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ABSTRACT

From the equations governing the deformation of a
porous medium containing three fluid phases, I de-
rive expressions for the phase velocity of the various
modes of displacement. These expressions are valid for
a medium with smoothly varying heterogeneity. There
is a single mode of transverse displacement, similar in
nature to an elastic shear wave. The four phase ve-
locities of the longitudinal modes of displacement are
derived from the solutions of a quartic equation. The
coefficients of the polynomial equation are written as
linear sums of the determinants of 4 by 4 matrices. The
matrices contain various combinations of the parame-
ters from the governing equations. The three phase
expressions are compared to two phase estimates for
the case in which one of the fluid saturations vanishes.
Also, in a numerical illustration, velocity variations of
around 10% are associated with the cyclic injection of
carbon dioxide and water into an oil saturated reser-
voir.

INTRODUCTION

In a number of situations of practical interest one must
consider the flow of three fluids at depth. It is quite com-
mon for two immiscible liquid phases, such as oil and wa-
ter, to be found within a reservoir, particularly after the
onset of production. In addition, there can be an accom-
panying gas phase, such as air, steam, carbon dioxide, or
methane, present within the reservoir pore volume. With
advancements in recovery techniques and developments in
environmental remediation, such instances of three phase
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flow will become increasingly common-place (Batzle et al.
1998). Three phase flow can be quite complicated, par-
ticularly in the presence of such factors as gravitational
effects due to density variation and lateral variations in
properties such as permeability. Therefore, geophysical
monitoring can be important in understanding three phase
flow within a reservoir (Hoversten et al. 2003). To this
end, it is important to relate changes due to such flow to
variations in seismic properties.

Currently, the most common approach for relating seis-
mic properties to the presence of fluids is to combine Biot’s
theory for a porous rock saturated with a single fluid phase
(Biot 1956a,b) with an approach for computing the com-
posite bulk modulus of a fluid saturated rock (Gassmann
1951, Smith et al. 2003). Multiple fluids are accom-
modated by computing effective fluid properties such as
the density and bulk modulus, for a mixture (Batzle and
Wang 1992). In this way, any number of fluids might be
accounted for. This approach has the advantage of sim-
plicity and uses only essential parameters.

A more rigorous approach is to combine the properties
of the individual constituents, along with the flow prop-
erties of the porous rock, including such features as ab-
solute permeability, relative permeability properties, and
capillary pressure properties. Such approaches are too
numerous to provide a comprehensive review in this In-
troduction. Therefore, I simply point out some represen-
tative studies that treated single phase flow (Garg 1971,
Pride et al. 1992), and two phase flow (Berryman et
al. 1988, Santos 1990, Tuncay 1995, Tuncay and Corap-
cioglu 1996, 1997, Lo et al. 2005, 2009) for a homoge-
neous medium. Recently, the two phase work was ex-
tended to a medium containing smoothly-varying hetero-
geneity in Vasco and Minkoff (2012). These papers dealt
with larger-scale, wave-induced flow, the so-called macro-
scopic flow. It has been pointed out that there are other
scales of flow that may be important with regard to seis-
mic wave propagation through a porous medium. There
is a small-scale (microscopic) fluid migration from micro-
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cracks, including grain contacts, referred to as squirt-flow
(Biot 1962b, Mavko and Nur 1975, O’Connell and Budi-
anski 1977, Jones 1986, Dvorkin et al. 1994). This effect
has been incorporated into the Biot model (Pham et al.
2002). Also, an intermediate or mesoscopic flow, due to
wave-induced flow on a scale smaller then the wavelength
of the elastic wave but larger than the pore scale was first
proposed by White (1975) and explored in more depth by
Pride et al. (2004). Both the microscopic and the meso-
scopic flow have been adopted into a single phase Biot
type model (JafarGandomi and Curtis 2011).

In this paper I extend the two phase work of Vasco and
Minkoff (2012) to the case in which there are three fluid
phases. Specifically, I consider the zeroth-order terms
of an asymptotic analysis of the equations governing the
coupled deformation and flow in a heterogeneous porous
medium containing three fluids. The resulting linear sys-
tem of equations is used to derive expressions for the slow-
ness and hence the phase velocity of the various modes of
displacement. Though for the purposes of this paper I
use Biot’s (1956a,b) theory of macroscopic flow to relate
the coefficients of the poroelastic governing equations to
the rock, fluid, and flow properties, as detailed in the Ap-
pendix A, the methods noted above can be used to account
for both microscopic and mesoscopic flow.

METHODOLOGY

The governing equations

I consider a porous medium saturated with three immis-
cible fluid phases That is, if Si denotes the saturation of
the i-th phase then in the available pore space

3
∑

i=1

Si = S1 + S2 + S3 = 1. (1)

For a given unit volume of fluid filled porous rock, with
porosity φ, I denote the fraction of the i-th fluid as

αi = φSi. (2)

The three phases are assumed to behave as Newtonian
fluids, representing liquids and/or gases moving through
the pore space of the solid matrix. The components of the
solid are assumed to react elastically. Thus, the composite
body acts as a poroelastic material.

As shown in Tuncay and Corapcioglu (1996), under
the assumptions of negligible mass exchange between the
phases, small deformation, a seismic wavelength much
larger then the microscopic scale, and a linearization of
the density variation, the average momentum equations
reduce to

αsρs
∂u̇s

∂t
= αs∇ · σs −

3
∑

j=1

dj (3)

and

αiρi
∂u̇i

∂t
= αi∇ · σi + di (4)

where the solid and fluid displacements are denoted by us

and ui, ρs is the density of the solid components while
ρi is the density of the i-th fluid, σs and σi are the re-
spective stress tensors, and the dots over the displacement
vectors denote time derivatives. In an effort to keep the
presentation compact, I represent the three equations for
the fluid phases by a single indexed equation [equation 4],
allowing i to take the values 1, 2, and 3 for the respective
fluid phases. The vectors di are the momentum transfer
vectors or interaction terms, representing drag forces due
to the interaction of the fluids with the solid matrix (Pride
et al. 1993). Pride et al. (1992) argue that the drag forces
can be written in the specific form

di = ρiαiν (1 + ν)
−1 ∂ẇi

∂t
, (5)

where ẇi is the flow velocity of fluid i. The flow velocity
of the fluid phase is measured relative to the current po-
sition of the solid, given by ẇi = u̇i − u̇s . The quantity
(1 + ν)−1 is referred to as the dynamic tortuosity by John-
son et al. (1987). The dynamic tortuosity controls how
much fluid flows in response to the applied forces. The
variable ν may be thought of as a convolutional operator
in the time domain, or as a frequency dependent coeffi-
cient in the frequency domain, related to the interaction
of the fluid and the solid (Pride et al. 1992, 1993).

If I substitute the expression 5 for di, define the coeffi-
cient

Di = ρiαiν (1 + ν)
−1

, (6)

and add and subtract αiρi∂u̇s/∂t from the left-hand-side
of equation 4, then I can write equations 3 and 4 as

αsρs
∂u̇s

∂t
+

3
∑

j=1

Dj
∂ẇj

∂t
= αs∇ · σs (7)

αiρi
∂u̇i

∂t
+ (αiρi − Di)

∂ẇi

∂t
= αi∇ · σi. (8)

Taking the Fourier transform of equations 7 and 8, defin-
ing

νs = αsρsω
2, (9)

νi = αiρiω
2, (10)

ξi = αiρiν (1 + ν)
−1

ω2, (11)

and
Γi = αiρi

[

1 − ν (1 + ν)
−1

]

ω2, (12)

I can write equations 7 and 8 in the frequency domain:

αs∇ · σs + νsUs +

3
∑

j=1

ξjWj = 0 (13)

αi∇ · σi + νiUs + ΓiWi = 0 (14)

where the capital letters signify the Fourier transform of
the respective time-domain quantities.

In order to complete the formulation I need to write
equations 13 and 14 solely in terms of the solid and fluid
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displacements, Us and Wi, i = 1, 2, 3. Assuming a lin-
ear poroelastic constitutive relationship relating the stress
tensors to the displacements, I can write 13 and 14 as

∇ · Gm

[

∇Us + ∇(Us)
T − 2

3
∇ · UsI

]

+

∇



Ku∇ ·Us +

3
∑

j=1

Csj∇ ·Wj



 + νsUs +

3
∑

j=1

ξjWj = 0

(15)

∇
[

Cis∇ ·Us + Σ3
j=1Mij∇ · Wj

]

+ νiUs + ΓiWi = 0.
(16)

The coefficients of the effective poroelastic medium de-
pend upon the properties of the fluids contained within
the pores and on the nature of the rock and its con-
stituents. There are now numerous constitutive models
relating the properties of the components of a porous
medium to the effective elastic coefficients. The early
model of Biot (1962a) for a single fluid has been particu-
larly influential and has been extended to a medium con-
taining two fluid phases (Berryman et al. 1988, Santos et
al. 1990, Tuncay and Corapcioglu 1996, Lo et al. 2005).

In Appendix A I extend the approach of Tuncay and
Corapcioglu (1996) to a porous medium containing three
fluid phases. There, the coefficients are defined in terms
of the properties of the fluids, the properties of the solid
constituents, and the properties of the porous rock, in-
cluding the capillary pressure functions. Note that it is
possible to further generalize the coefficients by adopt-
ing the theories listed in the Introduction to this paper.
That is, I could account for fluid flow into micro-cracks
(Biot 1962b, Dvorkin et al. 1994) and mesoscopic flow
(White 1975, Pride et al. 2004) perhaps in the fashion
described in Carcione and Gurevich (2011). Regardless
of the theory used to set up the equations of poroelastic-
ity, and hence the complex, frequency-dependence of the
coefficients, the techniques described in the remainder of
this paper are still applicable and the expressions for the
slownesses in a heterogeneous medium are still valid.

I wish to point out that, while there are a large num-
ber of derived parameters in the constitutive relationship
outlined in Appendix A, there are only a handful of fun-
damental quantities underlying all of the derived parame-
ters. The 12 basic parameters are listed in Table 1. Note
that for some, such as the densities and compressibili-
ties, there are values for each fluid phase and for the solid
phase. There are four major categories into which the
parameters may be classified. However, there is overlap
between the various categories and they are not exclusive.
The attributes of the solid: the bulk modulus of the solid
grains or particles, Ks, the density of the solid, ρs, and the
frame moduli of the porous matrix, Kfr (bulk) and Gfr

(shear) are listed first in Table 1. Second, there are the
properties associated with the three fluid phases: the bulk
moduli of the fluids (Ki), the densities of the fluid com-
ponents (ρi), and the viscosities of the fluid phases (µi).
Finally, there are the flow properties of the poroelastic

medium, that is the porosity (φ), the absolute permeabil-
ity (k), the relative permeabilities (kri), and the capillary
pressure properties (Pc12 and Pc13). The first two, φ and
k, could just as easily been included as properties of the
solid. I list them as flow properties because they are of
primary importance in the modeling of fluid flow in the
subsurface. In fact, absolute permeability, k, is a quantity
of great interest due to its role in controlling fluid flow.
All of these parameters are contained in the coefficients
in equations 9, 10, 11, and 12 and in the matrix K given
by the expression A25. Some of the flow properties enter
through the variable ν, a quantity related to the dynamic
tortuosity, as shown in the Applications section [see equa-
tions 55 and 56]. Note that there is also the frequency,
a general parameter that influences aspects of the prop-
agation such as the velocity and the attenuation. I do
not include it in Table 1 because it is an independent pa-
rameter and is not a property of either the solid or the
fluid.

Asymptotic analysis

The governing equations 15 and 16 are rather formidable,
relating four coupled vectors, with coefficients that depend
upon spatial position and with some coefficients that are
functions of frequency. In order to work towards a solution
and to gain insight, some simplification is required. For
this purpose I adopt an asymptotic approach, motivated
by the idealization of a smoothly varying heterogeneous
medium. That is, I shall assume that, away from bound-
aries such as layering and faults, the length scale of the
heterogeneity is much larger than the length scale of any
propagating disturbance. Such an assumption is compat-
ible with the goal of using seismic observations to char-
acterize variations in reservoir properties, that is, solving
the inverse problem. In inverse problems one can typically
only recover large-scale variations in reservoir properties
due to limited resolution (Menke 1989). Thus, the models
of interest will consist of smoothly-varying perturbations
added to the original background model.

In order to specify the asymptotic expansion, consider
a parameter D representing the length scale of the het-
erogeneity. Furthermore, let d represent the length scale
associated with a propagating disturbance, for example
the spatial wave-length of a pulse. Define a scale param-
eter ε as the ratio of the length scales

ε =
d

D
(17)

and because d ≪ D one also has ε ≪ 1. I frame the prob-
lem in terms of slow coordinates X, the spatial coordinates
x scaled by ε

X = εx, (18)

creating an implicit dependence of the solution vectors Us

and Wi upon ε.
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Asymptotic expressions for the displacements

The asymptotic expansion is a series representation of the
displacement vectors in terms of powers of the scale pa-
rameter ε

Us(X, ω, θ) = eiθ
∞
∑

n=0

εnUn
s (X, ω) (19)

Wi(X, ω, θ) = eiθ
∞
∑

n=0

εnWn
i (X, ω) (20)

where θ(x, ω) is a function, referred to as the local phase,
related to the kinematics, or the travel time, of the prop-
agating disturbance (Whitham 1974, Anile et al. 1993).
The functions Un

s (X, ω) and Wn
i (X, ω) represent the am-

plitudes of the displacements and their successive correc-
tions. The series 19 and 20 are generalized plane wave ex-
pansions of the solid and fluid displacement fields in the
frequency domain (Friedlander and Keller 1955, Luneb-
urg 1966, Kline and Kay 1979, Chapman 2004). Because
the expansion parameter ε is assumed to be small, the
heterogeneity is assumed to vary smoothly, only the first
few terms of the series are significant. For example, the
zeroth-order term is often used to represent the solution
(Kline and Kay 1965, Vasco et al. 2003).

In order to completely transform the governing equa-
tions 15 and 16 I rewrite the derivative operators in terms
of the slow coordinates. For example, the partial deriva-
tive of Us with respect to the spatial coordinate xi be-
comes

∂Us

∂xi
=

∂Xi

∂xi

∂Us

∂Xi
+

∂θ

∂xi

∂Us

∂θ
(21)

and hence, making use of equation 18,

∂Us

∂xi
= ε

∂Us

∂Xi
+

∂θ

∂xi

∂U

∂θ
(22)

(Anile et al. 1993). Thus, the differential operators are
likewise written as

∇Us = ε∇XUs + ∇θ
∂Us

∂θ
(23)

where ∇X denotes the gradient with respect to the com-
ponents of the slow variables X. In what follows I shall
drop the subscript X from the gradient operator in slow
coordinates.

Terms of zeroth-order: The phase of the disturbance

Asymptotic solutions are obtained by rewriting the gov-
erning equations in slow coordinates and transforming
derivative operators as in expression 22. Next, the power
series expansions 19 and 20 are inserted into the trans-
formed governing equations. The result is a set of four
vector equations, each containing terms of various orders
in ε. Because ε ≪ 1 only the lowest order terms are re-
tained. This procedure was presented in detail in Vasco
(2009) and Vasco and Minkoff (2012) for propagation in
a porous medium containing one and two fluid phases,

respectively. Because the approach has been described
in detail in these two studies I shall only present the re-
sults of the asymptotic analysis. Specifically, the terms of
zeroth-order in ε are contained in the following equations:

αU0
s − βl · U0

sl +

3
∑

j=1

(

ξjW
0
j − Csj l ·W0

j l
)

= 0 (24)

νiU
0
s − Cisl ·U0

sl + ΓiW
0
i −

3
∑

j=1

Mijl ·W0
j l = 0 (25)

where U0
s and W0

i are the zeroth-order amplitude func-
tions in equations 19 and 20,

l = ∇θ (26)

is the phase gradient vector,

α = νs − Gml2 (27)

and

β = Ku +
1

3
Gm (28)

where l = |∇θ| is magnitude of the vector l. The set of
equations 24 and 25 may be written as the matrix equa-
tion:

(A − B)U = 0 (29)

where

A =









αI ξ1I ξ2I ξ3I

ν1I Γ1I 0 0

ν2I 0 Γ2I 0

ν3I 0 0 Γ3I









, (30)

B =









βllT Cs1ll
T Cs2ll

T Cs3ll
T

C1sll
T M11ll

T M12ll
T M13ll

T

C2sll
T M21ll

T M22ll
T M23ll

T

C3sll
T M31ll

T M32ll
T M33ll

T









, (31)

and

U =









U0
s

W0
1

W0
2

W0
3









. (32)

The quantity I in the matrix A is the 3 by 3 identity ma-
trix with ones on the diagonal and zeros off of the diagonal.
The quantity llT is the outer product of the column vector
l, which may be thought of as a 3 by 1 matrix, and the row
vector lT , which may be thought of as a 1 by 3 matrix.
One may also think of llT as a dyadic, a generalization of
a vector to a matrix (Spiegel 1959, p. 73, Ben-Menahem
and Singh 1981).

The system of equations 29 has a non-trivial solution
U if the determinant of the coefficient matrix vanishes
(Noble and Daniel 1977, p. 203):

det (A − B) = 0. (33)

Because the elements of the matrices A and B contain
the coefficients in the governing equations, and the com-
ponents of l = ∇θ, equation 33 is a differential equation
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for θ. This differential equation, with coefficients that de-
pend upon spatial coordinates and the frequency, ω, is
the eikonal equation determining the propagation time of
a disturbance through a heterogeneous medium saturated
with three fluid phases. Because the coefficients may de-
pend upon frequency, the propagation is likely to be dis-
persive.

The matrices A and B are 12 by 12 and the determinant
in equation 33 is a 12th-order polynomial in the elements
of the matrices. Furthermore, the elements of these ma-
trices contain product terms of the vector components of
l. For example the matrix B contains product terms of
the form llT . Thus, the polynomial equation is of degree
24 in the components of l. A direct formulation of the
polynomial determined by equation 33 will lead to some
rather involved algebra.

Rather than computing the determinant directly I take
an alternative approach and work with the eigenvalues
and eigenvectors of the matrix (A − B). This approach
makes use of the fact that the determinant of a matrix is
the product of the eigenvalues of the matrix (Noble and
Daniel 1977, p. 264). Thus, the determinant of the matrix
vanishes when one or more of the eigenvalues vanishes.
If I denote the eigenvalue by λ, and the corresponding
eigenvector by e then I have that

(A − B) e = λIe = 0. (34)

For a non-trivial eigenvector e, condition 34 is equivalent
to equation 33 so one gains no mathematical advantage
from simply reformulating the problem. However, moti-
vated by the structure of the matrices A and B and some
insight from the nature of wave propagation, I can specify
the form of the eigenvectors e and simplify equation 34.

With regard to the structure of the matrices A and B,
given by 30 and 31, there is a certain homogeneity in the
coefficients of each matrix. In particular, the matrix A

has a block matrix structure and may be thought of as
a 4 by 4 matrix with elements that contain the identity
matrix [the zero elements may be thought of as 0 × I].
Similarly, the matrix B is a 4 by 4 block matrix with all
blocks containing the matrix llT . The vector direction
l has special significance because when multiplied by ei-
ther A or B the block elements return either the vector
l or the zero vector. Similarly, the two vector directions
perpendicular to l which we denote by l⊥1 and l⊥2 , return
their values or zero when multiplied by A and zero when
multiplied by B. Thus, vectors of the form

el =









lsl
l1l
l2l
l3l









, (35)

e⊥1 =









tsl
⊥
1

t1l
⊥
1

t2l
⊥
1

t3l
⊥
1









, (36)

and

e⊥2 =









ssl
⊥
2

s1l
⊥
2

s2l
⊥
2

s3l
⊥
2









. (37)

return either scaled versions of themselves or zero when
multiplied by the elements of the matrices of A and B.
This suggests that when I substitute each of these vectors
into equation 34 the result will be four equations in the
four unknown coefficients of each vector.

The forms of the vectors el, e⊥1 , and e⊥2 also have phys-
ical significance and represent well-known modes of wave
propagation. For example, the vector el represents longi-
tudinal wave propagation, in which the solid and fluid
displacements are parallel to the direction of propaga-
tion l = ∇θ (Chapman 2004). Conversely, the vectors
l⊥1 and l⊥2 signify transverse displacements, displacements
perpendicular to the direction of propagation, similar to
an elastic shear wave. Longitudinal and transverse modes
are solutions of the elastic wave equation in a homoge-
neous medium (Aki and Richards 1980, p. 68, Chapman
2004, p. 111) as well as high-frequency solutions for a
heterogeneous isotropic medium (Aki and Richards 1980,
p. 89). Longitudinal and transverse modes are also docu-
mented for waves in homogeneous poroelastic media con-
taining a single fluid (Pride 2005) and two fluids (Tuncay
and Corapcioglu 1996). The three vectors el, e⊥1 , and e⊥2
are linearly independent and may be used to represent all
modes of propagation. In the sub-sections that follow I
shall consider the transverse and longitudinal modes of
propagation in succession.

The transverse mode of propagation

Because the transverse mode of propagation is somewhat
simpler due to the vanishing of all contributions from the
matrix B, I begin by considering the vector e⊥1 . The treat-
ment of the other transverse eigenvector e⊥2 is similar and
will produce an identical slowness, or corresponding ve-
locity. The eigenvector equation 34 reduces to









αI ξ1I ξ2I ξ3I

ν1I Γ1I 0 0

ν2I 0 Γ2I 0

ν3I 0 0 Γ3I

















tsl
⊥
1

t1l
⊥
1

t2l
⊥
1

t3l
⊥
1









=









0

0

0

0









. (38)

This equation has a non-trivial solution if the determinant
of the coefficient matrix vanishes. Due to the structure
of the matrix A and of the vector e⊥1 this condition is
equivalent to

det









νs − Gml2 ξ1 ξ2 ξ3

ν1 Γ1 0 0
ν2 0 Γ2 0
ν3 0 0 Γ3









= 0 (39)

where I have used the definition of α, equation 27. This
can be seen by factoring out the identity matrices and the
vectors l⊥1 and writing the system 38 as four equations
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for the four unknowns ts, t1, t2, and t3. Alternatively,
one can adopt the formal approach in Vasco and Minkoff
(2012) and use the rule for the determinant of a matrix
composed of block matrices (Silvester 2000).

The vanishing of the determinant in equation 39 pro-
duces a quadratic equation for l with no linear term. I
can solve the quadratic equation for l, resulting in the
expression

l = ±
√

1

Gm

(

νs −
ξ1ν1

Γ1
− ξ2ν2

Γ2
− ξ3ν3

Γ3

)

, (40)

indicating a single solution for the transverse mode. The
negative value simply signifies a wave propagating in the
opposite direction. Because the other transverse vector e⊥2
produces the same solution both transverse waves propa-
gate with the same speed. Making use of the definitions
for νs and νi I can write equation 40 in a more familiar
form:

l = ±ω

√

(1 − φ)ρs − φρf

Gm
(41)

where

ρf =
ξ1

Γ1
S1ρ1 +

ξ2

Γ2
S2ρ2 +

ξ3

Γ3
S3ρ3 (42)

is a weighted fluid density. Note that the weights depend
upon frequency through the ratios

ξi

Γi
=

ν(1 + ν)−1

1 − ν(1 + ν)−1
. (43)

So the transverse slowness, or the corresponding wave
speed, generally depends upon the frequency ω, perhaps
leading to dispersive propagation. Furthermore, the ratio
ξi/Γi can also be complex, leading to the attenuation of
the transverse mode as it propagates.

The longitudinal modes of propagation

Now consider the situation in which the solid and fluid dis-
placements are aligned with the direction of propagation
l. In such a case of longitudinal propagation the eigen-
vector is of the form el, given by equation 35. Therefore
equation 34 is equivalent to

(

A − B̂
)

el = 0. (44)

where A was given previously, equation 30, and

B̂ =









βl2I Cs1l
2I Cs2l

2I Cs3l
2I

C1sl
2I M11l

2I M12l
2I M13l

2I

C2sl
2I M21l

2I M22l
2I M23l

2I

C3sl
2I M31l

2I M32l
2I M33l

2I









. (45)

The matrix A− B̂ consists of a 4 by 4 block matrix where
each block contains the identity matrix, similar to the
case for transverse propagation, equation 38. Following
the procedure applied to that matrix, or the procedure
described in Vasco and Minkoff (2012), I can show that

the condition for equation 44 to have a non-trivial solution
is the vanishing of the determinant of the matrix

M =









νs − Hs ξ1 − Cs1s ξ2 − Cs2s ξ3 − Cs3s
ν1 − C1ss Γ1 − M11s −M12s −M13s
ν2 − C2ss −M21s Γ2 − M22s −M23s
ν3 − C3ss −M31s −M32s Γ3 − M33s









(46)
where I have defined

s = l2 (47)

and

H = Ku +
4

3
Gm. (48)

The requirement that the determinant of the matrix M

vanish results in a fourth order polynomial for s. However,
simply expanding the determinant using the standard for-
mula (Noble and Daniel 1977, p. 199) will result in com-
plicated expressions for the coefficients of the polynomial.
A better approach, presented in Vasco and Minkoff (2012),
makes use of an expression for the determinant of a ma-
trix in which a column is the sum of two components. For
example, each term in the coefficient matrix M is com-
posed of a constant term and a term linear in s. Thus, I
can expand the determinant of the matrix M as

detM =
∣

∣

∣

∣

∣

∣

∣

∣

νs ξ1 − Cs1s ξ2 − Cs2s ξ3 − Cs3s
ν1 Γ1 − M11s −M12s −M13s
ν2 −M21s Γ2 − M22s −M23s
ν3 −M31s −M32s Γ3 − M33s

∣

∣

∣

∣

∣

∣

∣

∣

−s

∣

∣

∣

∣

∣

∣

∣

∣

H ξ1 − Cs1s ξ2 − Cs2s ξ3 − Cs3s
C1s Γ1 − M11s −M12s −M13s
C2s −M21s Γ2 − M22s −M23s
ν3 −M31s −M32s Γ3 − M33s

∣

∣

∣

∣

∣

∣

∣

∣

(49)

where the vertical bars signify that the quantity is the
determinant of the enclosed matrix. I can apply this pro-
cedure recursively to produce the quartic equation

Q4s
4 − Q3s

3 + Q2s
2 − Q1s + Q0 = 0 (50)

with coefficients that are linear combinations of the de-
terminants of 4 by 4 matrices, given in Appendix B. The
quartic equation can be solved either numerically or ana-
lytically. An explicit solution can be derived in terms of
the solutions of a related cubic equation, the resolvent cu-
bic (Clark 1984, Faucette 1996, Stahl 1997, Nickalls 2009).
Note that if Q4 vanishes then equation 50 reduces to a cu-
bic equation with three roots. This can occur if any of the
rows are proportional to one another. For example, if the
mechanical properties of two of the fluids are similar then
the seismic slowness would not be sensitive to the rela-
tive proportion of the two fluids. Effectively, there would
be two seismically indistinct fluids in the pore space and
the two-phase results of Vasco and Minkoff (2012) may be
used.

The quartic equation 50 leads to a set of partial differen-
tial equations for the phase function θ(x, ω), introduced
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in equations 19 and 20. Each partial differential equa-
tion is a Hamilton-Jacobi equation for θ(x, ω), known as
an eikonal equation (Chapman 2004). The eikonal equa-
tions, and the equivalent characteristic equations may be
used to define the trajectories or rays on which solutions
are prescribed (Courant and Hilbert 1962). Note that the
trajectories are generally frequency-dependent and differ
for each mode of propagation. There is a distinct phase
variable associated with each mode, that is for each of the
four roots of equation 50. To see this, consider equation
50 written in the factored form

(l2 − s1)(l
2 − s2)(l

2 − s3)(l
2 − s4) = 0 (51)

where the definition 47 has been used to substitute l2 for
s. From the definition 26 of l one can see that equation
51 is equivalent to

(∇θ ·∇θ−s1)(∇θ ·∇θ−s2)(∇θ ·∇θ−s3)(∇θ ·∇θ−s4) = 0.
(52)

Thus, each root produces an eikonal equation of the form

∇θ · ∇θ − si(x, ω) = 0

where the dependence of the root si on the spatial coor-
dinates, through the heterogeneity of the medium param-
eters has been made explicit, similarly for the frequency
dependence.

APPLICATIONS

Here I apply the methods presented above to three il-
lustrative examples. In the first example I compare the
phase velocity estimates for the case in which one of the
fluid saturations goes to zero, reducing the problem to
that of two phase flow. I compare the predictions made
using the current methods to those made using the tech-
niques described in Vasco and Minkoff (2012), which are
in agreement with the earlier calculated values of Tuncay
and Corapcioglu (1996) and Lo et al. (2005). In the sec-
ond example I consider the most general situation in which
there are three fluids in the porous medium. For this case
there are four modes of longitudinal propagation and the
velocities and attenuation coefficients vary as functions of
the water, gas, and oil saturations. In the final example
I use the results of a compositional numerical simulation
of the cyclic injection of water and carbon dioxide into a
reservoir containing oil to examine the velocity variations
induced by enhanced oil recovery.

Before tackling the individual modes of propagation one
needs to determine an expression for ν in terms of the
properties of the medium. As stated in the discussion fol-
lowing equation 5, the quantity (1 + ν)−1 is referred to
as the dynamic tortuosity (Johnson et al. 1987) and it
is determined by the amount of fluid flowing in response
to an applied force. Rather then enter into a detailed
analysis of the physics of flow that might enable us to de-
rive expressions for simplified media (Pride et al. 1993),
I adopt a more pragmatic approach. That is, as in Vasco

and Minkoff (2012), I determine a value for ν by com-
paring the appropriate coefficients in the governing equa-
tions 15 and 16 with the governing equations in Tuncay
and Corapcioglu (1996). In particular, after transforming
their equations into the frequency domain and accounting
for a somewhat different formulation, I have

ξj = −iωCj (53)

and
Γj = ω2ρ̂j + iωCj (54)

for j = 1, 2, 3, where Cj are the coefficients in Tuncay
and Corapcioglu (1996) augmented by the additional fluid
phase, of the form

Cj =
φ2Sjµj

kkrj
(55)

for Darcy flow, and ρ̂j is the volume averaged density,
given by ρ̂j = αjρj = φSjρj . Recall the flow properties
contained in Cj : the porosity φ, the absolute permeability
k, and the relative permeability for fluid j, krj. Using
equations 53, and the equations represented by 11, I can
solve for an explicit expression for ν:

ν =
Cj

Cj + iωαjρj
. (56)

Note that ν appears to be a function of the particular fluid
of interest and that it is a frequency-dependent, complex
quantity. Using this expression for ν and the expressions
55 for Cj I can calculate all the coefficients of the gov-
erning equations in terms of the properties of the fluids
and the properties of the medium. Thus, I can define all
the parameters in the expressions 41 and 50 determining
the slownesses for the transverse and longitudinal modes
of propagation.

For both the transverse and longitudinal modes there
is the issue of calculating the relative permeabilities for
a porous medium containing three fluid phases. This is
not a trivial undertaking and is the subject of a signifi-
cant amount of research that I can only touch upon. The
earliest work was that of Leverett and Lewis (1941) on un-
consolidated sands. An influential model was developed
by Stone (1973) and subsequently modified by Aziz and
Settari (1979). In their approach the three phase relative
permeability model is constructed from sets of two phase
observations. Corey et al. (1956) estimated three phase
relative permeabilities based upon simple measurements
of saturation pressure data. Other influential models in-
clude those of Baker (1988), Jerauld (1997), and Blunt
(2000). Many of the models assume that the relative per-
meability of the gas phase only depends upon the gas sat-
uration, and similarly for the aqueous phase, while the rel-
ative permeability of the oil phase is a function of both the
gas and aqueous saturations. A model by Sarem (1966)
assumed that the relative permeabilities only depended on
the saturation of each phase in question.

Here, I use the three phase relative permeability func-
tions of Parker et al. (1987), generalizations of the two
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phase formulation of Van Genuchten (1980) and Mualem
(1976). The exact form of the relative permeability func-
tions are

krg =
√

S̄g

[

1 −
(

S̄l

)1/m
]2m

(57)

krw =
√

S̄w

{

1 −
[

1 −
(

S̄w

)1/m
]m}2

(58)

kro =
√

S̄lS̄w

{[

1 −
(

S̄w

)1/m
]m

−
[

1 −
(

S̄l

)1/m
]m}2

(59)
for the gas, water, and oil phases, respectively, where

S̄g =
Sg

1 − Sm
(60)

S̄w =
Sw − Sm

1 − Sm
(61)

S̄l =
Sw + So + Sm

1 − Sm
=

1 − Sg + Sm

1 − Sm
(62)

where m = 1 − 1/n is an exponent and Sm is an appar-
ent minimum or irreducible wetting fluid saturation. As
in many of the other formulations, the gas and aqueous
relative permeabilities only depend upon their respective
saturations, while the oil relative permeability depends
upon both the gas and water saturations. In Figure 1
I plot the water, gas, and oil relative permeabilities for
a model that is similar to the two phase relative perme-
ability functions used in Vasco and Minkoff (2012) with
n = 2.037 and Sm = 0.0.

Prior to entering into detailed calculations and compar-
isons of the various prediction, I wish to take a step back
and consider the fundamental parameters required for the
computations. There are 12 essential quantities, indicated
in Table 1, which all the computations depend upon. The
12 properties can be grouped into three main categories as
indicated in the table and mentioned in the Methodology
section. The parameter values used in the calculations in-
volving two and three fluids and in the simulation of the
injection of carbon dioxide are also given in Table 1. The
parameters used in the two and three phase test calcula-
tions were chosen to facilitate a comparison with two pre-
vious studies. In particular, as in the previous two phase
work of Vasco and Minkoff (2012, the values from Lo et
al. (2005) were used to allow for a qualitative compar-
ison with their results. A computer program containing
the explicit expressions for the coefficients presented in
Tuncay and Corapcioglu (1996) allowed for a quantitative
comparison with their two phase predictions, as in Vasco
and Minkoff (2012). Because Lo et al. (2005) were mod-
eling an unconsolidated Columbia fine sandy loam, the
frame moduli are significantly smaller then typical reser-
voir rocks (Table 1). Thus, one would expect that the
velocities would be lower then those usually observed in a
deep reservoir.

A comparison with two-phase estimates

The comparison of the three phase estimates with previ-
ous two phase estimates (Vasco and Minkoff 2012) is done

in two stages. First, I consider transverse displacements
that have a relatively simple relationship to the medium
properties through equations 39 and 41. The dependence
of the transverse slowness on the flow properties of the
porous medium is through the ratio ξi/Γi which depends
upon ν as shown in equation 43. As shown above, assum-
ing Darcy flow, the quantity ν depends upon the porosity,
the intrinsic permeability k and the relative permeabili-
ties kri. The slowness of the transverse displacement does
not depend upon the capillary pressure variation of the
porous medium.

Transverse displacements

Now consider the expression for the phase velocity of the
transverse mode of propagation. As noted in Vasco and
Minkoff (2012), due to the particular definition of the
phase function θ, the phase velocity, c, is given by

c =
ω

l
(63)

where l is given by equation 41.
In order to compare the three phase velocity estimates

to two phase estimates using the approach described in
Vasco and Minkoff (2012), consider the case in which one
of the saturations vanishes. For example, if the gas phase
vanishes then the problem reduces to a two phase sys-
tem, consisting of oil and water. In that case the relative
permeability curves are given by equations 57, 58, and
59 with one of the saturations Sw, Sg, or So set equal
to zero. In essence, one is using the relative permeabil-
ity variations from pairs of edges of the triangles shown
in Figure 1. The resulting phase velocity estimates, as a
function of the water saturation, are shown in Figure 2 for
Oil-Water and Gas-Water systems. The two phase esti-
mates are indicated by the symbols while the three phase
estimates are denoted by the dashed lines. The estimates
were computed at a frequency of 100 Hz. In Figure 3
I plot the velocity estimates for a gas-water system over
a range of frequencies. Velocity estimates are shown for
water saturations of 0.1 and 0.9.

Longitudinal displacements

The velocities associated with the longitudinal modes of
displacement are determined by solutions of the quartic
polynomial 50. The coefficients of the polynomial depend
upon the parameters in the governing equations 15 and 16.
For a Biot model the parameters are given in Appendix A.
There I show that the capillary properties of the medium
influence the velocities of the longitudinal modes. This
was not the case for the transverse mode of displacement.
The capillary pressure functions that I use are those of
Parker et al. (1987)

Pcgo = −ρwg

αgo

[

S̄
−1/m
l − 1

]1/n

(64)
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Pcgw = −ρwg

αow

[

S̄−1/m
w − 1

]1/n

− ρwg

αgo

[

S̄
−1/m
l − 1

]1/n

(65)
plotted in Figure 4 along with Pcow = Pcgo − Pcgw. As I
did for the transverse mode of displacement, in order to
compare the three phase estimates with two phase esti-
mates (Vasco and Minkoff 2012), I shall consider cases in
which one of the fluid saturations vanishes.

First, consider the gas-water system in which the oil
saturation is zero. In Figure 5 I plot the gas-water cap-
illary pressure, Pcgw variation using the curve given by
equation 65 and the two phase capillary pressure model of
Van Genuchten (1980) used by Vasco and Minkoff (2012).
In this case the two curves differ, the model of Parker et
al. (1987) is different from the two phase Van Genuchten
(1980) model. In Figure 6 the longitudinal velocities P1,
P2, and P3 estimates, made using the method described
above, are plotted along with the two phase estimates
based upon the two phase formulation of Vasco and Minkoff
(2012). The fast wave (P1) velocities are identical for the
three phase and two phase estimates, regardless of the
difference in the capillary pressure curves. The other two
velocities, P2 and P3, appear to be strongly influenced
by the difference in the capillary pressure curves.

Next, consider the case in which the gas phase vanishes
and I have an oil-water system. The capillary pressure
curves computed using the two phase (Van Genuchten
1980) and the three phase (Parker et al. 1987) formu-
lations are shown in Figure 7. In this case the two phase
and three phase capillary pressure curves differ to a lesser
degree. The three longitudinal velocities, P1, P2, and P3
are shown in Figure 8, computed using the two and three
phase approaches. Again, the fast velocities P1 agree for
both approaches while the other two velocity estimates
(P2 and P3) differ, though to a lessor degree then for for
the gas-water system.

In the presence of three fluid phases

Now consider the situation in which three fluids are present
in the porous medium. The relative permeability [equa-
tions 57, 58, and 59] and capillary pressure [equations 64
and 65] functions of Parker et al. (1987) are used in the
calculations. The solid, fluid, and flow parameters are
given in Table 1.

Transverse displacements

For transverse displacements there is only a single mode
of propagation, though this mode will have two degrees of
freedom in the plane transverse to the direction of propa-
gation. The range of the transverse velocity over all pos-
sible three-phase fluid saturations is shown in Figure 9.
As hinted at by the linear variations in Figure 2, at a
frequency of 100 Hz the velocity of the transverse mode
appears to be a linear function of the fluid saturations.
Note that this is not true at all frequencies, as indicated
in the lower panel of Figure 9 where I plot the velocities

for a frequency of 50 KHz. Such behavior is suggested by
the high frequency variation of the transverse mode ve-
locities in Figure 3. In particular, the phase velocities for
the high and low saturations appear to cross over as the
frequency is increased to a sufficiently high value.

Longitudinal displacements

Consider the situation in which the displacement is in the
direction of propagation l. In this case there are four solu-
tions to the quartic equation 50 and hence four modes of
longitudinal propagation. The velocities associated with
the four longitudinal modes are functions of the three fluid
saturations. Therefore, one must plot the velocities as
functions of the three fluid saturations, constrained by
the fact that the saturations sum to unity [see equation
1]. Thus, it is best to plot the velocities over phase tri-
angles as in Figure 10. In these plots the origin, which
signifies that no water or gas are present, represents the
case in which the medium is entirely saturated with oil.
The diagonal of the triangle is the line on which no oil is
present, thus signifying a pure gas-water system.

The complete set of velocity estimates, for each of the
phase triangles, are shown in Figure 10. As is evident
from the coefficients 9, 10, 11, and 12 the velocities are
frequency-dependent, and for this example are computed
for a frequency of 100 Hz. As indicated in Figure 6, and
noted by others, the presence of even a small amount of
gas has a dramatic effect on the velocity of the fastest
longitudinal mode (P1). Thus, for P1 the velocity is low,
around 100 m/s for most of the saturation triangle and
only approaches much higher values, of over 1500 m/s,
when the gas saturation is less then one percent. The ve-
locity variation of the second longitudinal mode (P2) is
also dominated by the gas saturation until Sg is less then
5 to 10 %. However, the velocity associated with this
mode is generally higher for larger gas saturations. This
may be due to the lower viscosity of gas compared to the
viscosities of oil and water. The longitudinal mode cor-
responding to P2 is similar to a diffusive transient pres-
sure disturbance and is strongly influenced by both the
flow properties and the fluid properties (Pride 2005, Vasco
2009). For the lower values of the gas saturation the P2
velocity has a minimum between water saturations of 0.6
and 0.9, in agreement with the variation plotted in Figure
8. The velocity variations for the P3 and P4 longitudinal
modes are the most complicated, perhaps due to its sen-
sitivity to the capillary pressure differences between the
fluid phases. In contrast to P2, the highest velocities for
P3 and P4 occur when the gas saturation is a minimum.

In general the solutions, or roots, of the quadratic equa-
tion 50 are complex. The attenuation coefficient is the
imaginary component of l, and is given by the imaginary
component of the root. Due to the nature of the contri-
bution of the phase θ to the displacements [see equations
19 and 20] a positive imaginary component represents ex-
ponential decay as the disturbance propagates. A larger
imaginary component signifies much greater attenuation
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for a given propagation distance. In Figure 11 the attenu-
ation coefficients are plotted as functions of the water, gas,
and oil saturations. The attenuation coefficient associated
with P1 is quite small, less then 0.001 m−1. The largest
values occur when the gas saturation is around 10% and
for higher values of water saturation. For the second mode
(P2) the attenuation coefficient is at least five orders of
magnitude larger, with a peak value of around 400 m−1.
The attenuation is greatest for very low gas saturations
and water saturations of around 0.6 to 0.8, the same re-
gion in which the phase velocity is low (Figure 10). The
attenuation coefficients for the P3 and P4 longitudinal
modes are roughly three orders of magnitude larger then
that for P2. They are largest for high gas saturations
and are generally inversely related to the phase veloci-
ties shown in Figure 10. In general, the modes P3 and
P4 and severely attenuated as they propagate, indicating
that they will be difficult to observe.

As noted above, the coefficients, and hence the roots of
the quadratic equation 50 are frequency-dependent and
we would expect that both the phase velocities and the
attenuation coefficients to be functions of frequency. To
view the frequency-dependence I fix the fluid saturations
at equal values, that is at Sw = So = Sg = 1/3, and al-
low the frequency to vary from 1 Hz to 105 Hz (Figure
12). In general, the fastest velocity, P1, does not change
significantly over the frequency band, which encompasses
the seismic frequency range. The velocity associated with
the P2 mode, which is similar to a transient fluid pressure
disturbance, changes significantly from about 100 Hz on-
ward. Similarly, the two modes associated with capillary
pressure differences, P3 and P4 have velocities that in-
crease rapidly after 10 to 100 Hz. Such behavior has been
noted in other studies. For example, Tuncay and Corap-
cioglu (1996) plotted the phase velocities of P1, P2, and
P3 for the situation in which two fluid phases are present.
They recovered behavior similar to that shown in Figure
12, with increasing velocities for frequencies exceeding 100
Hz. Lo et al. (2005, 2009), who plotted phase velocities
for waves propagating in a medium containing two fluids,
give results for four frequencies (50, 100, 150, and 200
Hz). The general trend is one of increasing velocities with
increasing frequency, as indicated in Figure 12.

In Figure 13 the attenuation coefficients of the four
modes (P1, P2, P3, and P4) are plotted as functions
of frequency. Again, I fix the fluid saturations at equal
values, that is at Sw = So = Sg = 1/3, and allow the
frequency to vary from 1 to 105 Hz. The behavior of the
attenuation coefficient mirrors that of the phase velocity,
increasing as a function of frequency. In general, the at-
tenuation coefficient for the fastest mode, P1, occurs at
much higher frequencies, greater then 104 Hz, then do the
coefficients for the other modes. For these modes (P2, P3,
and P4), the attenuation starts to increase significantly at
around 100 Hz. Neither Tuncay and Corapcioglu (1996)
nor Lo et al. (2005, 2009) plot the attenuation coefficients
as functions of frequency for their two phase calculations.

However, their plots of attenuation coefficients for various
frequencies do display a similar trend: larger attenuation
coefficients at higher frequencies.

Seismic velocity variations due to the in-

jection of carbon dioxide

Enhanced oil recovery (EOR) is one area is which three
fluid phases are likely to be present within a given reser-
voir. One particular technique that also serves to mediate
greenhouse gas emissions involves injecting carbon diox-
ide to enhance secondary recovery. Depleted oil and gas
fields are likely to contain two or more phases, such as oil
and water or oil and gas. Injecting an additional phase,
such as carbon dioxide will likely results in three phase
flow within the reservoir. Time-lapse seismic surveying
has been proposed as a tool for monitoring the injection
carbon dioxide into oil and gas reservoirs as well as saline
aquifers (Hoversten et al. 2003, Carcione et al. 2006,
Kazemeini et al. 2010). In fact, time-lapse seismic ob-
servations are providing useful information regarding the
migration of carbon dioxide within a reservoir (Arts et al.
2004). Thus, the injection of carbon dioxide provides a
useful illustration of this approach for computing veloci-
ties in a poroelastic medium containing three fluid phases.

The illustration is based upon the Society of Petroleum
Engineers fifth comparative problem (Killough and Kos-
sack 1987) which simulates a water-alternating-gas (WAG)
production cycle. In this problem water and carbon diox-
ide are injected into an oil saturated reservoir in a cyclic
fashion over a span of 5479 days. The process was mod-
eled using the Eclipse compositional reservoir simulator
for three phase flow (oil, water, and gas) with multiple
components (C1N2, CO2, C2, H2S, C3C5, C6C11, C16P,
C43P) allowed in the oil and gas phases (Schlumberger
2005). The reservoir model consisted of three layers with
each layer sub-divided into a 7 by 7 grid of rectangular
cells. The grid blocks are 152 m by 152 m laterally and
the layer boundaries are 2537.5 m, 2543.6 m, 2552.7 m and
2567.9 m. The porosity in each layer is 0.3 and the per-
meabilities of the layers are 500, 50, and 200 milli-darcies.
The well configuration consists of a quarter five-spot, as
shown in Figure 14, with an injector in the lower left cor-
ner and a producer in the upper right corner. A cyclic
injection of water, alternating with carbon dioxide, with
a period of one year is modeled using the Eclipse 3000
multicomponent reservoir simulator (Schlumberger 2005).
The fluid pressure within the second layer, after 1096 days
of injection, is shown in Figure 14, along with the flow tra-
jectories from the injector to various locations within the
model.

For multicomponent fluids the densities, viscosities, and
compressional moduli are functions of the chemical com-
ponents in the fluids as well as functions of the fluid pres-
sure and temperatures (Peaceman 1977, p. 26). For a
real fluid the Peng-Robinson equation of state (Peng and
Robinson 1977), a generalization of van der Waals equa-
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tion, is often used to relate the pressure (P ) in the fluid
component to the temperature (T ) and volume (V )

P =
RT

V − b
− a

[

V + (
√

2 + 1)b
] [

V − (
√

2 − 1)b
] (66)

where R is the gas constant and a and b are parameters
characterizing the particular fluid component. For a mul-
ticomponent mixture, the coefficients are defined in terms
of the concentrations Xi, and the parameters of the indi-
vidual component, ai and bi, according to

a =
∑

i

∑

j

XiXj (1 − δij)
√

ai
√

aj (67)

b =
∑

i

Xibi (68)

where δij are empirically determined interaction coeffi-
cients (Peng and Robinson 1977). The details of the multi-
component modeling, including modifications to the Peng-
Robinson equation of state may be found in the Eclipse
manual (Schlumberger 2005). It should be noted that
there are a number of newer equations of state that may
better represent mixtures of hydrocarbon chains (Wei and
Sadus 2000, Marghari and Hosseinzadeh-Shahri 2003). The
simulator partitions the chemical components among the
three fluid phases and calculates the composite properties
of each phase. In particular, the numerical simulator out-
puts the viscosities and densities of each phase directly.

In addition to the viscosities and densities, one also re-
quires the bulk modulus of each fluid phase in order to
compute the velocities [see the matrix K given by the ex-
pression A25]. The bulk modulus of each phase may be
derived from the equation of state using the definition of
the isothermal bulk modulus:

KT = −V
∂P

∂V
(69)

where the derivative is evaluated at a specific constant
temperature. An explicit expression for KT follows from
Peng-Robinson equation of state 66

KT = V
RT

(V − b)2
− 2aV (V + b)

(V 2 + 2bV − b2))
2 . (70)

To obtain the adiabatic bulk moduli, the quantity associ-
ated with elastic wave propagation, and the correspond-
ing quantities for the three fluid phase [K1, K2, and K3

in equation A14], one must multiply the expression 70 by
the ratio of the specific heat capacities (Batzle and Wang
1992). As noted by Batzle and Wang (1992) the ratio of
the specific heat capacities can be expressed in terms of
the equation of state of the fluid and a reference curve of
the constant pressure heat capacity.

The water, oil, and gas phase saturations and the phase
densities and viscosities calculated by the numerical sim-
ulator are used in computing the coefficients in the gov-
erning equations 15 and 16. The water, gas, and oil sat-
urations in the second layer, 1096 days after the start

of injection, are shown in Figure 15. A bank of water
is visible in the lower left corner of the model as is the
gas due to two cycles of carbon dioxide injection. There
is also gas present around the producer, perhaps due to
the production-induced pressure decrease, causing gas to
come out of solution.

Using the output of the numerical simulator, along with
the relative permeability and capillary pressure functions
of Parker et al. (1987) described earlier [see equations 57,
58, 59, 64, and 65] I constructed the coefficients for equa-
tions 41 and 50 defining the slownesses of the transverse
and longitudinal modes of displacement. The properties
of the solid grains are: ρs=2650 kg/m3 and Ks=34.0 GPa,
those of the frame are: Kfr=1.5 GPa and Gfr=1.0 GPa
(Table 1). A frequency of 100 Hz was used in the calcu-
lations. For the velocity of the transverse mode (Figure
16) the most significant feature is a region of low velocity
corresponding to the bank of water. This agrees with the
variation plotted in Figure 9 which indicates that the low-
est velocity of the transverse mode of propagation at 100
Hz occurs when the water saturation is greatest. Cover-
sely, for the fastest longitudinal model (P1), one observes
relatively higher velocities associated with the water bank
and low velocities associated with the areas of greatest gas
saturation (Figure 17). The peak velocity variations are
around 10% of the background velocity of 1600 m/s. Such
velocity variations are of the same order as those observed
in laboratory experiments involving the injection of car-
bon dioxide into a water saturated sandstone at a pressure
of 12 MPa (Shi et al. 2007). The second phase velocity,
P2, appears to be greatest where the gas saturation is
highest, in agreement with the behavior shown in Figure
10.

DISCUSSION

Starting from a fairly general set of governing equations
for coupled deformation and flow in a porous medium con-
taining three fluid phases, one can derive expressions for
the phase velocities of the various modes of displacement.
The expressions are valid in the presence of smoothly vary-
ing properties. Because the equations are formulated in
the frequency domain, the coefficients of the equations,
and hence the expressions for velocity may be functions of
frequency. The expressions for the velocities can be used
for ray-based modeling of the seismic wavefield (Chapman
2004). The expressions could also be incorporated into a
finite-difference scheme for calculating travel times, in the
manner of Vidale (1988) or Sethian (1999). In addition,
the asymptotic approach can be used to formulate the
transport equation and to compute amplitudes (Chapman
2004).

The approach taken in this paper allows one to make
full use of information routinely available to reservoir en-
gineers. That is, the velocity estimates depend upon the
porosity, permeability, relative permeability curves, cap-
illary pressure curves, fluid phase densities, fluid phase
viscosities, fluid saturations, and fluid bulk moduli. As
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indicated in the application to the injection of carbon
dioxide, the fluid phase properties output by a compo-
sitional simulator can be used directly in the calculations.
Furthermore, expressions for the fluid bulk moduli can be
derived from the equation of state underlying the compo-
sitional reservoir simulation. In the application the Peng-
Robinson equation of state (Peng-Robinson 1977), one of
the default models in the Eclipse simulator, was used.
The Peng-Robinson equation of state, one of a number
of variants of the Van der Waals cubic equations of state
(Wei and Sadus 2000) provides general matches to the
bulk modulus variations of a number of hydrocarbon com-
ponents (Maghari and Hosseinzadeh-Shahri 2003). The
Peng-Robinson equation of state has been used exten-
sively to model carbon dioxide injection into reservoirs
containing hydrocarbons (Oldenburg et al. 2004, Schlum-
berger 2005, Singh et al. 2011).

As noted by Wei and Sadus (2000) many other equa-
tions of state are available and there have been many
enhancements to the Van der Waals-based equations of
state. For example, there are hard-sphere chain equations
of state, appropriate for longer chained molecular fluids
(Nasrifar and Bolland 2006). There are equations of state
specifically designed for carbon dioxide at a wide range
of temperatures and pressures such as that proposed by
Span and Wagner (1996) This equation of state appears
to give an accurate match to laboratory-derived seismic
velocities for temperatures up to 200 K and pressures up
to 1000 MPa (Han et al. 2010). While an equation of
state based upon laboratory results is the most accurate,
it is difficult to perform experiments under all the possible
conditions (pressure, temperature, compositions) encoun-
tered during injection and production. For example, the
recent experiments of Han et al. (2010) do not consider
the effects of changing fluid composition.

For the applications in this paper I have only accounted
for the macroscopic flow, formulated by Biot (1956a,b), as
detailed in Appendix A. However, the asymptotic analy-
sis and the expressions for the phase velocity only depend
upon the coefficients in the governing equations 15 and 16,
and do not require the specific relationship between these
coefficients and the rock properties given in Appendix A.
In particular, the method can be generalized to include
dissipation due to microscopic fluid flow from the pore
space to microcracks (Biot 1962, Mavko and Nur 1975),
often referred to as squirt-flow. One can also account for
intermediate scale or mesoscopic flow, along the lines of a
double-porosity model, as was done for a medium contain-
ing a single fluid in Pride et al. (2004), or for squirt flow
and macroscopic (global) flow using a Zener model (Zener
1948), as in Carcione and Gurevich (2011). The result-
ing model is similar to the governing equations presented
in this paper. However, the elastic coefficients may now
depend upon frequency. Such frequency dependent coef-
ficients do not present any fundamental difficulty for the
approach described in this paper. Because I am working
in the frequency domain and the asymptotic expansion is

not in terms of frequency, I can apply the same approach
to the equations allowing for dissipation due to flow into
microcracks.

The approach taken in this paper can be used to extend
concepts developed in a single phase context to the situa-
tion in which there are multiple phases. For example, by
considering the drag forces in the form (5), as in Pride et
al. (1993), one can define the transition frequency:

ω0 =
µfφ

ρf(1 + ν)−1k
(71)

a variation of Biot’s characteristic frequency (Biot 1956).
The characteristic frequency separates the low and high
frequency domains noted by Biot (1956). In the low fre-
quency domain the flow is laminar and the secondary or
slow longitudinal modes display a diffusive behavior. In
the high frequency domain the flow is turbulent and the
secondary longitudinal modes begin to exhibit the char-
acteristics of propagating waves. The single phase expres-
sion 71 for the characteristic frequency can be generalized
to a porous medium containing three fluid phases. To do
so, recall the weighted fluid density, introduced in equa-
tion 42:

ρf = χ1S1ρ1 + χ2S2ρ2 + χ3S3ρ3 (72)

where

χi =
ξi

Γi
=

ν(1 + ν)−1

1 − ν(1 + ν)−1
, (73)

similarly substitute the weighted fluid viscosity for µf :

µf = χ1S1µ1 + χ2S2µ2 + χ3S3µ3. (74)

Thus, in the presence of multiple fluid phases, the transi-
tion or characteristic frequency is a function of the prop-
erties of the fluids and their saturations. In Figure 18 I
plot the characteristic frequency for the three phase exam-
ple presented in the Applications section. Note that the
characteristic frequency varies between 150 Khz and 350
Khz and is a strong function of the water saturation. This
range of values is reasonable and is supported by longitu-
dinal velocity variations in Figure 12, where the velocities
of the secondary phases begin to increase significantly at
around 100 Khz, signifying a transition in behavior.

One can also reformulate the approach to include the
effect of interacting boundaries, extending the approach
to lateraly-varying layered media. That is, one can in-
clude the boundary effects in the vertical direction while
allowing for lateral variations within a given layer. The
interaction of boundaries can have a significant effect on
reflections from a thin poroelastic layer (Korneev et al.
2004, Quintal et al. 2011). As in ray-based modeling
(Chapman 2004), one can incorporate boundary condi-
tions into the asymptotic approach and examine the in-
teraction of a propagating disturbance with an interface.
For multiple boundaries, one can derive a ray series for
various reflections and reverberations (Kennett 2001).
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CONCLUSIONS

In this paper I derive expressions for the phase velocities
of the various modes of propagation in a porous medium
containing three fluid phases. The approach allows for
smoothly varying heterogeneity and fluid saturations and,
because I am working in the frequency domain, the veloc-
ities may be arbitrary functions of frequency. The moti-
vation for this work is to model the propagation of high
frequency waves through a poroelastic medium containing
multiple fluids. The results contained in this paper are a
first step in that direction. In future work I hope to con-
sider amplitudes and the transport equation as well as the
reflection and transmission of a propagating disturbance
at an interface.

ACKNOWLEDGMENTS

This work was supported by Aramco and by the Assistant
Secretary, Office of Basic Energy Sciences of the U. S. De-
partment of Energy under contract DE-AC02-05CH11231.
I would also like to acknowledge the support of Aramco.
I would like to thank Shingo Watanabe of Texas A & M
University for conducting the reservoir simulation for the
SPE fifth comparative problem. A Fortran program for
the calculation of the velocities associated with the longi-
tudinal modes is available from the author.



14 Vasco

REFERENCES

[1] Aki, K., and P. G. Richards, 1980, Quantitative Seis-
mology: Freeman and Sons, San Francisco.

[2] Anile, A. M., J. K. Hunter, P. Pantano, and G. Russo
1993, Ray Methods for Nonlinear Waves in Fluids and
Plasmas: Longman Scientific and Technical, New York.

[3] Arts, R., Eiken, O, Chadwick, R. A., Zweigel, P., van
der Meer, L. and Zinszner, B., 2004, Monitoring of CO2

injected at Sleipner using time-lapse seismic data: En-
ergy, 29, 1383-1392.

[4] Aziz, K., and A. Settari, 1979, Petroleum Reservoir
Simulation: Applied Science Publishers, London.

[5] Baker, L. E., 1988, Three-phase relative permeability
correlations, Proceedings of the SPE/DOE Symposium
on Enhanced Oil Recovery: Society of Petroleum Engi-
neers paper 17369, April 17-20.

[6] Batzle, M., and Wang, Z., 1992, Seismic properties of
pore fluids: Geophysics, 57, 1396-1408.

[7] Batzle, M., Christiansen, R., and Han, D-H., 1998,
Reservoir recovery processes and geophysics: The
Leading Edge, 10, 1444-1447.

[8] Bear, J., 1972, Dynamics of Fluids in Porous Media:
Elsevier, New York.

[9] Ben-Menahem, A., and S. J. Singh, 1981, Seismic
Waves and Sources: Springer Verlag, New York.

[10] Berryman, J. G., L. Thigpen, and R. C. Y. Chin,
1988, Bulk elastic wave propagation in partially satu-
rated porous solids: Journal of the Acoustical Society
of America, 84, 360-373.

[11] Biot, M. A., 1956a, Theory of propagation of elas-
tic waves in a fluid-saturated porous solid. Part I: Low
frequency range: Journal of the Acoustical Society of
America, 28 , 168-178.

[12] Biot, M. A., 1956b, Theory of propagation of elastic
waves in a fluid-saturated porous solid. Part I: Higher
frequency range: Journal of the Acoustical Society of
America, 28 , 179-191.

[13] Biot, M. A., 1962a, Mechanics of deformation and
acoustic propagation in porous media: Journal of Ap-
plied Physics, 33 , 1482-1498.

[14] Biot, M. A., 1962b, Generalized theory of acoustic
propagation in porous dissipative media: Journal of
the Acoustical Society of America, 34, 1254-1264.

[15] Blunt, M. J., 2000, An empirical model for three-
phase relative permeability: Society of Petroleum En-
gineering Journal, 5, 435-445.

[16] Bracewell, R. N. 1978, The Fourier Transform and
Its Applications: McGraw-Hill Book Company, New
York.

[17] Carcione, J. M., and B. Gurevich, 2011, Differential
form and numerical implementation of Biot’s poroelas-
ticity equations with squirt dissipation: Geophysics,
76, N55-N64, doi: 10.1190/GEO2010-0169.1.

[18] Carcione, J. M., Picotti, S., Gei, D., and Rossi, G.,
2006, Physics and seismic modeling for monitoring CO2

storage: Pure and Applied Geophysics, 163, 175-207.

[19] Chapman, C. H., 2004, Fundamentals of Seismic
Wave Propagation: Cambridge University Press, Cam-
bridge.

[20] Clark, A. 1984, Elements of Abstract Algebra: Dover
Publications Incorporated, New York.

[21] Corey, A. T., C. H. Rathjens, J. H. Henderson, and
M. R. J. Wyllie, 1956, Three-phase relative permeabil-
ity: Transactions of the Society of Petroleum Engi-
neering AIME, 207 , 349-351.

[22] Courant, R., and D. Hilbert, 1962, Methods of Math-
ematical Physics: Interscience, New York.

[23] de Marsily, G. 1986, Quantitative Hydrogeology:
Academic Press, San Diego.

[24] Dvorkin, J., Nolen-Hoeksema, R., and Nur, A., 1994,
The squirt-flow mechanism: Macroscopic description:
Geophysics, 59 , 428-438.

[25] Faucette, W. J., 1996, A geometric interpretation of
the solution of the general quartic polynomial: The
American Mathematical Monthly, 103 , 51-57.

[26] Friedlander, F. G. and J. B. Keller 1955, Asymptotic
expansions of solutions of (∇2 + k2)u = 0: Communi-
cations of Pure and Applied Mathematics, 8 , 387.

[27] Garg, S. K., 1971, Wave propagation in a fluid-
saturated porous solid: Journal of Geophysical Re-
search, 76, 7947-7962, doi: 10.1029/JB076i032p07947.

[28] Gassmann, F., 1951, Elastic waves through a packing
of spheres: Geophysics, 16 , 673-685.

[29] Han, D-H., Sun, M., and Batzle, M., 2010, CO2 ve-
locity measurements and models for temperatures up
to 200o and pressures up to 100 MPa: Geophysics, 75,
E123-E129.

[30] Hoversten, G. M., Gritto, R., Washbourne, J., and
Daley, T., 2003, Pressure and fluid saturation predic-
tion in a multicomponent reservoir using combined seis-
mic and electromagnetic imaging: Geophysics, 68 ,
1580-1591.



The propagation of a disturbance in a porous medium saturated with three phases 15

[31] JafarGandomi, A., and Curtis, A., 2011, Detectabil-
ity of petrophysical properties of subsurface CO2-
saturated aquifer reservoirs using surface geophysical
methods: The Leading Edge, 30, 1112-1121.

[32] Jerauld, G. R., 1997, General three-phase relative
permeability model for Prudhoe Bay: Society of
Petroleum Engineering Reservoir Engineering, 12, 255-
263.

[33] Jones, T. D., 1986, Pore fluids and frequency-
dependent wave propagation in rocks: Geophysics, 51

, 1939-1953.

[34] Kazemeini, S. H., Juhlin, C., and Fomel, S., 2010,
Monitoring CO2 response on surface seismic data; a
rock physics and seismic modeling feasibility study at
the CO2 sequestration site, Ketzin, Germany: Journal
of Applied Geophysics, 71, 109-124.

[35] Kennett, B. L. N., 2001, The Seismic Wavefield:
Cambridge University Press, Cambridge.

[36] Killough, J., and Kossack, C., 1987, Fifth SPE com-
parative solution project: Evaluation of miscible flood
simulators: Society of Petroleum Engineering Reser-
voir Engineering, Paper 16000, Presented at the 1987
SPE Reservoir Simulation Symposium, San Antonio,
Texas, 1-4, February.

[37] Kline, M., and Kay, I. W. 1965, Electromagnetic
Theory and Geometrical Optics: John Wiley and Sons,
New York.

[38] Korneev, V. A., Goloshubin, G. M., Daley, T. M.,
and Silin, D. B., 2004, Seismic low-frequency effects in
monitoring fluid-saturated reservoirs: Geophysics, 69

, 522-532, doi: 10.1190/1.1707072.

[39] Leverett, M. C., and W. B. Lewis, 1941, Steady flow
of gas-oil-water mixtures through unconsolidated sands:
Transactions of the Society of Petroleum Engineering
AIME, 142 , 107-116.

[40] Lo, W-C, Sposito, G., and Majer, E., 2005, Wave
propagation through elastic porous media containing
two immiscible fluids: Water Resources Research, 41,
1-20, doi:10.1029/2004/WR003162.

[41] Lo, W-C, Sposito, G., and Majer, E., 2009, Analyti-
cal decoupling of poroelasticity equations for acoustic-
wave propagation and attenuation in a porous medium
containing two immiscible fluids: Journal of Engineer-
ing Mathematics, 64, 219-235, doi:10.1007/s10665-008-
9254-y

[42] Luneburg, R. K. 1966, Mathematical Theory of Op-
tics: University of California Press, Berkeley.

[43] Maghari, A., Hosseinzadeh-Shahri, L. 2003, Evalua-
tion of the performance of cubic equations of state in
predicting regularities in dense fluids: Fluid Phase
Equilibria, 206, 287-311.

[44] Mavko, G., and Nur, A., 1975, Melt squirt in the
aesthenosphere: Journal of Geophysical Research, 80,
1444-1448, doi: 10.1029/JB080i011p01444.

[45] Menke, W., 1989, Geophysical Data Analysis: Dis-
crete Inverse Theory: Academic Press, San Diego.

[46] Mualem, Y., 1976, A new model for predicting the
hydraulic conductivity of unsaturated porous media:
Water Resources Research, 12, 513-522.

[47] Nasrifar, K., and Bolland, O., 2006, Simplified hard-
sphere and hard-sphere chain equations of state for en-
gineering applications: Chemical Engineering Com-
munications, 193, 1277-1293.

[48] Nickalls, R. W. D., 2009, The quartic equation: in-
variants and Euler’s solution revealed: The Mathe-
matical Gazette, 93 , 66-75.

[49] Noble, B., and Daniel, J. W., 1977, Applied Linear
Algebra: Prentice-Hall, Englewood Cliffs.

[50] O’Connell, R. J., and Budiansky, B., 1977, Vis-
coelastic properties of fluid-saturated cracked solids:
Journal of Geophysical Research, 82, 5719-5735, doi:
10.1029/JB080i011p01444.

[51] Oldenburg, C. M., Moridis, G. J., Spycher, N., and
Pruess, K., 2004, EOS7C Version 1.0: TOUGH2 Mod-
ule for Carbon Dioxide or Nitrogen in Natural Gas
(Methane) Reservoirs: LBNL Report, 56589, 1-53,

[52] Peaceman, D. W., 1977, Fundamentals of Numeri-
cal Reservoir Simulation: Elsevier Scientific Publishing
Company, Amsterdam.

[53] Parker, J. C., R. J. Lenhard, and T. Kuppusamy,
1987, A parametric model of constitutive properties
governing multiphase flow in porous media: Water
Resources Research, 23, 618-624.

[54] Peng, D. Y., and Robinson, D. B., 1977, A rigorous
method for predicting the critical properties of multi-
component systems from an equation of state: Amer-
ican Institute of Chemical Engineers Journal, 23, 137-
144.

[55] Pham, N. H., Carcione, J. M., Helle, H. B., and
Ursin, B., 2002, Wave velocities and attenuation of sha-
ley sandstones as a function of pore pressure and par-
tial saturation: Geophysical Prospecting, 50, 615-627,
doi:10.1046/j.1365-2478.2002.00343.x.

[56] Pride, S. R., 2005, Relationships between seismic and
hydrological properties: in Hydrogeophysics, pp. 253-
291, Springer, New York.

[57] Pride, S. R., Morgan, F. D., and Gangi, A. F., 1993,
Drag forces of porous-medium acoustics: Physical Re-
view B, 47, 4964-4978.



16 Vasco

[58] Pride, S. R., Gangi, A. F., and Morgan, F. D., 1992,
Deriving the equations of motion for isotropic motion:
Journal of the Acoustical Society of America, 92, 3278-
3290.

[59] Pride, S. R., J. G. Berryman, and J. M. Harris,
2004, Seismic attenuation due to wave induced flow:
Journal of Geophysical Research, 109, B01201, doi:
10.1029/2003JB002639.

[60] Quintal, B., Schmalholz, S. M., and Podladchikov,
Y. Y., 2011, Impact of fluid saturation on the reflection
coefficient of a poroelastic layer: Geophysics, 79 , N1-
N12, doi: 10.1190/1.3553002.

[61] Santos, J. E., J. M. Corbero, and J. Douglas, 1990,
Static and dynamic behavior of a porous solid saturated
by a two-phase fluid: Journal of the Acoustical Society
of America, 87, 1428-1438.

[62] Sarem, A. M., 1966, Three-phase relative permeabil-
ity measurements by unsteady-state method: Society
of Petroleum Engineering Journal, 6, 199-205.

[63] Schlumberger, Abingdon Technology Center, 2005,
PVTi and ECLIPSE 3000: An Introduction to PVT
Analysis and Compositional Simulation: Schlumberger
Information Systems, Houston.

[64] Sethian, J. A., 1999, Level Set Methods: Cambridge
University Press, Cambridge.

[65] Shi, J.-Q., Xue, Z., and Durucan, S., 2007, Seismic
monitoring and modelling of supercritical CO2 injec-
tion into a water-saturated sandstone: Interpretation of
P-wave velocity data: International Journal of Green-
house Gas Control, 1 , 473-480.

[66] Silvester, J. R., 2000, Determinants of block matrices:
The Mathematical Gazette, 84, 460-467.

[67] Singh, A. K., Goerke, U.-J., and Kolditz, O., 2011,
Numerical simulation of non-isothermal compositional
gas flow: Application to carbon dioxide injection into
gas reservoirs: Energy, 36, 3446-3458.

[68] Slattery, J. C., 1968, Multiphase viscoelastic fluids
through porous media: American Institute of Chemical
Engineering Journal, 14, 50-56.

[69] Slattery, J. C., 1981, Momentum, Energy, and Mass
Transfer in Continua: Krieger, New York.

[70] Smith, T. M., Sondergeld, C. H., and Rai, C. S., 2003,
Gassmann fluid substitutions: A tutorial: Geophysics,
68 , 430-440.

[71] Span, R., and Wagner, W., 1996, A new equation of
state for carbon dioxide covering the fluid region from
the triple-point temperature to 1100 K at pressures up
to 800 MPa: Journal of Physical Chemical Reference
Data, 25 , 1509-1596.

[72] Spiegel, M. R., 1959, Theory and Problems of Vector
Analysis: McGraw-Hill Book Company, New York.

[73] Stahl, S., 1997, Introductory Modern Algebra: John
Wiley and Sons, New York.

[74] Stone, H. L., 1973, Estimation of three-phase relative
permeability and residual oil data: Journal of Cana-
dian Petroleum Technology, 12 , 53-61.

[75] Tuncay, K., 1995, Wave propagation in single- and
double-porosity deformable porous media saturated by
multiphase fluids: Ph. D. Dissertation, Texas A&M
University, College Station, TX.

[76] Tuncay, K., and Corapcioglu, M. Y., 1996, Body
waves in poroelastic media saturated by two immiscible
fluids: Journal of Geophysical Research, 101, 25149-
25159.

[77] Tuncay, K., and Corapcioglu, M. Y., 1997, Wave
propagation in poroelastic media saturated by two flu-
ids: Journal of Applied Mechanics, 64, 313-320.

[78] Van Genuchten, M. T., 1980, A closed form equation
for predicting the hydraulic conductivity of unsaturated
soils: Soil Science Society of America Journal, 44, 892-
898.

[79] Vasco, D. W., 2009, Modeling broadband poroelastic
propagation using an asymptotic approach: Geophys-
ical Journal International, 179, 299-318.

[80] Vasco, D. W., 2011, On the propagation of a quasi-
static disturbance in a heterogeneous, deformable,
and porous medium with pressure-dependent proper-
ties: Water Resources Research, 47, 1-20, W12523,
doi:10.1029/2011WR011373.

[81] Vasco, D. W., and Minkoff, S. E., 2012, On the propa-
gation of a disturbance in a heterogeneous, deformable,
porous medium saturated with two fluid phases: Geo-
physics, 77, L25-L44.

[82] Vasco, D. W., Keers, H., Peterson, J., and Majer, E.
L., 2003, Zeroth order asymptotics: Waveform inversion
of the lowest degree: Geophysics, 68, 614-628.

[83] Vidale, J., 1988, Finite-difference calculation of travel
times: Bulletin of the Seismological Society of Amer-
ica, 78, 2062-2076.

[84] Wei, Y. S., and Sadus, R. J., 2000, Equations of state
for the calculation of fluid-phase equilibria: American
Institute of Chemical Engineers Journal, 46, 169-196.

[85] White, J. E., 1975, Computed seismic speeds and
attenuation in rocks with partial gas saturation: Geo-
physics, 40, 224-232.

[86] Whitham, G. B., 1974, Linear and Nonlinear Waves:
John Wiley and Sons, New York.



The propagation of a disturbance in a porous medium saturated with three phases 17

[87] Wyckoff, R. D., and Botset, H. G., 1936, The flow
of gas-liquid mixtures through unconsolidated sands:
Physics, 7, 325-345.

[88] Zener, C., 1948, Elasticity and anelasticity of metals:
University of Chicago Press, Chicago.



18 Vasco

APPENDIX A: THE MACROSCOPIC

CONSTITUTIVE RELATIONS

In this Appendix I discuss the stress-strain relationships
used in this paper. I begin with the constitutive rela-
tions invoked at the microscopic scale. For the solid I
assume linear elastic behavior in which the increment of
solid stress, σs, is related to the displacement in the solid,
us, via the expression

σs = Ks∇ · usI + Gs

[

∇us + (∇us)
T − 2

3
∇ · usI

]

(A1)

where Ks is the solid bulk modulus and Gs is the solid
shear modulus. The three fluids are taken to be Newto-
nian in nature. Thus, the fluid stress is related to the flow
velocity of the i-th fluid phase, vi = u̇i, where the dot
indicates the time derivative, according to

σi = −PiI + µi

[

∇vi + (∇vi)
T − 2

3
∇ · viI

]

(A2)

where Pi is the incremental change in the pore fluid pres-
sure, σi is the incremental fluid stress tensor and µi is the
shear viscosity.

I can average the constitutive equations A1 and A2 over
a representative volume V (Bear 1972, p. 19, Tuncay and
Corapcioglu 1996), making use of a theorem by Slattery
(1968, 1981). For the solid component I have

1

V

∫

V

σsdV = Ks

[

∇ · (αsūs) +
1

V

∫

S

us · ndS

]

I

+Gs

[

∇(αsūs) + ∇(αsūs)
T − 2

3
∇ · (αsūs)I +

3
∑

i=1

Ksi

]

(A3)
where

Ksi =
1

V

∫

S

[

usn + nus −
2

3
us · nI

]

dS (A4)

is a second-order tensor with zero trace (Tuncay and Corap-
cioglu 1996). Terms such as usn are vector outer products
that may be thought of as a matrix formed by multiplying
the column vector us by the row vector u. If there is no
mass change between the solid and liquid phases

1

V

∫

S

us · ndS = αs − αo
s = ∆αs (A5)

where ∆αs is the change in the fraction of the solid phase.
Because the displacements are assumed to be small

ūj · ∇αj ≈ 0 (A6)

for j = s, 1, 2, 3 and equation A3 becomes

αsσ̄s = Ks [αs∇ · ūs + ∆αs] I

+Gs

[

αs∇ūs + αs(∇ūs)
T − 2

3
αs∇ · ūsI +

3
∑

i=1

Ksi

]

(A7)

where σ̄s is the intrinsic averaged incremental stress ten-
sor. For the three fluid phases I have the averaged expres-
sions

αiσ̄i = Ki [αi∇ · ūi + ∆αi] I

+µi



αi∇v̄i + αi(∇v̄i)
T − 2

3
αi∇ · v̄iI + Jis +

3
∑

j=1

Jij





(A8)
where

Jij =
1

V

∫

S

[

vin + nvi −
2

3
vi · nI

]

dS (A9)

is a second-order tensor with zero trace (Tuncay and Corap-
cioglu 1996).

In order to fully specify the constitutive equations I
need to determine ∆αs, and the coupling terms Ksi, Jis

and Jij in equations A7 and A8. Given a sufficient num-
ber of constraint equations I can derive an expression for
∆αs in terms of the divergences of the solid and fluid dis-
placements. In the next few paragraphs I assemble the
necessary set of equations so that I may determine ∆αs

as well as Ksi, Jis and Jij .
First, I invoke the concept of capillary pressure from the

physics of fluid flow (Bear 1972, p. 453, de Marsily 1986,
p. 210). Capillary pressure is the difference in pressure
between the various fluids within the averaging volume.
That is, there is a jump in pressure at the fluid-fluid inter-
faces due to interfacial tension that is assumed to depend
upon the fluid saturations

P̄1 − P̄2 = Pc12(S1, S2, S3) (A10)

P̄3 − P̄1 = Pc31(S1, S2, S3), (A11)

where Pc12 and Pc31 are specified functions, typically de-
termined from laboratory experiments on cores and/or
fits to proposed functional forms (Wyckoff and Botset
1936, Van Genuchten 1980). Note that the capillary pres-
sure functions really only depend upon two of the three
fluid saturations, because the saturations sum to unity,
see equation 1. Because the fluid pressure and saturation
changes are incremental and assumed to be small over any
small time interval, I can linearize the capillary pressure
relationships:

P̄1 − P̄2 =
∂Pc12

∂S1
∆S1 +

∂Pc12

∂S2
∆S2 (A12)

P̄3 − P̄1 =
∂Pc31

∂S1
∆S1 +

∂Pc31

∂S2
∆S2 (A13)

In order to complete the specification of the constitu-
tive relation between the stresses and the displacements, I
sub-divide the material that follows into two sub-sections.
The first sub-section treats the isotropic component of
the stresses and the divergence of the displacement vector
fields. The shear modulus of the solid frame enters the
constitutive equation in the final sub-section when I con-
sider the deviatoric component of the displacement due
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to a shear stress. Because I have chosen to represent vis-
cous forces as the coupling terms dj in equations 3 and 4,
the effects of permeability and relative permeabilities will
enter later, through the dynamic tortuosity.

Volumetric component

By considering the volumetric component of the constitu-
tive equations, I can relate the solid and fluid pressures to
the divergence of the respective displacements. In fact, I
define the solid and fluid pressures in terms of the trace
of the averaged incremental stress tensor:

αjP̄j = −1

3
tr(αjσ̄j) = −Kj (αj∇ · ūj + ∆αj) (A14)

for j = s, 1, 2, 3. In writing equation A14 I have made use
of equations A7 and A8 and the fact that the trace of the
factors Ksi, Jis, and Jij vanish. I can rearrange equation
A14 and write it as a relationship between ∆αj , P̄j and
∇ · ūj ,

Kj∆αj + αjP̄j = −Kjαj∇ · ūj . (A15)

Equation A15 may be written solely in terms of the change
in the solid volume fraction (∆αs) and the fluid saturation
changes (∆S1 and ∆S2) if I use the fact that

αi = Siφ = Si(1 − αs) (A16)

[see equation 2]. Because ∆Sj and ∆αs are assumed to
be small, I can use equation A16 to write

∆αi = ∆ [Si(1 − αs)] ≈ (1 − αs)∆Si − Si∆αs. (A17)

Thus, I can write equation A15 in terms of ∆αs, ∆Sj , and
P̄j

−SjKj∆αs + φKj∆Sj + αjP̄j = −Kjαj∇ · ūj . (A18)

Note that, because the saturations sum to unity, I can
write the expression for ∆α3 entirely in terms of ∆S1,
∆S2, and ∆αs. In order to keep the equations simpler I
retain S3 in many of the formulas presented below. When
necessary S3 may be replaced by S3 = 1 − S1 − S2 if I
wish to eliminate it from the equations.

An additional constraint is provided by a generaliza-
tion of the single phase relationship derived by Pride et
al. (1992) which relates the divergence of the solid dis-
placement field to the fluid and solid pressures:

∇ · ūs = −αs
(P̄s − P̄f )

Kfr
− P̄f

Ks
. (A19)

Following Tuncay and Corapcioglu (1996) I write the fluid
pressure as a weighted sum of the phase pressures, where
the weights are the fluid saturations:

P̄f =
3

∑

i=1

SiP̄i. (A20)

Upon substituting A20 into equation A19 and rearranging
terms I have the final constraint

− 1

Kw
P̄s + Dk

3
∑

i=1

SiP̄i = ∇ · ūs (A21)

where

Kw =
Kfr

αs
(A22)

and

Dk =
αs

Kfr
− 1

Ks
. (A23)

Equations A10, A11, A15 or its alternative version A18,
and A21 constitute a system of seven equations in the
seven unknowns ∆αs, ∆S1, ∆S2, P̄s, P̄1, P̄2, and P̄3. I
may write the linear system of equations in matrix-vector
form

K∆ = Υ (A24)

where K is the coefficient matrix:





















0 Pc12,1 Pc12,2 0 −1 1 0
0 Pc31,1 Pc31,2 0 1 0 −1
1 0 0 αs

Ks

0 0 0

−S1 φ 0 0 α1

K1

0 0

−S2 0 φ 0 0 α2

K2

0

−S3 −φ −φ 0 0 0 α3

K3

0 0 0 −Kw
−1 S1Dk S2Dk S3Dk





















,

(A25)

∆ =





















∆αs

∆S1

∆S2

P̄s

P̄1

P̄2

P̄3





















, (A26)

and

Υ =





















0
0

−αs∇ · ūs

−α1∇ · ū1

−α2∇ · ū2

−α3∇ · ū3

∇ · ūs





















, (A27)

where

Pc12,j =
∂Pc12

∂Sj
, (A28)

and

Pc31,j =
∂Pc31

∂Sj
. (A29)

Because the system of equations A24 is linear I can solve
for the unknowns as linear functions of the right-hand-
side.

At this juncture I can follow one of two possible paths.
On the one hand, if I are primarily interested in comput-
ing velocities and do not require explicit expressions in
terms of the fundamental material constants in the ma-
trix K, I can simply invert the matrix A25 numerically
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and solve for the pressures P̄s, P̄1, P̄2, and P̄3 in terms
of the divergences on the right-hand-side of equation A24.
On the other hand, if I desire explicit expressions for the
coefficients of the constitutive relationship in terms of the
fundamental quantities, then I must construct an analytic
expression for the solution of equation A24. One difficulty
with this second approach is that the coefficient matrix
A25 is 7 by 7 and, even though the matrix is sparse, solv-
ing for all seven unknowns will produce a rather involved
expression. I can reduce the complexity of the analytic
expressions somewhat, reducing the sparse coefficient ma-
trix A25 to a dense 3 by 3 matrix, by first eliminating the
variables ∆αs, ∆S1, ∆S2, and P̄3. However, the final an-
alytic expressions are still rather involved and thus more
prone to result in errors both in their specification and in
their numerical implementation.

Consider the first approach, in which I solve the system
of equations A24 numerically. Let us denote the inverse
of the coefficient matrix K by matrix B with elements
Bij . Because of the structure of the right-hand-side of
equations A24, given by the vector Υ [expression A27], I
can write the expression for P̄s as

αsP̄s = ass∇ · ūs +
3

∑

j=1

asj∇ · ūj (A30)

where

ass = αs (B47 − B43αs) (A31)

asj = −αsαjB4(j+3). (A32)

And similarly, for the i-th fluid phase I have the expres-
sions

αiP̄i = ais∇ · ūs +

3
∑

j=1

aij∇ · ūj (A33)

where the coefficients are given by

ais = αi

(

B(4+i)7 − B(4+i)3αs

)

(A34)

aij = −αiαjB(4+i)(j+3). (A35)

Deviatoric component

In order to complete the specification of the constitutive
relations I consider the deviatoric component due to the
application of an external shear stress. As in Tuncay and
Corapcioglu (1996), I assume that all shear resistance of
the porous medium is due to the solid matrix and that the
fluid does not contribute. Thus, the shear deformation of
fluid phases is uncoupled and Ksi = Jis = Jij . Essen-
tially, I am assuming that, for the sake of the constitutive
relationship, the fluid viscosities are negligible in equation
A8 in comparison with the volumetric component and the
bulk modulus. The effect of fluid viscosities, present in
the momentum equation, will be included as momentum
transfer vectors between phases, dj , as discussed in the

main body of the paper [see equations 3 and 4]. Thus, the
deviatoric component of σ̄s, denoted by σ̄

D
s , is given by

αsσ̄
D
s = Gfr

[

∇ūs + (∇ūs)
T − 2

3
∇ · ūsI

]

(A36)

where Gfr is the frame shear modulus, typically deter-
mined from experiments on the unsaturated sample.

The complete constitutive relationship

Putting everything together, I have the following consti-
tutive relationships

αsσ̄s =



ass∇ · ūs +

3
∑

j=1

asj∇ · uj



 I (A37)

+Gfr

[

∇ūs + (∇ūs)
T − 2

3
∇ · ūsI

]

and

αiσ̄i =



ais∇ · ūs +

3
∑

j=1

aij∇ · uj



 I (A38)

for the solid and fluid phases, respectively.

The constitutive relationship in terms of ūs

and w̄i

Because the final formulation will be in terms of ūs and w̄i

where w̄i = ūi − ūs, I need to convert to those variables.
I can rewrite the constitutive relationships in terms of the
new variables by adding and subtracting ūs. The result is

αsσ̄s =

[

âss∇ · ūs +
3

∑

i=1

asi∇ ·wi

]

I (A39)

+Gfr

[

∇ūs + (∇ūs)
T − 2

3
∇ · ūsI

]

and

αiσ̄i =



âis∇ · ūs +

3
∑

j=1

aij∇ ·wj



 I (A40)

for the solid and fluid phases, respectively, with the ad-
justed coefficients of ∇ · ūs

âss = ass + as1 + as2 + as3 (A41)

âis = ais + ai1 + ai2 + ai3 (A42)

for i = 1, 2, 3. Finally, I can rename the coefficients so
that they follow the notation of Vasco and Minkoff (2012)
for two-phase flow. This notation is intended to maintain
continuity with developments in single-phase flow (Pride
2005, Vasco 2009). Thus, I define the variables found in
the governing equations 15 and 16:

Ku = âss, (A43)
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Csi = ais, (A44)

Cis = âis, (A45)

Mij = aij , (A46)

and
Gm = Gfr. (A47)
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APPENDIX B: COMPUTING THE

DETERMINANT ASSOCIATED WITH THE

LONGITUDINAL MODES

In this Appendix I present the expressions for the coeffi-
cients of the quartic equation 50 that determines s = l2,
where l is the magnitude of the vector l = ∇θ. The ap-
proach for calculating the coefficients is described in Vasco
and Minkoff (2012). The essential idea relates to the ex-
pansion of the determinant of the matrix

M =








νs − Hs ξ1 − Cs1s ξ2 − Cs2s ξ3 − Cs3s
ν1 − C1ss Γ1 − M11s −M12s −M13s
ν2 − C2ss −M21s Γ2 − M22s −M23s
ν3 − C3ss −M31s −M32s Γ3 − M33s









.

(B1)

The determinant of M can be expanded using the formula
for the determinant of a matrix in which a column is the
sum of two components (Noble and Daniel, 1977, p. 200),
as noted in the main body of the text [see equation 49].
I can apply this rule recursively, because every column of
M may be described as such a sum. Thus, I can write the
equation

detM = 0 (B2)

as the quartic equation

Q4s
4 − Q3s

3 + Q2s
2 − Q1s + Q0 = 0 (B3)

with the coefficients

Q4 =

∣
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∣
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∣

, (B4)

Q3 =
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Q2 =
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and

Q0 =

∣

∣

∣

∣

∣

∣

∣
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νs ξ1 ξ2 ξ3

ν1 Γ1 0 0
ν2 0 Γ2 0
ν3 0 0 Γ3

∣

∣

∣

∣

∣

∣

∣

∣

(B8)

where the vertical bars signify that the quantity is the
determinant of the enclosed matrix.
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TABLE CAPTIONS

Table 1. Table listing the 12 fundamental parameters re-
quired to compute the transverse and longitudinal phase
velocities and attenuations at a particular frequency. The
parameters are divided into three groups: the solid prop-
erties, the properties of the fluids, and the flow properties
of the rock as a whole. The two right-most columns signify
two sets of values used in the Applications section. The
first set involved homogeneous distributions of two and
three fluids within a homogeneous porous rock. The sec-
ond set is associated with the simulation of an enhanced
oil recovery operation in which carbon dioxide gas and wa-
ter are injected in a cyclic fashion into an oil bearing reser-
voir. In that case many of the properties vary spatially
within the reservoir and hence are labeled as ”variable”.

FIGURE CAPTIONS

Figure 1. Three phase relative permeability functions,
krw (top), krg (middle), and kro (bottom) of Parker (1987),
as given by equations 58, 57, and 59. The relative per-
meabilities are plotted as functions of the water and gas
saturations which are the two independent saturations be-
cause So = 1 − Sw − Sg.

Figure 2. Phase velocity of the transverse mode of dis-
placement as a function of the water saturation, Sw. The
center frequency of the disturbance is 100 Hz. There are
two distinct cases plotted here: only gas and water are
present (Gas-Water), and only oil and water are present
(Oil-Water). The symbols (filled squares and open cir-
cles) denote the velocities computed using the two phase
approach of Vasco and Minkoff (2012). The dashed lines
denote the velocity estimates made using the approach
described in the text of this paper.

Figure 3. Phase velocity as a function of the frequency
in hertz for a system in which only gas and water are
present. Two distinct water saturations are considered,
Sw = 0.1 and Sw = 0.9. As in Figure 2, the symbols de-
note the two phase estimates of Vasco and Minkoff (2012)
while the dashed lines denote the three phase estimates.

Figure 4. Capillary pressure curves of Parker (1987),
given by equations 64 and 65, as functions of the water and
gas saturation. Of the three capillary pressure functions,
Pcow (top), Pcgo (middle), and Pcgw (bottom) only two
are independent because Pcow = Pcgo − Pcgw.

Figure 5. Relative permeability curves for the gas-
water system (So = 0), for the capillary pressure function
Pcgw. The two phase capillary pressure curve is that of
van Genuchten (1980) while the three phase curve is from
Parker (1987).

Figure 6. The first three longitudinal phase veloci-
ties for the gas-water system (vanishing So) as a function
of the water saturation. The two phase estimates are de-
noted by the filled squares while the three phase estimates
are indicated by the open circles.

Figure 7. Relative permeability curves for the oil-
water system (vanishing Sg), for the capillary pressure

function Pcow. The two phase capillary pressure curve is
that of van Genuchten (1980) while the three phase curve
is from Parker (1987).

Figure 8. The first three longitudinal phase velocities
for the oil-water system (vanishing Sg) as a function of the
water saturation. The two phase estimates are denoted
by the filled squares while the three phase estimates are
indicated by the open circles.

Figure 9. The phase velocity of the transverse mode of
displacement as a function of the water and gas saturation.
At the origin, where both Sw and Sg are zero, the medium
is fully saturated by oil. On the diagonal line, So vanishes
and one has a gas-water system. (Top) Velocities for a
frequency of 100 Hz. (Bottom) Velocities for a frequency
of 50,000 Hz.

Figure 10. The four longitudinal phase velocities plot-
ted as functions of the two independent saturations (Sw

and Sg). At the origin, where both Sw and Sg are zero,
the medium is fully saturated by oil. On the diagonal
line, So vanishes and one has a gas-water system. For the
fast longitudinal model, P1, the velocities increase rapidly
near the water saturation axis.

Figure 11. The four longitudinal attenuation coeffi-
cients, the imaginary component of the roots of the quadratic
equation 50, plotted as functions of the two independent
saturations (Sw and Sg). At the origin, where both Sw

and Sg are zero, the medium is fully saturated by oil. On
the diagonal line, So vanishes and one has a gas-water
system.

Figure 12. The phase velocities for the four longitu-
dinal modes (P1, P2, P3, and P4) plotted as functions
of frequency (Hz). For these calculations I have consid-
ered the situation in which the fluid saturations are equal
(Sw = So = Sg = 1/3).

Figure 13. The attenuation coefficients for the four
longitudinal modes plotted as functions of frequency (Hz).
For these calculations I have considered the situation in
which the fluid saturations are equal (Sw = So = Sg =
1/3).

Figure 14. Fluid pressure variations associated with
a numerical simulation of a cyclical water alternating gas
(WAG) injection. The water and gas are alternatively
injected in yearly cycles. The pressure shown is after 1096
days of injection. The fluid flow lines are plotted in this
figure, extending from the injection well (open star) to
various points in the reservoir layer. The production well
is indicated by the open circle in the upper right corner
of this plot.

Figure 15. Fluid saturations for water, Sw (top), gas,
Sg (middle), and oil, So (bottom) after 1096 days of in-
jection. The saturation variations in the middle layer
(2543.6-2552.7 m) of the three-layer model are shown.

Figure 16. Phase velocity variations associated with
the transverse mode of displacement. The velocities in the
middle layer (2543.6-2552.7 m) of the three-layer model
are shown in this figure.
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Figure 17. Phase velocity variations associated with
the four longitudinal modes of displacement: P1, P2, P3,
and P4. The velocities in the middle layer (2543.6-2552.7
m) of the three-layer model are shown in this figure.

Figure 18. The characteristic frequency, separating
the low frequency laminar flow region in which the sec-
ondary longitudinal modes exhibit diffusive behavior from
the high frequency turbulent flow region. In the high fre-
quency region the secondary longitudinal modes behave
more like propagating waves.
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Transverse Mode
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Longitudinal Modes

P1 P2

P3 P4

Distance East (m) Distance East (m)

Distance East (m)Distance East (m)

D
is

ta
n

c
e
 N

o
rt

h
 (

m
)

D
is

ta
n

c
e
 N

o
rt

h
 (

m
)

Velocity (m/s)

Velocity (m/s) Velocity (m/s)

Velocity (m/s)

vasco
Typewritten Text
Figure 17.



Water saturation

G
a
s
 s

a
tu

ra
ti
o

n

Characteristic  frequency (hz)

vasco
Typewritten Text
Figure 18.



DISCLAIMER  
 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor The Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or The Regents of 
the University of California. 
 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 
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