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Abstract 

The utilization of real-world materials has been hindered by a lack of standards for sharing and interpreting 
measured data. This paper presents an XML representation and an Open Source C library to support 
bidirectional scattering distribution functions (BSDFs) in data-driven lighting simulation and rendering 
applications.The library provides for the efficient representation, query, and Monte Carlo sampling of 
arbitrary BSDFs in amodel-free framework. Currently, we support two BSDF data representations: one 
using a fixed subdivision of thehemisphere, and one with adaptive density. The fixed type has advantages 
for certain matrix operations, while theadaptive type can more accurately represent highly peaked data. We 
discuss advanced methods for data-drivenBSDF rendering for both types, including the proxy of detailed 
geometry to enhance appearance and accuracy.We also present an advanced interpolation method to reduce 
measured data into these standard representations.We end with our plan for future extensions and sharing 
of BSDF data. 

 

1.Introduction 

Accurate light scattering off surfaces is critical to realism for computer graphics and physically-based 
rendering. While many different reflectance models have been developed, the world of real materials is too 
diverse to fit a single mathematical model (Ngan et al., 2005). Multi-lobe BRDFs come closestto generality 
(LaFortune et al., 1997, Ashikhmin and Shirley, 2000; Yu et al., 2010), but can fail when reflectance 
behavior does not fit the parameterization. Few models address transmission, and none can handle complex 
fenestration systems (CFSs) designed to convey daylight inspecialized ways, such as prismatic glazings, 
holographicfilms, and specular louvers. This is becoming an increasinglyimportant topic in modern 
building design (Gayeski et al., 2009). 

Data-driven BSDFs offer a more general alternative to mathematical models, but they present a number of 
challenges. First, there is the question of how to parameterize the function – a grid of elevation and azimuth 
values is simple but inefficient. How do we represent a BSDF with strong, localized peaks? How do we 
generate importance based Monte Carlo samples quickly and efficiently? How do we cope with the 
common case of missing data in our measurements? We must address each of these questions before we 
can claim to have a practical solution. 

Our long-term goal is to provide a practical framework for sharing model-free BSDF data between the 
lighting simulation and graphics communities. To accomplish this, we need an interchange and application 
standard that is simple, efficient, and transparent. We propose such a standard with a library implemented 
in C, whose API is more general than current XML representations. This library is flexible enough to be 
updated with improvements to the underlying file standard, and is already being used by industry. 

We begin with a summary of relevant work on data-driven BSDF models, followed by an explanation of 
our fixed and variable representations, with examples of each. We demonstrate additional data-driven 
BSDF rendering techniques using a version of the Radiance lighting simulation and rendering system 
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(Larson and Shakespeare,1998). Finally, we present an advanced interpolation method for converting 
incomplete BSDF measurements to a usable form. We end with a discussion of the method and future 
directions. 

2. Background and RelatedWork 

The Bidirectional Scattering Distribution Function (BSDF) is a four-dimensional function akin to the 
BRDF that describes how incident light over both the front and back hemispheres of a surface is scattered 
in front of and behind a surface. The BSDF  can be defined in terms of the rendering equation(Kajiya, 
1986): 

.                                                                                                   (1) 

The semicolon between the arguments of means that the two ’s may be swapped without changing the 
value of the function – hence its bidirectional nature (a.k.a. reciprocity). Essentially, the rendering equation 
states that the outgoingradiance in the direction equals the integral of incident radiance from all 
directions multiplied by with a cosinecorrection. The term is common notation for incident solid 
angle from the direction and would include  if given as and . 

The unit of the BSDF is . Since integrating the cosine over the incident hemisphere yields a 
value of , a Lambertian reflector has a value of  for all , on the same side, and zero elsewhere. 
Similarly, a translucent diffuser has a value of  on the opposite side, where  for energy 
balance. The values for may be different on the front and back sides, but reciprocity implies must be the 
same in either direction. 

Eq. (1) may be considered on a per-wavelength basis for color rendering, where the  and  functions 
become vector-valued, with spectral components treated independently.Typically, this is done for three 
components corresponding to some version of red, green, and blue, but may be extended to several spectral 
dimensions to achieve more accurate color. For the purposes of this paper and without loss of generality, 
we restrict our discussion to the scalar form of these functions.We further ignore subsurface scattering (i.e., 
BSSRDFs) (Jensen et al., 2001), polarization, diffraction, and fluorescence. These effects are important for 
certain classes of materials, but we leave them as subjects for future work. 

The main challenge for any data-driven BSDF method is Monte Carlo sampling. Both rejection sampling 
and BSDF weighted sampling are terribly inefficient for typical, peaked distributions. Researchers have 
consequently spent much effort developing more practical approaches. These techniques fall into two broad 
categories: partial model methods and table-based methods. 

Table-based methods build a cumulative probability table for each incident (or exiting) direction and look 
up sample directions with stochastically distributed random variables (Matusik et al, 2003). Such methods 
are direct and efficient but memory-intensive even for isotropic BRDFs, and become quickly impractical 
for general(anisotropic) distributions. Storing a single 4-D BRDF with 1-degree angular resolution takes 
over a gigabyte of memory, and look-up tablesmore than double this requirement. Such methods also 
placeaburden on the BRDF measurement process, which mustcompletely cover all relevant directions. 

Partial model methods attempt to separate each BRDF into a product of lower-dimensional functions that 
can be fit to measured data (McCool, 2001; Bilgili et al., 2011;Suykens et al., 2003). This approach stands 
somewhere between table-based methods and analytical BRDF models (Cook and Torrance, 1981; He et 
al.; 1991; War92,LaFortune et al, 1997; Edwards et al. 2006). Similar to most full BRDF models, partial 
models have a small memory footprint and can be readily sampled with a series of modest one dimensional 
(1-D) lookups (Lawrence et al.,2004). Although factorization can in principle be used to match any 
distribution, the modeler must choose an appropriate parameterization, and this changes from one class of 
materials to another. Partial modeling thus alleviates but does not eliminate the troubling restriction to a 
subclass of real-world materials. A partial model is still a model. 

Since our goal is to represent arbitrary and therefore model-free BSDFs, we adopt a table-based approach. 
Our challenge is two-fold: reducing memory requirements during rendering, and filling in missing 
measurement data. Our methods for reducing memory requirements are explained in the following sections. 
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The second challenge is more difficult, as data filling implies the presence of some model or smoothness 
behavior, and for this we rely on some recent work in this area (Bonneel et. al., 2011).We present our 
measurement interpolation method towards the end of our paper. 

3. Fixed and Variable Resolution Data Standards 

Our BSDF data representation builds upon the eXtensible Markup Language (XML) standard created by 
Mitchell et al. to support LBNL’s WINDOW 6 program, the industry standard for calculating radiative 
transfer through CFSs (Mitchellet al., 2008). The WINDOW 6 matrix representation was created to 
facilitate combining window elements as layers, which requires reflectance as well as transmittance data for 
each layer. We adopt the existing format and introduce our own adaptive density representation. 

Most BSDF files contain extensive data values for front and back reflection as well as transmission. They 
might also contain information describing geometric detail for the system, as would be useful in the case of 
venetian blinds. Such detail permits a rendering program to rely on the measured BSDF for indirect light 
transfers, while using the geometry for direct views and computing visibility. To represent geometric detail, 
we interpolate the Materials and Geometry Format (MGF), a compact description designed for physically-
based rendering (Ward, 2012). Use of this information is optional and facilitated by a standard parser that 
reduces MGF entities to a form that is easy for a rendering system to digest. We demonstrate how this data 
may be used in Section 4. (Examples of our XML file structure and MGF subformat are given in the 
supplemental material.) 

Once we have a BSDF loaded, we have found the following four queries useful for rendering, 
independentof the underlying representation: 

(a) Get a BSDF value for a pair of directions 

(b) Get the directional hemispherical scattering for a given incident direction 

(c) Get the projected solid angle sample size for one or two directions 

(d) Get a PDF-derived importance direction for the given incident direction 

The first query (a) is a simple look-up into our stored BSDF. The second query (b) integrates all the 
requested BSDF components at the given incident vector, yielding the total energy transfer for that 
direction. The third query (c) is helpful for determining how closely to sample the BSDF in a particular 
region. Given two directions, it returns the min. and/or max. projected solid angle linking the two in our 
representation. Given only one direction, it returns the min. and/or max. sample size over all other 
directions (front and back). The final query (d) is the most crucial for Monte Carlo rendering, since it 
generates importance samples according to the probability distribution function. The following subsections 
describe our two representations and techniques for answering query (d). 

3.1. Matrix BSDFs 

The matrix BSDF type is thus named because it uses a fixednumber of incident and exiting directions to 
form a rectangular matrix of values. Thenumbers of incident and exiting directions are often equal, since 
square matrices can be more easily composed into a single matrix that includes the effects of 
interreflections between layers (Klems, 1994). For this reason also, the WINDOW 6 designers chose a 
mapping between matrix position and hemisphere direction that results in a diagonal matrix when 
transmission or reflection is purely specular. The Klems coordinate system, as it is called, forms the basis 
for mapping between directions and matrix entries. 

The Klems hemispherical basis is shown in Figure 1(a). The patches have roughly equal projected solid 
angles. The patch indexing scheme for placing hemisphere values in a matrix row or column is shown in 
Figure 1(b) and the exact angle definitions are given in Table 1. The orientation of this hemisphere changes 
depending on whether the ray is incident or exiting on the front or back side in order tomaintain the 
aforementioned diagonal relationship in specular systems. 
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(a) (b) 

 
Figure 1. (a) The Klems hemispherical coordinate system for matrix BSDFs. (b) The ordering of Klems patches in matrix rows or 
columns. 
 

Average  Maximum  Number of  
0 5 1 

10 15 8 
20 25 16 
30 35 20 
40 45 24 
50 55 24 
60 65 24 
70 75 16 

82.5 90 12 
 

Table 1. Definition of Klems basis angles in degrees. The first  value at each latitude is centered at . 
 

Using the Klems basis for our matrix BSDF, we have exactly 145×145 or 21025 values for each 
component. For a BRDF, we may only have a single reflection component, but for a transmissive system, 
we should have three components: transmission, front reflection and back reflection. Traditional WINDOW 
6 files contain redundant front and back transmission for a total of four components. A matrix BSDF file is 
therefore in the range of 500 -1000 Kbytes uncompressed, and a loaded BSDF takes about 256 Kbytes of 
memory using 32-bit floats. 

Answering our sampling query (d) for the Klems matrix representation is not particularly difficult: 

(1) For each new incident patch (row), we build a cumulative table from the exiting patches (columns) in 
Klems index order. Tables are cached and reused for the same incident patches. 

(2) The final entry in this column table is the total directional hemispherical scattering for the given 
incident direction, and we multiply the input  random variable for the sample ray by this total. 

(3) We look up the entry closest to this product in our table, and generate a ray in the direction 
corresponding to the associated patch. 

Effectively, we are combining our two angular dimensions into a single 1-D cumulative table, similar to 
Monte Carlo inversion process. The net result is that smaller random variable inputs will tend to send rays 
out patches with smaller index numbers (near the normal) and larger random inputs sent out patches with 
larger indexes (near the horizon). More rays will of course be sent out patches with larger BSDF values, 
which is the essential character of importance sampling. Further randomization is performed to avoid 
sending all the rays for a particular patch in the same direction. 
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An example rendering of a matrix BSDF representation of a Ward-Geisler-Moroder-Dür model (Geisler-
Moroder and Dür, 2010) is shownin Figure 2(a). The data-driven model shows the effects of matrix 
sampling, particularly in the highlights. Figure 2(d) shows a rendering of what should be a much smoother 
surface with sharper reflections. This demonstrates the main limitation of a matrix representation, which is 
resolution. Sampling a BSDF every or  degrees is inadequate for many rendering applications. 
Increasing the matrix resolution would help, but a uniform partition of the hemisphere at the resolution 
required to capture such peaks would take gigabytes of storage and be very inefficient. This is where we 
may prefer a more adaptive solution. 

   
(a) (b) (c) 

   
(d) (e) (f) 

 
Figure 2. (a) Matrix-based BRDF rendering of anisotropic Ward model. The sharpness of the highlights is degraded by thelack of 
resolution in the  matrix representation. (b) Reference image. (c) Tensor tree BRDF rendering of the samemodel. (d) Matrix 
representation of isotropic Ward model on sculpture and statuette. (e) Reference image. (f) High-resolutiontensor-tree representation. 
Insets show color-coded maps which represent a probability that an average observer will notice adifference between the reference 
image and rendered image (Mantiuk et al., 2011). 

3.2. Tensor Tree BSDFs 

A tensor tree represents the sharp peaks in a BSDF by subdividing adaptively in different regions of the 
distribution. Sample density is coordinated between input and output directions, since higher density 
required in one implies that higher density is required in the other. 

Consider a mirror-like surface. At an incident angle of (there will be a strong peak in the 
outgoingdirection near , which must be recordedat high density. We could subdivide 
the exiting hemisphereadaptively using a geodesic hierarchy or similar, but whatabout the incident 
hemisphere? We cannot partition it independently,because every incident direction will correspond to a 
peak somewhere in the outgoing hemisphere, implyingthat the same high resolution is needed everywhere 
for incidence.A low-resolution incident hemisphere of adaptivelypartitioned exiting hemispheres would 
have us jumping fromone narrow output direction to another, with predictable results.Reversing incident 
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and exiting hemispheres would nothelp – they must be subdivided together. The solution is tointerleave the 
input and output hemispheres and employ treesubdivision on the whole distribution. 

Tensors are a direct extension of vectors and matrices. Avector is a rank-1 tensor, and a matrix is a rank-2 
tensor. Arank-3 tensor is therefore a stack of matrices, and so on tohigher dimensions (Lebedev and Cloud, 
2003). In our application, tensors providea way to keep closely associated BSDF values near eachother for 
convenient subdivision. 

Sticking with dimensions we can visualize, an isotropic BSDF can be represented as a rank-3 tensor. Since 
the outgoing distribution does not change with rotation, we only need one matrix per incident theta, 
covering all the outgoing directions for that incidence. Columns and rows in each matrix correspond in this 
case to the two degrees of freedom on the exiting hemisphere. The actual dimensions of the matrix and 
even the number of theta values need not be decided in advance – this is where our tree structure takes 
over. 

Figure 3 shows a familiar octree hierarchy, where each subdivided node contains eight children 
corresponding to the voxels of that subtree. If all the leaf voxels were the same size, our uniform three 
dimensional (3-D) grid would correspond to a cubic tensor. We could fill this tensor with a set of isotropic 
BSDF values. From this starting point, we can adaptively prune our tree. We collapse all siblingleaf voxels 
that are within some epsilon of each other into their parent, assigning an average value. Applying this 
recursively to the entire tree, we end up with a hierarchy that is dense where the BSDF changes rapidly and 
sparse where it changes slowly, similar to wavelet-based decompositions. The tree representation directly 
allows us to look up any value quickly and efficiently from the original BSDF. Indeed, the tree itself 
becomes a new aggregate data type that transcends the original tensor because it has no maximum density 
limit. A mirror would be represented by a high density track of large-valued voxels along a line through our 
cube, surrounded by more sparsely represented regions requiring little storage. 

 
 

Figure 3. An octree hierarchy used to define a rank-3 tensor tree for an isotropic BSDF. 
 

In the more general case of anisotropic BSDFs, our tensor is rank-4 and encoded in a hextree. The two 
dimensions of the exiting hemisphere are enveloped in two more dimensions for the incident hemisphere. 
Figure 2(c) shows our example scene with the BSDF data recorded as a rank-4 tensor tree. The maximum 
angular resolution in this rendering is less than , compared to  in the original matrix representation. 
The total size of the tree is considerably larger due to its higher density, but it only takes  of the memory 
a fully populated tensor requires and the time to render. This particular BSDF loads into  Mbytes of 
memory. The differences are even more pronounced in the smooth, isotropic case shown in Figure 3(f). For 
the blue material, we resolved our tensor tree to an angle of . This surfacetook  Mbytes of RAM 
during rendering, and the roughertranslucent surface took  Mbytes. 

We have yet to address the important question of how we map dimensions in our tensor tree to dimensions 
on each hemisphere. After all, one domain is square and the other is not. We need to preserve 
neighborhoods for stratified sampling, and it would be optimal if areas were maintained as well. 
Specifically, we would like each entry at a given level in our tree to represent the same projected solid 
angle on our hemisphere. Fortunately, just such a mapping was developed by Shirley and Chiu (Shirley and 
Chiu,1997) and is shown in Figure 4: 
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                                                      (2) 

where and  are the two-dimensional (2-D) point coordinates on the square and the disk. The 
mapped regions are distorted between a square and a disk so that locality and area properties are preserved 
for stratified importance sampling. 

 
 

Figure 4. Shirley and Chiu’s area-preserving map between a square and a disk (Shirley and Chiu, 1997). 
 

Similar to the matrix representation described in the previous section, the only difficult query to implement 
for tensor trees is the ray sampling call (d). For stratified MC sampling, we need to sort our leaf nodes at a 
given incident directioninto a 1-D sequence that preserves locality. We employ theHilbert traversal shown 
in Figure 5, which maximizes locality while keeping a direct relationship to our octree/hextreebranching 
(Gotsman and Lindenbaum, 1996).  Working in a square slice corresponding to the exiting hemisphere for 
the queried incident vector, we order our cumulative table along the Hilbert path. This path traverses the 

 square with a  line segment such that any given fraction of the line segment covers the same 
fraction of the area. This is the key to converting our 2-D sampling domain into a 1-D cumulative table 
based on projected area. Larger leaf nodes will skip further along the path, but we never have the problem 
of re-entering a node since the Hilbert curve respects the quadtree’s recursive boundaries. 

 
Figure 5. A Hilbert 2-D space-filling curve drawn to the 4thlevel. Different regions illustrate a hypothetical tensor tree’s 
subdivision of exiting directions where samples might go. 
 

Our stratified sampling method (d) for tensor trees is summarized as follows: 

(1) We project our incident vector onto a disk by discarding the z0-coordinate and map this position to the 
unit square using Shirley and Chiu’s formula. 

(2) For a previously unvisited branch of our octree or hextree, we build a cumulative table along a level-16 
Hilbert path in the associated exiting quadtree. Tables are cached and reused for the same incident 
branches. 

(3) The final entry in this column table is the total directional hemispherical scattering for the given 
incident direction, and we multiply the input  random variable for the sample ray by this total. 
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(4) We look up the Hilbert curve position corresponding to this product in our table, and this gives us a 2-D 
coordinate in our unit square. We further jitter the position to avoid using the leaf nodes’ center every time. 

(5) We map this position back to a unit disk using Shirley and Chiu’s mapping, then to a unit vector by 
adding the appropriate -component (i.e., ). This is our generated ray. 
 
This is very similar to the method used for the matrix representation with the addition of a Shirley-Chiu 
mapping on either end. Some additional work rotating vectors is required for isotropic distributions, but this 
is straightforward. Overall, the only part that takes significant time is the building of the cumulative tables, 
which is why we cache and reuse these data. In a running program, our tables may use as much memory as 
the BSDF itself. Least recently used replacement could be applied if this ever becomes an issue. 

The method (d) described above and the one given in Section 3.1 for matrix BSDFs are not 
themselvesstratified, but they preserve stratification in the controlling input variable. If the routine is given 
a sequence of uncorrelated control values, then the generated importance samples will be uncorrelated, 
also. However, inputs near each other in the 0-1 range produce rays that are near each other in the 
normalized samplingdomain. Similarly, well-separated inputs tend to generate well-separated ray samples. 
Stratifying the control input thus produces stratified output rays, which is an important technique for 
reducing variance in the result. Adaptive sampling also makes use of this property, but should be applied in 
stages to avoid bias (Kirk and Arvo, 1991). 

4. Rendering in Radiance 

The Radiance lighting simulation system is used directly or indirectly by the majority of the daylight 
modeling community(Galasiu and Reinhart, 2008). Its freely available source facilitates additions and 
experimentation, and improves transparency for researchers and advanced users (Larson and Shakespeare, 
1998). Radiance provides an excellent platform for testing our BSDF representation and library interface. 

Although most BSDF research focuses on different aspects of reflection, we are particularly interested in 
transmission through complex fenestration systems due to their importance for daylighting 
applications.Such systems are often designed to have unusual behaviors when it comes to light transfer 
(Thanachareonkit and Scartezzini, 2010). These behaviors are not fit by existing models, and consequently 
have a greater need for data-driven methods. Since a CFS controls how light enters a space, accurate 
simulation is critical to predicting interior light levels and distributions. Because such systems tend to be 
found on or near windows, how they affect the view and to what degree they induce glare are also 
important concerns. 

4.1. BSDF Proxy Method 

One of the most challenging aspects of a CFS is rendering its appearance. While aggregate behavior as 
described by a BSDF is a useful way to model illumination, spatial variations determine what a window 
looks like to an occupant, and may impart a pattern to a solar beam component as well. Figure 6(a) shows a 
BSDF simulation of a venetian blind CFS with curved, half-specular louvers from an interior perspective 
using a Klems matrix representation. At  resolution, direct pass-through cannot be represented 
accurately, casting light blobs rather than beams. Figure 6(b) shows a BSDF simulation which uses a tensor 
tree to achieve roughly  resolution, and the sun patch begins to take shape, although the edges are still 
blurry. We also get the vague sense of a horizon out the window, although we cannot see the slats of the 
blinds. In fact, increasing BSDF resolution would never allow us to see the slats, because the BSDF 
represents only angular data, not spatial (X-Y) patterns. One solution is to introduce a bidirectional texture 
function (BTF) to the data (Dana et al. 2002). This would certainly solve the problem, but would take 
additional storage and put a burden on the measurement and rendering processes.  
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(a) (b) 

 

 

(c)  
 
Figure 6. (a) A venetian blind system rendered from a 145145 Klems matrix. (b) The same scene rendered using a tensortree 
representation with 3 the resolution of the Klems data. (c) The scene using a BSDF surface as a proxy for detailed blindsgeometry. We 
can now see the blinds in full detail as well as the striped shadows cast on the interior surfaces. 
 

We take an alternate approach, where the BSDF is used as a proxy for detailed geometry. We use the 
geometry for direct views and shadow testing, and the measured BSDF to characterize light scattered by the 
system.  

Figure 7 diagrams our proxy behavior during the ray tracing process. View rays pass through the two 
proxies and interact with the underlying geometry, as do rays sent to test for light sources and shadows. 
Indirect sampling rays interact only with the proxy surfaces, and transmitted rays are displaced to bypass 
the detailed geometry and compute contributions from the opposite side. (Indirect rays originating inside 
the sandwich are blind to the proxy geometry, and care is taken to avoid double-counting unscattered 
transmission from light sources). This is very similar in practice to the light source "imposter" method used 
by Radiance and other renderers (Ward, 1994;Shirley et al., 1996). 



DOE/ LBNL FY12 Technical Report Deliverable 

 

10 
 

 
 

Figure 7. Proxy surfaces handle indirect contributions. Detailedgeometry is used for direct viewing and source testing. 
 

The proxy approach proves an acceptable compromise for rendering, as shown in Figure 6(c). Indirect 
contributions are smoothly integrated because sample rays do not see the intensity variations of the blinds 
themselves, relying on the measured BSDF data that is spatially averaged. Achieving a similar level of 
quality without the benefit of a data-driven BSDF takes  times as long. (See the supplemental material.) 
This leverages the accuracy of our measurements while preserving the appearance of a full geometric 
model. 

4.2. BSDF Simulation 

It is often the case that a CFS or fabric has geometric detail whose scale is too large to be averaged by 
existing goniophotometers. The usual method for obtaining a BSDF for such compound surfaces is to 
individually measure the materials that make up the system, threads, diffuse paints, specular coatings or 
translucent materials, etc., and then create a geometric model that matches the compound surface as closely 
as possible (Westin, 1992;Zhao, 2011). The combined model is then handed to a ray tracing simulation, and 
its overall behavior is characterized.  

This approach has a number of important advantages. Besides avoiding the need for a warehouse-sized 
goniophotometer, we can simulate scattering wherever we like on thecombined system, thus avoiding the 
interpolation requirement discussed in the following section. Using our virtual goniophotometer, we can 
precisely control the area of measurement and boundary conditions, which is very important for repeating 
systems with large elements. Moreover, we can test the quality of our representations by simulating 
reference systems at different resolutions, using both matrices and tensor trees, isotropic and anisotropic, 
and comparing simulations to originals, as we have done in this paper. 

All of the synthetic BSDFs shown in this paper were computed by the RadiancegenBSDF program, which 
has been validated against commercial optical ray tracing software (McNeil et al. 2012). We have enhanced 
this program to produce our tensor tree data as well as the original Klems matrix data, taking fullest 
advantage of multicore processors. It can still take hours to characterize a CFS such as the tensor tree 
version of the half-specular blinds in Figure 6. This is nevertheless a savings over the time it would take for 
full gonio measurement of an anisotropic system, even if it were possible using existing devices. 

5. Measuring and Interpolating BSDFs 

Measuring BSDFs often results in unreliable, missing, or sparse data samples. This can be due to the 
goniophotometer blocking the light source in the normal front scattering condition, or high measurement 
noise for low BSDF values (Matusik et al, 2003). This problem is even more pronounced on anisotropic 
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BSDFs, where the full 4-D domain needs to be sampled, hence resulting in a curse of dimensionality. For 
instance, Matusik et al.’s (Matusik et al, 2003) anisotropic measured BRDF dataset is not suitable for direct 
rendering, or fitting to analytical models (red-velvet and purple satin in (Ngan et al., 2005)). In addition, we 
represent BSDFs with a particular sampling pattern, which can be different from the initial measurement 
locations. In such conditions, interpolation is necessary to fill in the gaps. 

While linear interpolation can give plausible results when data points are sufficiently close, it can fail to 
capture large variations or follow highlight movement in the BSDF. We address this problem using a 
generalized 3-way displacement interpolation method akin to (Bonneel et. al., 2011). 

5.1. Displacement interpolation for ghosting BSDF values 

In (Bonneel et. al., 2011), a mass transport method is used to interpolate between two different probability 
distributions  and . An intermediate function  is found such that the energy used to move distribution 

 toward  is minimized, and so the transport is stopped at an intermediate time . This has 
successfully been used to interpolate between any two different BRDFs. However, we are interested in 
finding an interpolation inside a single given BSDF. While the former only requires two functions to 
interpolate from, the latter requires at least three functions as we will demonstrate. 

Similarly to (Bonneel et. al., 2011), we consider the probability distribution defined on the sphere and 
parameterizedby the incident direction . In the tensor based representation, 

both and  lie on a particular grid. Hence, we are looking for  given measured 
values . The continuous Radial Basis Function (RBF) gaussian-based representation naturally 
allows to obtain the valueof  for arbitrary . The remaining challenge is to retrieve the 
probability distribution  given fixed distributions . This challenge is addressed by considering a 
displacement interpolation between three different distributions, located at the vertices of a spherical 
Delaunay triangulation of the directions . 

 
 
Figure 8. Interpolating between 3 probability distributions, defined at the vertices of a Delaunay triangulation. 
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The set of measured incoming directions  is first triangulated using a spherical Delaunay triangulation 
(see Figure 8). For each incoming vector  of the tensor grid, we compute its barycentric coordinates 

 with respect to its surrounding triangle with vertices  . Using this triangle, a three-way 
displacement interpolation could be solved with a third order unknown tensor (Sharma 1977). However, 
solving for and storing such a dense tensor would be prohibitive, as the memory usage would grow as 

 which is intractable in typical conditions where  gaussian RBFs. We instead developed a 
two-stage, two-way approximation. The barycentric coefficients are used to interpolate between the 
probability distributions by applying pairwise displacement interpolations. Specifically, we first decompose 

 and  in a set of positive Gaussian RBFs. We then advect the gaussians using the mass 

transport formulation in a pairwise fashion: first advecting  toward  at a time , then 

advecting the resulting gaussians toward  at a time . This scheme is not order-independant since 

the space of these probability distributions has non-zero curvature (Lott, 2008). However, we found no 
visual differences permuting the indices of the triangle. The gaussians are finally summed up to reconstruct 
the interpolated function  , evaluated at . An interpolation example is shown in Figure 9. 

 
 

Figure 9. The measured anisotropic brushed-aluminum BRDF (Matusik et al, 2003) (left) is not suitable for direct renderingdue to 
missing data (in black) and measurement noise (greenhalo). Displacement interpolation fills-in the missing parts and smoothes the 
measurement noise (right). 

6. Discussion and FutureWork 

Figure 10 demonstrates many of the features of our BSDF representation and rendering method. The scene 
contains isotropic and anisotropic data interpolated from measurements as well as BSDFs derived from 
simulation. The bronze head, flowerpot and silver goblet materials were all converted from MERL 
isotropic measurements (Matusik et al, 2003). Our XML files for recording these BRDFs were on average 

 the size of the original binary data. The aluminum mural and velvet tablecloth were interpolated 
from MERL anisotropic data (Matusik et al, 2003). The sheer curtain was simulated using genBSDF on a 
loose-weavefabric model. The complex fenestration consisting of the window, frame, and vertical blinds 
was modeled as a unit and a proxy surface was created just in front of it, which substantially lowers noise 
during the interreflection calculation without affecting the view. Less than  Mbytes of RAM were 
needed during rendering, which took  hours on a -core machine. 
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Figure 10. An image rendered using multiple data-driven BSDFs. The head model (1) uses the alum-bronze material from the MERL 
dataset (Matusik et al, 2003). Similarly, the mural (2) uses the anisotropic brushed-aluminum material from MERL. The sheer curtain 
(3) uses a BSDF simulated from a detailed fabric model. The window itself (4) has a proxy BSDF (also simulated) that efficiently 
redirects light from the outside without affecting the appearance of the window itself. The flowerpot (5) uses the MERL alumina-
oxide data, the goblet (6) uses the silver-metallic-paint material, and the tablecloth (7) uses the red-velvet anisotropic measurements 
(Matusik et al, 2003). 
 

Our efforts have focused on two BSDF representations, the Klems matrix and the tensor tree. The Klems 
matrix is convenient for combining window layers and performing annual simulations, while the tensor tree 
provides adaptable density for highly peaked distributions. Other representations could provide benefits 
beyond these, perhaps using wavelets or spherical harmonics (Claustres et. al, 2002;Sillion 1991). Our goal 
was not to find the ultimate BSDF representation, but to provide a framework with basic functionality that 
insulates our rendering application from the implementation details. Nevertheless, we get plausible results 
when representing MERL anisotropic data (Matusik et al, 2003) which are neither proper for direct 
rendering nor analytic modeling (Ngan et al., 2005). Improvements in storage and computational efficiency 
will always be welcome, and we hope to incorporate alternative representations in the future. 

There are presently limitations to the use of proxy geometry as we have defined it. The main assumption is 
that the BSDF geometry fits neatly between two planar surfaces, and light leakage from the sides is 
negligible or blocked by a window frame or an equivalent surround. If the data-driven surface is reflecting 
only, then the detail geometry must live behind a single, planar surface. It may be possible to extend the 
proxy concept to substantially non-planar situations, but this would require a more sophisticated, 
parametric representation of a geometric texture. We consider this an interesting area for future work. 

An important enhancement we plan to make in the near future is the addition of spectral data. The API was 
designed with this in mind, and our library can associate either colors or spectra with individual BSDF 
components. Unfortunately, the current XML files provide only CIE Y channel and thermal data. Adding 
other spectral sensitivities to the format and to our physical measurement devices is not particularly 
difficult. The simplest method is to employ source and sensor-corrected, colorimetric X, Y and Z filters in 
the goniophotometer, whose output is convertible to any defined RGB space. Further in the future, we may 
wish to add bandpass filters for multispectral measurements. In some cases, it will be more efficient to 
represent the specular peak with fewer color channels than the rest of the BSDF. For example, our API 
could support a monochrome tensor tree for specular peaks combined with a seven spectral component 
Klems matrix component and a -nm wavelength increment Lambertian component. The XML 
specification would have to be extended somewhat, but a compliant application would simply link to the 
new library to benefit from these additions. 

One of our principal goals is to foster sharing of BSDF data. By providing a standard format and library, 
we have taken the first steps, but there is more we can do. We intend to set up a wiki site for BSDF data, 
where researchers and practitioners can upload and download data with full descriptions. To seed this site, 
we plan to convert the MERL dataset to our format with the authors’ permission (Matusik et al, 2003). 
Independently, the Lawrence Berkeley National Laboratory continues to add to their Complex Glazing 
Data Base, which uses the matrix version of the XML standard (Optics, 2012). Other researchers have 
previously shared their measurements (Marschner et al., 1999), and we look forward to assisting anyone 
who wishes to contribute data to the repository. 
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Supplemental material 

1.The XML Format 

A simple BSDF example of our XML format is provided in Figure 11. Although this is a legal BSDF file, it 
is not particularly interesting in the sense that it contains only a single reflection value, describing a perfect 

% diffuser. The detail geometry of a venetian blind is presented in Figure 12. This information is 
interpolated in an XML file that would also contain data for the BSDF reflection and transmission values 
for thousands of angles. These data might be measured or calculated, or some combination of the two. The 
complete definition of this XML format as well as the MGF description of geometry and materials will be 
provided on our website at the time of publication. 
 

 
 
Figure 11. Simple but complete BSDF example XML file. 
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Figure 12. Inline MGF description of venetian blinds with  white slats. 
 

2. BSDF Proxy Method 

In Figure 13, we show one of the advantages of our data-driven BSDF representation, where it is used as a 
proxy for detailed geometry. 
 

  
(a) (b) 

  
(c) (d) 

 
Figure 13. (a) A venetian blind system rendered from a Klems matrix. (b) The same scene rendered using a tensor tree 
representation with  the resolution of the Klems data. (c) The scene using a BSDF surface as a proxy for detailed blinds geometry. 



DOE/ LBNL FY12 Technical Report Deliverable 

 

19 
 

We can now see the blinds in full detail as well as the striped shadows cast on the interior surfaces. (d) The same scene rendered 
without the benefit of a data-driven BSDF takes  as long. 
 
 
In Figure 13(c), our data-driven BSDF model is used as proxy for detailed blinds geometry. This provides 

speedup when compared to Figure 13(d) where a similar quality scene rendered without using our data-
driven BSDF representation. 

3. Annual Simulations 

An important goal of the BSDF library is to insulate the caller from the underlying data representation, but 
there are times when the application needs more intimate access. One such case is the three-phase 
formulation of the daylight coefficient method for annual simulation. Briefly, this method breaks the 
daylight simulation problem down into three flux transfer problems: 
 
(1) Light transfer from the sky (rather sections of the sky) to the building exterior. 
 
(2) Light transfer through windows and skylights (e.g., via a CFS). 
 
(3) Light transfer from inside window/skylight surfaces to the interior. 
 
Each of these transfers is represented by a matrix. The exterior matrix is specified as  for "daylight." The 
window matrix is  for "transmission," and the interior matrix is  for "view." They each have a suffix 
because they generally apply to one window at a time, and the contributions from all windows must be 
summed together in the end. In the simple case where only a single window is present, we can express a 
vector of interior measurements i as: 
 

.                                                                                                                                                      (3) 

The input vector s is the set of sky patch values for a particular time of day and year at the location being 
simulated.  can be thought of as the matrix of form factors between sky directions and window insolation 
directions, which includes the effects of external geometry. The  matrix contains integration factors 
between the light entering from the window in different directions and the desired set of simulation values, 
including the effects of interior surface interactions. The result vector  can be almost anything, depending 
on the computation of V. It might be a set of illuminance values, or pixel colors in an image. The beauty of 
this equation is that once  and  are determined using a ray tracing or radiosity method, calculating new  
vectors for different sky conditions s is a quick matrix multiplication. If the transmission matrix  is fixed, 
then  may be combined into a single rectangular matrix to simplify this further. However, leaving it in 
the original form permits us to swap out  matrices to simulate different control settings for an operable 
CFS such as a venetian blind (e.g., slat angle).  
 
The  matrix is of course our fixed resolution BSDF representation, which is critical to making this all 
work. A variable resolution BSDF does not permit a matrix formulation. This also argues for providing an 
application access to the underlying representation, which we do through the use of implementation headers 
that extend our API.  
 
Figure 14(a) illustrates the exterior daylight matrix  that links sky patches to incident directions on an 
exterior window. We have assigned random colors to the sky regions, which may interact with the ground 
plane and other building surfaces on their way to the incident window directions corresponding to the 
Klems basis of the BSDF matrix, which we have outlined and superimposed on a hemispherical view.  
 
Similarly, Figure 14(b) illustrates the interior view matrix , used in this case to generate a fisheye image 
from the back of the space. Colored patches corresponding to Klems window directions are projected onto 
the walls and reflected indirectly to other surfaces making up this view. Sampling in this figure and the 
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previous one was turned off to make the patch boundaries clear, but of course these directions are better-
mixed in our actual calculation of .  
 

   
(a) (b) (c) 

 
Figure 14. (a) View from exterior window circled on the left, showing Klems basis (outlines) and sky subdivisions (colored patches) 
on the right. The daylight matrix  corresponds to these patch coefficients. (b) View matrix used to generate an image based on the 
output of our selected window. Direction patches are colored randomly to show their contribution to this view. (c) A single timestep 
out of thousands of images computed for the solar year. This represents pm on a clear solar equinox withvenetian blinds having 
curved, half-specular louvers set to horizontal. 
 
Once we have computed  and , we can select the window behavior encoded in the BSDF  and multiply 
it all together using Eq. (3). This allows us to generate a sequence of images corresponding to the 
movement of light throughout the day and year, and each time step takes a few seconds compute (following 
a few hours of precalculation). An example result is shown in Figure 14(c). We have sped this up even 
further by combining all the sky vectors into an annual matrix and using a GPU to compute   images 
for the whole year in the time it takes to write the information to disk. 

4. BSDF Software Library 

We have implemented the following queries for matrix and tensor tree sampling in an ANSI-C library with 
a fixed API: 
 
(a) Get a BSDF value for a pair of directions 
 
(b) Get the directional hemispherical scattering for a given incident direction 
 
(c) Get the projected solid angle sample size for one or two directions 
 
(d) Get a PDF-derived importance direction for the given incident direction 
 
In the interests of space, we glossed over some important details about how BSDF data is made available to 
the application. The caller may in practice treat the BSDF as a single entity, or may access it as 
components. These components include transmission, front reflection and back reflection, each further 
divided into Lambertian and non-Lambertian components, any of which may be zero. The library further 
supports multiple non-Lambertian components, which may provide for more efficient spectral 
representations in the future (e.g., uncolored superficial reflection and colored body reflection). 
 
In the simplest use of our BSDF library, the application makes a single call at each surface evaluation to 
generate a sample ray direction and weight using method (d). The luminance (Y) channel of the weight 
would always be the same, although the spectrum might change for different importance samples. Multiple 
rays could be generated to reduce variance, and their weights adjusted by . The rays would then be 
evaluated in the usual recursive fashion. 
 
One refinement to this simple method that greatly reduces noise is to sample light sources independently, 
evaluating both Lambertian and non-Lambertian components taken from the BSDF. Method (a) would be 
called to evaluate the BSDF in the known light source directions during shadow testing. The light sources 
would have to be ignored in subsequent sampling with (d) to avoid over-counting their contributions. 
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As well as treating light sources independently, Radiance relies on a separate calculation of diffuse 
interreflection. We extract this component from our importance sampling, and break our calls down further 
by non-Lambertian component. This ensures that every shading evaluation generates at leastone sample ray 
per component, fitting with the behavior of other material types in Radiance. Testing the design of our 
BSDF library in a practical rendering context led to some important refinements to the API as well as 
improvements in our implementation, as one would expect. 
 
New representations as well as extensions to existing types may be added in the future without altering the 
interface, which is more general than the existing XML specification (figure 13). The library supports 
loading and caching BSDF data and simple vector operations for surface reorientation. 
 
We employ a plug-in interface for each BSDF representation, using a callback structure with an associated 
set of required methods. The client data specific to each loaded BSDF is defined in a separate header file 
for that type. Applications that need access to the underlying data simply include the BSDF type’s header, 
applying the accessors defined therein. The solution is neat and efficient, although changing existing types 
may require updates to type-specific calls. 

5. Fitting Results 

Portions of Matusik et al.’s (Matusik et al, 2003) anisotropic measured BRDF dataset is not suitable for 
direct rendering or fitting to analytical models due to unreliable, missing and noisy measurements (Ngan et 
al., 2005).We address this problem using a generalized 3-way displacement interpolation method akin to 
(Bonneel et. al., 2011). 
 
As seen in Figure 15(a), our interpolation method reproduces the anisotropic purple satin measurements 
accurately with a rank-4 tensor tree. Both highlight regions and grazing angles match the original surface. 
In contrast, the Ward anisotropic BRDF model (Ward, 1992) has difficulty fitting this BRDF, as shown in 
Figure 15(b). (To estimate the parameters of Ward model, we use Ngan et al.’s (Ngan et al., 2005) fitting 
procedure.) 
 
Similarly, Figure 16(a) shows our displacement interpolation method applied to Matusik et al.’s 
anisotropicdata for red velvet, which fills in missing regions in the measurements (e.g., black streak). 
Again, the Ward  
 

  
(a) (b) 

 
Figure 15. (a) The measured anisotropic purple satin BRDF (Matusik et al, 2003) (left) is interpolated into a rank-4 tensor tree and 
rendered using our method (right). (b) The Ward BRDF model (right) does not fit the data nearly as well. 
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(a) (b) 

 
Figure 16. (a) The measured anisotropic red velvet BRDF (Matusik et al, 2003) (left) is not suitable for direct rendering due to 
missing data (black streak). Displacement interpolation fills in the missing data and smoothes the measurement noise (right). (b) The 
Ward BRDF model (right) does not represent the measured anisotropic red velvet as well, reverting to Lambertian reflection in this 
case. 
 
BRDF model in Figure 16(b) cannot represent the measured data very well, and the closest fit is purely 
Lambertian. 
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