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Abstract

Accurate treatment of electron correlation in quantum chemistry requires solving the many-
electron problem. If the nodal surface of a many-electron wave function is available even in an
approximate form, the fixed-node diffusion Monte Carlo (FNDMC) approach from the family of
quantum Monte Carlo (QMC) methods can be successfully used for this purpose. The issue of
description and classification of nodal surfaces of fermionic wave functions becomes central for
understanding the basic properties of many-electron wave functions and for the control of accuracy and
computational efficiency of FNDMC computations. In this work, we approach the problem of
automatic classification of nodal pockets of many-electron wave functions. We formulate this problem
as that of binary classification and apply a number of techniques from the machine learning literature.
We apply these techniques on a range of atoms of light elements and demonstrate varying degrees of
success. We observe that classifiers with relatively simple geometry perform poorly on the
classification task; methods based on a random collection of tree-based classifiers appear to perform
best. We conclude with thoughts on computational challenges and complexity associated with applying

these techniques to heavier atoms.
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1 Introduction

Two classes of methods account for the large majority of quantum chemical electronic structure
calculations. Density functional theory (DFT) computes the molecular energy using a functional of the
electron density.[1, 2] Although DFT calculations are computationally inexpensive and often accurate,
the true energy functional is not known, leaving DFT practitioners little recourse for systematically
improving unsatisfactory results. Wave function-based theories (WFT), e.g. Hartree-Fock-Roothaan
approach,[3] select a well defined, but approximate form of the electronic wave function and optimize
the free parameters of that form. WFTs that account for electron correlation are typically significantly
more expensive than DFT, but may converge to the exact wave function in certain limits. However, the
accuracy of any practical application of WFT is limited by the constrained wave function form.

Quantum Monte Carlo (QMC) methods represent an important class of electronic structure
simulation techniques used in quantum chemistry. QMC is rooted in stochastic approaches to solution
of the electronic Schroedinger equation.[4] Compared to other techniques, QMC relies on the minimal
number of approximations and can be used with wave functions ansédtze of high complexity, which
makes QMC highly accurate and flexible.[5] QMC calculations have great value for providing
consistently reliable quantum chemical results and benchmarking and calibrating DFT, WFT and other
methods. Diffusion Monte Carlo (DMC) uses stochastic projection in order to deliver eigenvalues of

the molecular Hamiltonian by propagating the Schrédinger equation in imaginary time, t=it

Lo(X ,0)=(12V~(V(X)-E,))o(X ) (M)
Diffusion Branching

where is X a position vector of an n-electron configuration and @®(X,t) is a wave function. This is

accomplished by exploiting two isomorphisms. One is between the kinetic energy term in the



Hamiltonian and a classical diffusion equation, the other is between the potential energy and a spatially
inhomogeneous first-order rate equation. Diffusion can be simulated by a random walk and rate
equation by a branching process. Treatment of fermionic systems requires a fixed-node constraint for
DMC (FNDMC) to account for antisymmetry of the wave function and to avoid a collapse into the
bosonic ground state.[5] In FNDMC, the domain of a many-electron wave function is separated into
smaller “pockets” by the nodes of an approximate wave function so that DMC random walks are
restricted to separate nodal pockets. The small energetic errors due to the FN approximation give
FNDMC a level of accuracy commensurate with “gold-standard” methods of WFT.[6] The FN
constraint constitutes the only uncontrolled approximation in FNDMC; any advances in characterizing
and ultimately improving nodal pockets will have enormous theoretical impact on the field of
electronic structure simulation. Understanding the geometry of these nodes is a complex task,
exacerbated by the fact that the dimensionality of the space under consideration grows proportionally
with the number of electrons present in the system. An open challenge in the field is to develop
effective analysis and visualization tools for better understanding the structure of these nodes.

The main result in the theory of nodal surfaces of many-electron wave functions is a so-called
“tiling theorem”.[7] It states that nodal pockets of the Fermi ground state are the same within
permutational symmetry. There is no such theorem for the excited states, which tremendously
complicates treatment of such states. Visual inspection of Pfaffian wave functions of the simplest
systems showed that there are tunnels between nodal pockets that are not present in the determinant
wave functions.[8] Currently, plotting and visual inspection is the most typical approach to studies of
nodal features.[9, 10] Only limited understanding of the basic geometric properties of nodes of many-
electron wave functions has been achieved to date, largely due to the complexity that arises with
hypersurfaces in spaces of very high dimensionality. Development of a classification approach that

creates a “representation” of a nodal structure can stimulate studies of nodal geometry and optimal
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properties of nodes. It will help to gain insights into the behavior of nodes of electronically excited
states, which is currently not well understood.

The problem of classification of nodal structure of many-electron wave functions can be
reformulated as the prediction of the sign of such a wave function for a given configuration of
electrons. We seek to define a partitioning of the configuration space so that nodal pockets (i.e. regions
of different signs) can be separated from each other. A potential approach towards solving this problem
is to use data-driven mathematical constructs such as hyperplanes, trees, ensembles of trees, etc. A
significant amount of classification machinery has been developed in the machine learning community
over the past few decades, and the goal of this paper is to ascertain if we can leverage these techniques
for the nodal pocket classification problem.

In this paper, we introduce a statistical approach to identification of nodal pockets. We present
results from an investigation into the problem of automatically detecting nodal pockets of many-
electron wave functions in electronic structure theory. We pose the task as that of binary classification
(i.e., predicting the sign of the wave function) for high dimensional many-electron configurations
resulting from QMC simulations. We then apply a number of modern classification techniques from the
statistical literature and report on the observed performance, limitations and implications for future

work.

2 Methods

Datasets for the study were generated using variational Monte Carlo (VMC) as implemented in
Zori QMC software.[11] First row atoms from Li to Ne were considered. Trial wave functions in the
product form were constructed from HF/STO-3G determinants and simple Jastrow correlation
functions[12]. Simulations were performed with ensembles of 100 random walkers (or Markov chains)

each propagated for 10,000 time-steps. Each electron is assigned a spatial x,y,z position, hence we have
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a 3n dimensional vector representing an n-electron configuration. In our case, we had data ranging
from Li (3 electrons, 9 dimensions) to Ne (10 electrons, 30 dimensions).

We used R [13] for performing all analysis and classification tasks reported in this paper. We
used the classification and regression training (caret) package [14] which provides a convenient
wrapper for tuning, training and testing various classification techniques. We used the following
classification techniques: Support Vector Machine (SVM) (with linear and polynomial kernels),[15]
Classification Trees,[16, 17] K-nearest neighbor,[18] and Random Forests.[19, 20] All of the tests were
performed on a high-end Sun Microsystems Sunfire x4640 SMP machine, which consists of a single
node with eight 6-core Opteron 2.6 GHz processors sharing 512 GB of memory. We note that in spite
of the computational horsepower available, we were constrained to using single threaded
implementations for individual classification techniques.

We split each dataset randomly into five sections with 200K entries each. The first section was
used exclusively for tuning purposes. The other four sections were used in a 4-fold cross validation
fashion for determining final classification error for each technique. We now report on the results of

our experiments.

3 Results and Discussion

As indicated earlier, we used caret for tuning various classification techniques on an exclusive
tuning dataset. We considered the following variables for the tuning process with respective
designations in parenthesis: value of K (K) for K-nearest neighbor, tree max depth (Maxdepth) for
classification trees, regularization constant indicating cost of constraint violation (Cost) for SVM with
linear kernel, regularization constant indicating cost of constraint violation (Cost) for SVM with
polynomial kernel, degree of polynomial (Degree) for SVM with polynomial kernel, and number of

predictors sampled for splitting at each node (mtry) for Random Forests.



We could have optimized the Random Forest procedure for number of trees and depth of each
tree. Due to runtime considerations (elaborated laters in the paper), we empirically determined 500
trees and the default maxdepth value to be reasonable. We plan on exploring this issue further in future

work. Table 1 shows optimal settings learned from the tuning procedure for each method.

Table 1. Optimal settings of tuning variables determined for each dataset by the tuning procedure.

Technique, Variable Li Be B C N @) F Ne
SVM-Linear, Cost 0.25 1 025 2 - - - -
SVM-Polynomial, Cost 0.25 0.75 025 025 - - - -
SVM-Polynomial, Degree 2 4 4 3 - - - -
Classification Tree, Maxdepth 7 12 12 9 - - - -
K-nn, K 9 9 9 9 - - - -
Random Forest, mtry 3 7 8 6 9 7 7

Our goal in tuning the five techniques for the first four elements (Li, Be, B, C) was to gain a
sense for which techniques would perform best. For the remaining elements (N, O, F, Ne) we chose to
tune only the Random Forests technique because we felt it was the most promising for classifying
performance.

After determining optimal parameters in the tuning phase, we did 4-fold cross-validation to test
classification performance on the remaining sections of the dataset. We first report classification
performance for Li, Be, B and C in Figure 1. We make the following observations:

a) Random Forest and K-nn appear to give the best classification performance among the
methods that we considered. We get prediction error rates of 0.00% (Li), 0.11%(Be), 1.01%(B), 4.17%
(C) using K-nn and 0.01% (Li), 0.05%(Be), 0.19%(B), 0.84%(C) using Random Forests. This result is
consistent with the general machine learning community literature in that Random Forests provide

state-of-the-art performance for classification tasks.



b) The classification task appears to get harder as we increase the number of electrons in the
atom. This is to be expected since as we add electrons with each element, the dimensionality of the
input space increases proportionally and the shape of the nodal pockets becomes more complex. An
open question at this point is whether the Random Forest technique will work well for elements beyond

C. We investigated this question further by testing the approach on elements N, O, F and Ne.
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Fig. 1 Error rates for Li/Be/B/C across several classification techniques

Figure 2 shows the time taken to run the Random Forest procedure on all datasets. This figure
shows that the procedure is fairly computationally intensive; the task can take ~12 hours to complete a
training/testing iteration on these datasets. This makes it challenging to tune the implementation for

various parameters. Nevertheless, we performed rudimentary optimizations to the implementation for



each of the elements reported in the paper.
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Fig. 2 Runtime performance of Random Forest method measured as time to train the Random Forest

with 500 tuned trees.

Perhaps more interestingly, Figure 3 shows that the performance of the Random Forest
technique drops rather sharply as we examine elements with larger number of electrons. We observe an
error rate of ~6%(N), ~25%(0), ~25%(F) and ~24%(Ne). This trend seems to imply that our current
Random Forest implementation will have limited success in classifying heavier atoms, and that we
should either tune the implementation more carefully, or consider more comprehensive ensemble

classification techniques such as SuperLearner. [21]
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Fig. 3 Classification performance of Random Forest measured as percent of error of a Random Forest

with 500 trees.

We have reported classification results for the first row of the periodic table (Li, Be, B, C, N, O,
F, Ne). As the number of electrons in the atom increases across the row, the dimensionality of the
configuration space increases and the spatial pattern of nodal pockets becomes more complicated. Most
classification techniques used in our paper (SVMs with linear and polynomial kernels and classification
trees) have relatively simple geometric interpretation but do not fare well.

While K-nn appears to be moderately competitive, we cannot use the technique from a science-
application point of view since we do not end up with a geometric description of the nodal pockets at
the end of the day. We will also need to keep the training data around in order to make predictions. This

is infeasible for our use case.
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The Random Forest method appears to do well initially, but its performance seems to degrade
significantly for the latter elements considered in the study. We postulate a few reasons for this
performance. We may need more data (i.e. more walkers) to populate a larger configuration space. We
might need to do more extensive tuning for the heavier elements. The shape of nodal pockets is simply
too complex to be represented well by a Random Forest. While it is easy to generate a larger amount of
data with our simulation code, with the current implementation of Random Forests, it is unclear if we
can run the procedure in a reasonable amount of time. In retrospect, it would have been convenient to
have access to a parallel implementation of the Random Forest package. While we can manually carry
out cross-validation and tuning in parallel, we are still limited by the time to train the Random Forest
procedure on a single dataset. It produced good classification for the elements Li, Be, B and C. The
performance for N, O, F and Ne was not as stellar; we would like to tune the method on larger datasets.
It is possible that other techniques such as gradient boosting [22] might provide a further improvement
in performance; we will investigate this in the future. We would like to integrate our prediction
framework into the Zori code and use the predicted sign value to provide an alternative method for
enforcing the FN constraint. This step is perceived as a route to direct optimization of nodal surfaces
that is not limited by the flexibility of a particular trial wave function. We would also like to assess to
what degree the presence of misclassified points is detrimental considering the stability of QMC
simulations that rely on the FN approximation. An important but challenging problem for future work
is to develop an approach for comparative analysis of the learned Random Forests and to gain insights
into the corresponding nodal surfaces. This task is key to rationalization of changes in nodal structure

upon transitions among different electronic states of the same molecular system.

4 Conclusions

In this paper, we have approached an open problem in QMC: can we automatically classify
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nodal pockets in the electronic structure of molecules? We have applied a number of modern
classification techniques from the statistical literature with varying degrees of success. We found that
Random Forests outperform other methods across the board for early elements in the periodic table.
However, as we applied Random Forests to elements with larger numbers of electrons, we were unable
to achieve good performance. We postulate that this might be due to lack of sufficiently representative
data, or simply a reflection of the complexity of nodal pocket geometry. We believe that further
development of powerful ensemble-based classification procedures, and access to computationally

efficient, parallel algorithmic implementations will be important for tackling this problem in the future.
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