

A Practical Framework for Sharing and
Rendering Real-World Bidirectional
Scattering Distribution Functions

G. Ward
Anyhere Software

M. Kurt
International Computer Institute

N. Bonneel
Harvard University

Windows and Envelope Materials Group
Building Technology and Urban Systems Department
Environmental Energy Technologies Division

September 2012

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

DOE/ LBNL FY12 Technical Report Deliverable

1

A Practical Framework for Sharing and Rendering Real-

World Bidirectional Scattering Distribution Functions

Greg Ward1, Murat Kurt2, and Nicolas Bonneel3
1Anyhere Software,950 Creston Rd., Berkeley CA, USA

2International Computer Institute, Ege University, Turkey
3School of Engineering & Applied Sciences,Harvard University, USA

Abstract

The utilization of real-world materials has been hindered by a lack of standards for sharing and interpreting
measured data. This paper presents an XML representation and an Open Source C library to support
bidirectional scattering distribution functions (BSDFs) in data-driven lighting simulation and rendering
applications.The library provides for the efficient representation, query, and Monte Carlo sampling of
arbitrary BSDFs in amodel-free framework. Currently, we support two BSDF data representations: one
using a fixed subdivision of thehemisphere, and one with adaptive density. The fixed type has advantages
for certain matrix operations, while theadaptive type can more accurately represent highly peaked data. We
discuss advanced methods for data-drivenBSDF rendering for both types, including the proxy of detailed
geometry to enhance appearance and accuracy.We also present an advanced interpolation method to reduce
measured data into these standard representations.We end with our plan for future extensions and sharing
of BSDF data.

1.Introduction

Accurate light scattering off surfaces is critical to realism for computer graphics and physically-based
rendering. While many different reflectance models have been developed, the world of real materials is too
diverse to fit a single mathematical model (Ngan et al., 2005). Multi-lobe BRDFs come closestto generality
(LaFortune et al., 1997, Ashikhmin and Shirley, 2000; Yu et al., 2010), but can fail when reflectance
behavior does not fit the parameterization. Few models address transmission, and none can handle complex
fenestration systems (CFSs) designed to convey daylight inspecialized ways, such as prismatic glazings,
holographicfilms, and specular louvers. This is becoming an increasinglyimportant topic in modern
building design (Gayeski et al., 2009).

Data-driven BSDFs offer a more general alternative to mathematical models, but they present a number of
challenges. First, there is the question of how to parameterize the function – a grid of elevation and azimuth
values is simple but inefficient. How do we represent a BSDF with strong, localized peaks? How do we
generate importance based Monte Carlo samples quickly and efficiently? How do we cope with the
common case of missing data in our measurements? We must address each of these questions before we
can claim to have a practical solution.

Our long-term goal is to provide a practical framework for sharing model-free BSDF data between the
lighting simulation and graphics communities. To accomplish this, we need an interchange and application
standard that is simple, efficient, and transparent. We propose such a standard with a library implemented
in C, whose API is more general than current XML representations. This library is flexible enough to be
updated with improvements to the underlying file standard, and is already being used by industry.

We begin with a summary of relevant work on data-driven BSDF models, followed by an explanation of
our fixed and variable representations, with examples of each. We demonstrate additional data-driven
BSDF rendering techniques using a version of the Radiance lighting simulation and rendering system

DOE/ LBNL FY12 Technical Report Deliverable

2

(Larson and Shakespeare,1998). Finally, we present an advanced interpolation method for converting
incomplete BSDF measurements to a usable form. We end with a discussion of the method and future
directions.

2. Background and RelatedWork

The Bidirectional Scattering Distribution Function (BSDF) is a four-dimensional function akin to the
BRDF that describes how incident light over both the front and back hemispheres of a surface is scattered
in front of and behind a surface. The BSDF can be defined in terms of the rendering equation(Kajiya,
1986):

. (1)

The semicolon between the arguments of means that the two ’s may be swapped without changing the
value of the function – hence its bidirectional nature (a.k.a. reciprocity). Essentially, the rendering equation
states that the outgoingradiance in the direction equals the integral of incident radiance from all
directions multiplied by with a cosinecorrection. The term is common notation for incident solid
angle from the direction and would include if given as and .

The unit of the BSDF is . Since integrating the cosine over the incident hemisphere yields a
value of , a Lambertian reflector has a value of for all , on the same side, and zero elsewhere.
Similarly, a translucent diffuser has a value of on the opposite side, where for energy
balance. The values for may be different on the front and back sides, but reciprocity implies must be the
same in either direction.

Eq. (1) may be considered on a per-wavelength basis for color rendering, where the and functions
become vector-valued, with spectral components treated independently.Typically, this is done for three
components corresponding to some version of red, green, and blue, but may be extended to several spectral
dimensions to achieve more accurate color. For the purposes of this paper and without loss of generality,
we restrict our discussion to the scalar form of these functions.We further ignore subsurface scattering (i.e.,
BSSRDFs) (Jensen et al., 2001), polarization, diffraction, and fluorescence. These effects are important for
certain classes of materials, but we leave them as subjects for future work.

The main challenge for any data-driven BSDF method is Monte Carlo sampling. Both rejection sampling
and BSDF weighted sampling are terribly inefficient for typical, peaked distributions. Researchers have
consequently spent much effort developing more practical approaches. These techniques fall into two broad
categories: partial model methods and table-based methods.

Table-based methods build a cumulative probability table for each incident (or exiting) direction and look
up sample directions with stochastically distributed random variables (Matusik et al, 2003). Such methods
are direct and efficient but memory-intensive even for isotropic BRDFs, and become quickly impractical
for general(anisotropic) distributions. Storing a single 4-D BRDF with 1-degree angular resolution takes
over a gigabyte of memory, and look-up tablesmore than double this requirement. Such methods also
placeaburden on the BRDF measurement process, which mustcompletely cover all relevant directions.

Partial model methods attempt to separate each BRDF into a product of lower-dimensional functions that
can be fit to measured data (McCool, 2001; Bilgili et al., 2011;Suykens et al., 2003). This approach stands
somewhere between table-based methods and analytical BRDF models (Cook and Torrance, 1981; He et
al.; 1991; War92,LaFortune et al, 1997; Edwards et al. 2006). Similar to most full BRDF models, partial
models have a small memory footprint and can be readily sampled with a series of modest one dimensional
(1-D) lookups (Lawrence et al.,2004). Although factorization can in principle be used to match any
distribution, the modeler must choose an appropriate parameterization, and this changes from one class of
materials to another. Partial modeling thus alleviates but does not eliminate the troubling restriction to a
subclass of real-world materials. A partial model is still a model.

Since our goal is to represent arbitrary and therefore model-free BSDFs, we adopt a table-based approach.
Our challenge is two-fold: reducing memory requirements during rendering, and filling in missing
measurement data. Our methods for reducing memory requirements are explained in the following sections.

DOE/ LBNL FY12 Technical Report Deliverable

3

The second challenge is more difficult, as data filling implies the presence of some model or smoothness
behavior, and for this we rely on some recent work in this area (Bonneel et. al., 2011).We present our
measurement interpolation method towards the end of our paper.

3. Fixed and Variable Resolution Data Standards

Our BSDF data representation builds upon the eXtensible Markup Language (XML) standard created by
Mitchell et al. to support LBNL’s WINDOW 6 program, the industry standard for calculating radiative
transfer through CFSs (Mitchellet al., 2008). The WINDOW 6 matrix representation was created to
facilitate combining window elements as layers, which requires reflectance as well as transmittance data for
each layer. We adopt the existing format and introduce our own adaptive density representation.

Most BSDF files contain extensive data values for front and back reflection as well as transmission. They
might also contain information describing geometric detail for the system, as would be useful in the case of
venetian blinds. Such detail permits a rendering program to rely on the measured BSDF for indirect light
transfers, while using the geometry for direct views and computing visibility. To represent geometric detail,
we interpolate the Materials and Geometry Format (MGF), a compact description designed for physically-
based rendering (Ward, 2012). Use of this information is optional and facilitated by a standard parser that
reduces MGF entities to a form that is easy for a rendering system to digest. We demonstrate how this data
may be used in Section 4. (Examples of our XML file structure and MGF subformat are given in the
supplemental material.)

Once we have a BSDF loaded, we have found the following four queries useful for rendering,
independentof the underlying representation:

(a) Get a BSDF value for a pair of directions

(b) Get the directional hemispherical scattering for a given incident direction

(c) Get the projected solid angle sample size for one or two directions

(d) Get a PDF-derived importance direction for the given incident direction

The first query (a) is a simple look-up into our stored BSDF. The second query (b) integrates all the
requested BSDF components at the given incident vector, yielding the total energy transfer for that
direction. The third query (c) is helpful for determining how closely to sample the BSDF in a particular
region. Given two directions, it returns the min. and/or max. projected solid angle linking the two in our
representation. Given only one direction, it returns the min. and/or max. sample size over all other
directions (front and back). The final query (d) is the most crucial for Monte Carlo rendering, since it
generates importance samples according to the probability distribution function. The following subsections
describe our two representations and techniques for answering query (d).

3.1. Matrix BSDFs

The matrix BSDF type is thus named because it uses a fixednumber of incident and exiting directions to
form a rectangular matrix of values. Thenumbers of incident and exiting directions are often equal, since
square matrices can be more easily composed into a single matrix that includes the effects of
interreflections between layers (Klems, 1994). For this reason also, the WINDOW 6 designers chose a
mapping between matrix position and hemisphere direction that results in a diagonal matrix when
transmission or reflection is purely specular. The Klems coordinate system, as it is called, forms the basis
for mapping between directions and matrix entries.

The Klems hemispherical basis is shown in Figure 1(a). The patches have roughly equal projected solid
angles. The patch indexing scheme for placing hemisphere values in a matrix row or column is shown in
Figure 1(b) and the exact angle definitions are given in Table 1. The orientation of this hemisphere changes
depending on whether the ray is incident or exiting on the front or back side in order tomaintain the
aforementioned diagonal relationship in specular systems.

DOE/ LBNL FY12 Technical Report Deliverable

4

(a) (b)

Figure 1. (a) The Klems hemispherical coordinate system for matrix BSDFs. (b) The ordering of Klems patches in matrix rows or
columns.

Average Maximum Number of
0 5 1

10 15 8
20 25 16
30 35 20
40 45 24
50 55 24
60 65 24
70 75 16

82.5 90 12

Table 1. Definition of Klems basis angles in degrees. The first value at each latitude is centered at .

Using the Klems basis for our matrix BSDF, we have exactly 145×145 or 21025 values for each
component. For a BRDF, we may only have a single reflection component, but for a transmissive system,
we should have three components: transmission, front reflection and back reflection. Traditional WINDOW
6 files contain redundant front and back transmission for a total of four components. A matrix BSDF file is
therefore in the range of 500 -1000 Kbytes uncompressed, and a loaded BSDF takes about 256 Kbytes of
memory using 32-bit floats.

Answering our sampling query (d) for the Klems matrix representation is not particularly difficult:

(1) For each new incident patch (row), we build a cumulative table from the exiting patches (columns) in
Klems index order. Tables are cached and reused for the same incident patches.

(2) The final entry in this column table is the total directional hemispherical scattering for the given
incident direction, and we multiply the input random variable for the sample ray by this total.

(3) We look up the entry closest to this product in our table, and generate a ray in the direction
corresponding to the associated patch.

Effectively, we are combining our two angular dimensions into a single 1-D cumulative table, similar to
Monte Carlo inversion process. The net result is that smaller random variable inputs will tend to send rays
out patches with smaller index numbers (near the normal) and larger random inputs sent out patches with
larger indexes (near the horizon). More rays will of course be sent out patches with larger BSDF values,
which is the essential character of importance sampling. Further randomization is performed to avoid
sending all the rays for a particular patch in the same direction.

DOE/ LBNL FY12 Technical Report Deliverable

5

An example rendering of a matrix BSDF representation of a Ward-Geisler-Moroder-Dür model (Geisler-
Moroder and Dür, 2010) is shownin Figure 2(a). The data-driven model shows the effects of matrix
sampling, particularly in the highlights. Figure 2(d) shows a rendering of what should be a much smoother
surface with sharper reflections. This demonstrates the main limitation of a matrix representation, which is
resolution. Sampling a BSDF every or degrees is inadequate for many rendering applications.
Increasing the matrix resolution would help, but a uniform partition of the hemisphere at the resolution
required to capture such peaks would take gigabytes of storage and be very inefficient. This is where we
may prefer a more adaptive solution.

(a) (b) (c)

(d) (e) (f)

Figure 2. (a) Matrix-based BRDF rendering of anisotropic Ward model. The sharpness of the highlights is degraded by thelack of
resolution in the matrix representation. (b) Reference image. (c) Tensor tree BRDF rendering of the samemodel. (d) Matrix
representation of isotropic Ward model on sculpture and statuette. (e) Reference image. (f) High-resolutiontensor-tree representation.
Insets show color-coded maps which represent a probability that an average observer will notice adifference between the reference
image and rendered image (Mantiuk et al., 2011).

3.2. Tensor Tree BSDFs

A tensor tree represents the sharp peaks in a BSDF by subdividing adaptively in different regions of the
distribution. Sample density is coordinated between input and output directions, since higher density
required in one implies that higher density is required in the other.

Consider a mirror-like surface. At an incident angle of (there will be a strong peak in the
outgoingdirection near , which must be recordedat high density. We could subdivide
the exiting hemisphereadaptively using a geodesic hierarchy or similar, but whatabout the incident
hemisphere? We cannot partition it independently,because every incident direction will correspond to a
peak somewhere in the outgoing hemisphere, implyingthat the same high resolution is needed everywhere
for incidence.A low-resolution incident hemisphere of adaptivelypartitioned exiting hemispheres would
have us jumping fromone narrow output direction to another, with predictable results.Reversing incident

DOE/ LBNL FY12 Technical Report Deliverable

6

and exiting hemispheres would nothelp – they must be subdivided together. The solution is tointerleave the
input and output hemispheres and employ treesubdivision on the whole distribution.

Tensors are a direct extension of vectors and matrices. Avector is a rank-1 tensor, and a matrix is a rank-2
tensor. Arank-3 tensor is therefore a stack of matrices, and so on tohigher dimensions (Lebedev and Cloud,
2003). In our application, tensors providea way to keep closely associated BSDF values near eachother for
convenient subdivision.

Sticking with dimensions we can visualize, an isotropic BSDF can be represented as a rank-3 tensor. Since
the outgoing distribution does not change with rotation, we only need one matrix per incident theta,
covering all the outgoing directions for that incidence. Columns and rows in each matrix correspond in this
case to the two degrees of freedom on the exiting hemisphere. The actual dimensions of the matrix and
even the number of theta values need not be decided in advance – this is where our tree structure takes
over.

Figure 3 shows a familiar octree hierarchy, where each subdivided node contains eight children
corresponding to the voxels of that subtree. If all the leaf voxels were the same size, our uniform three
dimensional (3-D) grid would correspond to a cubic tensor. We could fill this tensor with a set of isotropic
BSDF values. From this starting point, we can adaptively prune our tree. We collapse all siblingleaf voxels
that are within some epsilon of each other into their parent, assigning an average value. Applying this
recursively to the entire tree, we end up with a hierarchy that is dense where the BSDF changes rapidly and
sparse where it changes slowly, similar to wavelet-based decompositions. The tree representation directly
allows us to look up any value quickly and efficiently from the original BSDF. Indeed, the tree itself
becomes a new aggregate data type that transcends the original tensor because it has no maximum density
limit. A mirror would be represented by a high density track of large-valued voxels along a line through our
cube, surrounded by more sparsely represented regions requiring little storage.

Figure 3. An octree hierarchy used to define a rank-3 tensor tree for an isotropic BSDF.

In the more general case of anisotropic BSDFs, our tensor is rank-4 and encoded in a hextree. The two
dimensions of the exiting hemisphere are enveloped in two more dimensions for the incident hemisphere.
Figure 2(c) shows our example scene with the BSDF data recorded as a rank-4 tensor tree. The maximum
angular resolution in this rendering is less than , compared to in the original matrix representation.
The total size of the tree is considerably larger due to its higher density, but it only takes of the memory
a fully populated tensor requires and the time to render. This particular BSDF loads into Mbytes of
memory. The differences are even more pronounced in the smooth, isotropic case shown in Figure 3(f). For
the blue material, we resolved our tensor tree to an angle of . This surfacetook Mbytes of RAM
during rendering, and the roughertranslucent surface took Mbytes.

We have yet to address the important question of how we map dimensions in our tensor tree to dimensions
on each hemisphere. After all, one domain is square and the other is not. We need to preserve
neighborhoods for stratified sampling, and it would be optimal if areas were maintained as well.
Specifically, we would like each entry at a given level in our tree to represent the same projected solid
angle on our hemisphere. Fortunately, just such a mapping was developed by Shirley and Chiu (Shirley and
Chiu,1997) and is shown in Figure 4:

DOE/ LBNL FY12 Technical Report Deliverable

7

 (2)

where and are the two-dimensional (2-D) point coordinates on the square and the disk. The
mapped regions are distorted between a square and a disk so that locality and area properties are preserved
for stratified importance sampling.

Figure 4. Shirley and Chiu’s area-preserving map between a square and a disk (Shirley and Chiu, 1997).

Similar to the matrix representation described in the previous section, the only difficult query to implement
for tensor trees is the ray sampling call (d). For stratified MC sampling, we need to sort our leaf nodes at a
given incident directioninto a 1-D sequence that preserves locality. We employ theHilbert traversal shown
in Figure 5, which maximizes locality while keeping a direct relationship to our octree/hextreebranching
(Gotsman and Lindenbaum, 1996). Working in a square slice corresponding to the exiting hemisphere for
the queried incident vector, we order our cumulative table along the Hilbert path. This path traverses the

 square with a line segment such that any given fraction of the line segment covers the same
fraction of the area. This is the key to converting our 2-D sampling domain into a 1-D cumulative table
based on projected area. Larger leaf nodes will skip further along the path, but we never have the problem
of re-entering a node since the Hilbert curve respects the quadtree’s recursive boundaries.

Figure 5. A Hilbert 2-D space-filling curve drawn to the 4thlevel. Different regions illustrate a hypothetical tensor tree’s
subdivision of exiting directions where samples might go.

Our stratified sampling method (d) for tensor trees is summarized as follows:

(1) We project our incident vector onto a disk by discarding the z0-coordinate and map this position to the
unit square using Shirley and Chiu’s formula.

(2) For a previously unvisited branch of our octree or hextree, we build a cumulative table along a level-16
Hilbert path in the associated exiting quadtree. Tables are cached and reused for the same incident
branches.

(3) The final entry in this column table is the total directional hemispherical scattering for the given
incident direction, and we multiply the input random variable for the sample ray by this total.

DOE/ LBNL FY12 Technical Report Deliverable

8

(4) We look up the Hilbert curve position corresponding to this product in our table, and this gives us a 2-D
coordinate in our unit square. We further jitter the position to avoid using the leaf nodes’ center every time.

(5) We map this position back to a unit disk using Shirley and Chiu’s mapping, then to a unit vector by
adding the appropriate -component (i.e.,). This is our generated ray.

This is very similar to the method used for the matrix representation with the addition of a Shirley-Chiu
mapping on either end. Some additional work rotating vectors is required for isotropic distributions, but this
is straightforward. Overall, the only part that takes significant time is the building of the cumulative tables,
which is why we cache and reuse these data. In a running program, our tables may use as much memory as
the BSDF itself. Least recently used replacement could be applied if this ever becomes an issue.

The method (d) described above and the one given in Section 3.1 for matrix BSDFs are not
themselvesstratified, but they preserve stratification in the controlling input variable. If the routine is given
a sequence of uncorrelated control values, then the generated importance samples will be uncorrelated,
also. However, inputs near each other in the 0-1 range produce rays that are near each other in the
normalized samplingdomain. Similarly, well-separated inputs tend to generate well-separated ray samples.
Stratifying the control input thus produces stratified output rays, which is an important technique for
reducing variance in the result. Adaptive sampling also makes use of this property, but should be applied in
stages to avoid bias (Kirk and Arvo, 1991).

4. Rendering in Radiance

The Radiance lighting simulation system is used directly or indirectly by the majority of the daylight
modeling community(Galasiu and Reinhart, 2008). Its freely available source facilitates additions and
experimentation, and improves transparency for researchers and advanced users (Larson and Shakespeare,
1998). Radiance provides an excellent platform for testing our BSDF representation and library interface.

Although most BSDF research focuses on different aspects of reflection, we are particularly interested in
transmission through complex fenestration systems due to their importance for daylighting
applications.Such systems are often designed to have unusual behaviors when it comes to light transfer
(Thanachareonkit and Scartezzini, 2010). These behaviors are not fit by existing models, and consequently
have a greater need for data-driven methods. Since a CFS controls how light enters a space, accurate
simulation is critical to predicting interior light levels and distributions. Because such systems tend to be
found on or near windows, how they affect the view and to what degree they induce glare are also
important concerns.

4.1. BSDF Proxy Method

One of the most challenging aspects of a CFS is rendering its appearance. While aggregate behavior as
described by a BSDF is a useful way to model illumination, spatial variations determine what a window
looks like to an occupant, and may impart a pattern to a solar beam component as well. Figure 6(a) shows a
BSDF simulation of a venetian blind CFS with curved, half-specular louvers from an interior perspective
using a Klems matrix representation. At resolution, direct pass-through cannot be represented
accurately, casting light blobs rather than beams. Figure 6(b) shows a BSDF simulation which uses a tensor
tree to achieve roughly resolution, and the sun patch begins to take shape, although the edges are still
blurry. We also get the vague sense of a horizon out the window, although we cannot see the slats of the
blinds. In fact, increasing BSDF resolution would never allow us to see the slats, because the BSDF
represents only angular data, not spatial (X-Y) patterns. One solution is to introduce a bidirectional texture
function (BTF) to the data (Dana et al. 2002). This would certainly solve the problem, but would take
additional storage and put a burden on the measurement and rendering processes.

DOE/ LBNL FY12 Technical Report Deliverable

9

(a) (b)

(c)

Figure 6. (a) A venetian blind system rendered from a 145145 Klems matrix. (b) The same scene rendered using a tensortree
representation with 3 the resolution of the Klems data. (c) The scene using a BSDF surface as a proxy for detailed blindsgeometry. We
can now see the blinds in full detail as well as the striped shadows cast on the interior surfaces.

We take an alternate approach, where the BSDF is used as a proxy for detailed geometry. We use the
geometry for direct views and shadow testing, and the measured BSDF to characterize light scattered by the
system.

Figure 7 diagrams our proxy behavior during the ray tracing process. View rays pass through the two
proxies and interact with the underlying geometry, as do rays sent to test for light sources and shadows.
Indirect sampling rays interact only with the proxy surfaces, and transmitted rays are displaced to bypass
the detailed geometry and compute contributions from the opposite side. (Indirect rays originating inside
the sandwich are blind to the proxy geometry, and care is taken to avoid double-counting unscattered
transmission from light sources). This is very similar in practice to the light source "imposter" method used
by Radiance and other renderers (Ward, 1994;Shirley et al., 1996).

DOE/ LBNL FY12 Technical Report Deliverable

10

Figure 7. Proxy surfaces handle indirect contributions. Detailedgeometry is used for direct viewing and source testing.

The proxy approach proves an acceptable compromise for rendering, as shown in Figure 6(c). Indirect
contributions are smoothly integrated because sample rays do not see the intensity variations of the blinds
themselves, relying on the measured BSDF data that is spatially averaged. Achieving a similar level of
quality without the benefit of a data-driven BSDF takes times as long. (See the supplemental material.)
This leverages the accuracy of our measurements while preserving the appearance of a full geometric
model.

4.2. BSDF Simulation

It is often the case that a CFS or fabric has geometric detail whose scale is too large to be averaged by
existing goniophotometers. The usual method for obtaining a BSDF for such compound surfaces is to
individually measure the materials that make up the system, threads, diffuse paints, specular coatings or
translucent materials, etc., and then create a geometric model that matches the compound surface as closely
as possible (Westin, 1992;Zhao, 2011). The combined model is then handed to a ray tracing simulation, and
its overall behavior is characterized.

This approach has a number of important advantages. Besides avoiding the need for a warehouse-sized
goniophotometer, we can simulate scattering wherever we like on thecombined system, thus avoiding the
interpolation requirement discussed in the following section. Using our virtual goniophotometer, we can
precisely control the area of measurement and boundary conditions, which is very important for repeating
systems with large elements. Moreover, we can test the quality of our representations by simulating
reference systems at different resolutions, using both matrices and tensor trees, isotropic and anisotropic,
and comparing simulations to originals, as we have done in this paper.

All of the synthetic BSDFs shown in this paper were computed by the RadiancegenBSDF program, which
has been validated against commercial optical ray tracing software (McNeil et al. 2012). We have enhanced
this program to produce our tensor tree data as well as the original Klems matrix data, taking fullest
advantage of multicore processors. It can still take hours to characterize a CFS such as the tensor tree
version of the half-specular blinds in Figure 6. This is nevertheless a savings over the time it would take for
full gonio measurement of an anisotropic system, even if it were possible using existing devices.

5. Measuring and Interpolating BSDFs

Measuring BSDFs often results in unreliable, missing, or sparse data samples. This can be due to the
goniophotometer blocking the light source in the normal front scattering condition, or high measurement
noise for low BSDF values (Matusik et al, 2003). This problem is even more pronounced on anisotropic

DOE/ LBNL FY12 Technical Report Deliverable

11

BSDFs, where the full 4-D domain needs to be sampled, hence resulting in a curse of dimensionality. For
instance, Matusik et al.’s (Matusik et al, 2003) anisotropic measured BRDF dataset is not suitable for direct
rendering, or fitting to analytical models (red-velvet and purple satin in (Ngan et al., 2005)). In addition, we
represent BSDFs with a particular sampling pattern, which can be different from the initial measurement
locations. In such conditions, interpolation is necessary to fill in the gaps.

While linear interpolation can give plausible results when data points are sufficiently close, it can fail to
capture large variations or follow highlight movement in the BSDF. We address this problem using a
generalized 3-way displacement interpolation method akin to (Bonneel et. al., 2011).

5.1. Displacement interpolation for ghosting BSDF values

In (Bonneel et. al., 2011), a mass transport method is used to interpolate between two different probability
distributions and . An intermediate function is found such that the energy used to move distribution

 toward is minimized, and so the transport is stopped at an intermediate time . This has
successfully been used to interpolate between any two different BRDFs. However, we are interested in
finding an interpolation inside a single given BSDF. While the former only requires two functions to
interpolate from, the latter requires at least three functions as we will demonstrate.

Similarly to (Bonneel et. al., 2011), we consider the probability distribution defined on the sphere and
parameterizedby the incident direction . In the tensor based representation,

both and lie on a particular grid. Hence, we are looking for given measured
values . The continuous Radial Basis Function (RBF) gaussian-based representation naturally
allows to obtain the valueof for arbitrary . The remaining challenge is to retrieve the
probability distribution given fixed distributions . This challenge is addressed by considering a
displacement interpolation between three different distributions, located at the vertices of a spherical
Delaunay triangulation of the directions .

Figure 8. Interpolating between 3 probability distributions, defined at the vertices of a Delaunay triangulation.

DOE/ LBNL FY12 Technical Report Deliverable

12

The set of measured incoming directions is first triangulated using a spherical Delaunay triangulation
(see Figure 8). For each incoming vector of the tensor grid, we compute its barycentric coordinates

 with respect to its surrounding triangle with vertices . Using this triangle, a three-way
displacement interpolation could be solved with a third order unknown tensor (Sharma 1977). However,
solving for and storing such a dense tensor would be prohibitive, as the memory usage would grow as

 which is intractable in typical conditions where gaussian RBFs. We instead developed a
two-stage, two-way approximation. The barycentric coefficients are used to interpolate between the
probability distributions by applying pairwise displacement interpolations. Specifically, we first decompose

 and in a set of positive Gaussian RBFs. We then advect the gaussians using the mass

transport formulation in a pairwise fashion: first advecting toward at a time , then

advecting the resulting gaussians toward at a time . This scheme is not order-independant since

the space of these probability distributions has non-zero curvature (Lott, 2008). However, we found no
visual differences permuting the indices of the triangle. The gaussians are finally summed up to reconstruct
the interpolated function , evaluated at . An interpolation example is shown in Figure 9.

Figure 9. The measured anisotropic brushed-aluminum BRDF (Matusik et al, 2003) (left) is not suitable for direct renderingdue to
missing data (in black) and measurement noise (greenhalo). Displacement interpolation fills-in the missing parts and smoothes the
measurement noise (right).

6. Discussion and FutureWork

Figure 10 demonstrates many of the features of our BSDF representation and rendering method. The scene
contains isotropic and anisotropic data interpolated from measurements as well as BSDFs derived from
simulation. The bronze head, flowerpot and silver goblet materials were all converted from MERL
isotropic measurements (Matusik et al, 2003). Our XML files for recording these BRDFs were on average

 the size of the original binary data. The aluminum mural and velvet tablecloth were interpolated
from MERL anisotropic data (Matusik et al, 2003). The sheer curtain was simulated using genBSDF on a
loose-weavefabric model. The complex fenestration consisting of the window, frame, and vertical blinds
was modeled as a unit and a proxy surface was created just in front of it, which substantially lowers noise
during the interreflection calculation without affecting the view. Less than Mbytes of RAM were
needed during rendering, which took hours on a -core machine.

DOE/ LBNL FY12 Technical Report Deliverable

13

Figure 10. An image rendered using multiple data-driven BSDFs. The head model (1) uses the alum-bronze material from the MERL
dataset (Matusik et al, 2003). Similarly, the mural (2) uses the anisotropic brushed-aluminum material from MERL. The sheer curtain
(3) uses a BSDF simulated from a detailed fabric model. The window itself (4) has a proxy BSDF (also simulated) that efficiently
redirects light from the outside without affecting the appearance of the window itself. The flowerpot (5) uses the MERL alumina-
oxide data, the goblet (6) uses the silver-metallic-paint material, and the tablecloth (7) uses the red-velvet anisotropic measurements
(Matusik et al, 2003).

Our efforts have focused on two BSDF representations, the Klems matrix and the tensor tree. The Klems
matrix is convenient for combining window layers and performing annual simulations, while the tensor tree
provides adaptable density for highly peaked distributions. Other representations could provide benefits
beyond these, perhaps using wavelets or spherical harmonics (Claustres et. al, 2002;Sillion 1991). Our goal
was not to find the ultimate BSDF representation, but to provide a framework with basic functionality that
insulates our rendering application from the implementation details. Nevertheless, we get plausible results
when representing MERL anisotropic data (Matusik et al, 2003) which are neither proper for direct
rendering nor analytic modeling (Ngan et al., 2005). Improvements in storage and computational efficiency
will always be welcome, and we hope to incorporate alternative representations in the future.

There are presently limitations to the use of proxy geometry as we have defined it. The main assumption is
that the BSDF geometry fits neatly between two planar surfaces, and light leakage from the sides is
negligible or blocked by a window frame or an equivalent surround. If the data-driven surface is reflecting
only, then the detail geometry must live behind a single, planar surface. It may be possible to extend the
proxy concept to substantially non-planar situations, but this would require a more sophisticated,
parametric representation of a geometric texture. We consider this an interesting area for future work.

An important enhancement we plan to make in the near future is the addition of spectral data. The API was
designed with this in mind, and our library can associate either colors or spectra with individual BSDF
components. Unfortunately, the current XML files provide only CIE Y channel and thermal data. Adding
other spectral sensitivities to the format and to our physical measurement devices is not particularly
difficult. The simplest method is to employ source and sensor-corrected, colorimetric X, Y and Z filters in
the goniophotometer, whose output is convertible to any defined RGB space. Further in the future, we may
wish to add bandpass filters for multispectral measurements. In some cases, it will be more efficient to
represent the specular peak with fewer color channels than the rest of the BSDF. For example, our API
could support a monochrome tensor tree for specular peaks combined with a seven spectral component
Klems matrix component and a -nm wavelength increment Lambertian component. The XML
specification would have to be extended somewhat, but a compliant application would simply link to the
new library to benefit from these additions.

One of our principal goals is to foster sharing of BSDF data. By providing a standard format and library,
we have taken the first steps, but there is more we can do. We intend to set up a wiki site for BSDF data,
where researchers and practitioners can upload and download data with full descriptions. To seed this site,
we plan to convert the MERL dataset to our format with the authors’ permission (Matusik et al, 2003).
Independently, the Lawrence Berkeley National Laboratory continues to add to their Complex Glazing
Data Base, which uses the matrix version of the XML standard (Optics, 2012). Other researchers have
previously shared their measurements (Marschner et al., 1999), and we look forward to assisting anyone
who wishes to contribute data to the repository.

DOE/ LBNL FY12 Technical Report Deliverable

14

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Building Technology, State and Community Programs, Office of Building Research and Standards of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the California Energy
Commission through its Public Interest Energy Research (PIER) Program on behalf of the citizens of
California. This work was also supported by NSF grant IIS 1110955.

References

Ashikhmin M., Shirley P.: An anisotropic Phong BRDF model. Journal Graphics Tools 5, 2 (2000), 25–32.

Bilgili A., Öztürk A., Kurt M.: A general brdf representation based on tensor decomposition. Computer
Graphics Forum 30, 8 (2011), 2427–2439.

Bonneel N., Van De Panne M., Paris S., Heidrich W.: Displacement interpolation using lagrangian mass
transport. ACM TOG 30, 6 (2011), 158:1–158:12. (Proc. SIGGRAPH Asia ’11).

Claustres L., Boucher Y., Paulin M.: Spectral brdf modeling using wavelets. In Proc. of SPIE (2002), SPIE,
pp. 33–43.

Cook R. L., Torrance K. E.: A reflectance model for computer graphics. Computer Graphics 15, 3 (1981),
307–316. (Proc. SIGGRAPH ’81).

Dana K. J., Van Ginneken B., Nayar S. K., Koenderink J. J.: Reflectance and texture of real-world surfaces.
ACM TOG 18, 1 (Jan. 1999), 1–34.

Edwards D., Boulos S., Johnson J., Shirley P., Ashikhmin M., Stark M., Wyman C.: The halfway vector
disk for brdf modeling. ACM TOG 25, 1 (2006), 1–18.

Gotsman C., Lindenbaum M.: On the metric properties of discrete space-filling curves. IEEE Transactions
on Images Processing 5, 5 (1996), 794–797.

Geisler-Moroder D., Dür A.: A new ward brdf model with bounded albedo. Computer Graphics Forum 29,
4 (2010), 1391–1398. (Proc. Eurographics Symp. Rendering).

Galasiu A., Reinhart C.: Current daylighting design practice: A survey. Building Research & Information
36, 2 (2008), 159–174.

Gayeski N., Stokes E., Andersen M.: Using digital cameras as quasi-spectral radiometers to study complex
fenestration systems. Lighting Research and Technology 41, 1 (2009), 7–25.

He X. D., Torrance K. E., Sillion F. X., Greenberg D. P.: A comprehensive physical model for light
reflection. Computer Graphics 25, 4 (1991), 175–186. (Proc. SIGGRAPH ’91).

Jensen H. W., Marschner S. R., Levoy M., Hanrahan P.: A practical model for subsurface light transport. In
Proc. SIGGRAPH ’01 (2001), ACM, pp. 511–518.

Kirk D., Arvo J.: Unbiased sampling techniques for image synthesis. Computer Graphics 25, 4 (July 1991),
153–156.

Kajiya J. T.: The rendering equation. Computer Graphics 20, 4 (1986), 143–150. (Proc. SIGGRAPH ’86).

Klems J.: A new method for predicting the solar heat gain of complex fenestration systems. ASHRAE
Transactions 100, 1 (1994), 1065–1086.

Lebedev L., Cloud M.: Tensor analysis. World Scientific Pub., 2003.

LaFortune E. P., Foo S.-C., Torrance K. E., Greenberg D. P.: Non-linear approximation of reflectance
functions. In Proc. SIGGRAPH ’97 (1997), pp. 117–126.

Lott J.: Some geometric calculations on Wasserstein space. Commun. Math. Phys. 277, 2 (2008), 423–437.

DOE/ LBNL FY12 Technical Report Deliverable

15

Lawrence J., Rusinkiewicz S., Ramamoorthi R.: Efficient BRDF importance sampling using a factored
representation. ACM TOG 23, 3 (2004), 496–505. (Proc. SIGGRAPH ’04).

Larson G. W., Shakespeare R.: Rendering with Radiance: the art and science of lighting visualization.
Morgan Kaufmann Publishers Inc., 1998. 2,

McCool M. D., Ang J., Ahmad A.: Homomorphic factorization of BRDFs for high-performance rendering.
In Proc. SIGGRAPH ’01 (2001), ACM, pp. 171–178.

McNeil A., Jonsson C., Applefeld E., Ward G., Lee E.: A validation of a ray-tracing tool used to generate
bi-directional scattering distribution functions for complex fenestration systems. Submitted to Energy
and Buildings (2012).

Mitchell R., Kohler C., Klems J., Rubin M., Arasteh D., Huizenga C., Yu T., Curcija D.: Window 6.2/
Therm 6.2 Research Version User Manual. Tech. Rep. LBNL- 941, Lawrence Berkeley National
Laboratory, 2008.

Mantiuk R., Kim K. J., Rempel A. G., Heidrich W.: HDR-VDP-2: A calibrated visual metric for visibility
and quality predictions in all luminance conditions. ACM TOG 30, 4 (2011), 40:1–40:14. (Proc.
SIGGRAPH ’11).

Matusik W., Pfister H., Brand M., Mcmillan L.: A data-driven reflectance model. ACM TOG 22, 3 (2003),
759–769. (Proc. SIGGRAPH ’03).

Marschner S. R., Westin S. H., Lafortune E. P., Torrance K. E., Greenberg D. P.: Image-based brdf
measurement including human skin. In Proc. of the EG Workshop on Rendering (1999), pp. 131–144.

Ngan A., Durand F., Matusik W.: Experimental analysis of brdf models. In Proc. of Eurographics
Symposium on Rendering (2005), pp. 117–126.

Optics W.: The complex glazing data base, April 2012. http://windowoptics.lbl.gov/data/cgdb.

Sillion F. X., Arvo J. R., Westin S. H., Greenberg D. P.: A global illumination solution for general
reflectance distributions. Computer Graphics 25, 4 (July 1991), 187–196.

Shirley P., Chiu K.: A low distortion map between disk and square. Journal Graphics Tools 2, 3 (1997),
45–52.

Sharma J. K.: Extensions and special cases of transportation problem: A survey. Digital library of India
(1977), 928–940.

Suykens F., Vom Berge K., Lagae A., Dutré P.: Interactive rendering with bidirectional texture functions.
Computer Graphics Forum 22, 3 (2003), 463–472.

Shirley P., Wang C., Zimmerman K.: Monte carlo techniques for direct lighting calculations. ACM TOG
15, 1 (Jan. 1996), 1–36.

Thanachareonkit A., Scartezzini J.-L.: Modelling complex fenestration systems using physical and virtual
models. Solar Energy 84 (2010), 563–586.

Ward G. J.: Measuring and modeling anisotropic reflection. Computer Graphics 26, 2 (1992), 265–272.
(Proc. SIGGRAPH ’92).

Ward G. J.: The radiance lighting simulation and rendering system. In Proc. SIGGRAPH ’94 (1994), ACM,
pp. 459– 472.

Ward G.: The materials and geometry format, April 2012. http://radsite.lbl.gov/mgf/mgfdoc.pdf.

Westin S. H., Arvo J. R., Torrance K. E.: Predicting reflectance functions from complex surfaces.
Computer Graphics 26, 2 (July 1992), 255–264.

Yu C., Seo Y., Lee S. W.: Global optimization for estimating a brdf with multiple specular lobes. In Proc.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010), IEEE
Computer Society, pp. 319–326.

DOE/ LBNL FY12 Technical Report Deliverable

16

Zhao S., Jakob W., Marschner S., Bala K.: Building volumetric appearance models of fabric using micro ct
imaging. ACM TOG 30, 4 (Aug. 2011), 44:1–44:10. (Proc. SIGGRAPH ’11).

DOE/ LBNL FY12 Technical Report Deliverable

17

Supplemental material

1.The XML Format

A simple BSDF example of our XML format is provided in Figure 11. Although this is a legal BSDF file, it
is not particularly interesting in the sense that it contains only a single reflection value, describing a perfect

% diffuser. The detail geometry of a venetian blind is presented in Figure 12. This information is
interpolated in an XML file that would also contain data for the BSDF reflection and transmission values
for thousands of angles. These data might be measured or calculated, or some combination of the two. The
complete definition of this XML format as well as the MGF description of geometry and materials will be
provided on our website at the time of publication.

Figure 11. Simple but complete BSDF example XML file.

DOE/ LBNL FY12 Technical Report Deliverable

18

Figure 12. Inline MGF description of venetian blinds with white slats.

2. BSDF Proxy Method

In Figure 13, we show one of the advantages of our data-driven BSDF representation, where it is used as a
proxy for detailed geometry.

(a) (b)

(c) (d)

Figure 13. (a) A venetian blind system rendered from a Klems matrix. (b) The same scene rendered using a tensor tree
representation with the resolution of the Klems data. (c) The scene using a BSDF surface as a proxy for detailed blinds geometry.

DOE/ LBNL FY12 Technical Report Deliverable

19

We can now see the blinds in full detail as well as the striped shadows cast on the interior surfaces. (d) The same scene rendered
without the benefit of a data-driven BSDF takes as long.

In Figure 13(c), our data-driven BSDF model is used as proxy for detailed blinds geometry. This provides

speedup when compared to Figure 13(d) where a similar quality scene rendered without using our data-
driven BSDF representation.

3. Annual Simulations

An important goal of the BSDF library is to insulate the caller from the underlying data representation, but
there are times when the application needs more intimate access. One such case is the three-phase
formulation of the daylight coefficient method for annual simulation. Briefly, this method breaks the
daylight simulation problem down into three flux transfer problems:

(1) Light transfer from the sky (rather sections of the sky) to the building exterior.

(2) Light transfer through windows and skylights (e.g., via a CFS).

(3) Light transfer from inside window/skylight surfaces to the interior.

Each of these transfers is represented by a matrix. The exterior matrix is specified as for "daylight." The
window matrix is for "transmission," and the interior matrix is for "view." They each have a suffix
because they generally apply to one window at a time, and the contributions from all windows must be
summed together in the end. In the simple case where only a single window is present, we can express a
vector of interior measurements i as:

. (3)

The input vector s is the set of sky patch values for a particular time of day and year at the location being
simulated. can be thought of as the matrix of form factors between sky directions and window insolation
directions, which includes the effects of external geometry. The matrix contains integration factors
between the light entering from the window in different directions and the desired set of simulation values,
including the effects of interior surface interactions. The result vector can be almost anything, depending
on the computation of V. It might be a set of illuminance values, or pixel colors in an image. The beauty of
this equation is that once and are determined using a ray tracing or radiosity method, calculating new
vectors for different sky conditions s is a quick matrix multiplication. If the transmission matrix is fixed,
then may be combined into a single rectangular matrix to simplify this further. However, leaving it in
the original form permits us to swap out matrices to simulate different control settings for an operable
CFS such as a venetian blind (e.g., slat angle).

The matrix is of course our fixed resolution BSDF representation, which is critical to making this all
work. A variable resolution BSDF does not permit a matrix formulation. This also argues for providing an
application access to the underlying representation, which we do through the use of implementation headers
that extend our API.

Figure 14(a) illustrates the exterior daylight matrix that links sky patches to incident directions on an
exterior window. We have assigned random colors to the sky regions, which may interact with the ground
plane and other building surfaces on their way to the incident window directions corresponding to the
Klems basis of the BSDF matrix, which we have outlined and superimposed on a hemispherical view.

Similarly, Figure 14(b) illustrates the interior view matrix , used in this case to generate a fisheye image
from the back of the space. Colored patches corresponding to Klems window directions are projected onto
the walls and reflected indirectly to other surfaces making up this view. Sampling in this figure and the

DOE/ LBNL FY12 Technical Report Deliverable

20

previous one was turned off to make the patch boundaries clear, but of course these directions are better-
mixed in our actual calculation of .

(a) (b) (c)

Figure 14. (a) View from exterior window circled on the left, showing Klems basis (outlines) and sky subdivisions (colored patches)
on the right. The daylight matrix corresponds to these patch coefficients. (b) View matrix used to generate an image based on the
output of our selected window. Direction patches are colored randomly to show their contribution to this view. (c) A single timestep
out of thousands of images computed for the solar year. This represents pm on a clear solar equinox withvenetian blinds having
curved, half-specular louvers set to horizontal.

Once we have computed and , we can select the window behavior encoded in the BSDF and multiply
it all together using Eq. (3). This allows us to generate a sequence of images corresponding to the
movement of light throughout the day and year, and each time step takes a few seconds compute (following
a few hours of precalculation). An example result is shown in Figure 14(c). We have sped this up even
further by combining all the sky vectors into an annual matrix and using a GPU to compute images
for the whole year in the time it takes to write the information to disk.

4. BSDF Software Library

We have implemented the following queries for matrix and tensor tree sampling in an ANSI-C library with
a fixed API:

(a) Get a BSDF value for a pair of directions

(b) Get the directional hemispherical scattering for a given incident direction

(c) Get the projected solid angle sample size for one or two directions

(d) Get a PDF-derived importance direction for the given incident direction

In the interests of space, we glossed over some important details about how BSDF data is made available to
the application. The caller may in practice treat the BSDF as a single entity, or may access it as
components. These components include transmission, front reflection and back reflection, each further
divided into Lambertian and non-Lambertian components, any of which may be zero. The library further
supports multiple non-Lambertian components, which may provide for more efficient spectral
representations in the future (e.g., uncolored superficial reflection and colored body reflection).

In the simplest use of our BSDF library, the application makes a single call at each surface evaluation to
generate a sample ray direction and weight using method (d). The luminance (Y) channel of the weight
would always be the same, although the spectrum might change for different importance samples. Multiple
rays could be generated to reduce variance, and their weights adjusted by . The rays would then be
evaluated in the usual recursive fashion.

One refinement to this simple method that greatly reduces noise is to sample light sources independently,
evaluating both Lambertian and non-Lambertian components taken from the BSDF. Method (a) would be
called to evaluate the BSDF in the known light source directions during shadow testing. The light sources
would have to be ignored in subsequent sampling with (d) to avoid over-counting their contributions.

DOE/ LBNL FY12 Technical Report Deliverable

21

As well as treating light sources independently, Radiance relies on a separate calculation of diffuse
interreflection. We extract this component from our importance sampling, and break our calls down further
by non-Lambertian component. This ensures that every shading evaluation generates at leastone sample ray
per component, fitting with the behavior of other material types in Radiance. Testing the design of our
BSDF library in a practical rendering context led to some important refinements to the API as well as
improvements in our implementation, as one would expect.

New representations as well as extensions to existing types may be added in the future without altering the
interface, which is more general than the existing XML specification (figure 13). The library supports
loading and caching BSDF data and simple vector operations for surface reorientation.

We employ a plug-in interface for each BSDF representation, using a callback structure with an associated
set of required methods. The client data specific to each loaded BSDF is defined in a separate header file
for that type. Applications that need access to the underlying data simply include the BSDF type’s header,
applying the accessors defined therein. The solution is neat and efficient, although changing existing types
may require updates to type-specific calls.

5. Fitting Results

Portions of Matusik et al.’s (Matusik et al, 2003) anisotropic measured BRDF dataset is not suitable for
direct rendering or fitting to analytical models due to unreliable, missing and noisy measurements (Ngan et
al., 2005).We address this problem using a generalized 3-way displacement interpolation method akin to
(Bonneel et. al., 2011).

As seen in Figure 15(a), our interpolation method reproduces the anisotropic purple satin measurements
accurately with a rank-4 tensor tree. Both highlight regions and grazing angles match the original surface.
In contrast, the Ward anisotropic BRDF model (Ward, 1992) has difficulty fitting this BRDF, as shown in
Figure 15(b). (To estimate the parameters of Ward model, we use Ngan et al.’s (Ngan et al., 2005) fitting
procedure.)

Similarly, Figure 16(a) shows our displacement interpolation method applied to Matusik et al.’s
anisotropicdata for red velvet, which fills in missing regions in the measurements (e.g., black streak).
Again, the Ward

(a) (b)

Figure 15. (a) The measured anisotropic purple satin BRDF (Matusik et al, 2003) (left) is interpolated into a rank-4 tensor tree and
rendered using our method (right). (b) The Ward BRDF model (right) does not fit the data nearly as well.

DOE/ LBNL FY12 Technical Report Deliverable

22

(a) (b)

Figure 16. (a) The measured anisotropic red velvet BRDF (Matusik et al, 2003) (left) is not suitable for direct rendering due to
missing data (black streak). Displacement interpolation fills in the missing data and smoothes the measurement noise (right). (b) The
Ward BRDF model (right) does not represent the measured anisotropic red velvet as well, reverting to Lambertian reflection in this
case.

BRDF model in Figure 16(b) cannot represent the measured data very well, and the closest fit is purely
Lambertian.

	Abstract
	1.Introduction
	2. Background and RelatedWork
	3. Fixed and Variable Resolution Data Standards
	3.1. Matrix BSDFs
	3.2. Tensor Tree BSDFs
	4. Rendering in Radiance
	4.1. BSDF Proxy Method
	4.2. BSDF Simulation
	5. Measuring and Interpolating BSDFs
	5.1. Displacement interpolation for ghosting BSDF values
	6. Discussion and FutureWork
	Acknowledgements
	Supplemental material
	1.The XML Format
	2. BSDF Proxy Method
	3. Annual Simulations
	4. BSDF Software Library
	5. Fitting Results

