Dynamic Scheduling for Large-Scale Distributed-Memory Ray
Tracing

Paul A. Navratil!, Hank Childs?, Donald S. Fussell! and Calvin
Lin?

1 = University of Texas at Austin
2 = Lawrence Berkeley National Laboratory

DISCLAIMER: This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the United States
Government nor any agency thereof, nor the Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or any
agency thereof, or the Regents of the University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof or
the Regents of the University of California.

Acknowledgments: Thanks to Kelly Gaither, Karl Schulz, Keshav Pengali, Bill Mark and the anonymous
reviewers for their helpful comments. We also thank llian T. lliev and Paul Shapiro for the n-body particle data. This
work was funded in part by National Science Foundation grants ACI- 9984660, EIA-0303609, ACI-0313263, CCF-

0546236, OCI-0622780, OCI-0726063, and OCI-0906379; an Intel Research Council grant; and an IC2 Institute
fellowship. This work was supported by the Director, Office of Science,Office and Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Dynamic Scheduling for Large-Scale Distributed-Memory Ray
Tracing

Fig. 1. The datasets used in this paper. From left to right: the Visible Female, Richtmyer-Meshkov instability, particle density of an
n-body cosmological simulation, Viatronix abdomen CT scan.

Abstract— Ray tracing is an attractive technique for visualizing scientific data because it can produce high quality images that
faithfully represent physically-based phenomena. Its embarrassingly parallel reputation makes it a natural candidate for visualizing
large data sets on distributed memory clusters, especially for machines without specialized graphics hardware. Unfortunately, the
traditional recursive ray tracing algorithm is exceptionally memory inefficient on large data, especially when using a shading model
that generates incoherent secondary rays. As visualization moves through the petascale to the exascale, disk and memory efficiency
will become increasingly important for performance, and traditional methods are inadequate.

This paper presents a dynamic ray scheduling algorithm that effectively manages both ray state and data accesses. Our algorithm
can render datasets that are larger than aggregate system memory, which existing statically scheduled ray tracers cannot render.
For example, using 1024 cores of a supercomputing cluster, our unoptimized algorithm ray traces a 650GB dataset from an N-Body
simulation with shadows and reflections, at about 1100 seconds per frame. For smaller problems that fit in aggregate memory, but
are larger than typical shared memory, our algorithm is competitive with the best static scheduling algorithm.

+

INTRODUCTION

INTRODUCTION

and sometimes impossible, to pre-compute highly-tuned acceleration

Ray tracing is an important method for creating high quality images,
because it offers a broad range of physically-based shading options,
including shadows, reflections and interactions with participating me-
dia. Such effects, which are often found in movies and photo-realistic
images, are increasingly used for scientific visualization, because they
help viewers better understand spatial relationships in data [15]. Of
course, any method, including ray tracing, that must realistically sim-
ulate global illumination will be much more computationally expen-
sive than the simpler methods that are traditionally used for real time
graphics on GPUs.

To speed up ray tracing, it is tempting to process rays in parallel.
This parallelism, however, is only efficient when it makes effective
use of the memory system. Ideally, the parallel tasks would operate
on the same memory-resident data, because if the working set grows
larger than available memory, contention and thrashing significantly
reduce overall performance. Unfortunately, traditional recursive ray
tracers cannot bound the size of their working sets because after the
first generation of rays (“primary” or “camera” rays), divergent rays in
subsequent ray generations typically travel through different regions of
space accessing a large amount of object data, leading to dramatically
increased working sets.

For small data sets, the performance impact of incoherent secondary
rays can be masked by a shared memory system, where the work-
ing sets of all parallel tasks can be kept resident. However, most
large scientific simulations are now run on distributed memory su-
percomputers [36] and produce ever-increasing amounts of data per
timestep [18]. Such data are typically too large to be relocated for
analysis and are typically too large for a single shared-memory re-
source. As a result, the machine used to produce the data must be
the same machine to ray trace the data. Further, it is impractical,

structures for these large datasets: The pre-processing would require
significant additional machine-time and disk space, and the resulting
acceleration structure would consume significant additional DRAM,
sometimes factors larger than the original dataset [9]. As visualiza-
tion moves to the petascale and beyond, disk- and memory-efficient
algorithms will be essential for good performance.

To date, most parallel ray tracing research has been limited to ei-
ther ray tracing on shared-memory machines [26, 3] or to ray cast-
ing (tracing only first-generation rays) on distributed memory archi-
tectures [7, 28, 16]. Recent work on distributed-memory ray trac-
ers [31, 30, 41, 11, 9, 17] has demonstrated only modest scaling and
has been hampered by various system limitations, including limited
interconnect bandwidth and limited disk I/O bandwidth.

In the serial realm, Pharr et al. [29] reformulate the ray tracing so-
lution to allow more flexible scheduling of ray-object intersection cal-
culations. This formulation groups rays and data into coherent work
units, known as ray queues, which present a trade-off: They increase
locality (ray coherence) at the cost of increased memory state. In the
parallel realm, the tradeoffs are much more complex because of the
additional need to consider load balance. In addition, Pharr et al.’s
use0 of disk to cache excess ray state can become intractable in a mas-
sively parallel environment due to I/O costs, specifically file system
contention from hundreds to thousands of processes performing extra
I/O for rays both frequently and consistently throughout the rendering.

This paper extends this idea of flexible scheduling to support paral-
lel ray tracing. The result is a novel approach to distributed memory
ray tracing that uses dynamic ray scheduling to improve memory lo-
cality while maintaining load balance. The basic idea is to reorder
ray traversal and intersection calculations based on the data that are
resident on each processor. By building locally coherent work units

of rays and data, our ray tracer has the flexibility to schedule these
work units across the parallel environment to achieve better overall
system performance. We show that dynamic scheduling of rays and
data can improve performance for large datasets where disk I/O lim-
its performance. Our algorithm is able to ray trace, with shadows and
reflections, a 650GB n-body dataset on a 1024 node cluster, which a
statically scheduled ray tracer could not render at all. For a smaller
dataset that a static scheduler can complete, our dynamic scheduler re-
duces data loads by 10x to 48x. Our scheduler also exhibits better
performance than static strategies for volumetric ray casting

The remainder of this paper proceeds as follows. We discuss related
work in Section 3. We present our approach in Section 4. We describe
our testing methodology in Section 5, and we present our results in
Section 6. We then conclude with a discussion of future work.

3 RELATED WORK

In this section, we place our approach in the context of prior work and
other approaches to large-scale ray tracing.

3.1 Improving Memory Access Coherence

The importance of using data coherence to improve rendering perfor-
mance has been known for over thirty years [35]. However, it was
only recently discovered that by reordering ray computations and by
queueing rays with data in a spatially localized manner, the number
of accesses to data on disk can be significantly reduced [29]. The
same principle improves memory performance [34] and cache perfor-
mance [24]. Each of these works demonstrates that the additional ray
coherence is achieved at the cost of additional state to be maintained.
Ray reordering alone can improve SIMD-instruction utilization [4],
but it does not achieve the same level of spatial coherence as reorder-
ing and queueing together, particularly for incoherent secondary rays.

3.2 Shared-Memory Ray Tracing

Most parallel ray tracers assume a shared address space architec-
ture [26, 25, 32, 3, 39, 40]. While these systems achieve impres-
sive rendering performance, the shared address space does not map to
supercomputer clusters, and it tends to hide rather than expose load
balance concerns from the programmer. Explicitly out-of-core ray
tracers [38, 13] also target shared memory systems, and their caching
structures, if extrapolated to the distributed memory case, are similar
to the distributed shared memory caching techniques described below.

3.3 Distributed-Memory Ray Tracing

In distributed memory, non-queueing ray tracers face a tradeoff be-
tween coherence—achieved by tracing ray groups that pass through
contiguous pixels—and load balance—achieved by tracing disparate
pixels in hopes of balancing the rendering work [33]. These systems
typically optimize performance by relying on an expensive prepro-
cessing step that improves data coherence, such as a low-resolution
rendering pass to pre-load data on the processes [14], or an expensive
pre-built acceleration structure to guide on-demand data loads [37, 41].

DeMarle et al. [9, 10, 11] use distributed shared memory to hide the
memory complexities from the ray tracer. Their system achieves in-
teractive performance for simple lighting models, but disk contention
ruins performance if the scene does not fit in available memory. More-
over, their results rely on a preprocessing step to distribute the ini-
tial data, a step that typically takes several hours for a several giga-
byte dataset. Ize et al. [17] update this approach using the Manta ray
tracer [3] and modern hardware, but they experience similar mem-
ory and scaling limitations while retaining the expensive preprocess-
ing step.

Reinhard et al. [30, 31] distribute data across the cluster and assign
tasks to processes based on load. This approach keeps camera and
shadow rays on the originating process, while passing reflection and
refraction rays to a process that contains the data required to process
them.

To balance load, the Kilauea system [19, 20] distributes the scene
across all processes, but it replicates each ray on each process. This
system requires scene data to fit entirely in aggregate memory, and it

is unclear whether its small, frequent ray communication will scale
beyond the few processes reported. It is also unclear whether the sys-
tem can accommodate scientific data that does not have pre-tessellated
surfaces.

To date, distributed memory ray tracers that queue and reorder rays
have only been implemented on specialized hardware [8] and on a sin-
gle workstation with GPU acceleration [2, 5, 1], solutions which are
not feasible for the large datasets produced by supercomputing clus-
ters.

3.4 Large-Scale Direct Volume Ray Casting

Recent work in large-scale ray casting uses a fixed data decomposi-
tion to render images across hundreds-of-thousands of processes [7,
16, 28]. These approaches process the entire dataset in core using
a domain decomposition, rendering each sub-domain simultaneously
and then compositing the results into the final image. This approach,
which is a form of speculative execution, is effective because there
is a fixed and regular amount of work to perform in the absence of
reflections. When reflections are included, however, this fixed data ap-
proach is prone to load imbalance. Further, the speculative rendering
wastes work when generated sub-domain images are rejected by the
final image composition pass.

4 ALGORITHM OVERVIEW

This section describes the specific challenges for distributed-memory
ray scheduling, the baseline approaches we modeled, and our dynamic
scheduling algorithm.

4.1 Scheduling Considerations

While serial ray scheduling implementations tradeoff increased local-
ity with additional state, moving to a distributed parallel environment
adds load balancing to the list of concerns. With this added variable,
it is not clear how one can apply a serial scheduling algorithm in a
parallel environment. A successful parallel schedule will strike a bal-
ance among locality, state size and load balance to provide both mem-
ory efficiency and high utilization. Because the characteristics of ray
computations can change over the course of generating a single im-
age, such as from tracing coherent camera rays to incoherent diffuse
reflections, we expect that a dynamic schedule will provide improved
performance compared to a static baseline. Pseudocode for the tested
schedules can be found in Figures 3 — 6.

4.2 Static Ray Scheduling Baselines

To establish a performance baseline, we implement two static sched-
ules that represent direct extensions of a Pharr-like approach to the par-
allel domain: an image-plane decomposition, where a subset of cam-
era rays and their child rays are traced to completion on each proces-
sor; and a static domain decomposition, where domains are assigned
to a particular process and rays are sent among processes as the rays
move across domains.

ProcessQueue (queue)
{
while (! queue.empty ()) {
r = g.top();
q.pop () ;

PerformRayOperations(d, r, q);

if (! RayFinished(r)) Enqueue (queues, r);
else ColorFramebuffer (r);

Fig. 2. Pseudocode for ProcessQueue(), used in each schedule pseu-
docode (see Figures 3 — 6). PerformRayOperations () includes
traversal, intersection, shading and spawning new rays.

ImagePlaneTrace ()

{

rays = GenerateRays();
queues = EnqueueRays (rays);
while (! gqueues.empty()) {

g = FindQueueWithMostRays (queues) ;
d = LoadDomain (g.domain_id);
ProcessQueue (q) ;

queues.delete (q) ;

}

MergeFramebuffers();

Fig. 3. Pseudocode for Static Image-Plane Decomposition Schedule.

Static Image-Plane Decomposition — rays are evenly divided
among processes by contiguous image-plane decomposition, and data
is loaded on each process as ray computation requires. At each
scheduling step, each process selects the domain with the most lo-
cal rays queued. This schedule optimizes for load balance, but it may
exhibit poor locality. This strategy is similar to previous image coher-
ence strategies [3, 9, 10, 11, 14, 26, 27, 37, 41]. This schedule also
corresponds to the demand-driven component of the schedule used by
Reinhard et al. [30, 31]; and it directly parallelizes a Pharr-like ap-
proach by using multiple serial instances run in parallel, where each
seeded with a subset of camera rays. See the pseudocode in Figure 3.

DomainTrace () {
rays = GenerateRays();
queues = EnqueueRays (rays);

last_d = NONE;
done = FALSE;
while (! done) {
only has rays for its domains
g = FindQueueWithMostRays (queues) ;
if (g.domain_id != last_d) {
d = LoadDomain (gq.domain_id);
last_d = g.domain_id;
}
ProcessQueue (q) ;
queues.delete (q) ;

send rays to procs with
next domain
SendRaysToNeighbors (queues) ;
done = NoProcessHasRays();

}

MergeFramebuffers();

}

Fig. 4. Pseudocode for Static Domain Decomposition Schedule.

Static Domain Decomposition — the dataset is spatially subdi-
vided, and these smaller domains are distributed among the available
processes, typically in round-robin order. A process can be assigned
multiple domains if there are more domains than processes, or it can be
assigned no domain if there are more processes than domains. Domain
data is loaded at first use, rather than prefetched. Rays are sent to the
process that contains data needed for computation. At each scheduling
step, each process selects the assigned domain with the most local rays
queued. This schedule optimizes for locality, but it may exhibit poor
load balance. This strategy is similar to previous domain decompo-
sition strategies [8, 12, 21] and to the data parallel component of the
scheduling strategy in Reinhard et al. [30, 31]. This decomposition
also corresponds to the data distribution used in large-scale volume
renderers [7, 16, 28]; and it directly parallelizes a Pharr-like approach

by using multiple serial instances run in parallel, where each is as-
signed a set of domains and rays are sent among the processes. See
the pseudocode in Figure 4.

ScheduleNextRound (loaded_domain,
foreach g in queues
queue_info.insert (g.domain_id, g.size());
SendQueueInfoToMaster (loaded_domain,
queue_info) ;

queues) {

if (isMaster()) {
ReceiveQueuelInfo (loaded_domains,
queue_infos) ;
foreach p in ProcessCount ()
foreach g in queue_infos[p] {
to_schedule.insert (g.domain_id) ;
is_loaded.insert (loaded_domains|[pl,p);

}

foreach p in ProcessCount ()
if (!'to_schedule
.contains (loaded_domains[p])
to_evict.insert(p);

foreach domain_id in to_schedule
if (is_loaded.contains (domain_id)) {
proc_id = is_loaded[domain_id];
schedule.insert (proc_id,domain_id) ;
}
else { to_assign.insert (domain_id); }
while (! (to_assign.empty ()
|| to_evict.empty())) {
domain_id = to_assign.top();
proc_id = to_evict.top();
schedule.insert (proc_id, domain_id);
to_assign.pop();
to_evict.pop();
}
SendScheduleToAll (schedule);
}

ReceiveSchedule (schedule);
return schedule[MyProcessId()];

Fig. 5. Pseudocode for ScheduleNextRound(), called in the dynamic
schedule.

4.3 Dynamic Scheduling Algorithm

Our dynamic scheduling algorithm combines the benefits of the
image-plane and domain decompositions to adapt to the changing
characteristics of a ray tracing rendering. Our algorithm begins with
an image-plane distribution of rays, with potentially duplicated do-
mains across processes if many rays are concentrated in a particular
domain. As the rendering progresses, the schedule shifts to a domain-
decomposition style where rays are sent between processes and data
remains resident. In contrast to the approaches above, our algorithm
takes real-time feedback from the rendering to improve the scheduling
for coherence and maintain high utilization.

Dynamic Schedule — rays are evenly divided across processes.
After the initial ray distribution, each scheduling step sends rays to
processes that already contain the domain data required for intersec-
tion. After swapping rays, each process operates on the domain with
the most rays waiting for it. Processes that have domain data not
needed by any rays may be assigned a new domain that is immedi-
ately needed by current rays. See the pseudocode in Figures 5 and
6.

The advantage of our dynamic schedule is its ability to reorder rays
and defer computation until the required data has been loaded into
memory. We expect that the dynamic schedule will see a reduced num-
ber of domain loads when compared against the static image-plane

DynamicRayWeightedTrace () {
rays = GenerateRays();
queues = EnqueueRays (rays);

g = FindQueueWithMostRays (queues) ;
d = LoadDomain (g.domain_id) ;
last_d = g.domain_id;
done = FALSE;
while (! done) {
if (g.domain_id != last_d) {
d = LoadDomain (g.domain_id);
last_d = g.domain_id;
}
ProcessQueue (q) ;
queues.delete (q);

g = ScheduleNextRound(last_d, queues);
done = NoProcessHasRays();

}

MergeFramebuffers () ;

}

Fig. 6. Pseudocode for Dynamic Ray-Weighted Schedule. Pro-
cessQueue() is defined in Figure 2 and ScheduleNextRound() is defined
in Figure 5.

decomposition and will achieve better load balance than the static do-
main decomposition.

5 METHODOLOGY

This section describes our experimental methodology, including the
hardware platform, the datasets, and the rendering methods that we
used to evaluate our scheduling strategy.

5.1 System Configuration

All experiments are run on Longhorn, a 2048 core, 256 node cluster
hosted at the Texas Advanced Computing Center. Each node contains
two four-core Intel Xeon E5540 “Gainestown” processors and 48 GB
of local RAM. All nodes are connected via a Mellanox QDR Infini-
Band switch, and we use MVAPICH2 v1.4 for our MPI implementa-
tion. Our ray tracer is implemented within VisIt [6], a visualization
tool designed to operate in parallel on large-scale data. We use the
Vislt infrastructure to load data and to generate isosurfaces; we imple-
mented all code related to ray tracing and ray scheduling. To focus
on the effects of the schedules, we turn off all caching within the VisIt
infrastructure, so that only one dataset is maintained per process. Each
load of non-resident data accesses the I/O system.

All MPI communication in our implementation is two-way asyn-
chronous. This implementation decision impacts dynamic schedules
most, since they have the highest degree of communication among
processes.

5.2 Datasets

We perform a scaling study of our approach using datasets of vari-
ous size and granularity from four domains: the visible female dataset
from the National Library of Medicine, the Richtmyer-Meshkov insta-
bility dataset from Lawrence Livermore National Laboratory, a parti-
cle density field from an n-body cosmological simulation and a high-
resolution CT scan of an abdominal cavity from Viatronix. The par-
ticular data sizes and decompositions on disk are presented in Table 1.
Sample images of the data are given in Figure 1.

For each dataset, we extract an isosurface using VisIt’s VTK-based
isosurfacing and internal BVH acceleration structure, and we then ray
trace the returned geometry using two directional lights and, for the
n-body particle data, two-bounce reflections. While the isosurface ex-
traction and BVH generation is performed each time the dataset is
loaded from disk, the cost is small relative to the I/O cost. These
costs are all included in the rendering times in Section 6. We do not

Table 1. Dataset Sizes and Decomposition

Resolutions
512 x 512 x 1734
Visible 24 domains
Female 1.69 GB total size
2048 x 2048 x 1920
Richtmyer 960 domains
Meshkov 7.5 GB total size
5123 40963
CT Scan 125 domains 4096 domains
4 GB total size 256 GB total size
5123 61443
Cosmology 512 domains 4096 domains
8.7 GB total size 650 GB total size

Stented Abdominal Aorta
Isosurface + Shadows

1600
1400
1200

1000

runtime (seconds)

processes

Dynamic (512/2)
~—#—Dynamic (2048"2) —#—Domain (2048"2) —®—Image (2048"2)

Doman (51242) Image (51242)

Fig. 7. Ray Tracing of Abdominal CT scan — Schedule performance
for ray tracing on an isosurface of a 5123 abdominal CT scan at image
resolutions of 5122 and 2048> (lower is better). The render includes
shadow rays for two directional lights. Runtime is given in seconds per
frame.

save the BVH since that would incur additional disk and I/O costs.
In addition, we use the coarse acceleration structure from the spatial
decomposition implied by the disk image of each dataset, since large
simulation-derived datasets are typically stored across multiple files.
For the n-body particle density field, we also perform direct volume
ray casting, as described by Levoy [22, 23].

6 RESULTS

This section evaluates our three scheduling strategies on the datasets
described in Section 5. Our primary results are based on rendering
2048 x 2048 images of each dataset. In addition, we provide results
that estimate the impact of a more optimized ray tracer by rendering
512 x 512 images of each dataset, which keeps data access costs about
the same while reducing the ray computation cost. The difference be-
tween the 2048 x 2048 results and the 512 x 512 results approximates
improved ray operation performance, as ray operations are a smaller
fraction of total execution time.

We find that the image-plane schedule performs best for cases
where ray operation costs (traversal and intersection) outweigh data
I/O costs. Each process runs continuously, since there is no synchro-
nization, and because I/O costs are small compared to ray operation
costs, there is little penalty for redundant data loads. However, when
I/O costs outweigh ray operation costs, typically the case for large
datasets, the redundant data loads overcome the benefit of continu-
ous parallel execution. As a result, the image-plane schedule performs
significantly worse than the domain and ray-weighted schedules. Fig-
ure 7 demonstrates this effect on the small abdominal CT scan dataset.

Richtmyer-Meshkov Instability Visible Female Skin

2048 x 2048, isosurface + shadows 200

.\
600 |
\ 50
500 1
4 o
A\

200

runtime (seconds)

0 200 400 600 800 1000 1200
processes

Dynamic ~®-Domain ~®-Image

Fig. 8. Richtmyer-Meshkov and Visible Female — Schedule perfor-
mance for the Richtmyer-Meshkov instability and the Visible Female
datasets (lower is better). The render includes shadows from two di-
rectional lights; runtime is given in seconds per frame.

When few primary rays are cast, the I/O costs are a significant por-
tion of overall runtime, and the image-plane schedule performs poorly.
However, when many primary rays are cast, the I/O costs shrink rel-
ative to the ray operation costs, and the relative performance of the
image-plane schedule improves. The static image-plane schedule can
be as much as 78% faster than dynamic scheduling, since the I/O costs
are amortized over many ray calculations. The results of Figure 7 are
an outlier in two respects: First, our tracer is unoptimized, which arti-
ficially inflates the cost of ray calculations, and second, the abdominal
CT scan isosurface is our smallest dataset, and our technique is tar-
geted at much larger data. Nevertheless, this result suggests that if
the data can reside completely in memory, an image-plane decompo-
sition is a competitive technique. We see this effect exclusively on
our smaller datasets: for the larger datasets discussed below, the I/O
costs always dominate the total runtime, and the image-plane schedule
performs poorly.

When rendering scenes larger than the memory available to a single
process but that can still fit within aggregate memory, the domain and
dynamic ray-weighted schedules perform significantly better than the
image-plane schedule. In particular, the domain schedule performs
best when the available aggregate memory can hold the dataset, so
that each process receives one data domain. Since each domain is
resident on a process, there is no I/O beyond the initial load. This
effect can be seen in Figure 8. For the Richtmyer-Meshkov instability
dataset, the ray-weighted schedule runs 124% faster than the domain
schedule at 64 processes, but the domain schedule runs 64% faster at
1024 processes, where each process receives a single domain.

When rendering scenes that are larger than available aggregate
memory, dynamic scheduling provides significant performance gains,
as shown in Figure 9. When data load costs dominate execution time,
which will be increasingly true as simulations and datasets increase,
the dynamic ray-weighted schedule improves performance 8x to 14 x
over static schedules. When ray computation costs are large, the dy-
namic ray-weighted schedule still improves performance 3x to 5x
over static schedules.

The performance gains of dynamic scheduling are primarily due to
its ability to reduce data domain loads from disk. Figure 10 shows
that ray-weighted dynamic scheduling can reduce data loads by 10x
to 48 x, regardless of ray computation load. We note that the image-
plane schedule always touches more domains as the number of pro-
cesses increases, since each process must load a domain if even one
ray requires it. Under the domain schedule, a process will repeat-
edly swap among its assigned sub-domains. This swapping only stops
when there are sufficient processes available to assign a single domain
to most processes, as is the case with the Abdominal CT scan dataset.
We also note some oscillation in the result trends, particularly for the
domain schedule and for small processor counts. This occurs because
the order in which domains are processed depends in part on the total

Small N-Body Particle Density
Ray Casting

runtime (seconds)

o 2 40 60 80 100 120 140
processes

Dynamic (51242)
—#—Dynamic (204812)

Domain (512/2)
—®—Domain (2048"2)

Image (51242)
—o—Image (2048"2)

Small N-Body Particle Density
Isosurface + Shadows + Specular

800

700

600

g

H

runtime (seconds)
g

0 L\\‘_\i\‘\

processes

Dynamic (512/2) Domain (51272) Image (51272)
——Dynamic (2048"2) —8—Domain (2048"2) —e—Image (2048"2)

Fig. 9. Direct Volume Ray Casting and Ray Tracing of N-Body Par-
ticle Density — Schedule performance for direct volume ray casting
and ray tracing on a 5123 particle density field at image resolutions of
512% and 20482 (lower is better). The ray tracing includes two-bounce
reflections and shadow rays for two directional lights. Runtime is given
in seconds per frame.

number of processors available, which affects the order in which child
rays are both generated and processed and results in different data ac-
cess patterns; also, the round-robin domain assignment for the domain
schedule causes each processor to receive a different set of domains,
which can cause a particular process to load more data.

6.1 Scaling

To test the scalability of our approach, we ran the dynamic sched-
ule on large versions of our datasets (exact details are in Table 1).
The static schedules failed to complete on these larger datasets. The
domain schedule fails when the ray queue becomes too large for a
particular process to contain all queued rays along with the currently-
loaded sub-domain. The image-plane schedule fails to finish within
runtime limits on Longhorn. Figure 11 shows how the ray-weighted
dynamic schedule performs on large datasets. We believe that the in-
creased runtime for the largest number of processes tested is due to
increased communication overhead while available parallelism from
the data was exhausted.

Figure 12 compares strong scaling speedup for the three schedules.
Dynamic ray-weighted scheduling exhibits monotonically increasing
speedup until the scaling limit of the problem size is reached. The
slope of the speedup line might be improved with ray calculation op-
timizations and interprocessor communication optimizations for ex-
changing rays among processes.

6.2 Effects of Decomposition on Disk

Because the I/O system has a significant impact on performance, we
evaluate the performance of different approaches to decomposing the
dataset on the disk. We organize the n-body datasets with two levels
of subdivision, and we find that dividing the data into many spatially

Domains Loaded across All Processes
Small N-Body Particle Density
Isosurface + Shadows + Reflections
120000
100000

80000

60000

domains loaded

40000

20000

o 20 a0 60 8 100 120 140
processes

Dynamic =®-Domain ~®-Image

Domains Loaded across All Processes
Stented Abdominal Aorta
Isosurface + Shadows

9000 Dynamic

8000 ~#-Domain
7000 ~e-Image
5 6000
H]
o
8 s000
» 500
£
3 400 400
g P 0 | -
3000 0 1 -
B —
2000
e
1000 0 20 40 6 8 100 120 140
——a

o 20 a0 60 EY 100 120 140
processes

Fig. 10. Spatial Domains Loaded from Disk — Number of domains
(spatial subdivisions) loaded from disk for each schedule for the cos-
mology and CT scan datasets (lower is better). Dynamic scheduling
significantly reduces the number of domains loaded from disk, which is
the primary factor for the performance gain of our approach.

distinct sub-domains can improve scheduling performance. If there
are too few sub-domains, the flexibility of the scheduler is limited,
but if there are too many sub-domains, the data become fragmented,
which limits the number of rays queued at each domain. Empirically, a
good balance occurs when the number of sub-domains is several times
the number of processes used to render them. The execution times
presented in Table 2 are for direct volume ray casting.

7 FUTURE WORK AND CONCLUSION

In this paper, we have presented a dynamic scheduling approach to
large-scale distributed memory ray tracing. Our ray-weighted dynamic
schedule is robust across many data sizes and rendering modes, and it
provides an order of magnitude speedup over static scheduling meth-
ods when data access costs dominate the execution time. In addition,
our dynamic schedule can render datasets that cannot be rendered by a
static schedule. Our ray tracer has not been thoroughly optimized, and
we have argued that as ray calculation costs are reduced through op-
timization, the gap between dynamic and static schedules will further
increase.

‘We have just begun to explore the space of possible dynamic sched-
ules. Further work is warranted to identify schedules that achieve par-
ticular system goals. In particular, it may be possible to schedule a
sub-domain across several available processes, though this may in-
crease both I/O and communication costs. A dynamic schedule could
also speculatively load data based on anticipated ray travel, particu-
larly for an animation sequence where rendering information from the
previous frame is available. We anticipate that moving to a one-way
communication model will further increase the performance benefit of
dynamic schedules over static schedules.

Large N-Body Particle Density (6144%)
Ray Casting

Dynamic

20000 ~®-Image

18000

16000 performance

improvement
14000

12000 30x

10000

8000

runtime (seconds)

6000 10x

4000

o
256 384 512
2000

200 250 300 350 400 450 500 550
processes

Large Abdominal CT Scan (40963)

Isosurface + Shadows + Specular .
Dynamic

~*-Image

performance
improvement

6000
20

runtime (seconds)
g

2000 - 2

0 . .
1000 256 384 512 768 1024

200 300 400 500 600 700 800 900 1000 1100
processes

Fig. 11. Dynamic Schedules for Large Data — Dynamic schedule per-
formance for direct volume ray casting of a 61443 n-body particle density
field and for ray tracing of an isosurface extracted from a 4096 abdom-
inal CT scan (lower is better). The isosurface render includes shadow
rays for two directional lights and two-bounce specular reflections. Run-
time is given in seconds per frame.

ACKNOWLEDGMENTS

Thanks to Kelly Gaither, Karl Schulz, Keshav Pengali, Bill Mark and
the anonymous reviewers for their helpful comments. We also thank
Ilian T. Iliev and Paul Shapiro for the n-body particle data. This
work was funded in part by National Science Foundation grants ACI-
9984660, EIA-0303609, ACI-0313263, CCF-0546236, OCI-0622780,
OCI-0726063, and OCI-0906379; an Intel Research Council grant;
and an IC? Institute fellowship.

REFERENCES

[1] T. Aila and T. Karras. Architecture Considerations for Tracing Incoherent
Rays. In M. Doggett, S. Laine, and W. Hunt, editors, Proceedings of High
Performance Graphics, 2010.

[2] T. Aila and S. Laine. Understanding the Efficiency of Ray Traversal on
GPUs. In Proceedings of High Performance Graphics, 2009.

[3] J. Bigler, A. Stephens, and S. Parker. Design for Parallel Interactive Ray
Tracing Systems. In Proceedings of Interactive Ray Tracing, 2006.

[4] S. Boulos, I. Wald, and C. Benthin. Adaptive Ray Packet Reordering. In
Proceedings of Interactive Ray Tracing, 2008.

[5] B. Budge, T. Bernardin, J. A. Stuart, S. Sengupta, K. I. Joy, and J. D.
Owens. Out-of-Core Data Management for Path Tracing on Hybrid Re-
sources. In P. Dutré and M. Stamminger, editors, Proceedings of Euro-
graphics, 2009.

[6] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, K. Bonnell,
M. Miller, G. H. Weber, C. Harrison, D. Pugmire, T. Fogal, C. Garth,
A. Sanderson, E. W. Bethel, M. Durant, D. Camp, J. M. Favre, O. Riibel,
P. Navriétil, M. Wheeler, P. Selby, and F. Vivodtzev. Vislt: An End-User
Tool For Visualizing and Analyzing Very Large Data. In Proceedings of
SciDAC 2011, July 2011. http://press.mcs.anl.gov/scidac2011.

Small N-Body Particle Density
512 x 512, Ray Casting

0 20 40 0 80 100 120 140
processes

Dynamic —Image ——Domain

Small N-Body Particle Density
512 x 512, Isosurface + Shadows + Diffuse

processes

Dynamic ——Image ——Domain

Fig. 12. Schedule Speedup — Performance of image-plane sched-
ule, domain schedule and dynamic schedule for direct volume ray cast-
ing and ray tracing an isosurface of a 5123 n-body particle density field
(higher is better). The isosurface render includes shadow rays for two
directional lights and 16 x sampled, two-bounce diffuse reflections.

[7]1 H. Childs, M. A. Duchaineau, and K.-L. Ma. A Scalable, Hybrid Scheme
for Volume Rendering Massive Data Sets. In Eurographics Symposium
on Parallel Graphics and Visualization, pages 153-162, 2006.

[8] F. Dachille IX and A. Kaufman. GI-Cube: An Architecture for Volu-
metric Global Illumination and Rendering. In Proceedings of the SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 119-128,
August 2000.

[9] D. E. DeMarle, C. P. Gribble, S. Boulos, and S. G. Parker. Memory
Sharing for Interactive Ray Tracing on Clusters. Parallel Computing,
31(2):221-242, February 2005.

[10] D. E. DeMarle, C. P. Gribble, and S. G. Parker. Memory-Savvy Dis-
tributed Interactive Ray Tracing. In D. Bartz, B. Raffin, and H.-W. Shen,
editors, Proceedings of the Eurographics Symposium on Parallel Graph-
ics and Visualization (EGPGYV), 2004.

[11] D. E. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen. Dis-
tributed Interactive Ray Tracing for Large Volume Visualization. In Pro-
ceedings of the Symposium on Parallel and Large-Data Visualization and
Graphics, 2003.

[12] M. Dippé and J. Swensen. An Adaptive Subdivision Algorithm and Paral-
lel Architecture for Realistic Image Synthesis. Computer Graphics (Pro-
ceedings of SIGGRAPH 1984), 18(3):149-158, July 1984.

[13] E. Gobbetti, F. Marton, and J. A. I. Guitidan. A single-pass GPU ray
casting framework for interactive out-of-core rendering of massive volu-
metric datasets. The Visual Computer, 24(7-9):797-806, July 2008.

[14] S. A.Green and D. J. Paddon. A Highly Flexible Multiprocessor Solution
for Ray Tracing. The Visual Computer, 6:62-73, 1990.

[15] C.P. Gribble and S. G. Parker. Enhancing Interactive Particle Visualiza-
tion with Advanced Shading Models. In Proceedings of the 3rd Sympo-
sium on Applied Perception in Graphics and Visualization, pages 111-
118, 2006.

[16] M. Howison, E.Wes Bethel, and H. Childs. MPI-Hybrid Parallelism for
Volume Rendering on Large, Multi-Core Systems. In Eurographics Sym-
posium on Parallel Graphics and Visualization, 2010.

Table 2. Effects of Disk Decomposition on Execution Time — Effect
of the number of data files on scheduling performance. Cases marked
"OOM’ exceeded memory limits; the cases marked 'DNF’ did not finish
within queue time limits.

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

5123 N-Body Particle Density
128 processes

sub-domains n=8 64 512

MB per sub-domain 1100 130 17
Dynamic 151 54 21

Domain 186 86 78
Image-Plane 92 56 44

61443 N-Body Particle Density
256 processes
sub-domains | n=512 4096 32768
MB per sub-domain 3400 436 55
Dynamic 2881 2164 6340
Domain | OOM OOM OOM
Image-Plane DNF DNF DNF

T. Ize, C. Brownlee, and C. D. Hansen. Real-time ray tracer for visualiz-
ing massive models on a cluster. In Eurographics Symposium on Parallel
Graphics and Visualization, 2011.

C. Johnson and R. Ross, editors. Visualization and Knowledge Discovery:
Report from the DOE/ASCR Workshop on Visual Analysis and Data Ex-
ploration at Extreme Scale. United States Department of Energy, October
2007.

T. Kato. “Kilauea” — Parallel Global Illumination Renderer. Parallel
Computing, 29:289-310, 2003.

T. Kato and J. Saito. “Kilauea” — Parallel Global Illumination Ren-
derer. In D. Bartz, X. Pueyo, and E. Reinhard, editors, Proceedings of
the Fourth Eurographics Workshop on Parallel Graphics and Visualiza-
tion (EGPGV), pages 7-16, 2002.

H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, and Y. Shigei.
Load Balancing Strategies for a Parallel Ray-Tracing System Based on
Constant Subdivision. The Visual Computer, 4:197-209, 1988.

M. Levoy. Display of Surfaces from Volume Data. [EEE Computer
Graphics and Applications, 8(3):29-37, 1988.

M. Levoy. Efficient Ray Tracing of Volume Data. ACM Transactions on
Graphics, 9(3):245-261, July 1990.

P. A. Navritil, D. S. Fussell, C. Lin, and W. R. Mark. Dynamic Ray
Scheduling to Improve Ray Coherence and Bandwidth Utilization. In
Proceedings of Interactive Ray Tracing, 2007.

S. Parker, M. Parker, Y. Livnat, P. P. Sloan, C. Hansen, and P. Shirley.
Interactive Ray Tracing for Volume Visualization. [EEE Transactions
on Computer Graphics and Visualization, 5(3):238-250, July-September
1999.

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. P. Sloan. Interactive Ray
Tracing for Isosurface Rendering. In Proceedings of IEEE Visualization,
pages 233-238, 1998.

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. P. Sloan. Interactive
Ray Tracing. In Proceedings of Interactive 3D Graphics, 1999.

T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham. End-to-End Study
of Parallel Volume Rendering on the IBM Blue Gene/P. In Proceedings of
International Conference on Parallel Processing, pages 566—573, 2009.
M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering Com-
plex Scenes with Memory-Coherent Ray Tracing. Computer Graphics
(Proceedings of SIGGRAPH), 31(Annual Conference Series):101-108,
August 1997.

E. Reinhard, A. G. Chalmers, and F. W. Jansen. Hybrid Scheduling for
Parallel Rendering using Coherent Ray Tasks. In Proceedings of IEEE
Parallel Visualization and Graphics Symposium, 1999.

E. Reinhard and F. W. Jansen. Rendering Large Scenes using Parallel Ray
Tracing. In Proceedings of Eurographics Workshop of Parallel Graphics
and Visualization, 1996.

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

A. Reshetov, A. Soupikov, and J. Hurley. Multi-Level Ray Tracing Al-
gorithm. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
24(3):1176-1185, 2005.

J. Salmon and J. Goldsmith. A Hypercube Ray-Tracer. In G. Fox, edi-
tor, Proceedings of the Third Conference on Hypercube Computers and
Applications, pages 1194-1206, 1988.

J. Steinhurst, G. Coombe, and A. Lastra. Reordering for Cache Conscious
Photon Mapping. In Proceedings of Graphics Interface, pages 97104,
2005.

1. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A Characterization
of Ten Hidden-Surface Algorithms. ACM Computing Surveys, 6(1):1-55,
March 1974.

TOPS500.0rg. Architecture Share for 11/2011, November 2011.

1. Wald, C. Benthin, and P. Slusallek. Distributed Interactive Ray Tracing
of Dynamic Scenes. In Proceedings of the IEEE Symposium on Parallel
and Large-Data Visualization and Graphics, 2003.

I. Wald, A. Dietrich, and P. Slusallek. An Interactive Out-of-Core Ren-
dering Framework for Visualizing Massively Complex Models. In Pro-
ceedings of the Eurographics Symposium on Rendering, 2004.

1. Wald, W. R. Mark, J. Giinther, S. Boulos, T. Ize, W. Hunt, S. G. Parker,
and P. Shirley. State of the Art in Ray Tracing Animated Scenes. In
Proceedings of EUROGRAPHICS STAR — State of The Art Report, 2007.
1. Wald, T. J. Purcell, J. Schmittler, C. Benthin, and P. Slusallek. Realtime
Ray Tracing and Its Use for Interactive Global Illumination. In Proceed-
ings of EUROGRAPHICS STAR — State of The Art Report, 2003.

1. Wald, P. Slusallek, and C. Benthin. Interactive Distributed Ray Trac-
ing of Highly Complex Models. In Rendering Techniques 2001: 12th
Eurographics Workshop on Rendering, pages 277-288, 2001.

	Introduction
	Introduction
	Related Work
	Improving Memory Access Coherence
	Shared-Memory Ray Tracing
	Distributed-Memory Ray Tracing
	Large-Scale Direct Volume Ray Casting

	Algorithm Overview
	Scheduling Considerations
	Static Ray Scheduling Baselines
	Dynamic Scheduling Algorithm

	Methodology
	System Configuration
	Datasets

	Results
	Scaling
	Effects of Decomposition on Disk

	Future Work and Conclusion

