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ABSTRACT

The coupled modeling of the flow of two immiscible
fluid phases in a heterogeneous, elastic, porous mate-
rial is formulated in a manner analogous to that for
a single fluid phase. An asymptotic technique, valid
when the heterogeneity is smoothly-varying, is used to
derive equations for the phase velocities of the various
modes of propagation. A cubic equation is associated
with the phase velocities of the longitudinal modes.
The coefficients of the cubic equation are expressed in
terms of sums of the determinants of 3 ×3 matrices
whose elements are the parameters found in the gov-
erning equations. In addition to the three longitudinal
modes, there is a transverse mode of propagation, a
generalization of the elastic shear wave. Estimates of
the phase velocities for a homogeneous medium, based
upon the formulas in this paper, agree with previ-
ous studies. Furthermore, predictions of longitudinal
and transverse phase velocities, made for the Massilon
sandstone containing varying amounts of air and water,
are compatible with laboratory observations.

INTRODUCTION

Multiphase flow is an important physical process that
underlies many critical activities such as waste disposal,
geothermal production, oil and gas production, agricul-
ture, and ground water management. Geophysical imag-
ing methods are increasingly used to monitor the flow of
fluids and gases in the subsurface (Calvert 2005, Rubin
and Hubbard 2006). Therefore, it is important to have
accurate and efficient techniques for modeling wave prop-
agation in heterogeneous porous media saturated by one
or more fluid phases. It is particularly helpful to have
methods that provide insight into the the various physical
factors controlling the propagation of a wave in a poroe-
lastic medium.

There are several ways to approach the coupled model-
ing of deformation and multi-phase fluid flow in a hetero-
geneous porous medium, each with its own advantages and
limitations. A numerical method is the most general, and
there are several studies based upon numerical techniques
(Noorishad et al. 1992, Rutqvist et al. 2002, Minkoff et al.
2003, Minkoff et al. 2004, Dean et al. 2006). Numerical
methods can require significant computer resources, both
CPU time and computer memory. Also, numerical meth-
ods have difficulty modeling the wide range of behaviors
in the coupled multiphase problem, which can include hy-
perbolic elastic wave propagation as well as fluid diffusion,
involving a broad range of time scales: from milli-seconds
to hours or even days. Numerical methods tailored to seis-
mic frequencies can improve the computational efficiency
(Masson et al. 2006) but still face challenges in treat-
ing multiple fluid phases and three-dimensional problems.
Finally, numerical methods do not provide explicit expres-
sions for observed quantities such as the arrival time of a
propagating disturbance or its amplitude. Analytic meth-
ods can be efficient and can provide explicit expressions
for observed quantities. However, analytic methods are
typically limited to relatively simple situations, such as
a homogeneous half-space and a single fluid phase (Levy
1979, Simon et al. 1984, Gajo and Mongiovi 1995). As
the medium is generalized, for example by including lay-
ering, analytic methods become increasingly complicated
and require significantly more computation time, facing
the same limitations as numerical techniques (Wang and
Kumpel 2003). Thus, analytic methods may not provide
the generality required for solving commonly encountered
inverse problems. For example, in many inverse problems
one is interested in determining smoothly-varying hetero-
geneous properties in a three-dimensional setting.

In this paper we formulate and validate governing equa-
tions for deformation in a porous medium containing two
fluid phases and present an asymptotic, semi-analytic tech-
nique for their solution. The equations, presented below,
are generalizations of those for a medium containing a sin-
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gle fluid, given by Pride et al. (1992) and Pride (2005).
The governing equations share many characteristics with
earlier work by Tuncay and Corapcioglu (1996, 1997) and
Lo et al. (2002, 2005). The asymptotic approach used in
this investigation is similar in many respects to the tech-
nique applied by Vasco (2009) in a study of broadband
propagation in a deformable porous medium containing
a single fluid. The asymptotic approach provides semi-
analytic expressions for the phase velocity of a propagat-
ing disturbance, and methods for the efficient solution of
the governing equations. The asymptotic solution is valid
in a medium with smoothly varying heterogeneity of arbi-
trary magnitude, and thus is more general than a purely
analytic solution.

METHODOLOGY

In this section we discuss the equations governing the solid
and fluid displacements in a porous medium containing
two fluids. We also outline an asymptotic methodology
that can provide a semi-analytic solution of the govern-
ing equations. As indicated below, the lowest-order terms
in the asymptotic series produce equations for the phase
velocities of the various modes of propagation.

The Governing Equations

Consider the case in which two fluid phases are present in
the pore space of the solid matrix. The porosity of the ma-
terial is denoted by φ while the saturations of fluids 1 and
2 are denoted by S1 and S2, respectively. The two phases
are assumed to fill the entire pore space and hence the
saturations sum to unity: S1 +S2 = 1. For the time inter-
val of interest, the elements of the porous matrix behave
elastically while the components of the fluid are described
by the constitutive law for a Newtonian liquid. The flu-
ids are assumed to behave immiscibly and one fluid can
’block’ the flow of the other. Therefore, each fluid obeys
the two-phase version of Darcy’s law (de Marsily 1986)
in which the flow velocity of the i-th fluid relative to the
solid matrix, ẇi, is proportional to the gradient of the
fluid pressure

ẇi = −krik

µi

∇Pi, (1)

where kri(Si) is the relative permeability of the i-th phase,
k is the absolute permeability, µi is the fluid viscosity,
and Pi is the fluid pressure. The relative permeability,
kri(Si), is a function of the saturation of i-th fluid phase
and provides a measure of the ability of the other fluid
phase present in the pore space to block the flow.

An important point is that, while we are modeling the
propagation of a transient disturbance in the fluid filled
porous solid, that disturbance is not to be identified with
the continuous flow of the fluid. Rather, the disturbance
is associated with the propagation of a wave in the poroe-
lastic medium. The wave will typically propagate much
faster than any advancing fluid saturation front. So, when
modeling the two-phase fluid flow there will be two time

scales: the scale associated with the saturation change
and the scale associated with the propagating elastic and
pressure disturbance. We shall assume that one can model
the actual field history incrementally, modeling any rapid
transient disturbance in pressure and solid displacement
using the equations derived here, and modeling the sat-
uration changes using quasi-static two-phase flow. As in
a loosely-coupled approach to modeling deformation and
flow (Minkoff et al. 2003, 2004), one can introduce feed-
back between the solution to the poroelastic equations
derived here and the reservoir simulator used to model
the long term saturation changes. This should become
clearer after we introduce the full set of coupled equations
for two-phase flow.

The Conservation Equations

The approach used in this section is a straight-forward
generalization of the method of averaging. This technique,
developed for a single fluid phase by Bear et al. (1984),
de la Cruz and Spanos (1985), and Pride et al. (1992)
was generalized to two-phase flow by Tuncay (1995) and
Tuncay and Corapcioglu (1996, 1997). As in the case of
a single fluid, one averages the microscopic conservation
equations for the elastic solid matrix and the Newtonian
fluids, making use of Slattery’s theorem (1968, 1981). The
application of Slattery’s theorem to the conservation equa-
tions results in governing equations for the displacements
in the solid phase, us, and in the fluid phases, ui, i = 1, 2,

αsρs

∂u̇s

∂t
= αs∇ · σs − d1 − d2 (2)

and

αiρi

∂u̇i

∂t
= αi∇ · σi + di, (3)

where the dots over the displacement vectors denote the
derivative with respect to time. Note that the summation
convention, summation over repeated indices, is not used
in this paper. In an effort to keep the presentation com-
pact we are representing the two equations for the fluid
phases by a single indexed equation [equation 3], allow-
ing i to take the values 1 and 2 for the respective fluid
phases. The index notation, introduced above, will be
implemented in much of this paper. In equations 2 and
3 the parameter αs is the volume fraction of the solid
phase, and the parameter αi is the volume fraction of the
i-th fluid phase. Note that the volume fraction of the fluid
phase may be written in terms of the porosity, φ, and the
fluid saturation as: αi = φSi. The solid and fluid densities
are denoted by ρs and ρi, respectively. The quantities σs

and σi are the stress tensors associated with the solid and
fluid phases. Explicit expressions for the stress tensors, in
terms of the solid and fluid displacements, are given in
Appendix A. The vectors d1 and d2, referred to as the
momentum transfer or interaction terms, represent drag
forces due to the interaction of the solid and fluids within
the porous medium (Pride et al. 1993).
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Pride et al. (1992) argue that the drag force can be
expressed in the form

di = αiNf i (4)

where fi is the macroscopic applied force vector and N is
a dimensionless tensor operator independent of fi. For an
isotropic medium

N = νI (5)

where, in the most general setting, ν is an integro-differential
operator. According to Pride et al. (1992, 1993), the three
primary macroscopic forces influencing the motion of the
fluids are: a pressure gradient due to a spatially varying
flow field, the relative motion of the elastic solid frame and
the fluid, and fluid body forces. One can think of ν as a
convolutional operator or, in the frequency domain, as a
term that depends upon the frequency ω. Thus, N can
change the nature of the differential operators in fi. As
shown by Pride et al. (1992), by substituting di into the
fluid equation for the i-th phase, one arrives at a specific
form for di:

di = αiνfi = ρiαiν (1 + ν)
−1 ∂ẇi

∂t
, (6)

where ẇi is the flow velocity of fluid i, given in equation 1.
The flow velocity of the fluid is measured relative to the
position of the solid, given by ẇi = u̇i − u̇s . The quan-
tity (1 + ν)

−1
, termed the dynamic tortuosity by Johnson

et al. (1987), controls how much relative fluid flow oc-
curs in response to applied forces. In the case of simpli-
fied pore models, analytic methods may be used to calcu-
late (1 + ν)

−1
explicitly (Johnson et al. 1987, Pride et al.

1993). We can substitute the expressions for di, equation
6, into the macroscopic equations for linear momentum,
equations 2 and 3. The resulting governing equations are

αsρs

∂u̇s

∂t
= αs∇ · σs − D1

∂ẇ1

∂t
− D2

∂ẇ2

∂t
(7)

αiρi

∂u̇i

∂t
= αi∇ · σi + Di

∂ẇi

∂t
(8)

where
Di = ρiαiν (1 + ν)−1 . (9)

Adding and subtracting αiρi times the partial derivative
of u̇s with respect to time from the left-hand-side of equa-
tion 8 produces the following system of equations in us

and wi

αsρs

∂u̇s

∂t
+ D1

∂ẇ1

∂t
+ D2

∂ẇ2

∂t
= αs∇ · σs (10)

αiρi

∂u̇s

∂t
+ (αiρi − Di)

∂ẇi

∂t
= αi∇ · σi, (11)

three vector differential equations for the three unknown
vectors us, w1, and w2. Combining these three equations
with the expressions for the stress tensors [see Appendix
A], and appropriate boundary conditions, we can solve for
the displacement of each phase.

There are advantages to writing the equations in the
frequency domain by applying either the Fourier or the
Laplace transform (Bracewell 1978). One advantage is
that the time derivatives reduce to multiplication of the
transformed variables by the frequency ω. This removes
the time derivatives from the equations, leading to a sys-
tem of equations containing only spatial derivatives. Fur-
thermore, the convolutional operator is converted to mul-
tiplication by some function of the frequency ω. Applying
the Fourier transform to each of the three equations we
can write equations 10 and 11 in the frequency domain,

νsUs + ξ1W1 + ξ2W2 + αs∇ ·Σs = 0 (12)

ν1Us + Γ1W1 + α1∇ ·Σ1 = 0 (13)

ν2Us + Γ2W2 + α2∇ · Σ2 = 0, (14)

where we now write the fluid equations explicitly. In these
three equations Σ denotes the stress tensor transformed
into the frequency domain, and we have defined

νs = αsρsω
2 (15)

νi = αiρiω
2 (16)

ξi = αiρiν (1 + ν)
−1

ω2 (17)

and
Γi = αiρi

[

1 − ν (1 + ν)
−1

]

ω2 (18)

for i = 1, 2.
In order to finish the statement of the governing equa-

tions we need expressions for the divergence of the stress
tensors in terms of the solid and fluid displacements. The
specification of the solid and fluid stress tensors, based
upon a reformulation of the work of Tuncay and Corap-
cioglu (1997), is given in Appendix A. Fourier transform-
ing the expressions for the solid and fluid stress tensors
given by equations A24, A25, and A26, we can substitute
them into equations 12, 13, 14 to arrive at

∇ ·
[

Gm

(

∇Us + ∇Us
T −

2

3
∇ ·UsI

)]

(19)

+∇ (Ku∇ ·Us + Cs1∇ · W1 + Cs2∇ ·W2)

+νsUs + ξ1W1 + ξ2W2 = 0

∇ (C1s∇ ·Us + M11∇ · W1 + M12∇ ·W2) (20)

+ν1Us + Γ1W1 = 0

∇ (C2s∇ ·Us + M21∇ · W1 + M22∇ ·W2) (21)

+ν2Us + Γ2W2 = 0,

where the coefficients of these equations are given at the
end of Appendix A. Note that the coefficients, defined in
Appendix A, depend upon the properties of the compo-
nents of the medium, the saturations of the fluids S1 and
S2, and the capillary pressure function Pcap that is de-
termined by the pressure difference in the two fluids [see
equation A4]. Also, the parameter ν depends upon the
flow properties of the medium and thus upon the medium
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permeability. For example, as indicated in the Applica-
tions, for the model considered by Tuncay and Corap-
cioglu (1996), ν is given by

ν =
Ci

Ci + ωαiρii
(22)

where Ci is given by

C1 =
φ2S1

2µ1

kkr1

(23)

C2 =
φ2S2

2µ2

kkr2

(24)

for Darcy flow.
The set of equations 19 through 21 are of the same gen-

eral form as the governing equations for displacements in
a porous media saturated by a single fluid (Pride 2005,
Vasco 2009). There are three extra terms (those involv-
ing W2) in the first two equations [equations 19 and 20]
and one additional equation [equation 21] governing the
evolution of the second fluid phase.

An Asymptotic Analysis of the Governing

Equations and Semi-Analytic Expressions

for the Phase

The three expressions, equations 19, 20, and 21, represent
a formidable set of coupled vector differential equations.
Because the coefficients are functions of the spatial vari-
ables and the frequency, a closed-form, analytic solution is
generally not possible. Furthermore, the equations govern
both elastic deformation and diffusive fluid flow, covering
a range of spatial and temporal scales. Thus, even nu-
merical methods for solving these equations can encounter
difficulties due to the wide range of scales. It is possible
to gain some insight and to develop a semi-analytic solu-
tion to the coupled equations by means of an asymptotic
expression. The solution will be valid for a medium in
which the heterogeneity is smoothly-varying.

In Appendix B we use the method of multiple scales
(Whitham 1974, Anile et al. 1993) to obtain a set of equa-
tions that may be used to determine the phase of a dis-
turbance propagating in a heterogeneous porous medium
containing two fluids. The technique has been applied to
a number of problems (Korsunsky 1997), and a variant
of the technique has been used to rederive the governing
equations for poroelasticity (Burridge and Keller 1981).
The method of multiple scales was recently used to con-
struct a solution for coupled deformation and flow in a
heterogeneous poroelastic medium saturated by a single
fluid (Vasco 2008, Vasco 2009). Furthermore, it has been
applied to nonlinear problems involving fluid flow, such
as flow in a heterogeneous medium with pressure-sensitive
properties (Vasco and Minkoff 2009) and multiphase fluid
flow involving large saturation changes (Vasco 2011).

Asymptotic Expressions for the Displacements

There are a number of ways to motivate an asymptotic
treatment of the governing equations 19-21. For example,
one might adopt an expansion in powers of the frequency
ω and consider solutions for which ω is large. However,
because the coefficients contain complicated expressions in
frequency and because of the diffusive and wave like be-
haviors contained in the governing equations, it is best not
to make specific assumptions regarding the frequency. An
alternative approach is provided by the method of mul-
tiple scales, which is based upon a separation of length
scales (Anile et al. 1993, Korsunsky 1997). In partic-
ular, because we are interested in modeling propagation
in a smoothly-varying medium, we assume that the scale
length of the heterogeneity is much greater than the scale
length of the disturbance. The scale length of the distur-
bance, which we denote by l, is the length over which a
field, such as the fluid pressure or the displacement of the
porous matrix, varies from the background value to the
value associated with the disturbance. The scale length
of the heterogeneity is denoted by L and it is assumed
that L is much larger than l. Thus, the ratio ε = l/L
is assumed to be much smaller than 1. In the method
of multiple scales, an asymptotic solution is constructed
in terms of the ratio ε. The first step in this approach
involves transforming the spatial scale from physical co-
ordinates x to ’slow’ coordinates, denoted by X, where

X = εx. (25)

Representing the solution in terms of the slow coordinates
X introduces an implicit dependence on the scale variable
ε. Because the scale parameter is assumed to be small,
we can represent the solution as a power series in ε

Us(X, ω, θ) = eiθ

∞
∑

n=0

εnUn
s (X, ω) (26)

Wi(X, ω, θ) = eiθ

∞
∑

n=0

εnWn
i (X, ω), (27)

where the superscript n on Un
s and Wn

s denote additional
terms in the summation and not exponents. The function
θ(x, ω) is referred to as the local phase and is related to
the kinematics of the propagating disturbance. As noted
by Anile et al. (1993, p. 50), the local phase is a fast or
rapidly varying quantity. Because ε is small, less than 1,
only the first few terms of the power series are significant.
The series 26 and 27 are in the form of generalized plane
wave expansions of Us(X, ω, θ) and Wi(X, ω, θ), similar
to that used in modeling electromagnetic and elastic waves
(Friedlander and Keller 1955, Luneburg 1966, Kline and
Kay 1979, Aki and Richards 1980, Chapman 2004).

The coordinate transformation 25 has implications for
the spatial derivatives in the governing equations 19, 20,
and 21. For example, using the chain rule, we can rewrite
the partial derivative of the solid displacement, Us, with
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respect to the spatial variable xi as

∂Us

∂xi

=
∂Xi

∂xi

∂Us

∂Xi

+
∂θ

∂xi

∂Us

∂θ
(28)

and hence, making use of equation 25,

∂Us

∂xi

= ε
∂Us

∂Xi

+
∂θ

∂xi

∂U

∂θ
(29)

(Anile et al. 1993). Thus, the differential operators, which
are defined in terms of the partial derivatives with respect
to the spatial coordinates, are likewise written as

∇Us = ε∇XUs + ∇θ
∂Us

∂θ
(30)

where ∇X denotes the gradient with respect to the com-
ponents of the slow variables X.

In order to derive an asymptotic solution we rewrite
the differential operators in the governing equations 19,
20, and 21 in terms of the slow coordinates X. We then
substitute the power series representations 26 and 27 for
Us and Wi, producing three equations with terms of var-
ious orders in ε. Because ε is assumed to be much smaller
than 1, we consider terms of the lowest order in ε. The
procedure is outlined in Appendix B, where terms of or-
der ε0 ∼ 1 are presented. In the sub-sections that follow
we discuss these terms in greater detail, deriving explicit
expressions for the phase θ(x, ω).

Before delving into the details of the expressions for
the phase, we should comment as to what constitutes a
smoothly-varying medium. As mentioned above, a medium
is smoothly varying if the scale length of the heterogene-
ity is much larger than the length scale of the propagating
disturbance. However, the length scale of the disturbance
will depend upon its frequency content. Thus, there is an
implicit dependence of the scale length upon frequency
and the ’smoothness’ of a medium will depend upon the
frequency under consideration.

Terms of Zeroth-Order: The Phase of the Disturbance

The zeroth-order terms are presented in Appendix B, equa-
tions B14 and B15. These equations can be collected into
the matrix equation





αI − βll · I ξ1I− Cs1ll · I ξ2I− Cs2ll · I
ν1I − C1sll · I Γ1I − M11ll · I −M12ll · I
ν2I − C2sll · I −M21ll · I Γ2I − M22ll · I





×





U0

s

W0

1

W0
2



 =





0

0

0



 , (31)

where l = ∇θ is the local phase gradient,

α = νs − Gml2 (32)

β = Ku +
1

3
Gm, (33)

l is the magnitude of the local phase gradient vector l,
ll · I is a dyadic formed by the outer product of the vector

l (Ben-Menahem and Singh 1981, Chapman 2004) [see
equation B11 in Appendix B], and the coefficients are
given above [equations 15 - 18] and in Appendix A. Al-
ternatively, one may think of the dyadic ll as the vector
outer product llT where lT signifies the transpose of l,
converting the column vector l to the row vector lT .

The system of equations 31 has a non-trivial solution if
and only if the determinant of the coefficient matrix van-
ishes (Noble and Daniel 1977, p. 203). For a given set
of coefficients, the determinant of the matrix is a polyno-
mial in the components of the vector l. Given that the
components of the vector l are the elements of the gra-
dient of the phase θ, the polynomial equation is also a
partial differential equation for the phase function. This
non-linear differential equation is the eikonal equation as-
sociated with propagation in a porous medium saturated
with two fluid phases (Kravtsov and Orlov 1990, Chapman
2004). While we could attempt to find the roots of the
ninth-order polynomial equation directly, that approach
would involve some rather lengthy algebra. In Appendix
C we describe an approach based upon the eigenvectors of
the system of equations 31. In that approach, the modes
of propagation are partitioned into longitudinal displace-
ments (displacement in the direction of l), and transverse
displacements (displacement in a direction perpendicular
to l). The results of that approach are discussed next.

Longitudinal Displacements
As shown in Appendix C, for the longitudinal modes

of propagation, the condition that equation 31 has a non-
trivial solution is

det





νs − Hl2 ξ1 − Cs1l
2 ξ2 − Cs2l

2

ν1 − C1sl
2 Γ1 − M11l

2 −M12l
2

ν2 − C2sl
2 −M21l

2 Γ2 − M22l
2



 = 0,

(34)
where we have used the definitions 32 and 33 and defined
the parameter H as

H = Ku +
4

3
Gm. (35)

Equation 34 is a cubic equation in l2, the square of the
magnitude of the slowness vector l. Solving this cubic
equation for l2 allows one to determine the permissible
modes of longitudinal displacement.

Equation 34 is much more complicated than the single-
phase constraint, which is the determinant of a two-by-two
matrix (Vasco 2009). Therefore, one must exercise care
when calculating the determinant in equation 34. This
calculation is given in some detail in Appendix D, where
we apply, in a recursive fashion, a rule for computing the
determinant of a matrix whose columns are sums. As
shown in Appendix D, we can write the cubic equation
for s = l2 as

Q3s
3 − Q2s

2 + Q1s − Q0 = 0, (36)

where the coefficients are given by

Q3 = det





H Cs1 Cs2

C1s M11 M12

C2s M21 M22



 , (37)
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Q2 = det





νs Cs1 Cs2

ν1 M11 M12

ν2 M21 M22



+det





H ξ1 Cs2

C1s Γ1 M12

C2s 0 M22





+ det





H Cs1 ξ2

C1s M11 0
C2s M21 Γ2



 , (38)

Q1 = det





νs ξ1 Cs2

ν1 Γ1 M12

ν2 0 M22



 + det





νs Cs1 ξ2

ν1 M11 0
ν2 M21 Γ2





+ det





H ξ1 ξ2

C1s Γ1 0
C2s 0 Γ2



 , (39)

Q0 = det





νs ξ1 ξ2

ν1 Γ1 0
ν2 0 Γ2



 . (40)

The roots of the cubic equation 36 determine the value
of l, the magnitude of the phase gradient vector l = ∇θ.
In order to find the roots we first put equation 36 in a
canonical form by dividing through by Q3,

s3 − Q2

Q3

s2 +
Q1

Q3

s − Q0

Q3

= 0, (41)

or, if we define the coefficients

Υ2 =
Q2

Q3

(42)

Υ1 =
Q1

Q3

(43)

and

Υ0 =
Q0

Q3

(44)

we can write equation 41 as

s3 − Υ2s
2 + Υ1s − Υ0 = 0. (45)

Note that, in dividing by Q3, we are assuming that the
determinant of the coefficient array is not zero. The deter-
minant Q3 vanishes if any of the rows of the coefficients
of the l2 terms in the determinant 34 are linear depen-
dent. This can occur if the properties of the two fluids are
similar and it becomes difficult to distinguish between the
fluids.

The solution of the cubic equation 45 can be written
explicitly as a function of the coefficients (Stahl 1997, p.
47). We begin by defining

η =
1

3
(Υ2)

2 − Υ1 (46)

and

γ =
2

27
(Υ2)

3 − 1

3
Υ1Υ2 + Υ0. (47)

Furthermore, if we define the parameter ζ as

ζ =
4

27γ2
η3 (48)

then we can write the solution of equation 45 in the form

s = l2 = 3

√

γ

2

[

1 ±
√

1 − ζ
]

− 1

3

η

3

√

γ
2

[

1 ±
√

1 − ζ
]

+
Υ2

3
,

(49)

an expression for the squared phase gradient magnitude
in terms of the medium parameters. Note that, while the
first term in equation 49 shares a formal similarity to the
phase of a disturbance propagating in a porous medium
containing a single phase (Vasco 2009), the overall expres-
sion is decidedly more complicated.

Because l is the magnitude of the phase gradient vector,
l = ∇θ, we can use equation 49 to formulate a differential
equation for θ

∇θ · ∇θ = 3

√

γ

2

[

1 ±
√

1 − ζ
]

− 1

3

η

3

√

γ
2

[

1 ±
√

1 − ζ
]

+
Υ2

3

(50)
which is an eikonal equation for the phase of the propagat-
ing disturbance (Kravtsov and Orlov 1990). Equation 50
provides all the information that is necessary for modeling
the kinematics, that is the travel time, of the propagating
disturbance. For example, one may solve the nonlinear
partial differential equation 50 numerically, using a fast
marching method (Sethian 1985, 1999) which was intro-
duced to seismology by Vidale (1988). The fast marching
approach has proven to be stable, even in the presence
of rapid changes in medium properties. Or one may use
the method of characteristics (Courant and Hilbert 1962)
to derive a related set of ordinary differential equations,
the ray equations (Anile et al. 1993, Chapman 2004) that
may be solve numerically (Press et al. 1992).

Transverse Displacements
Now we consider the case in which the displacements

are perpendicular to the propagation direction. In that
situation the eigenvector is given by the solution of an
equation similar to C5 in Appendix C:

Γe⊥ = λ⊥e⊥ = 0, (51)

where λ⊥ is the associated eigenvalue. Invoking similar
arguments to those used in the analysis in Appendix C,
but tailored to transverse displacements, we can show that
the vanishing of the determinant of the matrix Γ reduces
to

det





νs − Gml2 ξ1 ξ2

ν1 Γ1 0
ν2 0 Γ2



 = 0, (52)

a quadratic equation for l, whose coefficients depend upon
the frequency and the properties of the porous medium
and the fluids. The determinant 52 is a straight-forward
calculation, resulting in the quadratic equation

Γ1Γ2Gml2 − νsΓ1Γ2 + ν1ξ1Γ2 + ν2Γ1ξ2 = 0 (53)

that may be solved for l

l = ±
√

Γ1Γ2νs − ξ1Γ2ν1 − Γ1ξ2ν2

Γ1Γ2Gm

. (54)



The propagation of a disturbance in a heterogeneous porous medium 7

Thus, there is a single solution for phase gradient magni-
tude associated with the transverse mode of displacement.
The different signs indicate propagation in the forward
and reverse directions along l.

The expression for l in the case of transverse displace-
ments [equation 54] is much simpler than that for longi-
tudinal displacements [equation 49]. We shall rewrite it
in order to bring out some similarities to the expression
for a single fluid (Vasco 2009). If we factor out Γ1Γ2 and
use the definitions for νs, ν1, and ν2, equation 54 can be
written as

l = ±ω

√

αsρs − α1ξ1

Γ1

ρ1 − α2ξ2

Γ2

ρ2

Gm

(55)

or as

l = ±ω

√

(1 − φ)ρs − φρf

Gm

, (56)

where

ρf =
ξ1

Γ1

S1ρ1 +
ξ2

Γ2

S2ρ2 (57)

is a weighted fluid density, whose weights are a function
of frequency through the dependence upon ν. Equation
56 is a direct modification of the expression for the slow-
ness of an elastic shear wave. Equation 56 generalizes the
expression for wave propagation in a porous medium sat-
urated by a single fluid phase (Pride 2005, Vasco 2009),
where one has

l = ±ω

√

ρs − ρf

ρ̃
ρf

Gm

, (58)

where ρ̃ is iµf/ωk, for a fluid of density ρf and viscosity
µf .

APPLICATIONS

A Comparison with Previous Studies

Here we compare our results with Tuncay and Corap-
cioglu’s (1996) and Lo et al.’s (2005) studies of wave prop-
agation in a homogeneous porous medium containing two
fluid phases, and with experimental data (Murphy 1982).
First, in the case of transverse displacements, we estab-
lish the equivalence of our expression for the phase ve-
locity to that of Tuncay and Corapcioglu (1996) when the
medium is homogeneous and when we define ν in a partic-
ular fashion. Second, we compare numerical predictions
of complex velocities for the three longitudinal modes of
propagation in a porous medium saturated by two fluid
phases. We compare predictions derived using our for-
mulation with those by Tuncay and Corapcioglu (1996)
and Lo et al. (2005). Finally, we calculate the primary
longitudinal and the transverse velocities for the porous
Massilon sandstone partially saturated by water, as de-
scribed in Murphy (1982).

Transverse (Shear) Displacements

It is simplest to begin our comparisons with the expression
for the phase gradient magnitude of the shear component,
given by equation 54. Before we begin, it must be noted
that our phase function θ, introduced in the power series
26 and 27, is defined slightly differently from the conven-
tional use in seismic applications. Specifically, we include
the frequency term ω as part of θ. Thus, our definition
of l will contain an additional ω factor, and the square of
the phase velocity will be given by

c2 =
ω2

l2
. (59)

Let us begin with an expression for 1/l2, where l is given
by equation 54:

1

l2
=

Γ1Γ2Gm

Γ1Γ2νs − ξ1Γ2ν1 − Γ1ξ2ν2

. (60)

The coefficients are given by the expressions 15 through
18. However, the coefficients Γ1, Γ2, ξ1, and ξ2 contain
the operator ν which depends upon the fluid response to
applied forces (Johnson et al. 1987, Pride et al. 1993).
In order to compare our predicted velocities with those of
Tuncay and Corapcioglu (1996), we need to relate these
coefficients to those used in their paper. By comparing
coefficients in their governing equations 1 through 3 with
the coefficients in the governing equations 12-14, after ac-
counting for the slightly different formulation and after
transforming their equations to the frequency domain, we
find that

ξ1 = −iωC1 (61)

ξ2 = −iωC2 (62)

Γ1 = ω2ρ̂1 + iωC1 (63)

and
Γ2 = ω2ρ̂2 + iωC2, (64)

where ρ̂i is the volume averaged density, given by ρ̂i =
αiρi = φSiρi, and C1 and C2 are coefficients defined in
Tuncay and Corapcioglu (1996), related to the fluid flow.
The coefficients take the form

C1 =
φ2S1

2µ1

kkr1

(65)

C2 =
φ2S2

2µ2

kkr2

(66)

for Darcy flow, where Si is the saturation of the i-th fluid,
µi is the fluid viscosity for phase i, k is the absolute per-
meability, and kri is the relative permeability for fluid i.
Using the relationships 61 through 64 we can rewrite the
product

Γ1Γ2 = ω2
[

ρ̂1ρ̂2ω
2 − C1C2 + ω (C1ρ̂2 + C2ρ̂1) i

]

(67)

as well as the other terms in expression 60. As a result,
the square of the phase velocity, c2, may be expressed as
the ratio

c2 =
ω2

l2
= −Y2

Y1

(68)
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where

Y1 =
C1C2 (ρ̂s + ρ̂1 + ρ̂2) − ρ̂sρ̂1ρ̂2

ω2
(69)

−i
C2ρ̂1 (ρ̂s + ρ̂2) + C1ρ̂2 (ρ̂s + ρ̂1)

ω

and

Y2 = −Gm

C1C2 − ρ̂1ρ̂2ω
2

ω2
+ iGm

C2ρ̂1 + C1ρ̂2

ω
. (70)

These expressions agree with those of Tuncay and Corap-
cioglu (1996) for the phase velocity of the shear wave [see
their equations 28, 29, and 30].

Note that, using equations 17 and 61 one can derive an
explicit expression for the frequency-dependent variable ν
that determines the dynamic tortuosity: (1+ν)−1. Recall
that the dynamic tortuosity controls the amount of fluid
flow in response to the applied forces. The variable ν also
appears in the definition of the coefficients ξi and Γi [see
equations 17 and 18] that are part of the governing equa-
tions. Equating the expressions for ξi given in equations
17 and 61 and 62, we have

ν (1 + ν)−1 =

(

−i

ω

)

Ci

αiρi

. (71)

Solving equation 71 for ν gives

ν =
Ci

Ci + ωαiρii
, (72)

where Ci is given by equations 65 and 66. Equation 72
indicates that ν is actually a function of the specific fluid.
Thus, in the most general case ν should vary for each fluid.
This makes physical sense because the flow characteristics
of each fluid can differ.

Longitudinal Displacements

While it is possible to apply the previous mathematical
analysis to the longitudinal modes, that approach would
be significantly more complicated. It is far simpler to pro-
ceed with a direct numerical comparison of the predictions
provided by the expressions of Tuncay and Corapcioglu
(1996) and Lo et al. (2005), with those from the solutions
of the cubic equation 36. Because the phase velocities are
generated by the cubic equation with complex coefficients
given by 37, 38, 39, and 40, there will be three complex
longitudinal velocities in general.

A Comparison with Tuncay and Corapcioglu (1996).– For
the first comparison, with the results of Tuncay and Corap-
cioglu (1996), the poroelastic parameters for the medium
are representative of the properties of the Massilon sand-
stone described by Murphy (1982). Thus, the bulk mod-
ulus Kfr of the frame is 1.02 GPa, the bulk modulus of
the grains (Ks) is 35.00 GPa, and shear modulus (Gfr) is
1.44 GPa, the density of the solid grains (ρs) is 2650.00
kg/m3, the intrinsic permeability of the sandstone (k) is
9.0×10−13 m2, and the volume fraction of the solid phase
(αs) is 0.77. The two fluid phases are air (fluid 1) and

water (fluid 2) with respective viscosities, µ1 and µ2 of
18×10−6 and 1.0×10−3 Pa-s, respectively. For fluid 1 (air)
the bulk moduli (K1) is 0.145 MPa while the density (ρ1)
is 1.10 kg/m3. For fluid 2 (water) K2 is 2.25 GPa and ρ2

is 997.00 kg/m3. The capillary function, Pcap, used here
[see equation A4] was first proposed by Van Genuchten
(1980). The exact form of the capillary function is

Pcap(S2) = −100

α

[(

1 − S2 − Srw

Sm2 − Sr2

)m]−n

, (73)

where Sr2 is the residual water saturation, taken to be
0.0, and Sm2 is the upper limit of water saturation, m =
1 − 1/n, where n = 10 and α = 0.025. The relative
permeability functions associated with the two fluids in
the porous matrix, those postulated by Mualem (Mualem
1976, van Genuchten 1980), are shown in Figure 1. An ex-
amination of the functions C1 and C2, given by equations
65 and 66, reveals that they are singular when the relative
permeabilities vanish. Thus, some care is required as the
fluid saturations approach the end points of the curves
shown in Figure 1. For this reason we shall avoid those
saturations at which the relative permeabilities approach
zero.

The phase velocities predicted using the expression 59,
where l2 is a root of the cubic equation 36, are plot-
ted in Figure 2 along with the phase velocities predicted
using the formulas of Tuncay and Corapcioglu (1996).
The phase velocities, the real component of the complex
number c, are associated with a frequency of 1000 Hz.
The cubic equation predicts three complex velocities vary-
ing as a function of fluid saturation. We should note
that a11 in expressions (21) through (23) of Tuncay and
Corapcioglu (1996) should be replaced by the variable
a∗
11

= a11 + 4Gfr/3 in order for the three formulas to
agree with their previous equation (18) which contains
a∗
11

. As indicated in Figure 2, there is excellent agree-
ment between our predicted longitudinal velocities and
those given by the formulas of Tuncay and Corapcioglu
(1996). The qualitative features noted by Tuncay and
Corapcioglu (1996) are present in the velocities plotted
in Figure 2. For example, the velocities of the first two
modes of longitudinal propagation drop significantly as
the water saturation decreases from 1. This is due to the
much higher compressibility of air compared with that of
water. With further decreases in water saturation there
is a gradual increase in the phase velocities of the two
modes. As noted by Tuncay and Corapcioglu (1996), the
third longitudinal mode arises due to the pressure differ-
ence between the fluid phases. Thus, this phase velocity
approaches zero when the fluid saturations approach fully
saturated or fully unsaturated conditions, due to the fact
that the capillary pressure vanishes when only a single
fluid occupies the pore space.

The imaginary component of the phase velocity c, given
by equation 59, provides a measure of the attenuation.
The attenuation varies as exp(−cir) where ci is the imag-
inary component of the phase velocity and r the the radial
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distance from the source. In Figure 3 we plot the atten-
uation coefficient for the three longitudinal modes, cal-
culated using both the expressions of Tuncay and Corap-
cioglu (1996) and the roots of the cubic equation 36. There
is excellent agreement between the two approaches. The
attenuation overall is quite small for the first longitudi-
nal mode of propagation which propagates much like an
elastic wave in the solid. As noted in Tuncay and Corap-
cioglu (1996) the attenuation is due to energy dissipation
induced by the relative motion of the fluids and the solid.
Furthermore, they note that the end point attenuation
in the second mode of longitudinal propagation is deter-
mined by the kinematic viscosity, the ratio of the fluid
viscosity to the fluid density. The attenuation coefficient
of the third longitudinal mode of propagation is quite large
and increases as the fraction of either phase becomes large.
Perhaps this is due to the increased flow as the pore space
is dominated by a single fluid. Also, the capillary pressure
which drives this mode decreases as one phase begins to
vanish, resulting in a rapidly decreasing amplitude for the
third mode of propagation.

A Comparison with Lo et al. (2005).– Recently, Lo et
al. (2002, 2005) followed an alternative approach in de-
riving the equations governing coupled poroelastic defor-
mation and flow. Specifically, they used the mass balance
equations for the three phase system (two fluids and one
solid) coupled with a ’closure relation’ for porosity change,
to derive the governing equations. The resulting system of
equations are similar to those given above. In particular,
their stress-strain relations [given by equations 32a-32c of
Lo et al. (2005)] are equivalent to our equations A18,
A20 and A21. The coefficients in their stress-strain rela-
tions, also denoted by aij , [given by equations 30d through
30j in Lo et al. (2005)] are identical to those of Tuncay
and Corapcioglu (1996) and to the expressions A7 through
A17 in Appendix A. The primary differences between the
equations presented here and those of Lo et al. (2005) are
due to the inclusion of temperature effects and inertial
coupling terms between the fluids that we do not include.
Lo et al. (2005) note that their equations include inertial
terms due to the differential movement between the solid
and the fluids. They contrast their results with the ex-
pressions of Tuncay and Corapcioglu (1996) that do not
contain such inertial terms. However, our expressions, in
particular the coefficients Γi, given by equations 18 do
contain inertial effects due to the coupling between the
solid and the fluids, in the form of ω2 terms.

For a qualitative comparison of our expressions and
those of Lo et al. (2005), we have computed the three
longitudinal velocities for the two simulations described in
their paper. The porous solid properties are based upon
experimental data for an unconsolidated Columbia fine
sandy loam (Chen et al. 1999, Lo et al. 2005). The
primary difference between this porous material and the
sandstone described above is that the fine sandy loam is
unconsolidated and hence much weaker. Thus, the bulk
modulus of the rock frame, Kfr, is only 0.008 GPa, a

fraction of the value of 1.02 GPa for the sandstone. Sim-
ilarly, the shear modulus of the frame for the loam (Gfr)
is quite low, 0.004 GPa, compared to a value of 1.44 GPa
for the consolidated sandstone. Note that both materials
are primarily composed of silica grains and the bulk mod-
ulus of the solid particles is 35 GPa. Therefore, we would
expect quite different bulk velocities for the consolidated
sandstone and the unconsolidated sandy loam.

Lo et al. (2005) considered two pairs of fluids: an air-
water system, similar to that of Tuncay and Corapcioglu
(1996), and an oil-water mixture. The properties of the
constituents in the air-water system are similar to those
used in Tuncay and Corapcioglu (1996): the bulk modulus
of air is 0.145 MPa, the bulk modulus of water is 2.25 GPa,
the densities of air and water are 1.1 and 997.0 kg/m3,
respectively. The viscosity of air is 18 × 10−6 Pa-s while
the viscosity of water is 0.001 Pa-s. For the oil the bulk
modulus is given by 0.57 GPa, the density is given by 762
kg/m3, and the viscosity is given by 0.00144 Pa-s. The
derivative of the capillary pressure with respect to changes
in saturation is given explicitly by

dPcap

dS1

=
ρ2g

mnχ

[

(1 − S1)
−

n
n−1 − 1

]
1−n

n

(1 − S1)
−( 2n−1

n−1 )

(74)
(Lo et al. 2005), where g is the gravitational accelera-
tion. The quantities χ, m, and n are fitting parameters
with values χ = 1 m−1, n = 2.145, and m = 1 − 1/n =
0.534 for the air-water system. For the oil-water system
the parameters are given by χ = 2.39 m−1, n = 2.037, and
m = 1 − 1/n = 0.509 (Lo et al. 2005). This is the same
model of capillary pressure put forward by Van Genuchten
(1980) and used above, though in a slightly different for-
mulation [see equation 73].

The relative permeability functions are those of Mualem
(1976), which were used in the previous comparison. The
exact algebraic expressions are

kr1(S2) = (1 − S2)
η
[

1 − (S2)
1

m

]2m

(75)

kr2(S2) = (S2)
η
{

1 −
[

1 − (S2)
1

m

]m}2

(76)

where η is a fitting parameter (Mualem 1976). The fitting
parameter η associated with both the air-water and the
oil-water mixtures is 0.5, as noted in Lo et al. (2005).

We computed the three longitudinal velocities for both
the air-water system and the oil-water mixture as a func-
tion of the water saturation. The velocities of the first
longitudinal wave are plotted in Figure 4 for both the air-
water and the oil-water fluid mixtures. The velocities are
computed at a single frequency of 100 Hz for this phase.
As expected, the bulk velocities for the air-water system
are much lower for the unconsolidated sandy loam, on
average 100 m/s (Figure 4), then for the sandstone (be-
tween 1140 and 1200 m/s) (Figure 2). In this figure the
velocities calculated using the expressions of Tuncay and
Corapcioglu (1996) are indicated by the dashed (oil-water)
and solid (air-water) lines while our calculated values are
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indicated by the filled squares (air-water) and the open
circles (oil-water). The behavior of the air-water and the
oil-water systems are rather different as the saturations
are varied. When the water saturation is near zero the
bulk velocities of the two systems are distinctly different,
with the velocity of the oil-water mixture approximately
8 times larger then the velocity of the air-water mixture.
This reflects the influence of the pore fluids because the
systems are saturated by two very different fluids. The
velocity in the oil-water system gradually increases as the
water saturation increases. This contrasts with the behav-
ior of the air-water system in which the velocity remains
nearly constant until rather high water saturation. The
velocity increases dramatically when the porous medium
is almost completely water saturated. When the mate-
rial is entirely saturated by water the velocities are nearly
equal for both the air-water and oil-water systems. This
makes physical sense because both systems are in identi-
cal water saturated states. However, there may be slight
differences because, as noted in Lo et al. (2005), two dif-
ferent permeabilities were used by Chen et al. (1999) to
fit the observational data. Our calculated velocities agree
with those computed using the expressions of Tuncay and
Corapcioglu (1996). Furthermore, the variations of the
first longitudinal velocity, denoted by P1, agree with those
of Lo et al. (2005) [see their Figure 1a].

The longitudinal mode of intermediate velocity, often
referred to as the P2 mode, is associated with diffusive
propagation in the manner of a transient pressure vari-
ation (Pride 2005). The propagating disturbance corre-
sponds to the out-of-phase motion of the solid and fluid
mixtures (Pride 2005, Lo et al. 2005). The disturbance
is known as the slow wave in the study of wave propa-
gation in a medium saturated with a single fluid (Pride
2005, Vasco 2009). In Figure 5 we plot the calculated in-
termediate velocities for the air-water and oil-water fluid
mixtures in the sandy loam at a frequency of 100 Hz. The
average velocities are much lower for this mode of propa-
gation, of the order of 1-2 m/s. The computed variations
(filled squares and open circles) generally agree with the
predications of Tuncay and Corapcioglu (1996) (solid and
dashed lines). There is some deviation for the oil-water
system at high water saturations. The estimates are of
the same order at those of Lo et al. (2005). However, the
exact values differ by a factor of 2 or more, and there are
differences in the nature of the variation for the air-water
system at high water saturations. As in the case of the
P1 mode, the velocities of the two systems approach each
other as the medium becomes water saturated.

The third mode of propagation (P3), with the lowest
velocity, arises from the pressure difference between the
two fluid phases (Tuncay and Corapcioglu 1996). Thus,
the disturbance is the result of the presence of a second
fluid in the pore space and is not observed in systems with
a single fluid phase. Such a phase is extremely difficult to
observe experimentally (Tuncay and Corapcioglu 1996)
due to its high attenuation and extremely low velocity. In

Figure 6 we plot the calculated velocities of the P3 mode
for the air-water and oil-water mixtures at a frequency
of 100 Hz. The velocities are extremely low, generally
less then 0.1 m/s. As noted in other studies (Tuncay and
Corapcioglu 1996, Lo et al. 2005), the velocities approach
zero at high and low water saturations. As in the case of
the other two modes, the air-water and oil-water velocities
approach a common value (in this case zero) as the water
saturation approaches one. There is general agreement
between our estimates and those of Tuncay and Corap-
cioglu (1996) and Lo et al. (2005).

The velocities of the three modes of propagation are fre-
quency dependent. In order to compare the variation with
frequency we have computed the velocities for three fre-
quencies, 50, 100, and 200 Hz. In all of the computations
we only consider the air-water system. For the first longi-
tudinal mode (P1), as noted in Lo et al. (2005) [see their
Figure 1a], the velocities do not change over this range of
frequencies. Thus, we have not plotted the velocities as
they are identical to those shown in Figure 4. In Figure 7
we plot the velocities for the intermediate model (P2) at
the three frequencies of interest. As in Lo et al. (2005),
the velocities increase as the frequencies increase. A sim-
ilar pattern of higher velocities with increasing frequency
is observed for the third longitudinal mode of propagation
(P3), as shown in Figure 8.

A Comparison with Laboratory Observa-

tions

Here we compare data from a series of experiments by
Murphy (1982) to predictions based upon our formula-
tion. These and other experimental studies have shown
that fluid saturations can have a significant influence upon
the phase velocities of extensional (longitudinal) and ro-
tational (transverse) waves in a sample (Domenico 1974,
1976, Murphy 1982). While many laboratory experiments,
such as those of Domenico (1974, 1976) are conducted at
high frequency, the resonance bar experiments of Murphy
(1982) span a wide frequency range from 300 Hz to 14
kHz. In addition, a torsional pendulum technique was
used to measure rotational (transverse) wave attenuation
at low acoustic frequencies (Murphy 1982). The flow ex-
periments of Murhpy (1982) were conducted in a sample
of Massilon sandstone. The properties of this porous ma-
terial are identical to those noted above for the Massilon
sandstone (Murphy 1982, Tuncay and Corapcioglu 1996).

The relative permeability curves used to represent the
flow of the two fluids, air and water, in the sandstone are
those published by Wyckoff and Botset (1936) and shown
in Figure 9. These curves were also used in the analysis
of the Massilon data conducted by Tuncay and Corap-
cioglu (1996). Because these curves have no analytic rep-
resentation, we digitized the curves plotted in Tuncay and
Corapcioglu (1996) and interpolated between the points
using cubic splines. Thus, the relative permeabilities are
approximate at the high and low saturation values where
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it is difficult to resolve the small values. The capillary
pressure function given above [see equation 73] was used
in our modeling. These observations have been used in
studies involving elastic wave propagation in a partially
saturated porous medium (Tuncay and Corapcioglu 1996,
Berryman et al. 2002).

Using the parameters given above, the relative perme-
ability curves plotted in Figure 9, and the capillary pres-
sure function 73 we calculated the phase velocities for the
longitudinal and transverse modes of propagation. Be-
cause of the diffusive nature of the second and third lon-
gitudinal modes, it is difficult to observe them experimen-
tally. Thus, Murphy (1982) only had observations associ-
ated with the primary or first longitudinal model and the
transverse mode, as shown in Figure 10. We calculated the
first longitudinal mode using the cubic equation 36 with
the parameters given above and the coefficients given in
Appendix A and equations 37 to 40. The phase velocity
associated with the transverse mode was estimated using
equation 54. For comparison, we also computed the val-
ues using the formulas given in Tuncay and Corapcioglu
(1996), also plotted in Figure 10. Because of the diffi-
culties in estimating the relative permeabilities and the
sensitivity of the coefficients C1 and C2 at high and low
saturations, we avoided making predictions of phase ve-
locities for saturations near 0 and 1. Both techniques give
sharp increases in longitudinal phase velocity for water
saturations near 1, but the exact values are fairly sensitive
to how the relative permeabilities are calculated. Overall,
there is good agreement between the observations of lon-
gitudinal and transverse phase velocity, the predictions
by Tuncay and Corapcioglu (1996), and our predictions
(Figure 10).

DISCUSSION

Following the approach of Tuncay (Tuncay 1995, Tuncay
and Corapcioglu 1996, 1997), but using the formulation
of Pride (1992, 1993), we have obtained governing equa-
tions for coupled deformation and two-phase flow. These
equations are similar to corresponding expressions for cou-
pled deformation and single phase flow (Pride 2005, Vasco
2009). This similarity should aid in the interpretation of
the coefficients and terms of the more complicated two-
phase equations. Furthermore, the approach should make
the extension to three phase conditions, such as oil, water,
and gas, less difficult. Such an extension will result in a
more complicated quartic equation for the longitudinal ve-
locities. However, the solution of a quartic equation still
has a closed-form expression in terms of its coefficients
(Stahl, 1997, p. 124).

The equations given here unify several earlier investiga-
tions of two-phase flow in a deformable medium (Berry-
man et al. 1988, Santos et al. 1990, Tuncay and Corap-
cioglu 1996, 1997, Lo et al. 2005) in which different
assumptions were made regarding the inclusion of cap-
illary pressure, the consideration of inertial effects of the
fluid, and the presence or absence of heterogeneity in the

medium. Here, as in Pride et al. (1992, 1993), we allow
for both the effects of capillary pressure as well as inertial
effects due to the relative acceleration of the fluids with
respect to the solid matrix. These effects are contained in
the complex, integro-differential operator ν, whose form
may vary, depending on the various forces included in the
formulation. The methods presented in this paper are
also applicable to more general models of fluid flow. For
example, one could develop a model for wave propaga-
tion in a medium with patchy saturation (Dvorkin and
Nur 1998, Johnson 2001). In addition, one could consider
the mechanism of Biot-flow and squirt-flow, in which fluid
movement into microcracks is accounted for (Dvorkin et
al. 1994).

CONCLUSIONS

The asymptotic analysis presented in this paper leads
to a semi-analytic solution for a medium with smoothly-
varying properties. Our preliminary analysis, restricted
to the zeroth-order terms, provides explicit expressions
for the slowness of the longitudinal and transverse modes
of propagation. As in a homogeneous medium, a cubic
equation determines the slowness for the three modes of
longitudinal propagation. The coefficients of the cubic
equation are expressed as sums of determinants of 3 by 3
matrices. The elements of the matrices are the coefficients
in the governing equations. These determinant-based for-
mulas for the coefficients are much simpler than previous
explicit forms, are easy to implement in a computer pro-
gram, and should reduce the occurrence of algebraic er-
rors. Most importantly, the results are valid in the pres-
ence of smoothly-varying heterogeneity. Thus, the explicit
expressions for slowness provide a basis for travel time cal-
culations and ray-tracing in a heterogeneous poroelastic
medium containing two fluid phases.

The asymptotic results pertaining to the phase veloc-
ity are the first steps toward a full solution of the cou-
pled equations governing deformation and two-phase flow.
Following earlier work on single-phase flow, it is straight-
forward, though rather laborious, to derive an expression
for the amplitudes of the disturbances. Thus, one can
derive the zeroth-order solution, obtained by considering
the terms in the asymptotic power series corresponding to
n = 0. The solution is valid for a medium with smoothly-
varying heterogeneity. However, the exact definition of
smoothness is with respect to the scale-length of the prop-
agating disturbance. Thus, the notion of the medium
smoothness does depend upon the frequency range of in-
terest. If layering is present it can be included as explicit
boundaries within a given model, as can fault boundaries.
The full expression for the zeroth-order asymptotic so-
lution may be used for the efficient forward modeling of
deformation and flow. Such modeling encompasses both
the hyperbolic, wave-like propagation of the elastic com-
pressional and shear waves and the diffusive propagation
that occurs primarily due to the presence of the fluid.
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APPENDIX A: THE CONSTITUTIVE

EQUATIONS

In this Appendix we discuss the stress-strain relationships
used in this paper. These equations have a long history
and have evolved from the early constitutive equations
for an elastic solid. First, the equations of elasticity were
generalized to include a fluid (Kosten and Zwikker 1941,
Frenkel 1944, Biot 1956a, 1956b, 1962a, 1962b, Garg 1971,
Auriault 1980, Pride et al. 1992). Then, two immiscible
fluids were allowed to occupy the pore space (Bear et al.
1984, Garg and Nayfeh 1986, Berryman et al. 1988, San-
tos et al. 1990, Tuncay and Corapcioglu 1997, Lo et al.
2002, Lo et al. 2005) The stress-strain relationships de-
pend upon the elastic properties of the solid matrix and on
the properties of the two fluids contained within the pore
space. Specifically, the constitutive relationships depend
upon the bulk modulus of the solid material comprising
the grains of the matrix, Ks, and the bulk modulus of the
solid skeleton as a whole, the bulk modulus of the frame:
Kfr. In addition, the stress-strain relationship depends
upon the shear modulus of the solid grains Gs and upon
the shear modulus of the frame: Gfr. The mechanical
behavior of the poroelastic, fluid saturated body also de-
pends upon the bulk moduli of the fluids, as denoted by
K1 and K2. The behavior of the fluid filled porous body
is also a function of the pore fraction, as represented by
the porosity φ, and the fluid phase saturations S1 and S2.
The quantity αi is the volume fraction of the fluid phase
i and is related to the fluid saturation according to

αi = φSi. (A1)

Note that the fluid saturations sum to one, S1 + S2 = 1,
because they fill the entire pore space. As is well known in
the theory of the flow of immiscible fluids, in general there
is a pressure differential between the two fluids occupying
the pore space, the capillary pressure: Pcap = P1 − P2,
(Bear 1972). This pressure differential, which is a func-
tion of the saturations, is responsible for the curvature of
the interface between the pore fluids. Because the fluid
saturations sum to unity, we can write the capillary pres-
sure as a function of one of the fluid saturations, say S1.
Because we will be considering incremental pressures and
saturations, changes with respect to some background av-
erage pressures and saturations, we can linearize the rela-
tionship between the incremental saturation change and
the incremental pressure differences. Thus, we can write

P1 − P2 =
dPcap

dS1

∆S1, (A2)

assuming that one considers a small enough time incre-
ment such that the saturation change ∆S1 is small.

The macroscopic stress-strain equations were derived
by Tuncay and Corapcioglu (1997) using the method of
averaging. This work generalized the single phase analysis
of Pride et al. (1992). The coefficients in the equations are
written in terms of the properties of the porous skeleton

and the fluids:

N1 = Ks (1 − φ) − Kfr (A3)

N2 = S1S2

dPcap

dS1

(A4)

N3 = N1 [K1S1N2 + K2S2N2 + K1K2] + (A5)

K2

sφ [K1S2 + K2S1 + N2] .

In terms of these coefficients, the stress-strain relationship
for the solid phase is given by

− (1 − φ)σs = [a11∇ · us + a12∇ · u1 + a13∇ · u2] I

+Gfr

[

∇us + (∇us)
T − 2

3
∇ · usI

]

(A6)

where

a11 =
KsN1 (1 − φ) [K1N2S1 + K2N2S2 + K1K2]

N3

+
K2

sKfrφ [K1S2 + K2S1 + N2]

N3

(A7)

a12 =
K1KsN1φS1 (K2 + N2)

N3

(A8)

a13 =
K2KsN1φS2 (K1 + N2)

N3

(A9)

Similarly, the full stress-strain relations for the two fluid
components are

−φS1σ1 = [a21∇ · us + a22∇ · u1 + a23∇ · u2] I, (A10)

where
a21 = a12 (A11)

a22 =
K1φS1

[

K2
sφK2S1 + K2

sφN2 + K2N1N2S2

]

N3

(A12)

a23 =
K1K2S2φS1

[

K2

sφ − N1N2

]

N3

(A13)

and

−φS2σ2 = [a31∇ · us + a32∇ · u1 + a33∇ · u2] I, (A14)

where
a31 = a13 (A15)

a32 = a23 (A16)

a33 =
K2S2φ

[

K2

sφK1S2 + K2

sφN2 + K1N1N2S1

]

N3

.

(A17)
We shall need the stress-strain relationships in terms of

the solid displacements us and the relative fluid displace-
ments wi = ui −us, the fluid displacement relative to the
current position of the solid matrix. Thus, we add and
subtract appropriately weighted us terms. For example,
equation A6, may be written

−(1 − φ)σs = [a1s∇ · us + a12∇ · w1 + a13∇ · w2] I
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+Gfr

[

∇us + (∇us)
T − 2

3
∇ · usI

]

, (A18)

where
a1s = a11 + a12 + a13. (A19)

Similarly for the two fluid phases, we can write

−φS1σ1 = [a2s∇ · us + a22∇ ·w1 + a23∇ ·w2] I (A20)

and

−φS2σ2 = [a3s∇ · us + a32∇ ·w1 + a33∇ ·w2] I (A21)

where
a2s = a21 + a22 + a23, (A22)

and
a3s = a31 + a32 + a33. (A23)

We rename the coefficients in the stress-strain relation-
ships given above in order to bring them closer to the form
of the stress-strain relationships for a single fluid phase in
a poroelastic medium (Pride 2005):

−(1 − φ)σs = [Ku∇ · us + Cs1∇ · w1 + Cs2∇ · w2] I

+Gm

[

∇us + (∇us)
T − 2

3
∇ · usI

]

, (A24)

−φS1σ1 = [C1s∇ · us + M11∇ ·w1 + M12∇ ·w2] I,
(A25)

and

−φS2σ2 = [C2s∇ · us + M21∇ ·w1 + M22∇ ·w2] I,
(A26)

where the coefficients are given by Gfr and the parameters
aij :

Ku = a1s (A27)

Cs1 = a12 (A28)

Cs2 = a13 (A29)

Gm = Gfr (A30)

C1s = a2s (A31)

M11 = a22 (A32)

M12 = a23 (A33)

C2s = a3s (A34)

M21 = a32 (A35)

M22 = a33. (A36)
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APPENDIX B: AN APPLICATION OF THE

METHOD OF MULTIPLE SCALES TO THE

EQUATIONS GOVERNING COUPLED

DEFORMATION AND TWO-PHASE FLOW

In this appendix we use the method of multiple scales
to obtain a system of equations constraining the zeroth-
order amplitudes of the solid displacement, U0

s, and the
fluid velocities, W0

1
and W0

2
, in a heterogeneous poroelas-

tic medium saturated by two fluids. The condition that
these equations have a non-trivial solution is sufficient to
provide equations for the phase velocities of the various
modes of propagation. The motivation for the method of
multiple scales is presented in the main body of the text.
In particular, see the discussion surrounding equations 25
through 30.

Let us begin with first of the governing equations, equa-
tion 19, after expanding all of the spatial derivatives:

∇Gm · ∇Us

+∇Gm · (∇Us)
T

−2

3
∇Gm · [(∇ ·Us) I]

+Gm∇ · ∇Us

+Gm∇ · (∇Us)
T

−2

3
Gm∇ · [(∇ ·Us) I]

+∇Ku∇ ·Us

+Ku∇ (∇ ·Us)

+∇Cs1∇ · W1

+Cs1∇ (∇ · W1)

+∇Cs2∇ · W2

+Cs2∇ (∇ · W2)

+νsUs + ξ1W1 + ξ2W2 = 0. (B1)

The first step involves reformulating the governing equa-
tions in terms of the slow variables, introduced in equation
25. In order to do this we rewrite the differential operators
in slow coordinates, as in equation 29. We then substitute
the series representations for the vectors Us and Wi [see
equations 26 and 27], retaining only those terms contain-
ing ε0 ∼ 1 and ε1, and we use the definition of l = ∇θ to
arrive at

ε∇Gm ·
(

l
∂Us

∂θ

)

+ε∇Gm ·
(

l
∂Us

∂θ

)T

−ε
2

3
∇Gm ·

[(

l ·
∂Us

∂θ

)

I

]

+εGm∇ ·
(

l
∂Us

∂θ

)

+ εGml · ∇
(

∂Us

∂θ

)

+ Gml ·
(

l
∂2Us

∂θ2

)

+εGm∇·
(

l
∂Us

∂θ

)T

+εGml·∇
(

∂Us

∂θ

)T

+Gml·
(

l
∂2Us

∂θ2

)T

−ε
2

3
Gm∇ ·

(

l · ∂Us

∂θ

)

I − ε
2

3
Gml ·

(

∇ · ∂Us

∂θ

)

I

−
2

3
Gml ·

(

l ·
∂2Us

∂θ2

)

I + ε∇Ku

(

l ·
∂Us

∂θ

)

+εKu∇
(

l · ∂Us

∂θ

)

+ εKul

(

∇ · ∂Us

∂θ

)

+ Kul

(

l · ∂2Us

∂θ2

)

+ε∇Cs1

(

l · ∂W1

∂θ

)

+εCs1∇
(

l ·
∂W1

∂θ

)

+εCs1l

(

∇ ·
∂W1

∂θ

)

+Cs1l

(

l ·
∂2W1

∂θ2

)

+ε∇Cs2

(

l ·
∂W2

∂θ

)

+εCs2∇
(

l · ∂W2

∂θ

)

+εCs2l

(

∇ · ∂W2

∂θ

)

+Cs2l

(

l · ∂2W2

∂θ2

)

+νsUs + ξ1W1 + ξ2W2 = 0. (B2)

We can write equation B2 more compactly if we use the
fact that

∂Us

∂θ
= iUs (B3)

and
∂Wi

∂θ
= iWi, (B4)

which follows from the form of the solutions 26 and 27.
Making these substitutions, we can re-write equation B2
as

ε∇Gm · (ilUs)

+ε∇Gm · (ilUs)
T

−ε
2

3
∇Gm · [(il ·Us) I]

+εGm∇ · (ilUs) + εGml · ∇ (iUs) − Gml · (lUs)

+εGm∇ · (ilUs)
T

+ εGml · (∇iUs)
T − Gml · (lUs)

T

−ε
2

3
Gm∇ · (il ·Us) I − ε

2

3
Gml · (∇ · iUs) I

+
2

3
Gml · (l ·Us) I + ε∇Ku (il ·Us)

+εKu∇ (il · Us) + εKul (∇ · iUs) − Kul (l ·Us)

+ε∇Cs1 (il · W1)

+εCs1∇ (il ·W1) + εCs1l (∇ · iW1) − Cs1l (l · W1)

+ε∇Cs2 (il · W2)

+εCs2∇ (il ·W2) + εCs2l (∇ · iW2) − Cs2l (l · W2)

+νsUs + ξ1W1 + ξ2W2 = 0. (B5)

From equation B5 we can obtain all the terms necessary
for the first of the three governing equations, equation 19.
In particular, we can extract all terms of order ε0 ∼ 1 that
are required to determine an expression for phase.

We shall also need the zeroth-order terms for the two
fluid equations 20 and 21. We will use index notation to
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represent the pair of equations by a single expression. The
expanded version of the index equation is given by

∇Cis∇ ·Us

+Cis∇∇ ·Us

+∇Mi1∇ ·W1

+Mi1∇∇ ·W1

+∇Mi2∇ ·W2

+Mi2∇∇ ·W2

+νiUs + ΓiWi = 0, (B6)

where the index i signifies the fluid that is under consider-
ation. Substituting the differential operators and retain-
ing terms of order ε0 and ε1, and using the definition of
∇θ = l,

ε∇Cis

(

l · ∂Us

∂θ

)

+ εCis∇
(

l · ∂Us

∂θ

)

+εCisl

(

∇ · ∂Us

∂θ

)

+ Cisl

(

l · ∂2Us

∂θ2

)

+ε∇Mi1

(

l · ∂W1

∂θ

)

+ εMi1∇
(

l · ∂W1

∂θ

)

+εMi1l

(

∇ · ∂W1

∂θ

)

+ Mi1l

(

l · ∂2W1

∂θ2

)

+ε∇Mi2

(

l · ∂W2

∂θ

)

+εMi2∇
(

l · ∂W2

∂θ

)

+ εMi2l

(

∇ · ∂W2

∂θ

)

+Mi2l

(

l · ∂2W2

∂θ2

)

+ νiUs + ΓiWi = 0. (B7)

Using the property of the partial derivatives given by
equations B3 and B4, we can write equation B7 as

iε∇Cis (l ·Us)

+iεCis [∇ (l ·Us) + l (∇ · Us)] − Cisl (l · Us)

+iε∇Mi1 (l · W1)

+iεMi1 [∇ (l · W1) + l (∇ ·W1)] − Mi1l (l ·W1)

+iε∇Mi2 (l · W2)

+iεMi2 [∇ (l · W2) + l (∇ ·W2)] − Mi2l (l ·W2)

+νiUs + ΓiWi = 0 (B8)

for i = 1, 2 for the two fluids, respectively.

Terms of Order Zero:

In this sub-section we consider terms of the lowest order in
ε, terms of order zero. For smoothly-varying heterogene-
ity such terms are the most significant. Gathering terms
of zeroth-order from equation B5 leads to the following
equation:

−Gml2U0

s − Gmll ·U0

s +
2

3
Gmll ·U0

s − Kull ·U0

s + νsU
0

s

−Cs1ll ·W0

1 − Cs2ll ·W0

2 + ξ1W
0

1 + ξ2W
0

2 = 0 (B9)

where
ll · U0

s = l
(

l · U0

s

)

. (B10)

Note that we can represent B10 as an operator, a dyadic
(Ben-Menahem and Singh 1981, Chapman 2004) applied
to U0

s:
l
(

l · U0

s

)

= l (l · I)U0

s (B11)

where I is the identity matrix with ones on the diagonal
and zeros off the diagonal. Alternatively, one may think
of the dyadic ll as the vector outer product llT , where lT

signifies the transpose of l, converting the column vector
l to the row vector lT .

Combining like terms and defining the coefficients

α = νs − Gml2 (B12)

and

β = Ku +
1

3
Gm, (B13)

We can re-write equation B9 as

αU0

s−βll·U0

s+ξ1W
0

1−Cs1ll·W0

1+ξ2W
0

2−Cs2ll·W0

2 = 0.

(B14)

We can treat the equations pertaining to the two fluids,
as expressed in B6, similarly. Collecting the zeroth-order
terms in equation B8 produces the equations

νiU
0

s −Cisll ·U0

s −Mi1ll ·W0

1 −Mi2ll ·W0

2 + ΓiW
0

i = 0,
(B15)

where the index i takes the values 1 or 2, depending on
the fluid under consideration.
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APPENDIX C: REDUCTION OF THE

DETERMINANT

In this Appendix we demonstrate that the vanishing of
the determinant of the 9×9 coefficient matrix in equation
31,

Γ =





αI − βll · I ξ1I− Cs1ll · I ξ2I− Cs2ll · I
ν1I − C1sll · I Γ1I − M11ll · I −M12ll · I
ν2I − C2sll · I −M21ll · I Γ2I − M22ll · I



 ,

(C1)
is equivalent to the vanishing of the determinant of a much
smaller 3×3 matrix. The determinant of a matrix is given
by the product of its eigenvalues (Nobel and Daniel 1977).
Thus, the vanishing of the determinant is equivalent to
the vanishing of one or more eigenvalues of the matrix
Γ. Furthermore, there will be an eigenvector is associated
with the zero eigenvalue.

Based upon physical considerations, in particular the
polarizations of the modes of propagation in a poroelastic
medium, and the structure of the matrix C1, the vectors

el =





y1l

y2l

y3l



 , (C2)

e1
⊥ =





z1l1
⊥

z2l1
⊥

z3l1
⊥



 , (C3)

and

e2
⊥ =





t1l2
⊥

t2l2
⊥

t3l2
⊥



 , (C4)

are suggested as potential eigenvectors of the matrix Γ.
Here, l1

⊥ and l2
⊥ are two orthogonal vectors lying in the

plane perpendicular to l. Physically, the vector el corre-
sponds to longitudinal propagation, when the fluid and
solid displacements are parallel to the direction of propa-
gation. Conversely, the vectors e1

⊥ and e2
⊥ correspond to

transverse motion in which the direction of fluid and solid
displacement is perpendicular to the direction of propaga-
tion. The physical motivation is from wave propagation in
a homogeneous medium. In a homogeneous medium one
can use potentials to decompose an elastic disturbance
into a longitudinal mode of propagation and two trans-
verse modes of propagation (Aki and Richards 1980). The
structure of the matrix Γ also suggests that the vectors
C2, C3, and C4 are potential eigenvectors. Specifically,
each 3× 3 sub-matrix in Γ contains the terms I and ll · I.
When these terms are multiplied by l the results are pro-
portional to l. When the terms are multiplied by l⊥

1
and

l⊥2 the first term gives the same vector while the second
term vanishes. Thus, the vector l, and vectors perpendic-
ular to it, provide special directions for the matrix Γ.

For illustration, we shall consider the eigenvector el as-
sociated with the longitudinal modes of propagation, dis-
placement in the direction of propagation l. Because it is
an eigenvector, the vector el satisfies the equation

Γel = λel. (C5)

Furthermore, as we are interested in the case in which the
determinant vanishes, the eigenvalue of interest is the one
that vanishes, reducing equation C5 to

Γel = 0. (C6)

From the algebraic form of the coefficient matrix Γ and
the form of the eigenvector el, equation C6 is equivalent
to





[

α − βl2
]

I
[

ξ1 − Cs1l
2
]

I
[

ξ2 − Cs2l
2
]

I
[

ν1 − C1sl
2
]

I
[

Γ1 − M11l
2
]

I −M12l
2I

[

ν2 − C2sl
2
]

I −M21l
2I

[

Γ2 − M22l
2
]

I





×





y1l

y2l

y3l



 = 0. (C7)

The requirement that this equation have a non-trivial so-
lution is the vanishing of the determinant of the coefficient
matrix,

det





[

α − βl2
]

I
[

ξ1 − Cs1l
2
]

I
[

ξ2 − Cs2l
2
]

I
[

ν1 − C1sl
2
]

I
[

Γ1 − M11l
2
]

I −M12l
2I

[

ν2 − C2sl
2
]

I −M21l
2I

[

Γ2 − M22l
2
]

I



 = 0.

(C8)
At this point we invoke a theorem from linear algebra
regarding the determinant of a matrix composed of block
sub-matrices (Silvester 2000). The theorem states that
the determinant of a matrix tensor product

L⊗ Q =





l11Q l12Q l13Q
l21Q l22Q l23Q
l31Q l32Q l33Q



 , (C9)

where Q is a 3 × 3 matrix and

L =





l11 l12 l13
l21 l22 l23
l31 l32 l33



 , (C10)

is given by

det (L ⊗ Q) = (detL)
3
(detQ)

3
. (C11)

Applying this theorem to the coefficient matrix in equa-
tion C8, and making use of the fact that Q is the identity
matrix, we derive the condition

det





α − βl2 ξ1 − Cs1l
2 ξ2 − Cs2l

2

ν1 − C1sl
2 Γ1 − M11l

2 −M12l
2

ν2 − C2sl
2 −M21l

2 Γ2 − M22l
2



 = 0,

(C12)
the vanishing of the determinant of a 3 × 3 matrix.
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APPENDIX D: COMPUTING THE

DETERMINANT FOR THE LONGITUDINAL

MODE OF PROPAGATION

In this Appendix we detail the computation of the deter-
minant of the matrix

M =





νs − Hs ξ1 − Cs1s ξ2 − Cs2s
ν1 − C1ss Γ1 − M11s −M12s
ν2 − C2ss −M21s Γ2 − M22s



 (D1)

where s = l2. The principle, that we shall apply repeat-
edly, relates to the determinant of a matrix containing a
column in which each element is the sum of two terms. A
theorem in linear algebra shows that the determinant of
such a matrix may be written as the sum of two deter-
minants, each of which contains one element of the sum
(Noble and Daniel 1977, p. 200). We shall illustrate this
principle by an application to the matrix M given above.
Each element of the first column of this matrix is the sum
of two terms. Thus, we can write the determinant of M

as

det





νs − Hs ξ1 − Cs1s ξ2 − Cs2s
ν1 − C1ss Γ1 − M11s −M12s
ν2 − C2ss −M21s Γ2 − M22s





= det





νs ξ1 − Cs1s ξ2 − Cs2s
ν1 Γ1 − M11s −M12s
ν2 −M21s Γ2 − M22s



 (D2)

−s det





H ξ1 − Cs1s ξ2 − Cs2s
C1s Γ1 − M11s −M12s
C2s −M21s Γ2 − M22s



 .

We can apply this principle recursively, first to the second
column of each of the component matrices in equation D2
and then to the third column of each of the component
determinants, obtaining a cubic equation in s. We can
write the cubic equation compactly as

Q3s
3 + Q2s

2 + Q1s + Q0 = 0 (D3)

if we define the coefficients

Q3 = det





H Cs1 Cs2

C1s M11 M12

C2s M21 M22



 , (D4)

Q2 = − det





νs Cs1 Cs2

ν1 M11 M12

ν2 M21 M22



−det





H ξ1 Cs2

C1s Γ1 M12

C2s 0 M22





− det





H Cs1 ξ2

C1s M11 0
C2s M21 Γ2



 , (D5)

Q1 = det





νs ξ1 Cs2

ν1 Γ1 M12

ν2 0 M22



 + det





νs Cs1 ξ2

ν1 M11 0
ν2 M21 Γ2





+ det





H ξ1 ξ2

C1s Γ1 0
C2s 0 Γ2



 , (D6)

Q0 = − det





νs ξ1 ξ2

ν1 Γ1 0
ν2 0 Γ2



 . (D7)
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FIGURE CAPTIONS

Figure 1. The relative permeability curves of Mualem
(1976) for fluid flow in a porous medium saturated by
two fluids. The curves describe the variation of the rel-
ative permeability kir(Si), the function appearing in the
expressions 65 and 66 for C1 and C2. The algebraic ex-
pressions for these curves are given by equations 75 and
76. Fluid 1 is the gas phase (air), while fluid 2 is the liquid
phase (water).

Figure 2. The three phase velocities associated with
the longitudinal modes of propagation in a porous medium
saturated with two fluids. The phase velocities are plotted
as functions of water saturation. The frequency used in
the computations was 1000 Hz. The phase velocities are
determined by the real component of the roots of the cubic
equation 36.

Figure 3. The attenuation of a propagating longitudi-
nal mode of displacement, plotted as a function of water
saturation. The frequency used in the computations was
1000 Hz. The attenuation is determined by the imaginary
components of the three roots of the cubic equation 36.

Figure 4. Velocities for the first (fastest) longitudinal
mode, known as P1, plotted as a function of the water
saturation. Two fluid mixtures are shown in this figure:
a mixture of air and water and an oil-water mixture. The
velocities calculated using the expressions in this paper are
plotted as symbols, open circles for the oil-water system
and filled squares for the air-water system. In addition,
the values computed using the formulas of Tuncay and
Corapcioglu (1996) are plotted as a dashed line (oil-water)
and as a solid line (air-water).

Figure 5. The velocities associated with the second
or intermediate (P2) mode of propagation, plotted as a
function of water saturation. The values computed using
the formulas of Tuncay and Corapcioglu (1996) are plotted
as a dashed line (oil-water) and as a solid line (air-water).

Figure 6. The velocities associated with the third (P3)
mode of propagation, plotted as a function of water satu-
ration. The values computed using the formulas of Tun-
cay and Corapcioglu (1996) are plotted as a dashed line
(oil-water) and as a solid line (air-water).

Figure 7. The velocities associated with the second
or intermediate (P2) mode of propagation, plotted as a
function of water saturation. The velocities are shown for
three different frequencies: 50, 100, and 200 Hz. As in
Figures 5 and 6, the values computed using methods in
this paper are indicated by the symbols while the values
computed using the methods in Tuncay and Corapcioglu
(1996) are indicated by the solid and dashed lines.

Figure 8. The velocities associated with the third (P3)
mode of propagation, plotted as a function of water sat-
uration. The velocities are shown for three different fre-
quencies: 50, 100, and 200 Hz. The values computed using
methods in this paper are shown by the symbols while the
values computed using the methods in Tuncay and Corap-
cioglu (1996) are indicated by the solid and dashed lines.

Figure 9. Relative permeability curves based upon

the experiments of Wyckoff and Botset (1936) on the flow
of gas-liquid mixtures through unconsolidated sands. The
relative permeability functions are based upon cubic spline
fits to a set of digitized points.

Figure 10. Observed (filled squares) and calculated
(open circles, crosses) phase velocities of the phase ve-
locity of the transverse mode (lower curve) and the first
longitudinal model (upper curve). The observed values
were obtained from the experiments of Murphy (1982).
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