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OVERVIEW 

 

The LBNL group has developed a prototype of a hand-held UXO discriminator (14-in = 0.35 m 

cube) that is able to discriminate small (20 mm) UXO objects at a depth of 0.45 m and large (105 

and 155 mm) UXO objects at the depth of 0.85 m from harmless scrap metal. This hand-held 

prototype incorporates the key features of the cart-mounted system: three orthogonal transmitters 

and ten pairs of receivers, and difference or gradient measurements that significantly reduce the 

ambient and motion noise, and greatly enhance the sensitivity to the gradients of the target. The 

system characterizes the target from a single position. A demonstration survey at a standard test 

site showed that the same discrimination capabilities afforded by the cart-mounted system are 

available in the hand-held unit, although with a slightly reduced depth of detection. To 

demonstrate the system performance at a live site, LBNL participated in the ESTCP UXO 

discrimination study at the former Camp Beale, Marysville, CA where the hand-held UXO 

discriminator was operated in the cued mode. The system was brought to marked locations 

(flags) and ran in the characterization/discrimination mode. The system had no positioning 

capability; hence data around the flag were acquired using a three or five-point template with the 

system oriented in a single direction. The survey took two weeks, and we occupied 900 flag 

locations within 18 grids selected by the program office. UXO and scrap discrimination and 

priority dig list were be done by Signal Innovations Group, Inc. 
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1. INTRODUCTION 

 

In 2003, the Defense Science Board observed: “The … problem is that instruments that can 

detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads 

to an enormous amount of expensive digging. Typically 100 holes may be dug before a real 

UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be 

eliminated by the use of more advanced technology instruments that exploit modern digital 

processing and advanced multi-mode sensors to achieve an improved level of discrimination of 

scrap from UXOs.”  

 

With prior funding (UX-1225, MM-0437, and MM-0838), LBNL group has successfully 

designed and built a cart-mounted Berkeley UXO Discriminator (BUD) and demonstrated its 

performance at various test sites (e.g., Gasperikova et al., 2007, 2008, and 2009). 

 

Hand-held systems have the advantage of being lightweight, compact, portable, and deployable 

under most site conditions. They are particularly useful in areas of dense vegetation or 

challenging terrain. In heavily wooded areas or areas with steep or uneven terrain, hand-held 

sensors may be the only suitable sensor deployment method. A useful criterion might be that it 

could be carried through spaces that the operator could walk through or at least approach. 

Further, it is desirable to find and characterize a metallic object without the need to accurately 

locate the sensors at multiple positions around the target. The ideal system would thus locate and 

characterize the target from a single position of the sensor and indicate to the operator where to 

flag the target for subsequent study. 
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A sensor package of a 14-in (0.35 m) cube was designed and built based on these considerations 

(UX-1667). This hand-held prototype incorporates the key features of the cart-mounted system – 

(a) three orthogonal transmitters and ten pairs of receivers, and (b) difference or gradient 

measurements that significantly reduce the ambient and motion noise, and greatly enhance the 

sensitivity to the gradients of the target. The system characterizes the target from a single 

position. Results from a local test site and the Aberdeen Proving Ground (APG) were in a good 

agreement with theoretical performance calculations of such a device (Gasperikova et al. 2010). 

This survey was designed to demonstrate the system performance under realistic survey 

conditions at the former Camp Beale, Marysville, CA. 
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2. TECHNOLOGY DESCRIPTION 

 

The SERDP and ESTCP have supported LBNL in development of a device that not only detects 

the object itself but also quantitatively determines its size, shape, and orientation. In a hand-held 

system the sensor package must be easily maneuvered over rough terrain, through brush, etc. A 

useful criterion might be that it could be carried through spaces that the operator could walk 

through or at least approach. To avoid the reliance on accurate multiple positioning of any 

system it has been shown that (1) the object must be illuminated with three different 

polarizabilities of transmitted field and that (2) to determine location from a single position of 

the transmitter-receiver system multiple spaced-apart receivers must be used. To accommodate 

the first requirement a hand-held design implements three orthogonal transmitter loops much like 

the cart-mounted system. To accommodate the second requirement the hand-held UXO 

discriminator uses ten pairs of receivers. The same discrimination abilities afforded by the cart-

mounted system are available in the hand-held unit albeit with slightly reduced depth of 

detection. The hand-held UXO discriminator is able to discriminate small (20 mm) objects at a 

depth of 0.45 m and large (105 and 155 mm) objects at the depth of 0.85 m and detect them 

down to 1.15 m. 

 

The hand-held UXO discriminator employs three orthogonal transmitters and ten pairs of 

differenced receivers. Each vertical face of the cube has three induction coils, and two horizontal 

faces have four induction coils, each sensitive to the magnetic field component normal to the 

face. Receivers on opposite faces of the cube are paired along the symmetry lines through the 

center of the system and each pair sees identical fields during the on-time of current pulses in the 
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transmitter coils. They are wired in opposition to produce zero output during the on–time of the 

pulses in three orthogonal transmitters. This configuration dramatically reduces noise in 

measurements by canceling background electromagnetic fields (these fields are uniform over the 

scale of the receiver array and are consequently nulled by the differencing operation), and by 

canceling noise contributed by the tilt of the receivers in the Earth’s magnetic field, thus greatly 

enhances receivers’ sensitivity to gradients of the target response. The hand-held UXO 

discriminator (14-in or 0.35 m cube), shown in Figure 1, is able to discriminate small (20 mm) 

objects at a depth of 0.45 m and large (105 and 155 mm) objects at the depth of 0.85 m and 

detect them down to 1.15 m. Transmitter-receiver configuration is shown in Figure 2a while the 

assembled transmitter-receiver cube is shown in Figure 2b. 

 

 

Figure 1. LBNL hand-held UXO discriminator 
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Figure 2. LBNL hand-held UXO discriminator: (a) transmitter-receiver configuration, (b) 

assembled prototype. 

 

Data acquisition is performed on a single board. The transmitter coils are powered separately 

from the data acquisition board. Pulsers provide resonant circuit switching to create bi-polar half-

sine pulses of 300 s width. The current has a ~40 A peak and a resonant circuit voltage of ~400 

Volts, and the operational overall half-sine duty cycle is ~12%. Transients are digitized with a 

sampling interval of 4 s. The sensors are critically damped 5-inch coils with a self-resonant 

frequency of 75 kHz. The data acquisition board has 12 high-speed ADC channels for output. 

Ten of these channels are used for the signal from receiver coils, and the remaining two channels 

provide information about the system (i.e. tilt information, transmitter current). 

 

An important feature of the hand-held UXO discriminator is an inversion algorithm, which is 

used to determine target properties from measurements with a given transmitter-receiver 

configuration. At any given time the response is inverted to yield the location (x, y, z) of the 

target, its attitude and its principal polarizabilities. It has been demonstrated that a satisfactory 
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classification scheme is one that determines the principal dipole polarizabilities of a target – a 

near intact UXO displays a single major polarizability coincident with the long axis of the object 

and two equal transverse polarizabilities. Figures 3 and 4 illustrate a discrimination capability of 

the system for UXO object and a scrap metal, respectively. While UXO objects have a single 

major polarizability coincident with the long axis of the object and two equal transverse 

polarizabilities (Figure 3), scrap metal exhibits three distinct principal polarizabilities (Figure 4). 

There are clear distinctions between symmetric intact UXO and irregular scrap metal. Moreover, 

UXO have unique polarizability signatures, and thus distinctions can be made among various 

UXOs. Object orientation and equivalent dipole polarizability estimates of large and shallow 

UXO or scrap are more problematic as they are affected by higher order (non-dipole) terms 

induced in objects due to source field gradients along the length of the objects. In the case of the 

large and shallow objects, the hand-held system can be easily raised an appropriate distance 

above the object such that the dipole model approximation for polarizability estimates is 

appropriate. 

 

UXO and scrap discrimination and priority dig list were done by Signal Innovations Group, Inc. 

and the approach is described in Chapter 4.2. 
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Figure 3. Inversion results for the principal polarizabilities of 81 mm mortar. 

 

 

Figure 4. Inversion results for the principal polarizabilities of 19x8 cm scrap metal. 
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3. DEMONSTRATION SURVEY 

The demonstration survey was performed between June 13 and June 28, 2011. The hand-held 

UXO discriminator was operated in the cued mode. The system was brought to marked locations 

(flags) and ran in the characterization/discrimination mode. The three discriminating 

polarizability responses along with the object depth and horizontal location with respect to the 

center of the bottom plane of the cube was recorded and visually presented on the computer 

screen. Additional values recorded with each location were S/N ratio, polarizability index (an 

average value of the product of time (in seconds) and polarizability rate (in m
3
/s) over the 46 

sample times logarithmically spaced from 80 to 1,460 s), and the cart orientation, pitch, and 

roll. Figure 5 illustrates the deployment of the system at the site.  

 

Figure 5. LBNL hand-held UXO discriminator at Camp Beale. 
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Soundings were collected at each flag, and at 0.15 m before and 0.15 m after it, with the system 

oriented in a single direction. Soundings were differenced with background reference soundings 

taken within the previous 30-40 minutes at a nearby site determined by the field operator to be 

free from metallic objects. When polarizability inversions from all three soundings were 

unrelated to each other, additional two soundings were taken, one on each side of the system, 

0.15 m from the flag. The hand-held UXO discriminator surveyed 18 grids that are indicated in 

Figure 6 in yellow and blue colors. These grids were: J02, J03, J05, J06, K02, K03, K05, K06, 

R07-09, S02, S03, S07-09, T02, and T03. 

 

Figure 6. Survey area divided into sub-grids. 
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4. DATA ANALYSIS AND INTERPRETATION 

 

4.1 Data Processing 

 

Ten channels of field data were recorded at a rate of 250 k-samples/second for each of three 

transmitters. Field data were stacked together in a field programmable gate array (FPGA) and 

transferred to a field computer (laptop) forming a primitive stack. An even number of primitive 

stacks is averaged together to form stacked data for further processing. The peak transmitter 

current was estimated from the stacked transmitter current channel record, and the data were 

normalized by that value. Nominal transmitter shut-off time was estimated, and induction 

responses were computed at 46 logarithmically spaced times between 80 and 1,460 s, averaged 

in half-sine windows with widths 10% the center time after transmitter pulse shut-off. Responses 

were differenced with background responses collected over an area determined to be free of 

metallic objects. The resulting 30 channels of normalized responses were then inverted for 

candidate object position and principal polarizabilities as a function of time after transmitter 

shut-off. These were used as an input for the discrimination approaches described in Chapters 4.2 

and 4.3.  

 

4.2 Discrimination Using the Isolate Process 

 

Signal Inovations Group, Inc. (SIG) applied the Isolate discrimination process in the Camp Beale 

demonstration. This process involved robust feature extraction and selection and semi-supervised 

classifier training using active selection of labeled data. As shown in Figure 7, this process was 
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divided into three main phases: (1) Feature Extraction, (2) Site Learning, and (3) Excavation. 

Details on each phase are given in the next subsections. The SIG Isolate process leveraged on 

two feedback steps. The first feedback was in training the semi-supervised classifier, where 

additional anomaly labels were requested until the classifier reached sufficient stability. The 

second feedback was during the excavation of anomalies, where the classifier was retrained with 

additional labeled anomalies until either the UXO/clutter predictions became highly separable or 

until high probability anomalies were substantially revealed to be clutter upon excavation. 

 

 

Figure 7. Flow diagram of the SIG Isolate process. 
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 4.2.1  Feature Selection with BENet 

 

Adaptive learning of a classifier in situ benefits from refining the appropriate set of extracted 

features for the targets under test. This occurs because of the ‘curse of dimensionality’ where the 

number of data points required to cover the breadth of a features space grows exponentially with 

the number of features considered. If the amount of training data does not sufficiently sample the 

feature space, then the learned classifier will lack statistical support and class estimate 

uncertainty is large. Bayesian classification models perform feature selection by placing a 

sparseness prior on the inferred feature weights. The Bayesian elastic net (BENet) regression 

model used for feature selection employs a sparseness prior equivalent to a convex combination 

of L1-norm and L2-norm penalties in a least squares optimization formulation (Zhang et al., 

2003; Zhang et al., 2004). The sparseness prior of the BENet model jointly infers the essential 

subset of relevant features, including correlated features, for a given classification task. Rather 

than encouraging the selection of a single feature in a set of correlated important features (like 

similar approaches such as Relevance Vector Machine), the BENet model encourages the 

selection of all correlated important features. By performing sparse and grouped feature 

selection, the BENet algorithm provides a more robust approach to feature adaptability and the 

interpretation of important features, ultimately requiring fewer training data samples to achieve 

robust statistical support. 
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 4.2.2 Semi-Supervised Learning Classifier  

 

Semi-supervised learning is applicable to any sensing problem for which all of the labeled and 

unlabeled data are available at the same time, and therefore, particularly for the current 

demonstration study. In most practical applications, semi-supervised learning has been found to 

yield superior performance relative to widely applied supervised algorithms, which train only on 

labeled data. The context provided by the unlabeled data is crucial in improving the classification 

performance especially in cases where the labeled data were not representative of the two class 

distributions. As the number of training samples increases, the supervised classifier should 

approximate the semi-supervised classifier. Semi-supervised formulation treats the dataset 

(labeled and unlabeled) as a set of connected nodes, where the affinity     between any two 

feature vectors (nodes)    and    is defined in terms of a radial basis function (Cristianini and 

Shawe-Taylor, 2000). Based on the above formulation, one can design a Markov transition 

matrix     [   ]   
 that represents the probability of transitioning from node    to   . 

Assuming   {        } represents the set of labeled data indices, the likelihood functional 

can be written as 

({      }| (  )  )  ∏ (  | (  )  )  ∏∑    (  |    )

  

         

 

where  ( )  defines the neighborhood of  . Estimation of classifier parameters   can be 

achieved by maximizing the log-likelihood via an Expectation-Maximization algorithm (Liao 

and Carin, 2008). To enforce sparseness of    (enforcing most of the components of the 

parameter vector   to be zero), one may impose a zero-mean Gaussian prior on  . A zero-mean 
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Gaussian prior with appropriate variance can strongly bias the algorithm in choosing parameter 

weights that are most likely very small (close to zero). 

 

4.2.3 Batch-mode Active Learning (AL) 

 

Given that available training data labels at the beginning of a demonstration are not available and 

that excavations must be performed to reveal training data labels, one may ask in which order 

anomalies should be excavated to maximally improve the performance of the classifier 

algorithm. One useful criterion is to use the confidence on the estimated identity of the anomalies 

that are yet to be excavated. Specifically, one may ask which unlabeled anomaly label would be 

most informative to improve classifier performance if the associated label could be made 

available. It has been shown by MacKay (1992) that this question can be answered in a 

quantitative information-theoretic manner. 

 

For active label selection, posterior distribution of the classifier is approximated as a Gaussian 

distribution centered on the maximum a posteriori (MAP) estimate. The uncertainty of the 

classifier is quantified in terms of the posterior precision matrix. The objective of AL is to choose 

a feature vector for labeling that maximizes the mutual information ( ) between the classifier   

and the new data point to be labeled. The mutual information can be quantified as the expected 

decrease of the entropy of   after new sample     and its label     are observed. 

  
 

 
   

|  |

| |
 

 

 
   {   (   |     )  [   (   |     )]   

       } 

It is important to note that the mutual information   is large when  (   |     )     . Hence, the 

AL prefers to acquire labels on those unlabeled samples for which the current classifier is most 



 20  

confused or uncertain. In this fashion the classifier learns quickly by not excavating anomalies 

that reveal redundant information. The process continues as new labels are revealed until the 

expected information gain for the remaining anomalies is approximately uniformly low. At that 

point the classifier is adequately trained and target inference on the remaining unlabeled 

anomalies can be reliably performed. By invoking the principle of submodularity in the 

algorithm optimization, the approach has been adapted to allow for the selection of multiple 

simultaneous labels at one time, making the technique operationally practical.  

 

4.2.4 SIG Isolate Process Overview 

 

The SIG Isolate process can be summarized in the following steps (Figure 7):  

 Data Conditioning - First, raw, unlabeled anomaly data are received.  

 Subspace Denoising - The anomaly data are denoised to ensure robust performance for 

discriminating late time-gate features.   

 Feature Extraction - A robust multi-anomaly dipole model is fitted to the data. The 

polarizability parameters from this fitting become the set from which features are drawn 

for classifier training. In addition to the time-domain polarizabilities, a set of 9 ‘rate’ 

features were calculated. These features were calculated by fitting the time-domain 

polarizabilities of each axis to an exponential-decay model: 

           
  
    

where   {     } is the current axis,   is the polarizability,   is time and {        } are 

the fitted rate parameters. The optimized values of the rate parameters were found using 

non-linear least squares. 
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 Basis Selection - A few of the many possible features are selected based on their physical 

interpretation as they relate to the anomaly, and, using these features, the most 

informative set of anomalies are selected via an information metric to begin classifier 

training.   

 Feature Set Augmentation - The feature set is then augmented by adding early, mid and 

late time polarizabilities values.  

 Automated Features Selection - The most relevant set of features is selected from the 

larger feature set using BENet.  

 Semi-supervised Parametric Neighborhood-Based Classifier (PNBC) Training (STL 

or MTL) - When the PNBC is trained only using data from the current site of interest, it 

is called Single Task Learning (STL). When the PNBC is trained for multiple sites 

simultaneously it is called MTL.  

 Batch-mode Active Learning - Based on the estimates made with the PNBC classifier, a 

new set of anomalies are selected for labeling using batch-mode AL. The goal at this step 

is to maximize the information gain from new labels requested from the set of unlabeled 

anomalies. The process is repeated as the PNBC classifier adequately learns data 

manifold. The stopping criterion for the learning process is apparent when the remaining 

unlabeled data points have approximately equal information for improving the classifier, 

and labeling any one anomaly is no better than any other.  

 Excavation Adapted Threshold Selection - At this point, the highest probability UXO 

are selected for excavation and labels. The classifier continues to be retrained when new 

labels are revealed. This process continues until the highest probability UXO items 

excavated are all found to be clutter at which point digging stops.   
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4.2.5 Application to Camp Beale Data  

 

The feature extraction phase started with selecting anomaly responses for the analysis. As 

described in Chapter 3, three or five measurements were made around the flag, and polarizability 

responses obtained by a single dipole inversion performed during field data acquisition were 

used. We developed two methods for selecting a single template position to represent the 

anomaly. The first method selected the template position where the anomaly was estimated to be 

closest to the sensor, hereafter referred to as the ‘closest’ method. That is, the inversion estimate 

of the horizontal distance from the anomaly to the sensor was smallest. If the flag location were 

correct, we expected the central template position (#2), to be selected most frequently. However, 

our results showed that template positions #1 and #4 were selected more frequently than the 

template position #2 (Figure 8b). This suggests that the flag locations relative to the anomaly 

were frequently outside the range of a single sensor sounding. The second method was to select 

the template position whose anomaly was most symmetric along the transverse axes, hereafter 

referred to as the ‘symmetric’ method. We calculated symmetry using the mean squared 

difference between log polarizabilities for the 2
nd

 and 3
rd

 axes: 

   √∑ (             )
  

   

 
 

where   {    } is the template position,   is the log polarizability at time   {    } for the 

transverse axes   and   (Figure 8a). 
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        (a)        (b) 

Figure 8. Histogram of the selected template position for the sensor across all anomalies in 

BealeTrees for the (a) ‘symmetric’ and (b) ‘closest’ methods. Template position #2 is the central 

template position. 

 

Having selected a single template position for each flag using these two methods, training began 

by selecting an initial basis of 30 vectors maximizing Fisher Information Gain. This initial 

selection was the same for both the ‘closest’ and ‘symmetric’ methods. From this initial sample a 

set of relevant features was selected using BENet, and a non-linear PNBC classifier trained on 

these features. Then, a new set of 10 unlabeled anomalies were selected using batch AL. The 

labels for these anomalies were requested and the training process was repeated until new labels 

did not provide a substantial amount of new information. The total number of training rounds for 

the ‘closest’ was 11 and the total number for the ‘symmetric’ method was 10 (Figure 9). At the 

end of training there were many more features that were relevant for discrimination in the 

‘closest’ method than the ‘symmetric’ method. This is likely due to the fact that the ‘closest’ 

method selected the wrong template position to represent an anomly more frequently than the 

‘symmetric’ method did. 
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      (a)             (b) 

Figure 9. Fisher Information Gain through all training rounds for the (a) 'symmetric' and (b) 

‘closest’ methods.  

 

 

       (a)             (b) 

Figure 10. Distribution of posteriors for the (a) 'symmetric' and (b) ‘closest’ methods at the end 

of training. 

 

At the end of training the posterior probabilities of unlabeled samples (Figure 10) showed that 

the ‘closest’ method was not as separable as the ‘symmetric’ method at this stage; some 

predicted probabilities for the previously labeled UXO were less than 0.5. We dug unlabeled 

observations, beginning from the highest posterior probability, and proceeded until we had dug a 
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total of 30% of the site (including training data). There were three ‘can’t analyze’ anomalies, 

whose positions were too far from the sensor to be reliable (BE-0609, BE-0879, and BE-0887). 

After receiving the labels (ground truth) for this first round we missed eight seeds in the ‘closest’ 

method and three seeds in the ‘symmetric’ method. Given these missed seeds we retrained and 

requested 43 additional labels for the ‘closest’ method, and eight additional labels for the 

‘symmetric’ method. After receiving those labels, we decided to stop digging the ‘closest’ 

method, but continued digging the ‘symmetric’ method by requesting eight, then 28, and finally 

22 additional labels. The total number of ranked anomalies (those dug but not counted in the 

training or ‘can’t analyze’ sets) at the end of digging was 208 for the ‘symmetric’ method and 

184 for the ‘closest’ method. The decision to stop digging the ‘closest’ method was made 

because our last 50 digs were clutter, even though there still remained 20 anomalies with a 

posterior probability greater than 0.5 (Figure 11). In retrospect, digging these remaining 

anomalies would not have revealed any target of interest (TOI). 

 

       (a)            (b) 

Figure 11. Posteriors distributions at the end of digging for the (a) 'symmetric' and (b) 'closest' 

methods. 
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4.2.6 Retrospective Analysis 

 

We missed a group of fuzes that are fairly similar in a feature space. The primary reason we 

missed this type of targets lies in our feature selection process. Each time a classifier was built, 

the feature space was pruned to only those features that were linearly discriminative of UXO and 

clutter. But, the set of features that was discriminative for most of the UXO was not the same set 

of features that was discriminative for fuzes (Figure 12). A solution to this problem would be to 

create a separate classification for fuzes. A secondary reason for missing these fuzes was that 

they were surrounded by clutter in the feature space. Figure 13 shows that while the missed fuzes 

are clustered along the primary axes of feature variation, there are also many clutter items close 

to them. During active learning we received labels for anomalies close to this cluster of fuzes, 

and they were all clutter. So, any model we fit to those labels would assign a low probability of 

being UXO to the fuzes. Again, this could be remedied by using features that were uniquely 

discriminative for fuzes rather than being discriminative of the entire dataset (as in Figure 13) or 

all UXO combined (as in our BENet feature selection). 

 

In terms of selection algorithm performance, the ‘symmetric’ algorithm tended to have fewer 

incorrectly selected template positions than the ‘closest’ method. There are a few lines of 

evidence for this. The first is based on the variance of features for UXO, which was lower for the 

‘symmetric’ method than the ‘closest’ method. 
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Figure 12. Feature weights from BENet on all labeled anomalies for all UXO (blue) and fuzes 

only (red). 

 

The second line of evidence for the ineffectiveness of the ‘closest’ method is the spread of UXO 

in the two-dimensional ordination for the ‘closest’ method (Figure 13). There are noticeable 

UXO outliers in the dominant feature axes suggesting the polarizability responses for these UXO 

are substantially different from the mean responses of UXO. These outliers are not present in the 

‘symmetric’ method, leading us to believe these outliers are the result of selecting an incorrect 

template position in the ‘closest’ method. An example of inappropriate selection is shown in 

Figure 14. For this ISO every other template position had an ‘UXO-like’ response except the one 

chosen by the ‘closest’ method. The reason for such inappropriate selection is straight-forward. 

There is a piece of clutter underneath template position #4; one not associated with the flagged 

anomaly. This piece of clutter is closer to the sensor than the UXO was to any of the other 

template positions, so the ‘closest’ method selected it. 
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Figure 13. MAP estimates (color scale) along two-dimensions of a non-linear ordination of the 

anomaly features for the ‘closest’ method (top) and the ‘symmetric’ method (bottom). The 

anomalies that were marked as ‘dig’ in our dig list are shown (UXO in white, clutter in black). 

The missed fuzes for each method are shown by red circles. 
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Figure 14. Polarizabilities for flag BE-0671, which is an ISO. The 'closest' method selected 

template position #4 (black box), while all other responses are more UXO-like. 

 

  



 30  

4.3 Discrimination Using Template-match Approach 

 

 4.3.1 Data Analysis  

 

As described in Chapter 3, data were collected using the three or five-point template placed at 

the flag location. The orientation of the system was based on the ease of access and the hill slope. 

Data in J and K grids were collected with the system oriented towards NW (310-320°), in R7-9 

and S7-9 grids towards SSE (140-170°), and S2-3 and T2-3 towards SSW (190-210°) (Figure 

15a). The hill slope, or tilt of the system, varied up to 15-20° (Figure 15b).  

 
(a) 

 
(b) 

Figure 15. Histogram of (a) system orientation, and (b) slope during the survey.  

 

For the discrimination we selected one representative response per flag, based on the 

polarizabilities magnitude and symmetry, to ensure that if multiple objects were near the flag the 

response of the most dangerous item would be selected. Figure 16 shows that the distribution 
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was more or less even among four template positions. The template position #4 was selected less 

frequently since it was uphill from the flag and therefore further away from the object. Only 

about 20% of the flags had three measurements, thus we analyzed more than 4,000 

measurements. 

 

Figure 16. Histogram of the selected template position for the responses used in discrimination. 

Position #2 is the central template position. 

 

 

     (a)             (b) 

Figure 17. Histogram of (a) estimated and (b) true object depths. 
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Figure 17 shows a very good agreement between objects depths estimated by inversion (a) and 

true objects depths (b), and that less than 5% of the objects were deeper than 0.3 m.  

 

While running multiple objects inversions takes a long time and therefore it is impractical in the 

field, single object inversions are very fast and available right after the data are acquired. 

Therefore we have been developing and evaluating a discrimination approach that could be used 

in a near-real time in the field. This template-match approach used data processed in the field 

using a single object inversion, and compared polarizability curves of unknown objects to the 

polarizabilities of the representative objects in the library. Any single object with a polarizability 

index value larger than 50% of that of 37-mm projectile (smallest UXO) was considered as a 

potential object of interest. Parameters used in this approach were (a) the similarity of major 

polarizability curves, (b) the similarity of medium and minor polarizability curves, (c) the 

polarizability index, and (d) the flag’s average polarizability index. We used data from 100 flags 

for training, which was about 12% of the whole dataset. Training data were used to verify 

whether single object inversions could be used for discrimination, and to determine the operating 

point at which is safe to stop digging. The ranked anomaly list that had the operating point set at 

486 is discussed in Chapter 5, and the retrospective analysis is provided in Chapter 4.3.2. 

 

4.3.2 Retrospective Analysis 

 

Due to a slight misunderstanding what was considered as TOI, our original stop-digging point 

was too conservative. If small fuzes were not considered as TOI, we could have stopped much 

sooner and saved additional 150 digs. Additional savings could be achieved if digging would be 
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done by contiguous grids. This digging approach, however, needs a follow-up analysis, since 

only data from one contiguous area or previously excavated areas could be used for training, 

which wasn’t done in the presented approach. Our training data selection and distribution among 

survey grids suggests that this is feasible.  

 

The last UXO on the ranked anomaly list was 81-mm mortar (BE-4). Given the object size and 

depth, the measured response wasn’t representative of this object, and this location should have 

been classified as ‘can’t analyze’. Doing so would save 50 clutter digs.  

 

Two types of fuzes were present at the site – (a) 60-mm fuzes that had the polarizability index 

comparable with the response of 37-mm projectile and were correctly identified using our 

original approach, and (b) 50-mm fuzes, which responses were much smaller and we missed two 

of them using the same approach. If this approach would be used for real-time discrimination in 

the field, and these small fuzes would be considered as TOIs, we could include their response to 

our library of representative responses, and redefine criteria for setting up the operating point at 

two different stages – (a) after training data or (b) after digging the highest ranked anomalies 

reveal such item. Our training data contained small fuzes, however, they were from flags with 

multiple objects. In this case, we would have to either acquire data over the pit or run a multi-

object inversion to obtain a single fuze polarizability response. Even if acquiring data over the pit 

wouldn’t be possible, and we did not include it to the library during the training data stage, our 

ranked anomaly list had the remaining three single small fuzes at positions 18, 201 and 226. 

Thus we would encounter them before our stop-digging point, and at this point it would be still 

feasible to include the response to the library and regenerate the ranked anomaly list.   
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5. PERFORMANCE ASSESSMENT 

For the hand-held prototype performance evaluation we submitted a separate ranked anomaly list 

for each of the approaches described in Chapter 4. Each flag was assigned the rank, category, 

and dig/no-dig decision. The lowest rank had the flags which either ‘can’t be analyzed’ or had 

the high probability of being of UXO, then those labeled as ‘can’t decide’, and the highest rank 

had flags that had a high probability of being scrap. The category was either training data, or test 

data, and dig/no-dig decision had values either one or zero. All locations with dig equal to one 

were dug. 

 

5.1 Statistical Approach Performance 

 

Both the ‘symmetric’ and ‘closest’ methods ended digging up all the TOI when fuzes were 

considered clutter (Figure 18). The ‘closest’ method performed better than the ‘symmetric’ 

method in number of false alarms to reach the last UXO: 180 vs. 200. We would consider both 

methods to be conservative given the fact that we dug approximately 50 extra clutter items after 

all the non-fuze TOI had been revealed, and given that we acquired over 100 training labels 

using AL in both methods. In theory this means that we thoroughly explored the feature space 

for hidden modes of TOI. But, the ‘closest’ method missed three fuzes and the ‘symmetric’ 

method missed four fuzes when these items were considered TOI. Both methods missed BE-

0482, BE-558, and BE-0805, and the ‘symmetric’ method additionally missed BE-0697. The 

reasons why we missed these fuzes are given in Chapter 4.2.6. 
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        (a)               (b) 

  

        (c)               (d) 

 

Figure 18. ROC curves for the ‘symmetric’ method (top) and the ‘closest’ method (bottom). 

Fuzes are treated as UXO (left) and clutter (right). 
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5.2 Template-match Approach Performance 

 

The template-match approach used the criteria described in Chapter 4.3 to select the operating 

point (dig threshold), and Figure 19 illustrates that even with those criteria more than 40% of 

anomalies were correctly labeled as non-dangerous if the smallest fuzes were not considered as 

TOIs. This operating point (blue dot) was very conservative, and the retrospective best dig 

threshold (yellow dot) would save another 150 digs. If the anomalies would be excavated grid-

by-grid, additional 80 holes would be saved (magenta dot). We missed two small fuzes (BE-558 

and BE-0805), if they were considered as TOIs. Our retrospective analysis in Chapter 4.3.2 

describes possible solutions, and suggests that this approach could potentially save more than 

60% of clutter digs if the operating point would be selected iteratively based on the information 

from digging locations that were high on the ranked anomaly list.   

 

 

Figure 19. The template-match approach ROC curve. Fuzes are treated as clutter. 
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6. CONCLUSIONS 

 

This survey showed that the same discrimination capabilities afforded by the cart-mounted 

system are available in the hand-held unit, although with a slightly reduced depth of detection. 

The survey in a steep terrain in wooded areas was challenging but feasible. While the system is 

operable by a single operator, because it has no positioning navigation, the second person was 

necessary to ensure the system was positioned correctly at the template positions. We had no 

downtime, collected over 4,000 measurements, and finished the survey in two weeks. The 

discrimination results were excellent – only 25% of the anomalies had to be excavated to find 

every TOI. Moreover, our near-real time discrimination approach also showed promising results.  
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9. ACRONYMS 

 

AL Active Learning 

BENet Bayesian Elastic Net 

BUD Berkeley UXO Discriminator 

ESTCP Environmental Security Technology Certification Program 

FPGA Field Programmable Gate Array 

IDA Institute for Defense Analyses 

LBNL Lawrence Berkeley National Laboratory 

MAP Maximum a posteriori 

MTL Multi-task learning 

PNBC Parametric Neighborhood-Based Classifier 

ROC Receiver Operating Characteristic 

SERDP Strategic Environmental Research and Development Program 

SIG Signal Innovations Group, Inc. 

S/N Signal-to-noise 

TOI Target of Interest 

UXO Unexploded Ordnance 

  

 




