
 
Non-uniqueness of Beltrami-Schaefer 

Stress Functions 
 

by 

Yuan WANG1,2*     Jonny Rutqvist2 

 

1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, 

College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China 

2. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA 

 

 

Abstract 
 

Beltrami and Schaefer derived solutions for the equilibrium equations of an elastic body free of 
body force, and Gurtin proved that the solutions are complete, i.e., proved that Beltrami–Schaefer 
stress functions are general solutions of the equilibrium equations. In this paper we show that the 
Beltrami – Schaefer stress functions are not unique, and we determine their degree of 
non-uniqueness. Finally, we present two applications of the non-uniqueness as remarks.  
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1  Introduction 

Since Cauchy, Navier, and Poisson presented the basic governing equations for linear 
elasticity in the 19th century, scholars have devoted substantial effort toward seeking analytic 
solutions in elasticity. The Saint-Venant solutions are the most significant contributions towards 
solving twist and bending problems. As a result of the difficulties in establishing analytic solutions 
for 2D and 3D problems, scientists have extended their work to general solutions methods. The 
method of general solutions has been proven over decades to be a powerful tool in solving 3D 
problems in elastic theory. 

It is well known that stress functions play an important role in the analysis of general solutions. 
Rostamian [7] studied the completeness of Maxwell's stress functions. These stress-function 
methods have been applied to a number of research fields, such as anisotropic elasticity [10], 
gradient elasticity [1], coupled stresses [6], and hyper-elasticity [9]. Fosdick and Royer [11] 
expanded Stokes' theorem for vector fields to Stokes' theorem for second-order tensor fields and 
implemented it in the Beltrami's stress functions.  

Stress functions are the general solutions of the following set of equilibrium equations 
describing an elastic object free of body force:  

div S = 0                                 （1.1) 

where S  is the stress tensor, which is a second-order symmetric tensor. Based on the work by 
Airy, Maxwell, Morera, and others, Beltrami [2] presented the following expression of stress 
functions: 

curl curl AS = ,                            （1.2) 

where A  is an arbitrary second-order symmetric tensor. Schaefer [8] presented a more general 
form of what are called the Beltrami–Schaefer stress functions: 

curl curl 2 div −∇%A + h IS = h ,                     （1.3) 

where  is a harmonic vector, h I  is the unit tensor, , in which the 

superscript T denotes transpose. Gurtin [4, 5] proved the completeness of the Beltrami-Schaefer 

stress functions (1.3). That is, for any solution 

T2∇ ∇ ∇%h = h + h

S  which satisfies the equilibrium Equation (1.1）, 

a symmetric tensor A  and a harmonic vector  exist such that Equation (1.3) holds. Therefore,  
the Beltrami-Schaefer stress functions (1.3) provide a general solution of the equilibrium equation 
set (1.1). 

h

The main objective of this paper is to investigate and prove that A  and  in (1.3) are not 
unique. In Section 2 we present two theorems for proving and determining the degree of 
non-uniqueness, and we also provide some formulas for verification. In Section 3 we present the 
proofs of the two theorems. Finally, two applications of the two theorems are set forth in Section 4 
as remarks. 

h

2 Two Theorems and Formulas 
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To investigate and prove the non-uniqueness of the Beltrami-Schaefer stress functions (1.2) 
and their degree of non-uniqueness, we first introduce the following two theorems. 

Theorem 2.1: Assume that S , which is one solution of the equilibrium equation (1.1), has 

been expressed in the form of equation (1.3）, as well as 

( ) 2J= + −Σ Σ ∇A A I +% % p                       (2.1) 

and 

div Σ%h = h + ,                              (2.2) 

where A  and h are associated with (1.3),  is an arbitrary vector, p ( )∗J is the trace of a 

tensor, and is a second-order harmonic tensor, i.e.,  Σ

=Δ Σ 0 .                                (2.3) 

Then if we replace the symmetric tensor A  and the harmonic vector  in equation (1.3) byh %A  

in equation（2.1） and  in equation（2.2）, equation (1.3) still holds.  %h

Theorem 2.2: If there are two sets of Beltrami-Schaefer stress functions for the equilibrium 
equation (1.1) as 

( )2 div 1−∇S A + h I h%= i i icurl curl i , 2= ,          (2.4) 

then there exists a second-order symmetric harmonic tensor Σ  and a vector  such that p

( )1 2 2J− = − +Σ Σ ∇A A I % p                        (2.5) 

and 

                           1 2 div− = Σh h .                             (2.6) 

In order to prove the above two theorems, we also need the following formulas 

curl curl =∇%b 0 ,                             (2.7) 

( )div =∇I ϕ ϕ ,                               (2.8) 

 ,                      (2.9) ( )T div div− = −∇ ∇b + b I b bJ

( ) ( ) ( )curl curl 2 div div div− = −⎡ ⎤⎣ ⎦Π Π ∇ Π Π − Δ Π%I IJ          (2.10) 

and 

( ) ( ) ( )curl curl curl curl 2 div− = −Π Π ∇ Π ∇∇ Π −%I J J Δ Π .     (2.11) 
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where  is a vector, b ϕ  is a scalar, Π  is a symmetric tensor. Formulas (2.7) - (2.11) can be 

verified directly, or be found in Reference [5]. 

3 Proofs of Theorem 2.1 and Theorem 2.2 

The Proof of Theorem 2.1   At first, we know that %A  is a symmetric tensor because Σ  

is a symmetric tensor and  is harmonic. Next by substituting（2.1）and（2.2）into the right side 

of equation（1.3）, and considering equations（1.3），（2.7），（2.10）and（2.3），we can obtain 

%h

( ) ( )
( ) ( )

Tcurl curl 2 div

curl curl 2 2 div div div

curl curl 2 div div div

+ + −

⎡ ⎤= + + −⎣ ⎦
= + −⎡ ⎤⎣ ⎦
= =

∇ ∇

 Σ − Ι Σ ∇ ∇ Σ Σ

 Σ − Ι Σ ∇ Σ Σ

 ΔΣ  

% % % %%

% %

%

A h h I h

S + p I

S + I

S + S

J

J
.   

(3.1) 

Equation (3.1) indicates that for %A  and , equation（1.3） also holds.                  %h

 

The Proof of Theorem 2.2   Let 

( ) ( )1 2 1 2,= − −Ψ A A q = h hF F ,                (3.2) 

where is Newton’s potential，i.e., ( )∗F

1 2 1,= − −ΔΨ Δ 2A A q = h h

q

.                     (3.3) 

Let 

curl curl 2 div=Σ Ψ ∇ −+ q I%                       (3.4) 

and 

( )1div
2

⎡ ⎤− −⎢⎣ ⎦
Ψ Ψp = I qJ ⎥ .                       (3.5) 

Then,  and defined in equations（3.4）and（3.5）satisfy equations（2.5）and（2.6）. (We 

will verify this later.) 

Σ p

In view of equation（3.4）, we observe that Σ  is a symmetric second-order tensor. To prove 

that  is harmonic, we subtract the two formulas in（2.4）to obtain Σ

( ) ( ) ( )1 2 1 2 1 2curl curl 2 div− −+ =−∇ −%A A h h hIh 0 .        (3.6) 
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Applying the Laplace operator to equation（3.4）,  we derive 

( ) ( ) ( )curl 2 ivcurl d+= Ψ ∇ −Δ Σ Δ Δ Δ% q I q .            (3.7) 

From equation（3.3）and（3.6）, we know that Σ  obtained from（3.7）is a harmonic tensor. 

  

 Now, let us verify the correctness of equation（2.5）. Upon substituting（3.4）and（3.5）into 

the right side of formula （2.5）, and considering（2.9）and（2.8），the following expression is 

derived 

 

( )
( )

( ) ( )

( ) ( )

2

curl curl curl curl 2 div

12 div 2 div
2

curl curl curl curl 2 div

− +

= − +

( )

⎧ ⎫⎡ ⎤− + − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
= − + −

Σ Σ ∇

Ψ Ψ ∇ −

∇ − ∇ Ψ Ψ

Ψ Ψ ∇ Ψ ∇∇

%

%

% %

I p

I q I q

Ψ

I q I q I q

I I

J

J

J J

J J

.       

(3.8)

 

In terms of equation（2.11）and the first formula in equation（3.3）, equation (2.5) can be derived  

from（3.8）.  

     To prove the correctness of equation （2.6）, we substitute （3.4） into the right side of

（2.6）, and by using equation (2.8）as well as the second formula in（3.3）, we obtain 

( ) 1div div curl curl 2 - div= + =Σ Ψ ∇ Δq I q q = h h 2− .     (3.9) 

Equation (3.9) is consistent with equation（2.6）.                                      

 
4 Remarks 

Two applications of the theorems are given in the following remarks. 

Remark 4.1: A stress field is self-balancing if both the resultant force and resultant moment 
applied on the every closed surface inside the elastic domain are equal to zero. For the case of a 
self-balancing field, based on A  and  as given by Gurtin [4, 5] in the proof of completeness, 

Carlson [3] found a symmetric harmonic tensor 

h

Σ  that makes the vector  equal to zero. 

Therefore, for a self-balancing field，the Beltrami's stress functions（1.2） are the complete 

solutions of equilibrium equation set（1.1）. It has also been shown by Fosdick and Royer [11] in 

%h
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view of Stokes' theorem for second-order tensor fields. 
                 

Remark 4.2: Consider the equation 

curl curl 2 div+ =∇ −% Ih hA 0 .                      (4.1) 

where A  is a symmetric second-order tensor,  is a harmonic vector. h

In the view of Theorem 2.1 in section 2, we know that equation（4.1）has the following 

solutions A and h : 

( ) 2J= +Σ − Ι Σ ∇A p%                          (4.2) 

and 

                      div= Σh .                               (4.3) 

where  is a second-order symmetric harmonic tensor and  is an arbitrary vector. Σ p
 

On the other hand, for any solutions A  and h of (4.1）, Theorem 2.2 indicates that there 

exists a harmonic tensor  and a vector  such that （4.2）and（4.3） hold, i.e.,（4.2） and 

（4.3）give the complete solutions of equation（4.1）. 

Σ p

 
Now, we arrive at the following theorem:  

Theorem 4.3: The general solutions of equation（4.1）are given by（4.2）and（4.3）. 

For the special case , we rewrite tensorh = 0 A  into the strain tensor , so equation

（4.1）becomes 

Γ

curl curl =Γ 0 .                           (4.4) 

Therefore, Theorem 4.3 leads to the following deduction: 

    Deduction: The general solutions of the Saint-Venant strain compatibility equation（4.4）are 

 ( ) 2J= +Γ Σ − Ι Σ ∇ p% ,                         (4.5) 

where is a symmetric tensor, Σ 0, div 0= =ΔΣ Σ , and  is a vector.  p

However, we know that the geometric equation in the theory of elasticity is described as in [5]: 
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( )T1
2

= =Γ ∇ ∇ ∇u u + u% .                        (4.6) 

Generally speaking, for a multiple-connected domain, we cannot obtain a single-valued 
displacement field u  from (4.6) for a given Γ  if there are no additional conditions on Γ , but 
we can always obta a single-valued in Σ  and  in (4.5) by equation (4.4).  
 

p
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