Project (CMIP) data set
from Intergovernmental Panel on Climate Change (IPCC) from the GPFS filesystem at
NERSC. The default filesystem block size was set to 4MB. We also used 4MB blocks
in Climate Data Mover for better read performance. Each block’s data section was
aligned according to the system pagesize. Total size of the virtual object was 1GB both
at the client and the server applications. The servers at NERSC used eight front-end
threads on each host for reading data files in parallel. The clients used four front-end
threads for processing received data blocks. In the demo, four parallel TCP streams
(four back-end threads) were used for each host-to-host connection. We have observed
83 Gbps total throughput both from NERSC to ANL, and NERSC to ORNL, as shown
in Figure 4.

Figure 3: System diagram for the demo at SC11.

7



Figure 4: SC11 Climate100 demonstration results, showing the data transfer through-
put

8



Acknowledgments
This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References
[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and I. Foster.

The globus striped gridftp framework and server. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, SC ’05, pages 54–, Washington, DC, USA, 2005. IEEE
Computer Society.

[2] M. Balman and S. Byna. Open problems in network-aware data management in exa-scale
computing and terabit networking era. In Proceedings of the first international workshop
on Network-aware data management, NDM ’11, pages 73–78, 2011.

[3] M. Balman and T. Kosar. Data scheduling for large scale distributed applications. In
Proceedings of the 5th ICEIS Doctoral Consortium, in conjunction with the International
Conference on Enterprise Information Systems (ICEIS’07), 2007.

[4] M. Balman and T. Kosar. Dynamic adaptation of parallelism level in data transfer schedul-
ing. Complex, Intelligent and Software Intensive Systems, International Conference,
0:872–877, 2009.

[5] BES Science Network Requirements, Report of the Basic Energy Sciences Network Re-
quirements Workshop. Basic Energy Sciences Program Office, DOE Office of Science and
the Energy Sciences Network, 2007.

[6] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. Foster. Gridftp pipelining. In
Proceedings of the 2007 TeraGrid Conference, June 2007.

[7] D. N. Williams et al. Data Management and Analysis for the Earth System Grid. Journal
of Physics: Conference Series, SciDAC 08 conference proceedings, volume 125 012072,
2008.

[8] D. N. Williams et al. Earth System Grid Federation: Infrastructure to Support Climate Sci-
ence Analysis as an International Collaboration. Data Intensive Science Series: Chapman
& Hall/CRC Computational Science, ISBN 9781439881392, 2012.

[9] S. Doraimani and A. Iamnitchi. File grouping for scientific data management: lessons
from experimenting with real traces. In Proceedings of the 17th international symposium
on High performance distributed computing, HPDC ’08, pages 153–164, 2008.

[10] A. Hanushevsky, A. Trunov, and L. Cottrell. Peer-to-peer computing for secure high per-
formance data copying. In Proceedings of computing in high energy and nuclear physics,
September 2001.

[11] R. Kettimuthu, S. Link, J. Bresnahan, M. Link, and I. Foster. Globus xio pipe open driver:
enabling gridftp to leverage standard unix tools. In Proceedings of the 2011 TeraGrid
Conference: Extreme Digital Discovery, TG ’11, pages 20:1–20:7. ACM, 2011.

9



[12] R. Kettimuthu, R. Schuler, D. Keator, M. Feller, D. Wei, M. Link, J. Bresnahan, L. Liming,
J. Ames, A. Chervenak, I. Foster, and C. Kesselman. A Data Management Framework for
Distributed Biomedical Research Environments. e-Science Workshops, 2010 Sixth IEEE
International Conference on, 2011.

[13] Z. Maxa, B. Ahmed, D. Kcira, I. Legrand, A. Mughal, M. Thomas, and R. Voicu. Powering
physics data transfers with fdt. Journal of Physics: Conference Series, 331(5):052014,
2011.

[14] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), Oct. 1985. Updated
by RFCs 2228, 2640, 2773, 3659, 5797.

[15] A. Sim, M. Balman, D. Williams, A. Shoshani, and V. Natarajan. Adaptive transfer ad-
justment in efficient bulk data transfer management for climate dataset. In Parallel and
Distributed Computing and Systems, 2010.

[16] D. Thain and C. Moretti. Efficient access to many samall files in a filesystem for grid com-
puting. In Proceedings of the 8th IEEE/ACM International Conference on Grid Computing,
GRID ’07, pages 243–250, Washington, DC, USA, 2007. IEEE Computer Society.

[17] W. Wu, P. Demar, and M. Crawford. Sorting reordered packets with interrupt coalescing.
Comput. Netw., 53:2646–2662, October 2009.

[18] E. Yildirim, M. Balman, and T. Kosar. Dynamically tuning level of parallelism in wide
area data transfers. In Proceedings of the 2008 international workshop on Data-aware
distributed computing, DADC ’08, pages 39–48. ACM, 2008.

10


