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Abstract 

Metagenomics holds enormous promise for discovering novel enzymes and organisms that are 

biomarkers or causes of processes relevant to disease, industry and the environment. In the last 

two years we have seen a paradigm shift in metagenomics to the application of broad cross-

sectional and longitudinal studies enabled by advances in DNA sequencing and high-



performance computing. These technologies now make it possible to broadly assess microbial 

diversity and function, allowing systematic investigation of the largely unexplored frontier of 

microbial life. To achieve this aim, the global scientific community must collaborate and agree 

upon common objectives and data standards to enable comparative research across the Earth’s 

microbiome. Improvements in comparability of data will facilitate the study of biotechnologically 

relevant processes such as bioprospecting for new glycoside hydrolases or identifying novel 

energy sources. 

  

 

Introduction 

 

The Earth hosts more than 1030 microbial cells1, a figure that exceeds the number of known 

stars in the universe by nine orders of magnitude. This richness of single-celled life, the first life 

to evolve on the planet, still accounts for the vast majority of functional drivers of our planet’s 

ecosystems2. Yet the diversity and interdependencies of these microscopic organisms remain 

largely unknown.  Likewise, our understanding of the functional potential of most individual 

microbial taxa residing within any ecosystem is extremely limited and generally restricted to 

measurements of gross enzymatic processes of the community. Moreover, sequenced 

metagenomic datasets have, to date, only played a limited role in biotechnological knowledge 

discovery, with the majority of novel developments occurring through heterologous expression 

of enzymes. 

 

Our knowledge of microbial diversity on Earth is poised to be revolutionized by the development 

of new technologies that will permit us to ‘see’ the ‘who, what, when, where, why, and how?’ of 

microbial communities. Most recently, next-generation sequencing methods have begun to 

rapidly improve our understanding of the functional and evolutionary processes necessary to 

advance the field of microbial ecology.  Matching these technological strides are progress in 

scientific community cooperation, increases in interdisciplinary interaction, and the development 

of standards for experimental and sample contextual “metadata” acquisition, which are essential 

for downstream interpretation3.  

 

Here we discuss how advances in DNA sequencing, the handling of contextual data and 

improvements in study design can unlock the potential of metagenomics. We discuss the need 

for robust experimental design4  (e.g., replication and improved ecosystem characterization) and 



highlight the need for an Earth Microbiome Project that will rely on metagenomics to explore 

Earth’s microbial dark matter across temporal and spatial scales and simultaneously facilitate 

novel gene discovery. Through standardized data generation approaches and metadata 

collection, we stand poised to make rapid progress toward advancing biotechnological goals. 

 

Changing the paradigm in metagenomic experimental design  

 

For more than 80 years, it has been recognized that the majority of microbial life cannot be 

easily cultured in the laboratory. This has constrained understanding of microbial ecosystems 

and impeded our ability to discover and utilize new beneficial functions derived from 

microorganisms (e.g., enzymes to drive biotechnological reactions, processes to enhance 

bioremediation, and biomarkers for disease diagnosis and therapeutic targets). Current 

biotechnology is still based on a small stable of “domesticated” species, yet technical 

improvements in molecular microbial ecology and synthetic biology offer the potential for novel 

enzyme discovery and exploitation from the previously inaccessible depths of the tree of life. 

However, in this age of exploration and discovery, as we test the capability and limits of these 

new tools, it is unsurprising that the majority of studies have failed to live up to expectations.   

 

This has created a paradox, in that funding agencies are not providing the resources required to 

undertake metagenomic sequencing and analysis of the large and sufficiently replicated sample 

sets needed to produce scientifically valid investigations.  Financial constraints should not 

compromise the need for scientific rigor.  A genuine concern exists that such constraints have 

led some journals and reviewers to accept the argument that proper experimental design and 

true replication is logistically infeasible and therefore should not be required for publication of 

the observations made.  Yet, as discovery moves from the description of apparent diversity to 

the genuine description of complexity and function, this is no longer acceptable or desirable.  

 

Is it possible that metagenomics has failed to deliver what it promised—a fast, cheap, and 

comprehensive method to explore functional biochemistry in the natural world? It is too early to 

reach this conclusion, but several factors led to this perception, including underestimation of the 

complexity of microbial diversity, limited data concerning the source of each sample and the 

identity of many genes, difficulties in integrating and comparing results obtained with different 

technologies in different labs, mismatched expectations between researchers who sought to 

generate understanding of ecological patterns, with those who were excited to test the limits of 



new technology, and the lack of agreed upon data standards. For the discovery of enzymes 

such as glycoside hydrolases5 (important for biomass breakdown), information on the type of 

biomass, biological or physicochemical pretreatment (e.g. grinding of biomass by wood feeding 

insects), redox conditions, pH and temperature are important parameters to record. If we 

continue to develop these environmental data checklists for other types of sample sets, it will be 

feasible to search for relevant genes in databases created by metagenomic endeavors, which 

will greatly assist in finding genes relevant to a target biotechnology application. 

 

To change perspectives, national and global cooperation is needed to adopt minimum 

standards in experimental design and to convince funding agencies to make the appropriate 

levels of investment.  Initial advances toward novel gene discovery using metagenomics relied 

on direct cloning and sequencing of DNA fragments extracted from uncultured microbial 

communities. Although an important step forward, these methods were also time consuming 

and expensive. For example, metagenomic data generation for the first leg of the Global Ocean 

Sampling expedition was estimated to cost > $10 million. Although costly, the dataset is 

comparatively limited by today’s standards. Since the introduction of the first wave of ‘next-

generation’ highly parallel DNA sequencers in 2006, there has been an explosion in gigabase- 

to terabase-scale metagenomic sequencing projects6.  An illustrative, though not exhaustive, list 

includes the continued Global Ocean Survey (GOS), International Census of Marine Microbes, 

MetaHIT, the Human Microbiome Project (HMP), TARA Oceans, DeepSoil, MetaSoil, Genomic 

Observatories7, the JGI Great Prairie pilot study, and the National Ecological Observatory 

Network (NEON). 

 

Pioneering metagenomic studies of microbial community composition and function in different 

environments (e.g., acid mine drainage8, soil/permafrost9, 10, marine GOS11, Hawaiian ocean 

time series12, Western Channel Observatory L413, termite hindgut14, cow rumen15, human 

gastrointestinal tract16, and mouse gastrointestinal tract17) provided a first glimpse into the 

potential of this approach to uncover previously unknown functional genes, phylogenetic types, 

and interactions among community members. Indeed, comparative metagenomic analyses have 

yielded considerable insight into the distribution of gene families across different ecosystems, 

and the role of specific functional attributes in adaptation to physical and chemical conditions18-

20. However, these initial studies were limited by their status as pilot studies, often due to the 

need to develop and prove the technologies and the high cost of sequencing. Therefore, most of 

these studies were observational and were not able to adopt the normal scientific 



methodological approach of well replicated coverage of the respective ecosystems for 

statistically relevant analyses21 of the biological variation.  

 

Now that sequencing costs have declined as throughput has dramatically increased, we expect, 

without any reasonable exceptions, rigorous experimental design to be applied to future 

metagenomics experiments. Further, we must take full advantage of this brave new world of 

rigorous metagenomic study design by thinking like cartographers, and creating a map that can 

be used to navigate the uncharted regions of the microbial universe. One example of this map 

could be a catalogue of all known proteins and the environments (including comprehensive 

metadata) in which they were found. To do this, it will be necessary to better characterize 

individual ecosystems with prolonged and in-depth investigations, comprehensive physical, 

chemical and biological contextual data, appropriate statistical design, and improved 

interpretation of functional and taxonomic characteristics (Box 1).  

 

A metagenomic dataset is only as good as the contextual experimental and environmental data 

associated with it. Just as maps require a standard format to enable comparability, in-depth 

investigations also must be comparable, and be able to be linked, to uncover what features are 

common to multiple systems, or specific to each system. Standardization efforts enable further 

analyses, such as determining the distribution of these elements across time and space, 

thereby improving our understanding of microbial dynamics across planet Earth.  

 

Defining the playing field through shallow and deep surveys 

 

Ultra-deep sequencing of taxonomic or functional marker genes such as the small subunit 

ribosomal RNA gene (SSU-rRNA) or nifH has enabled comprehensive cataloging of the 

inhabitants of a variety of microbial ecosystems22-26. Deep sequencing of a few samples can 

provide information about rare taxa and rare genes, but without analyzing larger numbers of 

samples, limitations arise: the statistical significance of observed patterns cannot be 

determined, the patterns of co-occurrence between genes and taxa are difficult to assess, and 

the dominant biotic or abiotic factors structuring communities across time and space remain 

undetermined.  As an analogy, if naturalists in the 19th century had only focused on plant and 

animal diversity in a few, isolated plots instead of exploring ecosystems across broad swaths of 

the globe, the fields of botany and zoology would have reached a standstill, and the global 

patterns of biogeography, which were crucial to forming our modern understanding of ecology 



and evolution, would have remained unknown. Thus, for microbial biogeography, many samples 

from related or contrasting communities must be studied in parallel.  

 

We recognize the recent advances that have been made by the deep sequencing of a few 

samples (e.g. generating billions or trillions of base pairs from a single sample). Indeed, broad, 

shallow sequencing from many thousands of samples can help to direct which samples should 

be analysed in more detail using deep sequencing, which enables additional data analyses that 

may lead to better interpretation of the biological information. For example, in order to obtain 

enough information to allow reliable assembly of specific genomic fragments (using currently 

available sequencing technologies), deep sequencing of random shotgun DNA is essential. 

Recent work on rumen samples obtained from two cows illustrates this point. Hess and 

colleagues15 were able to assemble 15 near-complete bacterial genomes from short-read length 

shotgun sequencing data. However, Improved coverage is not the only answer, but can help to 

focus the question; for example, using a rough calculation of 4 Mbp (mega base pairs) per 

genome and a billion cells per gram, a single gram of soil could contain up to 3 Pbp (peta base 

pairs) of genetic data. Recently, Mackelprang et al.9 used deep sequencing to successfully 

assemble a draft genome of a novel methanogen from highly diverse permafrost soil. Therefore, 

although soil is one of the most challenging ecosystems for metagenomics because of it’s high 

diversity, advances in new assembly algorithms show great promise for genome reassembly 

from deep sequence studies 27.  

 

The question of whether to sequence deeply or shallowly across many samples is dependant on 

the question you want to answer. Deep sequencing is required to observe rare members of 

microbial communities. Regardless of the habitat in question, rare members of the community 

can have key functional roles, such as nutrient cycling (e.g., methanogenesis28, nitrogen 

fixation26), pathogenesis, stimulation of the immune system, and metabolite production (e.g., 

butyrate in the gut, or antibiotics). Moreover, microbes that are rare in one sample may be 

common in another. For example, in the European Meta-HIT project, metagenome sequences 

from fecal samples were obtained from 124 individuals, and the human gut microbes identified 

as being shared between individuals varied 8- to 1500-fold among different hosts29.   

 

Shallow sequencing, in contrast, enables the exploration of microbial community structure 

dynamics, which is fundamental to building a predictive understanding of an ecosystem30. 

Recent evidence suggests that some ecosystems maintain a temporally persistent but vast 



microbial seed bank31, suggesting that taxa identified by shallow surveys are merely indicative 

of the abundant taxa selected by the chemical, physical and biological processes leading up to 

and present at the time of sampling. However, one likely hypothesis states that “the dominant 

microorganisms in a sample are those that play the most important functional roles under 

normal conditions.” Hence, if one is interested in the ecology of more abundant processes or 

taxa, ultra-deep metagenomic sequencing is not essential; relatively small fractions of the 

genetic diversity contained within samples can reveal ecological patterns that help define 

ecosystem structure13. The potential for reliance on shallow sequence data (either amplicon or 

shotgun) for some studies is supported by a study of gnotobiotic mice harbouring a defined 

consortium where the complete genome sequence of every community member was known. In 

that study it was possible to obtain accurate descriptions of the community’s meta-transcriptome 

and meta-proteome based on short sequence reads32.  

  

Creating a highly detailed picture of an individual or environmental sample from one angle at 

one instant creates a static view of that sample that can be useful. However, it cannot capture 

temporal dynamics, or variability among individuals or habitats. Far more is gained from 

complementing such pictures with others, even if these others are taken at lower resolution, as 

it permits more accurate reconstruction of shape. Likewise, low-resolution pictures taken 

successively over time can provide a sense of motion and dynamics and low-resolution pictures 

of many different samples can provide a view of diversity and variability that cannot be obtained 

by a single sample. However, all these pictures or individual snap-shots must be well organized, 

as it is of little value to have them unsorted in a pile that prohibits retrieval of the series of the 

data sets, or images, necessary to reconstruct a view of a specific phenomenon under study. 

 

To determine dynamic processes, it is necessary to apply broad sampling (both in time and 

space) at an appropriate resolution to determine the frequency of the dynamics. With most 

studies, an increase in the number of samples analyzed has a significant impact on analytical 

power (Table 1). Gilbert and colleagues33 generated a 12-sample survey of the annual changes 

in the microbiota of surface waters in the English Channel, and found evidence for seasonal 

succession driven by temperature and nutrient availability. However, when they augmented this 

with 60 more samples, making a contiguous 72 sample time series over six years22, the patterns 

were significantly refined, with the seasonality being extremely robust, and day-length being 

identified as the key driver of richness in the community (Figure 1; Table 1). Additionally, 

Arumugam and colleagues34 used metagenomic sequencing from 22 individuals to show that 



human gut microbiota could be classified into 3 enterotypes, which showed no correlation to diet 

or ethnicity. However, Wu et al.35 performed the same analysis on 98 individuals and 

demonstrated that the increase analytical power found distinct correlations with diet (Table 1). 

Other examples of the power of sampling breadth can be routinely found in the literature (Table 

1), and they demonstrate that using statistically relevant experimental design is vital to 

generating accurate analyses.  

 

Defining the effect size and the power of a study is a particularly important challenge in the 

design of clinical microbiome-directed trials (e.g. probiotics, prebiotics, antibiotics and stool 

transplants) or the natural or man-made disturbance in any terrestrial or oceanic ecosystem. A 

recent attempt to define effect sizes in studies of the human microbiome36 foundered due to the 

lack of comparability of different datasets and methodologies for taxon detection and 

assignment. Such effect sizes can only be determined with sufficiently large sample sizes of 

“normal” versus “altered” states, studied over sufficient temporal and spatial scales to reveal 

variation. The dilemma, especially for human studies, is that large samples are required to 

determine effect size, but such studies cannot gain Institutional Review Board approval because 

the effect size, and therefore the correct number of subjects required to achieve statistical 

power, is unknown.  

 

Towards an Earth Microbiome Project 

 

In recognition of the value of a multi-environmental survey of microbial diversity, we have 

instigated an initiative called the Earth Microbiome Project (EMP; www.earthmicrobiome.org). 

The EMP seeks to systematically characterize microbial taxonomic and functional biodiversity 

across global ecosystems, and to organize international environmental microbiology research 

by standardizing the protocols used to generate and analyze the data between studies. The 

Earth Microbiome Project (EMP) constitutes a restructuring and refocusing of microbial ecology. 

Individual projects are grouped (by single PI, or by consortium) into overarching science 

questions that can be used to define the fundamental purpose of a single project, or individual 

hypothesis-driven studies can be grouped under a larger question. While this framework 

provides a way to influence and globally organize environmental microbiology research, the 

novelty lies in the sheer scale of the endeavor and the standardization of the protocols used to 

generate and analyze the data between studies. The EMP standard operating procedures 

(SOPs) define a route to minimize bias between community analyses associated with different 



material extraction techniques, analytical methods and core data quality control and analysis. 

However, currently, the EMP does not promote a standard physical sample acquisition protocol 

or preservation technique, but is working to explore the impact of these variables on ecological 

interpretation37. The EMP framework promotes open access research; hence all data is being 

made public, including to industry, and comparable within an open access forum, which creates 

a data resource capable of answering and asking fundamental questions about the function of 

microbes in different environmental habitats. However, it is not just data that must be open 

access. The scientists themselves also need to be more accessible through open science 

initiatives38, ensuring that the right researchers are able to work on the most relevant topics, 

making the best use of reductionist expertise.  

 

Additionally, the EMP framework enables multidisciplinary cooperation across funding agencies 

and scientific research areas. Stand-alone projects are mapped onto larger research themes, 

and these stack into overarching global questions, yielding multiple layers and scales of inquiry. 

This focus on multidisciplinary activity brings new dimensions to microbial investigation, through 

renewed interest in data processing, requirements for large-scale computational infrastructure, 

modeling community dynamics and functional capability, and linking the analyzed data and 

generated models to climate modeling informatics programs. It also merges aspects of 

biogeochemistry, microbiology, protein/enzyme interaction, and transcriptional feedback as we 

move from molecular scale processes to processes and dynamics on other scales. These range 

from cellular interaction, to community ecology, local, regional, national, continental and global 

scales. Such a broad knowledgebase will be critical for developing a predictive understanding of 

genes and organisms of biotechnological interest. 

  

Of course, for large scale sequencing efforts such as the EMP to be focused and coordinated, 

the community must avoid the “sequence everything” approach, simply because “we can.” 

Hypotheses must guide our selection of the most appropriate samples to sequence. To a large 

extent these will be sample sets that have rich metadata, and samples that have the potential to 

provide fundamental new knowledge.  

 

The role of metadata acquisition in improved experimental design 

 

Initiatives like the EMP are saved from becoming simple natural history exercises in data 

collection by the requiring the acquisition and appropriate organization of the metadata that 



accompany every sequence dataset generated. These environmental and experimental 

metadata are the primary data of many multidisciplinary research groups, who already work 

together to generate a comprehensive understanding of a particular environment, e.g. a marine 

sampling field expedition, or a temporal exploration of soil and ecosystem dynamics in one 

location. Such environmental parameters give context to the origin of the sequence data we rely 

upon to generate interpretative analyses about the microbial dynamics in that ecosystem. They 

include temperature, latitude and longitude, altitude, moisture content, nutrient concentrations, 

and standard ontologies for geolocators and ecosystem descriptors. But these must also be 

accompanied by experimental metadata that appropriately describe the methods used to create 

the sequence data, such as sample handling, nucleic acid extraction, PCR amplification 

method, sequence protocol, and bioinformatic analysis. Acquisition of these metadata are 

essential to the EMP, as they provide ecological grounding to analyses of the taxonomic and 

functional capacity of the sequenced microbial community. Hence, this robust framework for 

routine collection of metadata and reliable standards will enable comparison between studies. A 

suite of such standard languages is provided by the Minimum Information about any (x) 

Sequence checklists (MIxS39). MIxS is an umbrella term to describe MIGS, MIMS and 

MIMARKS3 and contains standard formats for recording environmental and experimental data. 

  

The latest of these checklists, MIMARKS (Minimum Information about a MARKer Sequence) 

builds on the foundation of the MIGS (the Minimum Information about a Genome Sequence) 

and MIMS (the Minimum Information about a Metagenome Sequence) checklists3, by including 

an expansion of the rich contextual information about each environmental sample. What is 

recorded depends on where the sample comes from. For example, human samples can be 

annotated with fields such as the age, weight, and health status of the subject, whereas 

seawater samples can be annotated with fields such as pH, salinity, depth and temperature. 

Additionally, detailed technical information such as the sequencing platform, and the genes and 

regions targeted are also required, making meta-analyses of many studies much easier to 

perform and interpret, because outliers can be traced back to technical differences or to 

biological differences automatically, rather than requiring the researcher to read scores of 

papers as is necessary for meta-analyses today40. This integration is especially important for 

finding enzymes that participate in processes that are potentially industrially useful but where 

the origin is irrelevant to the industrial application except for improving the possibility that the 

enzyme will work under the necessary conditions. 

 



We believe that the MIxS standard will play a key role for three reasons: First, it will enable 

large-scale projects to collect massive datasets according to standard protocols at multiple 

sites, and to share these data to facilitate global understanding.  Second, it will enable 

integration of each lab’s individual projects into this universe of sequences, allowing community-

level comparisons, unprecedented exploration of the diversity and distribution of life, easy 

detection and exclusion of contaminated samples, and the exploration of gene or taxon co-

occurrence patterns. These features are especially crucial for accessing and integrating data 

from every clinic or every field site.  Third, it will provide a framework for large-scale integration 

of efforts, especially predictive modeling. Stanislaw Ulam said, “Great scientists see analogies 

between theorems or theories. The very best ones see analogies between analogies.” By 

providing a method of integrating both the systematically collected results of large-scale projects 

such as the EMP and the highly distributed efforts of smaller groups, standards such as MIxS 

will help enable a future in which analogies across spatial scales, temporal scales, and even 

theories are not only possible but routine. 

  

As the cost of sequencing continues to decline, there has been a rapid adoption of the MIxS 

standard, and of sound sampling principles. For example, tools such as QIIME41 and MG-

RAST42 are already MIxS-compliant and provide ways of viewing and analyzing MIxS-compliant 

data. INSDC has committed to incorporating a MIxS keyword as a standard, and large projects 

such as the HMP (https://commonfund.nih.gov/hmp/), NEON (http://www.neoninc.org/), the 

EMP (www.earthmicrobiome.org), the Bio Weather Map (http://bioweathermap.org/), and the 

Personal Genome Project (http://www.personalgenomes.org) have already pledged to support 

the standard. This rapid response is timely. As sequencing and computational methods co-

evolve in a dynamic ‘arms race’ that spurs their mutual growth and progress, so too must data 

standards co-evolve.  

 

International activities such as the EMP provide test beds to allow the community to agree on 

standards for exchange of data products that go well beyond the trading of consensus 

sequences and annotations (e.g., GenBank). Even given the expected advances in cloud 

computing and the predicted decrease in computation costs according to Moore's law, one main 

driver of innovation will be the need to provide analyses of datasets that are orders of 

magnitude larger without the corresponding need for vast increases in the bioinformatics 

budget. Investments in data reuse and usable data standards are critical. However, it is easier 

to create standards than it is to successfully promote their use. The Genomic Standards 



Consortium (GSC) has conducted pioneering work on minimum information checklists that have 

enabled provenance standards, and it is now taking on the much more complicated task of 

defining standards for computed data products.  In this regard, journals can play a role by 

universally adopting such standards as a requirement for accepting and publishing manuscripts. 

 

The role of data generation in the discovery of novel enzymes and phylogenetic structure in 

microbial biodiversity must be complemented by improved functional and taxonomic databases 

that more appropriately represent the full breadth of microbial diversity. One critical aspect of 

this development will be mapping of metagenomic reads against reference genomes. The Earth 

Microbiome Project is partnered with the Genomic Encyclopedia of Bacteria and Archaea and 

Microbial Earth initiatives43 that aim to improve the phylogenetic representation of sequenced 

genomes. These efforts combined with improved gene and protein database curation (e.g., IMG 

and IMG/M44, 45) will aid with metagenomic data interpretation, facilitating more efficient 

biodiscovery. 

 

Conclusion 

 

As it occurred with many other technologies such as computing, telecommunications and 

photography (which, like sequencing, began with scientific applications but rapidly transformed 

consumers’ lives across the globe), metagenomics is in a time of transition. The community is 

moving from a situation in which technologies are first deployed centrally by large organizations, 

then by departments, by individual laboratories, and it is perhaps not unreasonable to speculate 

that sequencing devices will soon be owned by individuals, perhaps even in a handheld format. 

Standard protocols are necessary to integrate the information and to allow easy communication 

across studies—after all, the role played by the internet in today’s world is only possible 

because computers everywhere can communicate with a set of standard, open protocols. While 

currently these initiatives are focused on DNA sequencing (amplicon sequencing and 

metagenomics), it will be necessary to determine integration of metabolomics, proteomics and 

single-cell genomics into these efforts to improve community characterization, and enable more 

appropriate ecological inferences. The ‘omics ratio (ratio of applied techniques, e.g. 

genomics:transcriptomics:proteomics:metabolomics) should always be determined by the 

hypothesis. We believe and hope that MIxS and the EMP will enable the same type of 

functionality for ecologists, allowing us to construct not just a catalog of organisms on Earth but 



also to understand and exploit the critical processes they perform in the environment over a vast 

range of spatial and temporal scales. 

 

Acknowledgements: We wish to thank Jonathan Eisen for his constant support of the Earth 

Microbiome Project, and his help with writing this work. This work was in part supported by the 

U.S. Dept. of Energy under Contracts DE-AC02-06CH11357 and DE-AC02-05CH11231, the 

National Institutes of Health, the Natural Environment Research Council, UK the Crohns and 

Colitis Foundation of America, and the Howard Hughes Medical Institute. We thank Jens 

Reeder, Jesse Stombaugh, Cathy Lozupone, Daniel McDonald, Justin Kuczynski, and Jessica 

Metcalf for comments on drafts. 

 

 



 

Tables 1A, B, C, D: Recent studies, number of samples, and reported results. Studies with 

more samples have a higher impact and clearer biological interpretations than studies with 

comparable amounts of sequencing but spread over fewer samples: the reason is ability to 

correlate information with biological or clinical parameters of the system. Three comparisons of 

successive studies are shown: Table 1A - blue – marine; Table 1B - brown – human gut; Table 

1C - green – human skin; Table 1D - orange – soil. 

Study  Number of 
samples 

Sequencing target Key results 

Gilbert et al., 
Environmental 
Microbiology, 
2009 33 

12 monthly 
marine 
samples 

16S RNA V6  Evidence of seasonally 
structured community diversity 
and for seasonal succession, 
significantly correlated to a 
combination of temperature, 
phosphate and silicate 
concentrations. 

Gilbert et al., 
ISME J, 
201122 

72 monthly 
marine 
samples 

16S rRNA V6  Community had strong 
repeatable seasonal patterns, 
with winter peaks in diversity. 
Change in day length explained 
65% of the diversity variance. 
The results suggested that 
seasonal changes in 
environmental variables are 
more important than trophic 
interactions. Relationships 
between Bacteria were stronger 
than with Eukaryotes or 
environment. The increase in 
temporal sampling over Gilbert 
et al., 2009, increased the 
capability to explore community 
relationships. 

Zinger et al., 
PLoS ONE, 
201146 

509 marine 
samples 

16S rRNA High variability of bacterial 
community composition specific 
to vent and coastal ecosystems. 
Both pelagic and benthic 
bacterial community distributions 
correlate with surface water 
productivity. Also, differences in 
physical mixing may play a 
fundamental role in the 



distribution patterns of marine 
bacteria, as benthic 
communities showed a higher 
dissimilarity with increasing 
distance than pelagic 
communities. 

 

Study  Number of 
samples 

Sequencing target Key results 

Arumugam et 
al., Nature, 
201134 

22 human 
fecal 
samples 

Metagenomes  Identification of three clusters 
(enterotypes) that are not nation 
or continent specific. Certain 
genes or functional groups do 
show correlation to certain host 
factors. 

Muegge et al., 
Science, 
201147 

51 
mammalian 
fecal 
samples 

16S rRNA  
Metagenomics  

Fecal DNA from 33 mammalian 
species and 18 humans who 
kept detailed diet records, and 
we found that the adaptation of 
the microbiota to diet is similar 
across different mammalian 
lineages. Therefore, this study 
did not support the study of 
Arumugam et al., 2011. 

Wu et al, 
Science, 
201135 

98 human 
fecal 
samples 

Metagenomes  Enterotypes were strongly 
associated with long-term diets, 
particularly protein and animal 
fat (Bacteroides) versus 
carbohydrates (Prevotella). 
Therefore, this study did not 
support the study of Arumugam 
et al., 2011; the increased 
breadth of the study improved 
the analytical capability. 

Qin et al., 
Nature, 
201029 

124 fecal 
samples 

Metagenome Over 99% of the genes are 
bacterial, most found in every 
sample, and indicate that the 
entire cohort harbors ~1,000 
prevalent bacterial species. 
Each individual has at least 160 
species, which are also largely 
shared. 

Claesson et 170 fecal 16S rRNA The fecal microbiota of the 



al., PNAS, 
201148 

samples elderly shows temporal stability 
over limited time in the majority 
of subjects but is characterized 
by unusual phylum proportions 
and extreme variability. 

Frank et al., 
PNAS, 200749 

190 human 
gut 
samples 

16S rRNA Statistically significant 
differences between the 
microbiotas of Crohn’s Disease 
(CD) and ulcerative colitis (UC) 
patients and those of non-IBD 
controls. Significantly, our 
results indicate that a subset of 
CD and UC samples contained 
abnormal gut microbiotas. 

Turnbaugh et 
al., Nature, 
200950 

154 
humans: 
fecal 
samples 
(twin pairs 
and 
mothers) 

16S rRNA, shotgun Identifies a core microbiome at 
the gene function but not the 
organismal lineage level; 
identifies systematic differences 
in diversity between lean and 
obese. Supported by Aruguman 
et al. 2011 on the obesity alpha 
diversity result. 

Reyes et al. 
Nature 201051 

36 
individuals: 
fecal 
samples 
(twin pairs 
and 
mothers, 
over 1 
year) 

16S rRNA, shotgun, 
viruses 

Shows high levels of variability 
between individuals, magnitude 
of viral diversity, and absence of 
“kill-the-winner” dynamics. 

 

 

Study  Number of 
samples 

Sequencing target Key results 

Costello et al., 
Science, 
200952 

27 body 
sites in 9 
individuals 

16S rRNA Community composition was 
determined primarily by body 
habitat. Within habitats, 
interpersonal variability was 
high, whereas individuals 
exhibited minimal temporal 
variability. Several skin locations 
harbored more diverse 



communities than the gut and 
mouth, and skin locations 
differed in their community 
assembly patterns. 

Fierer et al., 
PNAS, 201053 

90 
keyboard 
keys 
30 
phalange 
skin 

16S rRNA  Structure of microbial 
communities can be used to 
differentiate objects handled by 
different individuals, even if 
those objects have been left 
untouched for up to 2 weeks at 
room temperature. 

Caporaso et 
al., Genome 
Biology, 
201124 

396 time 
points for 
four body 
sites 

16S rRNA  Despite stable differences 
between body sites and 
individuals, there is variability in 
an individual's microbiota across 
time. Only a small fraction of 
taxa are temporally persistent, 
hence no core temporal 
microbiome exists at high 
abundance. Strikingly, this study 
confirmed the results of a 
previous study (Costello et al., 
2009) with a massive increase in 
data.  

Ravel et al., 
PNAS, 201154 

396 vaginal 
swabs 

16S rRNA Patterns were associated with 
the diagnosis of bacterial 
vaginosis. The inherent 
differences within and between 
women in different ethnic groups 
strongly argues for a more 
refined definition of bacterial 
communities normally found in 
healthy women. 

 
Study  Number of 

samples 
Sequencing target Key results 

Rasche et al., 
ISMEJ, 
201055 

72 soil 
samples 

16S rRNA tRFLP Seasonal dynamics displayed by 
key phylogenetic and nitrogen 
(N) cycling functional groups 
were found to be tightly coupled 
with seasonal alterations in 
labile C and N pools as well as 
with variation in soil temperature 
and soil moisture. 



Mackelprang 
et al., Nature, 
20119 

12 soil 
samples 
(permafrost 
& active 
layer - 
before & 
after thaw) 

Metagenomes Permafrost thaw caused a rapid 
shift in several phylogenetic and 
functional genes and C and N 
cycling pathways. A draft 
genome of a novel methanogen 
was assembled from the 
metagenome data.  



 
 

Figure 1: Conceptual diagram of why replicated samples, especially across a gradient or along 

a time series, are critical for interpretation of results. Structure that is externally imposed via 

study design greatly improves our ability to recover biologically meaningful relationships rather 

than simply finding statistical differences between samples (especially important because every 

pair of biological samples will be different if sequenced deeply enough). In this case, we show 

the L4 Western English Channel ocean time series samples 22: Sampling only during the 

summer, highlighted in blue, would only reveal the tip of the iceberg of variability in this 

ecosystem, which is driven by seasonal change (the graph shows day on the x-axis; log of the 

observed number of species on the y-axis). Similar principles apply in other ecosystems that 

have other major drivers of variation that, when overlooked, can influence the results in ways 

that are puzzling, or give a misleading picture of variation. 

 

Figure 2: Importance of metadata-enabled studies. Matched-pair diagrams showing 

visualizations from recently published, high-impact studies with and without metadata, showing 

the importance of metadata. Examples taken from Costello et al. 200952  (PCoA plot of UniFrac 

distances between human body habitat associated communities reveals clustering by human 

body habitat type), Ley et al. 200856 (where a bipartite network diagram shows that the main 

clustering of mammalian fecal communities is by diet), and Fierer et al. 201053 (where an NMDS 

plot of UniFrac distances between soil communities shows that the main factor driving variation 

in these communities is pH). These relationships are immediately and intuitively obvious when 

the right metadata are applied, but would be essentially impossible to see otherwise. 

 

 



 
 

 
Figure 1



Figure 2 
 



 
 
Box 1: Key decisions in the metagenomic pipeline that affect the utility of the data and ability to 

leverage existing and future studies in its interpretation. 

Challenge Decision Pitfall Consequence 

Biological and 

technical replicates 

are expensive and 

time-consuming 

Whether to perform 

replication, or 

gamble that a 

single sample in 

each group is 

informative with 

sufficiently well-

described 

ecosystem 

parameters 

Often non-replicated 

designs are not 

interpretable, or are 

over interpreted 

(e.g. attributing 

differences in a 

single healthy 

versus diseased 

person to the 

disease) 

Conclusions cannot 

be replicated by 

other researchers, 

and may not be 

generalizable 

beyond the specific 

samples analyzed 

A fixed sequencing 

budget must be 

divided among 

some number of 

samples (e.g. by 

multiplexing at 

some level) 

Whether to 

sequence few 

samples deeply, or 

many samples 

more shallowly 

The appropriate 

number of samples 

and sequencing 

depth are unknown 

Few samples may 

be uninformative 

and may preclude 

informative analysis 

of variation in the 

system and/or 

replication; shallow 

sequencing may 

miss rare but 

important taxa or 

functions 

Experimental 

challenges due to 

low yield of DNA 

and/or high 

community diversity 

Whether to adopt 

new protocols for 

improved DNA 

extraction, 

amplification and/or 

assembly  

DNA extraction and 

manipulation steps 

all introduce biases 

that may make it 

difficult to compare 

between studies 

For unique or rare 

samples that require 

special treatment it 

is essential that all 

steps in the 

treatment are 

considered if 

comparing results to 



those from other 

studies. 

Defining the 

dimensions of 

variation that matter 

in a given system is 

challenging, and 

often is the purpose 

of the study itself 

Which scales and 

parameters to 

select, and how 

much variation to 

cover 

“Extremes” of 

variation in the 

system being 

studied are 

expensive and 

difficult to obtain (tail 

of distribution) and 

may not even be 

extreme from the 

microbes’ 

perspective; relevant 

variation often 

unknown 

Conclusions from 

one population or 

study site 

inappropriately 

generalized to other 

populations or study 

sites; relevant 

variation in system 

undiscovered; 

extreme efforts to 

obtain exotic 

samples are 

unrewarded 

Must choose a 

sequencing 

platform  

Trade-off between 

read length and 

number of 

sequences; must 

decide when to 

adopt new 

technology 

All sequencing 

technologies and 

processing pipelines 

have drawbacks, not 

all of which are 

widely advertised; 

technology changes 

rapidly 

Sequences may be 

too short, too few 

too error-prone to 

interpret, or too 

passé to publish 

Interpretation of 

sequence data 

Must decide 

whether to use 

reference-based or 

de novo methods 

for assembly, 

taxonomy and 

functional 

assignment, and if 

so which reference 

to use 

Different reference 

databases give 

different results; de 

novo is unbiased but 

far less powerful 

when appropriate 

references exist; 

analyses differ as 

reference databases 

update rapidly, 

limiting comparisons 

Incorrect and/or 

hard-to-reconcile 

functional and 

taxonomic 

assignments 



between studies. 

Current assembly 

algorithms are 

insufficient for highly 

complex 

metagenome data. 

Metadata collection Must decide what 

metadata (i.e. 

sample or site data) 

to collect and 

associate with 

sample 

Too complex to be 

implemented; fields 

inconsistent with 

previous studies due 

to lack of standards-

compliance; data 

model can’t 

accommodate 

Chaos! 

Centralization Whether to 

centralize sample 

collection, metadata 

curation, DNA 

extraction, 

sequencing, data 

storage, and data 

analysis 

Decentralization can 

lead to 

inconsistencies that 

make data difficult to 

interpret; 

centralization can 

lead to delays while 

funding is acquired 

or capacity is built, 

and can limit 

creativity 

Either the dataset 

may be vast but too 

inconsistent to 

interpret, or it may 

be extremely 

consistent but 

limited in scope 

and/or 

interpretation. 

Specific 

considerations apply 

to each stage; the 

EMP currently 

favors decentralized 

sample collection 

and centralization of 

other steps on a 

case-by-case basis 
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