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ABSTRACT
We present a new methodology for utilizing all CPU cores
and all GPUs on a heterogeneous multicore and multi-GPU
system to support matrix computations efficiently. Our ap-
proach is able to achieve the objectives of a high degree of
parallelism, minimized synchronization, minimized commu-
nication, and load balancing. Our main idea is to treat the
heterogeneous system as a distributed-memory machine, and
to use a heterogeneous 1-D block cyclic distribution to allo-
cate data to the host system and GPUs to minimize commu-
nication. We have designed heterogeneous algorithms with
two different tile sizes (one for CPU cores and the other for
GPUs) to cope with processor heterogeneity. We propose
an auto-tuning method to determine the best tile sizes to
attain both high performance and load balancing. We have
also implemented a new runtime system and applied it to
the Cholesky and QR factorizations. Our experiments on
a compute node with two Intel Westmere hexa-core CPUs
and three Nvidia Fermi GPUs demonstrate good weak scal-
ability, strong scalability, load balance, and efficiency of our
approach.

1. INTRODUCTION
As the performance of both multicore CPU and GPU con-

tinues to scale at a Moore’s law rate, it is becoming perva-
sive to use heterogeneous multicore and multi-GPU archi-
tectures to attain the highest performance possible from a
single compute node. Before making parallel programs run
efficiently on a distributed-memory system, it is critical to
achieve high performance on a single node first. However,
the heterogeneity in the multi-core and multi-GPU architec-
ture has introduced new challenges to algorithm design and
system software.

Over the last few years, our colleagues at the Univer-
sity of Tennessee have developed the PLASMA library [2]
to solve linear algebra problems on multicore architectures.
In parallel with PLASMA, we have also developed another
library called MAGMA [27] to solve linear algebra problems
on GPUs. While PLASMA and MAGMA aim to provide
the same routines as LAPACK [4], one is used for multicore
CPUs, and the other for a single core with an attached GPU,
respectively. Our goal is to utilize all cores and all GPUs
efficiently on a single multicore and multi-GPU system to
support matrix computations.

∗This material is based upon work supported by the NSF
grants CCF-0811642, OCI-0910735, by the DOE grant DE-
FC02-06ER25761, and by Microsoft Research.
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Figure 1: An example of a heterogeneous multi-core
and multi-GPU system. The host system is connected to

four GPUs via two PCI Express connections. The host system

and the GPUs have separate memory spaces.

Figure 1 shows the architecture of a heterogeneous mul-
ticore and multi-GPU system we are considering. The mul-
ticore host system is connected to four GPUs via two PCI
Express connections and each pair of GPUs share a GPU
switch. To design new software on this type of heteroge-
neous architectures, we must consider the following special
features: (1) The host and the GPUs have different memory
spaces and an explicit memory copy is required to transfer
data between the host and a GPU; (2) The system is also dif-
ferent from a distributed-memory machine since each GPU
is actually controlled by a thread running on the host (more
like pthreads on a shared-memory machine); (3) The pro-
cessor heterogeneity between CPUs and GPUs; (4) GPUs
are optimized for throughput and expect a larger input size
than CPUs which are optimized for latency [24]; (5) As the
performance gap between a GPU and its PCI-Express in-
terconnection to the host becomes larger, network is even-
tually the bottleneck for the entire system. In this work,
we take into account all these factors and strive to meet the
following objectives in order to obtain high performance: a
high degree of parallelism, minimized synchronization, min-
imized communication, and load balancing. We propose to
design new heterogeneous algorithms and to use a simple
but practical static data distribution to achieve the objec-
tives simultaneously.

This paper describes heterogeneous rectangular tile algo-
rithms with hybrid tile sizes, heterogeneous 1-D block cyclic
data distribution, a new runtime system, and an auto-tuning
method to determine the hybrid tile sizes. The rectangu-
lar tile algorithms build upon the previous tile algorithms,
which divide a matrix into square tiles and exhibit a high de-
gree of parallelism and minimized synchronizations [13, 14]



(Section 2.1 introduces the tile algorithms briefly). However,
a unique tile size does not work well for both CPU cores and
GPUs at the same time (either too small or too big). A big
tile will clobber a CPU core and a small tile cannot attain
high performance on a GPU. Therefore, we have redesigned
the tile algorithms so that they consist of two types of tiles:
smaller tiles suitable for CPU cores and bigger tiles suit-
able for GPUs. For instance, Fig. 2 depicts two matrices
consisting of a set of small and big rectangular tiles. The
rectangular tile algorithms execute in a fashion similar to
the tile algorithms such that whenever a task computing a
tile at [I, J ] is completed, it will trigger new tasks on the
right hand side of the J-th tile column and below the I-th
tile row. Here the rectangle tile at [I, J ] can be either small
or big, and is different from the tile algorithms.

We regard the multicore and multi-GPU system as a dis-
tributed memory machine and place greater emphasis on
communication minimization. We statically store small rect-
angular tiles on the host and big rectangular tiles on the
GPUs respectively to cope with processor heterogeneity and
reduce data movement. In order to distribute the small and
big rectangular tiles to the host and GPUs evenly, we pro-
pose a heterogeneous 1-D column block cyclic distribution
method. The basic idea is that we first map a matrix to only
GPUs using a 1-D column block cyclic distribution, then we
cut a slice from each block and assign it to the host system.
Our analysis shows that the static distribution method is
able to reach a near lower bound communication volume.
We also propose an auto-tuning method to determine the
best slice size to be cut from each block for load balancing.

We have designed a runtime system to support dynamic
scheduling on the heterogeneous CPU+GPU system. The
runtime system allows our programs to be executed in a
data-availability-driven model where a parent task always
tries to trigger its children. In order to address the special-
ties of the heterogeneous system, we have implemented a
number of techniques to extend a centralized runtime system
to a new one that also considers the machine a distributed
memory system. The new runtime system is “hybrid” in
the sense that its scheduling and computing components
are centralized and resident in the single host system, but
its data, pools of buffers, communication components, and
task queues are distributed in the host and different GPUs.

We conducted experiments on the Keeneland system at
the Oak Ridge National Laboratory. On a compute node
with two Intel Westmere hexa-core CPUs and three Nvidia
Fermi GPUs, both our Cholesky factorization and QR fac-
torization exhibit scalable performance. In terms of weak
scalability, we can attain a nearly constant Gflops/core and
Gflops/GPU performance from 1 core to 9 cores+3 GPUs.
And in strong scalability, we can reduce the execution time
by two orders of magnitude from 1 core to 9 cores+3 GPUs.

To our best knowledge, this is the first work to consider
the multicore and multi-GPU system a distributed-memory
machine to minimize communication. Our work makes the
following contributions: (i) new heterogeneous rectangular
tile algorithms with hybrid tiles to handle processor het-
erogeneity, (ii) a heterogeneous 1-D block cyclic distribu-
tion based on a novel two-level partitioning scheme, (iii) an
auto-tuning method to achieve load balancing, (iv) and a
new runtime system to accommodate the special features of
the heterogeneous system (i.e., a hybrid of a shared- and
distributed-memory system).
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Figure 2: Matrices consisting of a mix of small and
big rectangular tiles. (a) A 12 × 12 matrix is divided into

8 small tiles and 4 big tiles. (b) A 12 × 12 matrix is divided into

16 small tiles and 2 big tiles.

The rest of this paper is structured as follows. Section 2
explains the motivations for our work in more detail. Section
3 presents the heterogeneous rectangular tile algorithms.
Section 4 describes the implementation and the auto-tuning
method. Section 5 shows the experimental results. Section
6 presents related work. Section 7 summarizes our work.

2. MOTIVATIONS AND BACKGROUND
This section first introduces what the tile algorithms [14]

are, then describes the motivations for our optimizations
on GPUs and the reasons for choosing a static distribution
method over a dynamic load balancing method.

2.1 Tile Algorithms
A tile algorithm divides an n×n matrix A into a number

of small b×b submatrices (aka“tiles”) such that A consists of
nb × nb tiles, where nb = n

b
. A can be expressed as follows:


A1,1 A1,2 . . . A1,nb
A2,1 A2,2 . . . A2,nb

.

.

.
.
.
.

. . .
.
.
.

Anb,1
Anb,2

. . . Anb,nb

 ,

where Ai,j is a b × b tile. In the tile algorithm, every task
works on a small tile so that at any time there are a great
amount of tasks available to execute. This way we can in-
crease a program’s thread level parallelism, which is desir-
able on multicore architectures. Take the tile QR factoriza-
tion as an example. At the first iteration, the algorithm com-
putes a QR factorization for A1,1. The output of A1,1 is then
used to update the set of tiles on A1,1’s right hand side in an
embarrassingly parallel way (i.e., A1,2, A1,3, . . . , A1,nb). As
soon as a tile-update in the i-th row completes, its neighbor
below in the (i+1)-th row can start immediately. One could
visualize the execution as falling columns of dominos from
top to bottom. After updating all tiles in the nb-th row, tile
QR will continue to apply the same steps to the trailing sub-
matrix A2:nb,2:nb recursively [14]. Our work extends the tile
algorithms to rectangular tile algorithms to accommodate
the processor heterogeneity between CPUs and GPUs.

2.2 Optimization Issues on GPUs
Although computational performance can be increased by

adding more cores to a GPU, it is much more difficult to
increase the network performance at the same rate. For in-
stance, it has taken three years to introduce the PCI Express
3.0 Base specification to double its predecessor’s bandwidth.
We also expect the ratio of computational performance over
communication bandwidth on a GPU will continue to in-
crease. Hence, one of our objectives is to minimize commu-
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Figure 3: Matrix multiplication with CUBLAS 3.2
on an Nvidia Fermi M2070 GPU. (a) The maximum

performance in double precision is 302 Gflops and the distance

between the peaks is 64. (b) The maximum performance in single

precision is 622 Gflops and the distance between the peaks is 96.

nication. A number of existing algorithms on distributed-
memory supercomputers have addressed the issue to min-
imize communication. In ScaLAPACK [10], the parallel
Cholesky, QR, and LU factorizations have been proven to
reach the communication lower bound to within a logarith-
mic factor [8, 16, 18]. This has inspired us to adapt these ef-
ficient methods to optimize communication on the new mul-
ticore and multi-GPU systems.

Another issue is that a GPU cannot reach its high per-
formance until given a sufficiently large input size. Figure 3
shows the performance of matrix multiplication on an Nvidia
Fermi GPU using CUBLAS 3.2 in double precision and sin-
gle precision, respectively. In general, the bigger the matrix
size, the better the performance is, but the double preci-
sion matrix multiplication does not reach 95% of its maxi-
mum performance (max=302 Gflops) until the matrix size
N ≥ 1088. In single precision, it does not reach 95% of
its maximum (max=622 Gflops) until N ≥ 1344. Unlike a
GPU, it is common for a CPU core to reach 90% of its max-
imum when N ≥ 200 for matrix multiplications. However,
solving a big matrix of size N > 1000 by a single core is
much slower than dividing it into smaller blocks and solving
them in parallel by multiple cores. One could still use several
cores to solve the big matrix in a fork-join manner, but it
will introduce additional synchronization overhead and more
CPU idle time [3, 12, 14]. Therefore, we are motivated to
design new heterogeneous algorithms to expose different tile
sizes suitable for CPUs and GPUs, respectively.

2.3 Using a Static Distribution Strategy
We have employed a static strategy to distribute data

and tasks to the host and different GPUs because of its less
scheduling overhead, provably good communication cost, and
simpler implementation than a dynamic strategy. The dy-
namic strategy often results in a sophisticated dynamic load
balancing problem where a runtime system is required to
monitor the status of CPUs and GPUs, and to measure the
performance of different tasks on a CPU or a GPU to main-
tain load balancing. In consideration of additional commu-
nication optimization, scheduling policies, and related soft-
ware cache mechanism, the dynamic load balancing problem
becomes more challenging. Also our evaluation on QR fac-
torizations (not reported here) shows that the static method
is faster than the dynamic one for relatively small matrices
(e.g., 60% faster given a matrix of size 5760 and using four
GPUs). In addition, to solve an n× n matrix, the software

cache size on a GPU must be close to n2

P
in order to reach

an optimal communication volume proved by Theorem 1.

Theorem 1 ([20]). The communication volume of the

classic matrix multiplication algorithm is equal to Ω( n3

P
√
M

),

where n is the matrix size, and M is the local memory size on

each of P processes. When M = O(n2

P
), the communication

volume Ω( n2
√
P

) is optimal.

Note that the communication volume of matrix multiplica-
tion is also the lower bound for other Θ(n3) matrix compu-
tations such as Cholesky, QR, and LU factorizations. By
setting the software cache size on each GPU as large as

O(n2

P
), the caching scheme will be the same as a static 1D

or 2D block distribution method regarding memory usage.
Also the caching scheme requires a good cache replacement
mechanism. Later Section 3.5 shows that using a static dis-
tribution method can guarantee a near lower bound commu-
nication volume. To optimize both computation and com-
munication without resorting to complex scheduling policies
and software caches, we chose to use the simple static dis-
tribution strategy for the domain of matrix computations.

3. HETEROGENEOUS RECTANGULAR
TILE ALGORITHMS

We extend the tile algorithms [14] to heterogeneous rect-
angular tile algorithms and apply them to the Cholesky and
QR factorizations. We also introduce a novel two-level parti-
tioning method and a heterogeneous 1-D column block cyclic
distribution to map tiles and tasks to the host and GPUs to
minimize communication.

3.1 Hybrid-Size Rectangular Tiles
The heterogeneous rectangular tile algorithm divides a

matrix into a mix of small and big rectangular tiles. Figure
2 depicts two matrix examples that are divided into hybrid
rectangular tiles. The two matrices have the same dimension
but consist of a different number of small and big tiles.

However, the way to divide a matrix into rectangular tiles
is not arbitrary. Constrained by the correctness of the al-
gorithm, rectangular tiles must be aligned with each other
and located in a collection of rows and columns. Their di-
mensions, however, could vary row by row or column by
column (e.g., a row of tall tiles followed by a row of short
tiles). Since we target a heterogenous system with two types
of processors (i.e., CPU and GPU), we use two tile sizes: a
small one for CPU and a big one for GPU. It should be easy
to extend the algorithm to include more tile sizes.

On a heterogeneous multicore and multi-GPU system, we
propose to use the following two-level partitioning scheme
to create small tiles and big tiles: (1) At the top level, we
divide a matrix into large square tiles of size B×B; (2) Then
we subdivide each top-level tile of size B×B into a number
of small rectangular tiles of size B × b and a remaining tile.
We use this scheme because it not only results in a clean
code structure but also allows us to use a simple auto-tuning
method to achieve load balancing. For instance, as shown
in Fig. 2 (a), we first divide the 12 × 12 matrix into four
6× 6 tiles, then we divide each 6× 6 tile into two 6× 1 and
one 6 × 4 rectangular tiles. How to partition the top-level
large tiles is dependent on the performance of the host and
the performance of each GPU. Section 4.2 will introduce a
method to determine an appropriate partitioning.
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Figure 4: The operations of heterogeneous rectan-
gular tile Cholesky factorization. (a) The symmetric

positive definite matrix A. (b) Compute POTF2’ to solve L11.

(c) Apply L11 to update its right A12 by matrix multiplication.

(d) Compute TRSMs for all tiles below L11 to solve L21 and L31.

(e) Apply GSMMs to update all tiles on the right of TRSMs. (f)

At the 2nd iteration, we repeat performing (b), (c), (d), (e) on

the trailing submatrix that starts from the 2nd tile column.

3.2 Rectangular Tile Cholesky Factorization
Given a matrix A of size n×n and two tile sizes of B and

b, A can be expressed as follows:
B︷ ︸︸ ︷

a11 a12 . . . A1s

B︷ ︸︸ ︷
a1(s+1) a1(s+2) . . . A1(2s) . . .

a21 a22 . . . A2s a2(s+1) a2(s+2) . . . A2(2s) . . .
...

...
. . .

ap1 ap2 . . . Aps ap(s+1) ap(s+2) . . . Ap(2s) . . .

 , where

an
︷ ︸︸ ︷
ai(ks+1)ai(ks+2) . . . Ai(ks+s) forms a large tile of size B×B.

Here aij represents a small rectangular tile of size B × b,
and Aij represents a tile of size B × (B − b(s− 1)) which is
usually larger. We also assume n = pB and B > b.

Algorithm 1 shows the heterogeneous rectangular tile Cholesky
factorization. We do not differentiate aij and Aij and always
use Aij , since i and j imply a unique tile (either aij or Aij).
In addition, we denote Aij ’s submatrix that starts from its
local x-th row and y-th column to its original bottom right

Algorithm 1 Rectangular Tile Cholesky Factorization
for t ← 1 to p do

for d ← 1 to s do
k ← (t - 1) * s + d /* the k-th tile column */
∆ ← (d - 1) * b /* local offset within a tile */
POTF2’(Atk[∆,0], Ltk[∆,0])
for j ← k + 1 to t * s /* along the t-th tile row */ do

GSMM(Ltk[∆+b,0], Ltk[∆+(j-k)*b,0], Atj [∆+b,0])
end for
for i ← t + 1 to p /* along the k-th tile column */ do

TRSM(Ltk[∆,0], Aik, Lik)
end for
/* trailing submatrix update */
for i ← t + 1 to p do

for j ← k + 1 to i * s do
j’ = d js e
if (j’ = t) GSMM(Lik, Ltk[∆+(j-k)%s*b,0], Aij)
else GSMM(Lik, Lj′k[(j-1)%s*b,0], Aij)

end for
end for

end for

end for
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Figure 5: The operations of heterogeneous rectangu-
lar tile QR factorization. (a) The matrix A. (b) Compute

the QR factorization of A11 to get R11 and V11. (c) Apply V11

to update all tiles on the right of A11 by calling LARFB. (d)

Compute TSQRTs for all tiles below A11 to solve V21 and V31.

(e) Apply SSRFBs to update all tiles on V21 and V31’s right hand

side. (f) After the 1st iteration, we have solved the R factors on

the first row with a hight equal to R11’s size. At the 2nd iteration,

we repeat performing (b), (c), (d), (e) on the trailing submatrix

that starts from the 2nd tile column.

corner by Aij [x, y]. We denote Aij [0, 0] by Aij for short.
Algorithm 1 invokes the same set of kernels as the algo-

rithm for the tile Cholesky factorization [14] except for the
kernel POTF2’:

• POTF2’(Atk, Ltk): Given a matrix Atk of size m× n
and m ≥ n, we let Atk = (Atk1

Atk2
), where Atk1 is of size

n×n, and Atk2 is of (m−n)×n. Similarly we let Ltk

= (Ltk1
Ltk2

). POTF2’ computes (Ltk1
Ltk2

) by solving Ltk1 =

Choleksy(Atk1) and Ltk2 = Atk2L
−T
tk1 .

• TRSM(Ltk, Aik, Lik) computes Lik = AikL
−T
tk .

• GSMM(Lik, Ljk, Aij) computes Aij = Aij − LikL
T
jk.

Figure 4 illustrates the operations of the heterogeneous
rectangular tile Cholesky factorization. It shows a matrix
of 3 × 3 top-level large tiles (i.e., p = 3), each of which is
divided into one small and one big rectangular tiles (i.e.,
s = 2). The algorithm goes through 6 (= p · s) iterations,
where the k-th iteration solves a submatrix starting from
the k-th tile column. Since all iterations apply the same
operations to different trailing submatrices, we only show
the operations of the first iteration.

3.3 Rectangular Tile QR Factorization
Algorithm 2 shows the heterogeneous rectangular tile QR

factorization. The rectangular tile QR factorization uses the
following set of kernels that are identical to those used in
the tile QR factorization [14]. For completeness, we present
them briefly here:

• GEQRT(Atk, Vtk, Rtk, Ttk) computes (Vtk, Rtk, Ttk)
= QR(Atk).

• LARFB(Atj , Vtk, Ttk, Rtj) computes Rtj

= (I − VtkTtkV
T
tk )Atj .

• TSQRT(Rtk, Aik, Vik, Tik) computes (Vik, Tik, Rtk)
= QR(Rtk

Aik
).
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Algorithm 2 Rectangular Tile QR Factorization
for t ← 1 to p do

for d ← 1 to s do
k ← (t - 1) * s + d /* the k-th tile column */
∆ ← (d - 1) * b /* local offset within a tile */
GEQRT(Atk[∆,0], Vtk[∆,0], Rtk[∆,0], Ttk[∆,0])
for j ← k + 1 to p * s /* along the t-th tile row */ do

LARFB(Atj [∆,0], Vtk[∆,0], Ttk[∆,0], Rtj [∆,0])
end for
for i ← t + 1 to p /* along the k-th tile column */ do

TSQRT(Rtk[∆,0], Aik, Vik, Tik)
end for
/* trailing submatrix update */
for i ← t + 1 to p do

for j ← k + 1 to p * s do
SSRFB(Rtj [∆,0], Aij , Vik, Tik)

end for
end for

end for

end for

• SSRFB(Rtj , Aij , Vik, Tik) computes (Rtj
Aij

)

= (I − VikTikV
T
ik ) (Rtj

Aij
).

Figure 5 illustrates the operations of the heterogeneous
rectangular tile QR factorization. It shows a matrix of 3 tile
rows and 6 tile columns. The algorithm goes through 6 iter-
ations for the 6 tile columns. Since every iteration performs
the same operations on a different trailing submatrix, Fig.
5 only shows the operations of the first iteration.

3.4 Heterogeneous Block Cyclic Distribution
We divide a matrix A into p×(s ·p) rectangular tiles using

the two-level partitioning method which first partitions A
into p × p large tiles at the top level, then partitions each
large tile into s rectangular tiles. Given a multicore and
multi-GPU machine, we will distribute A’s tile columns to
the host and a number of P GPUs in a 1-D block cyclic
way. That is, we statically allocate the j-th tile column to
Px, where P0 represents the host system and Px≥1 represents
the x-th GPU. We compute x as follows:

x =

{
(( j

s
− 1) mod P ) + 1 : j mod s = 0

0 : j mod s 6= 0

In other words, the columns whose indices are multiples of s
are mapped to the P GPUs in a cyclic way and all the other
columns go to the single host system.

Figure 6 (a) illustrates a matrix that is divided into rect-
angular tiles with the two-level partitioning method. Since
we always map an entire tile column to either the host or a
GPU, the figure omits the boundaries between rows to bet-
ter illustrate the 1-D method. Figure 6 (b) displays how a
matrix with 12 tile columns is allocated to one host and 3
GPUs using the heterogeneous 1-D column block cyclic dis-
tribution. The ratio of the sum of s-1 rectangular tiles over
their remainder controls the workload on the host and on
each GPU. Section 4.2 describes a method to determine the
ratio for load balancing.

3.5 Communication Cost
We consider the heterogeneous system a distributed mem-

ory machine such that the host system and the P GPUs
represent P + 1 processes. We also assume the broadcast
between processes is implemented by a tree topology in or-
der to make a fair comparison between our algorithms and
the ScaLAPACK algorithms [10].

h h h h G1 G2 G3 G1 h h G2 G3 

. . . 

1 2 … s 1 2 … s 1 2 … s 
1 2 p … 

(a) (b) 

Figure 6: Heterogeneous 1-D column block cyclic
data distribution. (a) The matrix A divided by a two-level

partitioning method. (p, s) determines a matrix partition. (b)

Allocation of a matrix of 6 × 12 rectangular tiles (i.e., p=6, s=2)

to a host and three GPUs: h, G1, G2, and G3.

Given a system with one host, P GPUs, and a matrix of
size n×n, we partition the matrix into p×(p ·s) rectangular
tiles. The small rectangular tile is of size B × b and n =
p · B. The number of words communicated by at least one
of the processes in the rectangular tile QR (or Cholesky)
factorization is bounded by:

Word =

p−1∑
k=0

(n− kB)B log(P + 1) ' n2

2
log(P )

The communication volume of the rectangular tile algorithm

reaches the lower bound of Ω( n2
√
P

) (Theorem 1) to within a

factor of
√
P log(P ). If we use a 2-D block cyclic distribution

instead of the 1-D distribution, we could attain the same

communication volume as ScaLAPACK (i.e., O( n2
√
P

logP )

[8, 16]). However, it will result in more messages and pro-
duce lower performance in practice for the tiled algorithms.

The number of messages sent or received by at least one
process in the rectangular QR (or Cholesky) factorization is
bounded by:

Message =

p−1∑
k=0

(p− k)s log(P + 1) ' p2s

2
log(P )

Although the number of messages is larger than that of
ScaLAPACK [8, 16] by a factor of O(p), the rectangular tile
algorithms have much smaller messages and exhibit a higher
degree of parallelism. Note that we want to keep a higher
degree of parallelism in order to obtain high performance
particularly on many-core systems [3, 6, 12].

4. IMPLEMENTATION
We have implemented a runtime system to support data-

availability-driven execution where a parent task tries to
trigger its children whenever possible. Before the execution
starts, we use the heterogeneous 1-D block cyclic method
to distribute a matrix across the host and different GPUs
statically. Since we have preallocated the j-th tile column
to the host or a GPU, we require a task modifying the j-th
tile column be executed by the column’s owner (the host or
the GPU) to save data movement.

We extend the centralized-version runtime system of our
previous work ([26] Section 3) to a new one that is suitable
for heterogeneous multicore and multi-GPU systems. The
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centralized runtime system works on multicore architectures
and has four components (see Fig. 7 as if it had no GPUs):

• Master thread: a single thread that executes a serial
program and adds new tasks to the task window.

• Task window: a fixed-size task queue that stores all
the generated but unfinished tasks. It is an ordered
list that keeps the serial semantic order between tasks.

• Ready task queue: a list of tasks whose inputs are
all available. Each node in the list is just a pointer
pointing to its corresponding task in the task window.

• Computational threads: every core runs a computa-
tional thread. A computational thread picks up a task
from the ready task queue whenever it becomes idle.
After finishing the task, the thread scans the task win-
dow to determine which tasks are the children of the
finished task and moves them to the ready task queue.

4.1 The Extended Runtime System
Figure 7 shows the architecture of our extended runtime

system. Note that the master thread and the task window
have not changed.

However, since the host and the GPUs possess disjoint
subsets of a matrix, we want to avoid the situation where
a task accessing one GPU’s data is dispatched to another
GPU. Also the task size intended for GPUs is much larger
than that intended for CPUs. Therefore, we make the host
and each GPU have their own ready task queues. If a ready
task modifies a tile that belongs to the host or a GPU, it is
sent to the host or the GPU correspondingly.

We have also modified the computational threads. The
new runtime system has two types of computational threads:
one for CPU cores and the other for GPUs. If a host system
has a number of n cores and is connected with P GPUs,
the runtime system will launch P computational threads to
represent the P GPUs and (n − P ) computational threads
to represent the remaining CPU cores. Although a GPU
computational thread is running on the host, it is able to
invoke a GPU kernel automatically as long as the kernel’s
input is available in the GPU memory.

In the Nvidia CUDA 3.2 programming environment, data
movement between different GPUs needs to be relayed by
the host. If a host thread is attached to a GPU and allocates
a chunk of memory on the GPU, usually only that thread
can access the memory. Also there can be only one host
thread attached to a GPU at a time. Hence, in our imple-
mentation, any data movement to or from a GPU is han-
dled by the GPU’s computational thread. With the newly
released CUDA 4.0 RC, it is possible to merge several GPU
computational threads into one thread.

We create a message box for each GPU computational
thread in the host memory. A core computational thread
does not have a message box since it cannot access the GPU
memory allocated by a GPU computational thread. When
moving data either from the host to a GPU or from a GPU to
the host, it is the GPU computational thread’s responsibility
to move the data. We consider three cases to handle the data
movement among the host and GPUs:

• Host → GPU: after a core computational thread fin-
ishes a task, it wants to send the newly modified data

Master thread 

... Task window: 

... 

... 

mbox: 

Ready 
tasks: Ready 

tasks: 
Ready 
tasks: 

Ready 
tasks: 

mbox: mbox: 

Host GPU GPU GPU 

core 
thread 

GPU 
thread 

Figure 7: The extended runtime system for hetero-
geneous multicore and multi-GPU architectures.

to a GPU. The core computational thread adds a mes-
sage to the GPU’s message box telling the GPU to
fetch the data.

• GPU → Host: after a GPU computational thread fin-
ishes a task, the GPU thread adds a message to its
own message box and sends the modified data later.

• GPUs → GPUt: the runtime system generates two
messages for this case. First, GPUs adds a “GPUs →
Host” message to its own message box with a replay
flag to GPUt. When GPUs processes the message, it
copies the data to the host and then adds a “Host →
GPUt” message to GPUt’s message box telling GPUt

to get the data from the host.

Nearly all communications in the Cholesky and QR fac-
torizations are broadcast. During a GPU broadcast, our
runtime system copies data only once from the GPU to the
host. Then the other GPUs will copy the data from the host
to themselves in parallel to minimize communication cost.
Note that it is necessary to copy the data to the host for
a broadcast operation. A GPU computational thread cur-
rently takes charge of both computation and communication
and is implemented as follows. With the new CUDA 4.0 RC,
it is possible to move process_msg to a dedicated thread to
decouple communication from computation.

/* lv stores the current thread’s info */
while ( !done ) {

/* calls cudaMemcpy to process a message */
process_msg(lv->mbox);
if( ready = get_task(lv->readyQ) ) {

compute_task(ready);
/* adds new ready tasks and new messages */
fire_children(ready, lv);

}
}

4.2 Tile Size Tuning
Load imbalance could happen either between GPUs or be-

tween the host and GPUs. We use the 1-D block cyclic dis-
tribution method to achieve load balancing between GPUs.
Also we adjust the ratio of the CPU tile size to GPU tile
size to achieve load balancing between the host and GPUs.

We go through three steps to determine the best tile sizes:
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1. We apply the two-level partitioning method to a ma-
trix and suppose the top-level large tile size B is al-
ready given (later we show how to find B).

2. We use the following formula to estimate the best par-
tition of size B × Bh to be cut off from each top-level
tile of size B ×B:

Bh =
Perfcore ·#Cores

Perfcore ·#Cores + Perfgpu ·#GPUs
·B

Perf denotes the maximum performance (in Gflops) of
a dominant computational kernel in the algorithm.

3. We start from the estimated size Bh and search for an
optimal B∗h near Bh. We wrote a script to execute the
Cholesky or QR factorization with a random matrix
of size N = c0 · B · #GPUs. In the implementation,
we let c0 = 3 to reduce the searching time. The script
adapts the parameter of Bh to search for the minimal
difference between the host and the GPU computa-
tion time. If the host takes more time than a GPU,
the script will decrease Bh accordingly. This step is
inexpensive since the granularity of our fine tuning is
64 for double precision and 96 for single precision due
to the significant performance drop when a tile size is
not a multiple of 64 or 96 (Fig. 3). In our experiments,
it took at most three attempts to find B∗h.

The top-level tile size B in Step 1 is critical for the GPU
performance. To find the best B, we search for the minimal
matrix size that provides the maximum performance for the
dominant GPU kernel (i.e., GEMM for Cholesky and SSRFB

for QR). Our search ranges from 128 to 2048 and is per-
formed only once for every new kernel implementation and
new GPU architecture. For Nvidia Fermi GPUs, B must be
at least 960 for good performance.

Unlike Step 1, Steps 2 and 3 depend on the number of
cores and GPUs used in a computation. Note that there are
at most (#Cores · #GPUs) configurations on a given ma-
chine, and not every configuration is useful in practice (e.g.,
we often use all cores and all GPUs in scientific computing).
Later our experimental results show that the auto-tuning
method can keep the system load imbalance under 5% in
most cases.

Lemma 1 also justifies our observation that the number of
top-level tiles should not affect the load balance between the
host and GPUs for the rectangular tile QR factorization.

Lemma 1. Assume a matrix is divided into hybrid rect-
angular tiles by the two-level partitioning method. Given
the performance of the host and GPUs, the partitioning of a
large tile into two parts (one for the host and one for GPUs)
to keep load balancing, is not related to the number of large
tiles for rectangular tile QR factorizations.

Proof. Suppose there are P GPUs. We let t
(host)
panel and

t
(host)
up denote the time for the host to compute a panel fac-

torization and a trailing matrix update for a single tile. Simi-

larly, t
(gpu)
panel and t

(gpu)
up denote the time on a GPU. We assume

the kernel computation time does not change much during
an execution. So given a matrix partitioned into p× p large
tiles at the top level and assuming p is a multiple of P , the
execution time of the host is:

Thost =

p∑
i=1

(i× t
(host)
panel + 2i2 × t(host)up ).

Table 1: Experiment Environment

Host Attached GPUs
Processor type Intel Xeon X5660 Nvidia Fermi M2070
Clock rate 2.8 GHz 1.15 GHz
Processors per node 2 3
Cores per processor 6 14 SMs
Memory 24 GB 6 GB per GPU
Theo. peak (double) 11.2 Gflops/core 515 Gflops/GPU
Theo. peak (single) 22.4 Gflops/core 1.03 Tflops/GPU
Max gemm (double) 10.7 Gflops/core 302 Gflops/GPU
Max gemm (single) 21.4 Gflops/core 635 Gflops/GPU
Max ssrfb (double) 10.0 Gflops/core 223 Gflops/GPU
Max ssrfb (single) 19.8 Gflops/cores 466 Gflops/GPU
BLAS/LAPACK lib Intel MKL 10.3 CUBLAS 3.2, MAGMA
Compilers Intel compilers 11.1 CUDA toolkit 3.2
OS CentOS 5.5 Kernel module 260.19.14
System interface – PCIe x 16 Gen2

And the execution time of each GPU is:

Tgpu =

p∑
i=1

(i× t
(gpu)
panel + 2

i2

P
× t(host)up ).

It is easy to see that Thost=Tgpu is not related to the number
of large tiles p. Similarly we can reach the same conclusion
for the rectangular tile Cholesky factorization.

5. PERFORMANCE EVALUATION
We have implemented the heterogeneous rectangular tile

Cholesky and QR factorizations in double precision and sin-
gle precision. In this section, we present their performance
data in weak scalability and strong scalability, respectively.
We then measure their load imbalance for three different
configurations. We also analyze the efficiency of the run-
time system. For every experiment, we have verified that its
numerical result is correct.

We conducted experiments on a single node of the het-
erogeneous Keeneland system at the Oak Ridge National
Laboratory. On the system, each node has two Intel Xeon
X5660 (Westmere) hexa-core processors and three Nvidia
Fermi M2070 GPUs. Table 1 lists the hardware and software
resources used in our experiments. The table also lists the
maximum performance of gemm and ssrfb used by Cholesky
factorization and QR factorization, respectively. The kernel
performance serves as an upper bound for the whole pro-
gram’s performance.

5.1 Weak Scalability
We use weak scalability to evaluate the capability of a pro-

gram to solve potentially larger problems when more com-
puting resources are available. In the weak scalability ex-
periment, we increase the input size accordingly when we
increase the number of cores and GPUs.

Figure 8 shows the performance of Cholesky and QR fac-
torizations in double precision and single precision, respec-
tively. The x-axis shows the number of cores and GPUs
used in the experiment. The y-axis shows Gflops-per-core
or Glfops-per-GPU on a logarithmic scale. In each subfigure
there are five curves: two “theoretical peak” labels to de-
note the theoretical peak performance from a single core or
from a GPU, one“max GPU-kernel”to denote the maximum
GPU kernel performance in the Cholesky or QR factoriza-
tion which is the upper bound for the whole program, “our
perf per core” to denote the performance of our program
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(a) Cholesky in double precision
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(b) QR in double precision
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(c) Choleksy in single precision
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(d) QR in single precision

Figure 8: Weak scalability. The input size increases too while adding more cores and GPUs. The y-axis is presented on a

logarithmic scale. OverallPerformance = (Perfper core * #cores) + (Perfper gpu * #gpus). Note that ideally the performance per core

or per GPU should be a flat line.
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(a) Cholesky in double precision
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(b) QR in double precision
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(c) Cholesky in single precision
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Figure 9: Strong scalability. The last three ticks on the x-axis (after 12 cores) are: 11 cores + 1 GPU, 10 cores

+ 2 GPUs, and 9 cores + 3 GPUs. The input size is fixed while adding more cores and GPUs. Both the x-axis and the y-axis are

presented on a logarithmic scale. Note that ideally a strong scalability curve should be a straight line in a log-log graph.
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on each CPU core, and “our perf per GPU” to denote our
program performance on each GPU.

In the experiments, we first increase the number of cores
from 1 to 9. Then we add 1, 2, and 3 GPUs to the 9
cores. The input sizes for the double precision experiments
(i.e., (a), (b)) are: 1000, 2000, . . . , 9000, followed by 20000,
25000, and 34000. The input sizes for single precision (i.e.,
(c), (d)) are the same except for the last three sizes that
are 30000, 38000, and 46000. From Fig. 8, we can see that
Cholesky and QR factorizations are scalable on both CPU
cores and GPUs. Note that ideally the performance per core
(or per GPU) is a flat line.

The overall performance of Cholesky factorization or QR
factorization can be derived by summing up (perf-per-core
× NumberCores) and (perf-per-gpu × NumberGPUs). For
instance, the double precision Cholesky factorization using
9 cores and 3 GPUs attains an overall performance of 742
Gflops, which is 74% of the upper bound and 45% of the the-
oretical peak. Similarly, the single precision Cholesky fac-
torization has an overall performance of 1.44 Tflops, which
is 69% of the upper bound and 44% of the theoretical peak.
Moreover, the overall performance of QR factorization is
79% of the upper bound in double precision, and 73% of the
upper bound in single precision.

5.2 Strong Scalability
We use strong scalability to evaluate how much faster a

program can solve a specific problem if a user is provided
with more computing resources. In the experiment, we mea-
sure the execution time to solve a number of matrices each
with a different size. Given a fixed-size matrix, we keep
adding more computing resources to solve it.

Figure 9 shows the wall clock execution time of Cholesky
and QR factorizations in double precision and single preci-
sion, respectively. Each graph has several curves, each of
which corresponds to a matrix of size N . The x-axis shows
the number of cores and GPUs on a logarithmic scale. That
is, we solve a matrix of size N using 1, 2, . . . , 12 cores, fol-
lowed by 11 cores + 1 GPU, 10 cores + 2 GPUs, and 9 cores
+ 3 GPUs. The y-axis shows execution time in seconds also
on a logarithmic scale. Note that an ideal strong scalability
curve should be a straight line in a log-log graph.

In Fig. 9 (a), we reduce the execution time of Cholesky
factorization in double precision from 393 seconds to 6 sec-
onds for N=23,040, and from 6.4 to 0.2 seconds for N=5,760.
In (b), we reduce the execution time of QR factorization in
double precision from 1790 to 33 seconds for N=23,040, and
from 29 seconds to 1 second for N=5,760. Similarly, (c) and
(d) display the performance in single precision. In (c), we re-
duce the execution time of Cholesky factorization from 387
to 7 seconds for N=28,800, and from 3.2 to 0.2 seconds for
N=5,760. In (d), we reduce the execution time of QR fac-
torization from 1857 to 30 seconds for N=28,800, and from
16 to 0.7 seconds for N=5,760.

5.3 Load Balancing
In this section, we use the metric imbalance_ratio to

evaluate the quality of our load balancing, where imbal-

ance_ratio = MaxLoad
AvgLoad

as proposed in [22]. We use com-
putational time to represent the load on a host or GPU.
In our implementation, we put timers above and below ev-
ery computational kernel and sum them up to measure the
computational time.

Our experiment uses three different configurations: 3 cores
+ 1 GPU, 6 cores + 2 GPUs, and 9 cores + 3 GPUs. Given
an algorithm (either Cholesky or QR factorization), we first
determine the top-level tile size, B, for the algorithm; then
we determine the partitioning size, B∗h, for each configura-
tion using the auto-tuning method. We apply the tuned
tile sizes to various matrices. For simplicity, we let the ma-
trix size be a multiple of B and suppose the number of tile
columns is divisible by the number of GPUs. If the num-
ber of tile columns is not divisible by the number of GPUs,
we can divide its remainder (≤ NumberGPUs-1) among all
GPUs using a smaller chunk.

Figure 11 shows the imbalance ratio for double and single
precision factorizations on three configurations. An imbal-
ance ratio of 1.0 indicates a perfect load balancing. We can
see that most of the imbalance ratios are less than 5%. A
few of the first columns have an imbalance ratio of up to
17%. This is because their corresponding matrices have too
few top-level tiles. For instance, the first column of the
9Cores+3GPUs configuration has a matrix of three top-level
tiles (Fig. 11 (c), (f)). We could increase the number of tiles
to alleviate this problem by reducing the top-level tile size.

5.4 Runtime System Efficiency
This section investigates whether our runtime system can

schedule tasks efficiently and how much further we can im-
prove our program performance. We show the execution
time breakdown for the double precision Cholesky and QR
factorizations to see where their time goes. The single pre-
cision results are the same and not shown here.

Figure 10 shows the execution time breakdown of the
Cholesky and QR factorization experiments that use 9 cores
and 3 GPUs. The time breakdown data is actually collected
from the 9cores+3GPUs experiment in the weak scalability
experiments shown in Fig. 8. The corresponding load im-
balance ratio for the two experiments are 3% and 0.1% re-
spectively. Note that we show the time breakdown for one
of the GPUs because of their balanced load.

POTRF 
0% 

TRSM 
14% 

GEMM 
73% 

SYRK 
7% 

Communication 
5% 

Idle 
1% 

(a) Cholesky factorization

GEQRT 
1% 

TSQRT 
14% 

LARFB 
3% 

SSRFB 

77% 

Communication 
3% 

Idle 
2% 

(b) QR factorization

Figure 10: Execution time break down on a GPU for
double precision Cholesky and QR factorizations.

As shown in Fig. 10 (a), the double precision Cholesky
factorization spends 73% of its time on kernel GEMM, 14% on
TRSM, 7% on kernel SYRK, and 5% on communication. There
is only 1% of idle time. In Fig. 10 (b), all the QR com-
putational kernels take 95% of the total execution time, the
communication takes 3%, and the idle time is 2%. From the
analysis, we can see that the runtime system works efficiently
and results in little idle time. Also the communication time
only occupies a small percentage of time. To further improve
the performance, we may need a better implementation of
TRSM and TSQRT for GPUs. In addition, the maximum
performance of SSRFB for GPUs is only 74% of the maxi-
mum GEMM performance and it needs to be improved too.
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(a) 4Cores+1GPU (double)
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(b) 6Cores+2GPUs (double)
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(c) 9Cores+3GPUs (double)
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(d) 4Cores+1GPU (single)
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(e) 6Cores+2GPUs (single)
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(f) 9Cores+3GPUs (single)

Figure 11: Load imbalance. The metric imbalance ratio = MaxLoad
AvgLoad

. The closer the ratio is to 1.0 the better.

6. RELATED WORK
There are a few linear algebra libraries developed for GPU

devices. CUBLAS has implemented the standard BLAS
(Basic Linear Algebra Subroutines) library on GPUs [25].
MAGMA and CULA have also implemented a subset of the
standard LAPACK library on GPUs [27, 19]. But currently
they do not support computations using multiple cores and
multiple GPUs.

Demmel et al. have developed the communication-avoiding
QR factorization entirely on a single GPU to minimize com-
munication for tall and skinny matrices [5]. By contrast,
other GPU implementations (including ours) send panel fac-
torizations back to the host CPUs to compute. Fogue et al.
presented a strategy to port the existing PLAPACK library
to GPU-accelerated clusters [17]. They require that GPUs
compute nearly all the compute-intensive work and store all
data in GPU memories to reduce communication.

StarSs is a programming model using directives to anno-
tate a sequential source code to execute on various architec-
tures such as SMP, CUDA, and Cell [7]. A programmer is
responsible for specifying which piece of code should be exe-
cuted on a GPU. Then its runtime can execute the annotated
code in parallel on the host and GPUs. It uses a software
cache mechanism to reduce data transfer cost. Charm++
is an object-oriented parallel language that uses a dynamic
load balancing runtime system to map objects to proces-
sors dynamically [21]. StarPU also develops a dynamic load
balancing framework to execute a sequential code on the
host and GPUs in parallel and has been applied to the QR
factorization [1]. By contrast, we use a simpler static data
distribution to minimize communication and to attain high
performance simultaneously for matrix computations.

There are many researchers who have studied how to ap-
ply static data distribution strategies to heterogeneous dis-
tributed memory systems. Dongarra et al. designed an al-
gorithm to map a set of uniform tiles to a 1-D collection
of heterogeneous processors [11]. Robert et al. proposed a
heuristic 2-D block data allocation to extend ScaLAPACK
to work on heterogeneous clusters [9]. Lastovetsky et al.
developed a static data distribution strategy that takes into
account both processor heterogeneity and memory hetero-
geneity for dense matrix factorizations [23].

7. CONCLUSION AND FUTURE WORK
Developing new parallel software on the heterogeneous

multicore and multi-GPU architecture is a challenging task
due to a variety of reasons. These reasons include proces-
sor heterogeneity, memory heterogeneity, many cores, dis-
tributed memory spaces, and an increasing gap between
computational performance and communication bandwidth.
In order to provide efficient support for matrix computa-
tions, we are focused on the objectives of fine-granularity
(for a high degree of parallelism), minimized synchroniza-
tion, minimized communication, and load balancing.

In this paper, we present the heterogeneous algorithms
with hybrid tiles to provide high degree of parallelism and
cope with processor heterogeneity. We treat the multicore
and multi-GPU system as a distributed-memory machine
and deploy a heterogeneous block cyclic data distribution
to optimize communication. We also introduce an auto-
tuning method to determine the best tile sizes that not
only attain high performance, but also achieve load bal-
ancing. Furthermore, we have implemented a new runtime
system for the heterogeneous multicore and multi-GPU ar-
chitectures. Although we have applied our approach to
the domain of matrix computations, the same methodology
and principles can be applied to other scientific applications
on multicore and multi-GPU architectures (e.g., heteroge-
neous algorithms with hybrid tasks, two-level partitioning,
a distributed-memory perspective on GPUs, adapting effi-
cient algorithms on clusters, auto-tuning, and so on).

In our approach, the largest matrix size is constrained
by the memory capacity of each GPU since we use a static
block cyclic distribution method. An approach to solving
this issue is to use an “out-of-core” algorithm such as the left
looking algorithm, to compute a matrix panel by panel [15].
Other future work includes applying the heterogeneous algo-
rithms to clusters with heterogeneous multicore and multi-
GPU nodes by distributing the top-level tiles to nodes in a
2-D block cyclic way.
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