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Abstract
Coupled flow and geomechanics play an important role in tiadyais of gas hydrate reservoirs under production. Thinest
of the rock skeleton and the deformation of the reservoiwelsas porosity and permeability, are directly influencgddnd
interrelated with) changes in pressure, temperature aitdfiater and gas) and solid (hydrate and ice) phase sainsati-luid
and solid phases may coexist, which, coupled with steepeeatyre and pressure gradients, result in strong nonitiesain the
coupled flow and mechanics processes, making the desarigtgystem behavior in dissociating hydrate deposits diameglly
complicated.

In previous studies, the geological stability of hydragating sediments was investigated using one-way coupkdgisis,
in which the changes in fluid properties affect mechanichiwithe gas hydrate reservoirs, but with no feedback fronmgeo
chanics to fluid flow. In this paper, we develop and test a dgsntwo-way coupling between fluid flow and geomechanics,
in which the solutions from mechanics are reflected in thetsni of the flow problem through the adjustment of affected
hydraulic properties. We employ the fixed-stress split méthvhich results in a convergent sequential implicit schem

In this study of several hydrate reservoir cases, we fincceatile differences between the results based on one- and two
way couplings. The nature of the elliptic boundary valuebfgo of quasi-static mechanics results in instantaneompaction
or dilation over the domain, through loading from reser¥iiid production. This induces a pressure rise or drop ayeianes
(low pressure diffusion), and consequently changes tlee®fe stress instantaneously, possibly causing geabuistability.
Additionally, the pressure and temperature regime affdetvarious phase saturations, the rock stiffness, pgrasitl perme-
ability, thus affecting the fluid flow regime. These changesret captured accurately by the simpler one-way couplirige
tightly coupled sequential approach we propose providagaaus, two-way coupling model that captures the intatiehship
between geomechanical and flow properties and processesataly describes the system behavior, and can be reguiliee
to large-scale problems of hydrate behavior in geologiciened

Introduction

Background. The interrelationship between fluid flow through porous raeatid the geomechanical status of the system is
controlled by the properties of the specifics of flow, variphases present in the pores (e.g., gas, aqueous, oil/lorgamietc.)
and of the solid system (i.e., the individual grains of thelggic medium and the reservoir skeleton). Under certamtitmns,

the interrelationship is strong, and coupling of the flowgasses with geomechanics is necessary to accuratelylmetuisys-
tem behavior. In such cases, changes in pressure broughttiapbfiow (e.g., in the process of fluid production from regéns)
alter the stress fields, resulting in changes in porositypancheability, and potentially leading to yielding, faigrand fracture
evolution or closures; these processes can in turn affedtdiv behavior of the entire system. Reservoir engineesngplete
with examples of such strongly coupled flow-geomechaniosgsses with a significant impact on production and economic
consequences: stability of borehole and surface faaiitigdraulic fracturing for fluid production from low-peratality reser-
voirs, reservoir compaction (especially in highly comgibke systems) and land surface subsidence, sand produtttiing
reservoir fluid production from unconsolidated or unstdblenation, system responses during geolagi©@, sequestration,
gas production from hydrate accumulations, etc. - see Baghd Settari (2008), Merle et al. (1976), Lewis and Schrefle
(1998), Kosloff et al. (1980), Freeman et al. (2009), Ruttet al. (2010b), and Rutqgvist and Moridis (2009).

Hydrate reservoirs are considered as potentially subatdnture energy resources (Moridis, 2003; Moridis et 2009a,
2011) because of the vast quantities of hydrocarbon gaslyn@H,) they trap (Sloan and Koh, 2008). Hydrate deposits
that are desirable gas production targets almost invarigabblve coarse, unlithified, unconsolidated media (sustsands
and gravels). In such deposits, it is the hydrate that irspagchanical strength to the medium, and hydrate dissocifdi
gas production drastically changes the geomechanicalsstdtthe system. Additionally, the system undergoes sianifi
temperature changes because dissociation is a strongytemahic reaction. Thus, fluid flow, heat transport and gestrarics
are inexorably intertwined and need to be considered tegeth strongly coupled processes in hydrate accumulatiossru
production because the inevitable significant changesaagureP, temperaturd” and saturations$'; of the various phases
J (aqueous, gas, hydrate, ice) during dissociation diregffigct the stiffness of the solid skeleton and the stresssaraih
fields, resulting in deformation of the reservoirs and ptiédly large changes in the porosity and permeability (Riggand
Moridis, 2009; Rutqvist et al., 2009). Thus, in the study a$ ggroduction from hydrate deposits, the geomechanidailista
and integrity of both the hydrate-bearing sediments (HB®)the wellbore need to be considered.

Gas hydrates are solid crystalline compounds in which gdscules are trapped within the lattice of ice crystals (Mis;i
2003). Trapped gases and the ice crystals are cgliedtsand hosts respectively. Given the availability of appropriate gas
sources, hydrates evolve according to the exothermic mguat

G+ Ny H,O =G - Ny HO + Qpg, Q)



whereG - Ng H5O is the hydrate( denotes a hydrate-forming gd€g is the corresponding hydration number, &pg is the
specific enthalpy of hydrate formation/dissociation. Alilgh natural hydrates can include several guests su€has COs,
H,S, andN,, CH, is by far the most dominant gas in natural hydrate accununiati Hydrates are generally encountered
in two distinctly different geologic settings where the didions of low temperatur@ and high pressur@ that favor their
formation and stability are satisfied: in the Arctic and ie ticeans.

The three main hydrate dissociation methods (Makogon, 18897) that can be used for hydrocarbon recovery (Moridis
et al., 2009a) are as follows.

e Depressurization, which occurs whéhs lowered below the pressure of hydrate stabiltyat a givenr
e Thermal stimulation, which involves raisirigabove the dissociation temperatdtefor a givenP
¢ Inhibitor effects, involving the use of substances suchramb and alcohols that destabilize the hydrates.

During dissociation, in addition to changes in the stresgibhution, significant changes in the phase volumes occthré
pores of the HBS because of the considerable density differbetween hydrates and the liquid water and gas released in
the process. Thus, hydrate dissociation (or formation)ozarse displacement (dilation or compaction) of the hydbatring
geological formation that can be pronounced in the vicinitghe well. The change in the mechanical status and preserti
propagates instantaneously away from the well toward thendl@xies because of the nature of the quasi-static mechanic
involved. In turn, the change in geomechanical status withe reservoirs can affect the reservoir fluid flow through th
changes it imparts on the hydraulic properties and the spareding.

Even though fluid flow and geomechanics need to be consideredupled processes in order to accurately predict the
reservoir behavior during gas production from hydratesh®oupling has received limited (if any) attention. Relygefutqvist
and Moridis (2009) investigated the geomechanical effectwell stability resulting from hydrate dissociation ineamic HBS
systems caused by hot fluids from conventional deeper m@sgrntersecting extensive hydrate beds as they ascertteto t
surface. Their study showed that the stability of the HBSuadthe warm pipes and wells may be significantly affected by
thermal loading. Similarly, Rutqvist et al. (2009) showédttgas production from permafrost-associated hydrateibiexd
very limited displacement at the surface (and practicadlganger to surface facilities and equipment) because gfrtitective
effect of the stiff permafrost, but geomechanical changeke HBS and in the vicinity of the well were more pronounced a
could result in yielding and failure - not necessarily anexde effect, since it had the potential of increasing thectffe
permeability of the HBS through development of fractureaother study by Rutqvist et al. (2010a) investigated thbiliia
of sloping oceanic HBS under a variety of loads (thermal ardhmanical).

All these studies involved exclusively one-way (herearféferred to adW) coupling of fluid flow, heat transport and ge-
omechanics, with the change in fluid pressure and temperaftecting mechanics, but without considering feedbaoknfr
mechanics to flow through changes in the hydraulic properier the reasons mentioned earlier, such 1W couplingsepre
tation is not fully representative of (and often not fullypappriate for) the tightly coupled flow and geomechanias. (high
coupling strength; Kim et al. (2011b)) encountered in HBSyhich water is typically less compressible than the poroadia,
potentially affecting the quality of predictions. Two-wagupling is far more appropriate to accurately predict tbledvior of
such hydrate reservoirs undergoing changes.

Focus and approach. In this paper, we study two-way (hereafter referred t®@8 coupling between fluid flow and ge-
omechanics in hydrate reservoirs under production as amsixin of Rutqvist and Moridis (2009) and Rutqvist et al.0@0
while still employing 1W coupling between heat flow and medbs. This is a valid approximation, justified by the largathe
capacity and/or small heat contribution originating dikefrom the deformation of the HBS (Lewis and Schrefler, 1998

Two representative approaches can be used to simulate theo@ling of fluid flow and geomechanics: the fully coupled
(monolithic) method or the sequential method (Zienkiewétal., 1988; Armero and Simo, 1992; Settari and Mourits,8199
Wan, 2002; Dean et al., 2006; Jha and Juanes, 2007; Jean22G¥). The fully coupled method can provide a stable and
convergent solution, but it requires a unified flow-mechssimulator, and a unified grid that can provide sufficientrdigdin
of both the flow and geomechanical processes. This entadea@mous software development effort, results inevitablyery
large matrices, and necessitates very large memory regeimes and correspondingly large computational costs.

On the other hand, the sequential implicit approach offedeitexibility from a software engineering perspective] aises
separate software modules (and often separate grids) thehtie flow and geomechanical processes. The two robustlasodu
communicate through a well-defined interface (Felippa aautt,PL980). However, sequential approaches may be limiged b
numerical stability and convergence (Armero and Simo, 189&hero, 1999). Here we discuss a sequential method that can
provide stable solutions while being competitive in terrhaacuracy with the corresponding fully coupled method.

According to Kim et al. (2011b), typical sequential techrggq involve thedrained andfixed-strain splitmethods. In the
drained splitmethod, the geomechanical problem (with 7" and.S; and the fluid properties and conditions kept constant,
but with the fluid mass allowed to move) is solved first to eat&rthe displacement, followed by the solution of the cadiple
fluid flow and heat transport problem to determiAgl” andS;. Thefixed-strain splitmethod involves first the solution of the
coupled problem of fluid flow and heat transport (while kegpime strain fields frozen, but allowing the total stress fietul
vary) to estimate?, T" and S, followed by the solution of the geomechanical equatiorsstimate the displacements.



These methods can provide — at best — conditional stalfilétyis independent of the time step size, but may lead to non-
convergence even when they are stable. Two other methoésafsn more appealingindrainedandfixed-stress splitsThey
are both unconditionally stable, but the fixed-stress pptiluces more accurate solutions when flow and mechanitig htly
coupled (Kim et al., 2011b). In thendrained splitmethod, the geomechanical problem (with no change in thd fhass
locally, but with theP, T" and .S ; varying) is solved first to estimate the displacement, fedld by the solution of the coupled
fluid flow and heat transport problem to determifgl” and.S ;. Thefixed-stress splinethod involves first the solution of the
coupled problem of fluid flow and heat transport (while kegpime total stress fields frozen, but allowing the strain fetal
vary) to estimate?, T, Sz, followed by the solution of the geomechanical equatiorestimate the displacements.

In an isothermal problem, the fixed-stress split can be ye@siplemented through a simple porosity correction. The
isothermal assumption is not appropriate in the descriptichydrate dissociation because of the strongly endoticemature
of the reaction. Thus, we employ the fixed-stress split mebthith an extended porosity correction to model thermo-bydr
mechanics in hydrate deposits. This 2W coupled sequentiglidit scheme of fluid flow, heat transport and geomechanics
has almost the same computational cost as the 1W couplethech€he porosity correction is applied to the 2W coupled
problem of fluid flow and geomechanics, while the coupling edittransport and mechanics is based on a 1W scheme for the
aforementioned reasons.

Expanding on the study of Rutqvist and Moridis (2009), weestigate test cases for depressurization, thermal stiion)ja
and plasticity. In these cases, we compare the results efuimerical simulations involving the present coupling noetfi.e.,
2W coupling between fluid flow and geomechanics, with 1W cogpbf heat transport and geomechanics) to those obtained
using the 1W coupling method used in the earlier studiesmRrese test cases, we determine that 2W coupling is negessar
for the rigorous and accurate prediction of the overall bhaf hydrate reservoirs, in particular when investiggtreservoir
and well stability. The significant differences betweenphedictions from the 1W and the 2W coupling methods are alsvio
in cases of high coupling strength (i.e., involving neangempressible fluids such as water), of different timees#&br fluid
flow and geomechanics, and low pressure-diffusion (i.eeaalty times or for low permeability HBS), all of which dedusi
most hydrate reservoirs.

Mathematical formulation

Mass and heat balance equations. In describing coupled flow and geomechanics, we employ draaumn theory, in which
the fluid and solid are considered as overlapping continha.gbverning equations of fluid and heat balance are basdtkbon t
earlier studies of Moridis (2003) and Moridis et al. (200REg{er to those references for more details.), which can lieewin

an integrodifferential form as

i/m“dQ—i—/f”-ndF:/q”dQ (2)
dt Jo r Q

where the superscript denotes either a mass component or hedt; £, andq” are accumulation, flow, and source of mass
of the componenkt or heat in the domaif® with a boundary surfacE, respectively. We denote hi-)/dt the time derivative

of a physical quantity-) relative to the motion of the solid skeleton. In long-terns gaoduction from hydrates, Kowalsky and
Moridis (2007) showed that dissociation can be accuratebcdbed as an equilibrium (as opposed to kinetic) reactimer
these conditions, only two components need be considéfe@®: (v = w) andC H,4 (x = m), i.e., hydrate is considered as just
one possible state of the GHH,O system. These two components are distributed among fasilge phased, i.e., agueous
(J = A), gaseous = ), hydrate = H), and ice (/ = I). Then, the accumulation term” (x = w, m) is given by

m~ = Z @ Syps X5, kK=wm 3)
J=A,G,H,I
whereg is the true porosity, defined as the ratio of the pore voluntkedulk volume in the deformed configuratidh; andp s
are saturation and density of the phaseespectively; and’; is the mass fraction of componemin the phase/. Obviously,
X}’ = 1. From the hydrate stoichiometr)(y; = NgW®* /(W™ + NgW®) andX}} =1 — X};, whereW™ andW" are the
molecular weights of’ H, and H,O, respectively.
The mass flow ternfi® in Equation 2 is given by

= > (whi+J5), @)

J=A,G

wherew’; andJ’; are the convective and diffusive mass flows of componrentthe phase/. The summation over the phases
J is limited to the mobiled and G, the solid phase& and! being immobile. For the aqueous phase; is described by
Darcy’s law as

_pAkra
HA

whi =Xiwa, wy= k (GradP4 — pa g9), 5)



wherek is the absolute permeability tenset;, k.7, and P; are the viscosity, relative permeability, and pressurédeffluid
phase/, respectivelyg is the gravity vector, antkrad is the gradient operator. For the gaseous phagecan be written as

k
X =Xtwg, wg=-— (1+K) k (GradPg — pc 9), (6)

wherek is the Klinkenberg factor. The diffusive flo; (x = m,w; J = A, G) is described as

J)=—¢ 87 7¢ D% p; Grad X%, 7

whereD; is the hydrodynamic dispersion tensor, ardis the gas tortuosity, often computed from the Millingtord&puirk
(1961) model as¢; = ¢'/357/°.
For the heat balance equation= 6, and the heat accumulation ternf becomes

T
m? = (1*¢)/ pr Crdl + Z ¢ Sypier, 8)

To J=A,G,H,I

wherepr = pr(T) andCr = Cg(T) are the density and heat capacity of the porous medium,ctregly; T is the tempera-
ture; T, is a reference temperature; anglis the specific internal energy of phageThe heat flowf? includes conduction and
convection contributions, and is described as

£/ = —KogVT+ Y hywy, (9)
J=A,G
whereKj is the composite thermal conductivity of the porous medid pimase/ system, and ; is the specific enthalpy of
phase/. ey andh ; are given by

e;= Y Xjej and hy= Y X5, (10)

K=w,m K=w,m

wheree; and k% indicate the specific internal energies and enthalpies pfpomentsx in the phase/. Note that, under
equilibrium conditions, the heat of hydrate dissociatiaaccounted for when differencing the hydrate mass between t
points in time, i.e.,

Ts
Am’ = (1~ ¢)/ prCrdl +A( Y ¢ Sspses)+Hp Ao Su pn), 11)
! J=A,G,I

whereT}; andT; are the temperatures at these two times, Apgdis the heat of hydrate dissociation.
Geomechanics equations. Assuming a quasi-static state, the governing equation &mhanics is given by

Dive + p, g = 0, (12)

whereDiv is the divergence operatar;is the Cauchy total-stress tensor; and= ¢ X505+ (1 — @)pr (J =G, A, H,I)is
the bulk density. Here, we assume small deformation (hénitesimal transformation) and an isotropic geomaterial

Initial and boundary conditions. For completeness, initial and boundary conditions are egéalfully describe the problem.
For fluid flow, the boundary conditions aré®>, = P; and X5 = X§ (with the symbol(-) indicating prescribed values,
J = A,G andk = w, m ) on the boundary of the prescribed pressiife andf® - n = f* (prescribed mass flux) on the
boundary of the prescribed flolv;. For well-posedness, we assume thatnI'y = (), andl'p UT'; = 9. The boundary
conditions for heat flow arel’ = 7" on the prescribed temperature boundgsy andf? - n = f" (prescribed heat flux) on the
corresponding boundatlyy, wherel'r N T'y = (), andl'r U Ty = 9.

In the stress equation of the geomechanical problem, thedaoy conditions are as followst = u (prescribed displace-
ment) on the prescribed displacement boundgpando - n = + (prescribed traction) on the corresponding boundayy
wherel', N T', = (§, andl’, UT, = 9. The initial stress fields should satisfy mechanical andhioglynamic equilibriums,
and be consistent with the fluid pressures, temperaturettendistory of the stress-strain paths. Here, we take thialini
conditions of the coupled problem &5|,—0 = P, X%|i=0 = X5 (J=A,G k=w,m), T|t=o = To, ando|;—¢ = o7.



Methane hydrate formation and dissociation
Applying the general Equation 1 to the case’tf4, the dissociation/formation of methane hydrates are deestias

CHy - Ng H0 (hydrate) — CHy(gas) + Ny H20 + Qg (liquid or ice), (13)
where Ny is the hydration number specific to the methane hydrate. €&hetion of Equation 13 is depicted on the phase

diagram of the water- methane- vapor(gas)-hydrate syssbiow( in Figure 1) as the 3-phase co-existence lines of A+G+H
(when liquid water is involved) and I+G+H (when ice is invetl), and includes the quadruple paipp.
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Figure 1: Pressure-temperature equilibrium relationship in the phase diagram of the water-methane-vapor-hydrate sys tem (Moridis

et al., 2008). I, V, Lw, and H indicate ice, vapor, liquid water, and hydrate phases, respe ctively. The dash symbol () — () signifies
coexistence of the phases. For example, I — H means that ice and hydrate phases coexist.

From Figure 1, it is obvious that hydrates undergo dissimiavhenT rises to the equilibrium temperature for a given
or P falls below the equilibrium pressure for a givéh This affects the medium dilation not only because of ditketmal
expansion but also because of the decrease of the effettass glue to the increased fluid pressure. The dilation an al
influence the porosity and permeability fields, the stabditd integrity of the wellbore assembly, and/or the intggof the
cap rock, while at the same time affecting the flow of fluids hadt. These coupled processes between flow and geomechanics
can be modeled through the constitutive relations destiibéhe ensuing discussion.

Constitutive relations between flow and geomechanics

The constitutive relations for thermoporomechanics aseti@n Biot (1941) and Coussy (1995, 2004), where fluid, laeat,
geomechanics are tightly coupled. The total steesBuid massmn s, and entropys in the elastic coupled system are functions
of the total strairg, fluid pressureP;, and temperaturé’, written as

o = Cdrzés—bJ(Sle—BaTKdr (ST]., (14)
——
do’
om
r = by dey + Njk opr — 3,y 0T, (15)
J
_ B Cd
0S = 550my+3ar Ky de, — 3Ozm,J opy + ? oT, (16)

whereC,, is the drained-isothermal elastic modua¥; = { N,k } is the inverse matrix of the Biot modull = {M;x} (i.e.,
N = M1, whereN andM are positively definite matrice8y is the volumetric skeleton thermal dilation coefficieft,



is the drained isothermal bulk moduldsis the rank-2 identity tensog;, is the total volumetric strainy,,,; = 3a4 + 3as ¢,
where3o, and3a s are the coefficients of thermal dilation related to poroaityl the phasd, respectivelyg is the linearized
total strain tensorp; is the Biot coefficient for phasd, determined fromb; = bS;, whereb is the Biot coefficient for
single phase flowS is the total entropy, and; is the internal entropy per unit mass of the phdsg.e., specific entropy);
Cq = C + m;C,; is the total volumetric heat capacity, wheteis the skeleton volumetric heat capacity afigl; is the
volumetric specific heat capacity of the phakat constant pressure. We defing the effective stress, in the incremental form
asdo’ = C4 : e, whereo’ = 0 ate = 0. The symbol denotes variation relative to the motion of the solid skeletThe
double indices irC; and Equations 14 — 16 indicate summation.

For a two-phase, two-component fluid system (such as oil atdr)y an appropriat that is typically used in engineering
applications is given by (e.g., Lewis and Schrefler (1998))

dS,, b—o dSy b—¢
¢Soco — (b ch + SOTSSO Qs dPC + So KS Sw
N = , (17)
dS., b— ¢ dSy, b—¢
Vap, TR, S Ot T g ST

where the subscriptandw indicate oil and water phases, respectivelyis the compressibility of the fluid phask P, is the
capillary pressure between oil and water, dadis the intrinsic solid grain bulk modulus.

In Equation 16, we can ignore the volumetric strain t&um- K 4,0, when the heat capacity is relatively large, in which
case the contribution of the direct heat source from the gebamnical deformation to the accumulation term of the heat
transport equation is very small. This can justify 1W conglbetween heat transport and geomechanics, allowing useto u
the governing equation of heat transport with no volume gkafie., using the fixed bulk volum®@). However, because
heat transport and fluid flow are strongly coupled, the effécteomechanics on heat transport is still considered tirahbe
impact of geomechanical changes on fluid flow. Note that velgimanges are fully considered in fluid flow (Equation 2) and
geomechanics (Equation 12).

We now compare Equation 15 to the equivalent term typicadlgduin conventional reservoir simulations (i.e., without
geomechanical coupling), in which the accumulation teradeiscribed as

1d 1d
Smy = py ®Sy (cs 0Py — e 6T) + py S;60 + py 3S,, wherecy = — 2L cp = — =PI (18)
pJ dP; py dTl
® is Lagrange’s porosity, defined as the ratio of the pore velimthe deformed configuration to the bulk volume in the
reference (initial) configuration. We can take Lagrange@sopity in Equation 17, instead of true porosity, because dso

admissible (i.e., symmetric and positively definite) aneldifference is negligible. Comparing Equations 15 and X8heve

Pr Kf’ > 8, 6P; +b e, (19)
J=F

where theJ = F' in the summation term indicates inclusion of all fluid (mebiphases in the system. Equations 14 and 19
clearly demonstrate the tight coupling between fluid flow gadmechanics because it is obvious that volume changestcann
be ignored when estimating fluid flow. For a highly incompitglssfluid (such as an aqueous phase), the coupling strength
increases (Kim et al., 2011a,b), and 2W coupling is necgdsaccurately describe the system behavior.

Thus, when permeability is coupled to the geomechanicalistaf the system, it can be estimated using a porosity-
dependent permeability relationship such as that proplgddoridis et al. (2008),

k=k ® o — 2\ ™ where @, = &(S4 + S¢) (20)
- OeXp 'Yl q)() @07(1)(; bl a — A G)s
~1 and~, are experimentally determined parametdrsijs acritical porosityat which permeability is reduced to zero; and the
subscrip® indicates a reference state (e.g., the initial state). M@eEquation 20 involves exclusively Lagrange porosiies
not the true porosities. For unconsolidated, unlithified media such as those oicguin HBS that are desirable production
targets;y; is in the 5-7 range (Moridis et al., 2008).

From Equation 19, we can deduce that the porosity change®acaused only by changes in the non-wetting fluid pressure,
but also by saturation changes. For example, in an oil-vegtgtem, we can rewrite Equation 19 as

b—¢ dP,
5 = <5PO Suig 5Sw> +b ey, (21)

0Pg

whereP, is the capillary pressure between oil and water, Bads the equivalent pore-pressure (Coussy, 2004). Undangtro
capillarity, variations in the saturation can cause charng¢he Lagrange porosity even when the oil pressure doeshaoige.
Drying shrinkage of a porous medium in an air-water systeamiexample of such a phenomenon (Coussy et al., 1998).




Numerical schemes and simulators

For the solution of the problem of coupled fluid flow and heahgport during dissociation in the process of gas productio
from HBS, we employ the TOUGH+HYDRATE simulator (Moridis &t, 2008), which involves finite volume and backward
Euler methods for space and time discretizations, resgdgtiThe space discretization implemented in the codeigesMocal
mass conservation at the element level and stable pressig®diue to piecewise constant interpolation (Phillips \Afiakeler,
2007a,b; Jha and Juanes, 2007). This approach has digtimettages compared to the piecewise continuous inteipolased

in finite element schemes, which may result in early-timerigpis pressure oscillations in consolidation problemsrf\éer
and Verruijt, 1981; Murad and Loula, 1992, 1994; Wan, 2002jté/and Borja, 2008).

For the solution of the geomechanical problem, we use thst“Eagrangian Analysis of Continua in 3D” (FLAC3D)
simulator (Itasca, 2006), which is widely used in the soit@ock mechanics community in a wide variety of academic and
engineering applications. This simulator adopts the fidiflerence approach, which provides first-order approfiomain
space and time.

Sequential approach and implementation
The two simulators described above are implemented in eesgigimanner. One of the benefits of sequential impliciesohs
is that the user can employ separate software modules ftirg@pupled fluid flow and heat transport and (b) the geoméchan
In sequential schemes, these two subproblems are solvedaguence by fixing one or more state variables. For example,
the total strain or total stress can be kept constant whesingothe fluid and heat flow problem first. Alternatively, whitre
mechanical problem is solved first, one or more of fluid pressuemperature, fluid mass, or heat can be kept constaet. Af
the sequential solution of the subproblems, either a marerate solution can be obtained by additional iterationth@time
can be advanced and the solution at the new time step can begin

Kim et al. (2011c) and Kim et al. (2011d) investigated the puinal stability and convergence of the four sequentiahmds
discussed earlier under isothermal conditions. They sHatlvat the undrained and fixed-stress splits are uncondition
stable, and that the fixed-stress split yields higher acguttzan the undrained split, particularly under high couglstrength
conditions. Based on these findings, we employ the fixedssplit in this paper. The solution strategy of the fixedssrsplit
is given as

u” u* un+1
A A AZL: Fluid and heat flow; §¢ = 0,
=3 | pitt] =28 | pitt|,  where (22)

A . Mechanics; Py, T : prescribed,
Tn TnJrl Tn+1 o

where AL, and AY, stand for the fluid-and-heat flow and the mechanics stegsectigely.* is an intermediate displacement,
but there is no need to calculate or store it.
During the AJ! step, combining the constraifit = 0 with Equation 19 under the backward Euler method yields

2o b—¢ Sy
@nJrl P = { + } Sn+1 n+l  n + 3 b Tn+1 —_T") — A(I), S e = 7"
Ky K J:ZF b 7 Pi) + 3arb( ) 8 > 1=F 57
dc,
b2 n n n— n n— n n—
AT = Ky, J:ZFSJ,e (pJ —Dy 1) + 3arb (T =T 1) —b (6“ ~ & 1)
_ b n_ n—1
T Ka (o0 —00™"), (23)

whereA® is the porosity correction terma;, is the volumetric (mean) total stress; and 1, n andn+1 denote three successive
points in the discretized time domaih. ;_,. S is the sum of fluid (mobile) phase saturation, wherenplies fluid (mobile)
phase. The term, in Equation 23 represents the pore compressibility thabusimely used in conventional simulators (i.e.,
not considering geomechanics rigorously). The porosityemtion termA® is ignored in conventional reservoir simulators
(and even when 1W coupling of fluid flow and geomechanics idempnted), but needs to be considered in a tightly coupled
problem.

Note that the porosity function in the 1W coupling schemik déipends on the liquid phase saturati®nand the drained
bulk modulusKy;,., just as the 2W coupling scheme does. Hg in 1W coupling realizations is estimated from the mechanics
boundary conditions. In the 2W coupling scheme, wliép cannot be determined exactly because of complex boundary
conditions or high mechanical nonlinearity, it is estintbds less stiff than the true local bulk modulus (Kim et al12). For
example, it is possible to use the constrained modulus ®pthosity function in 2W coupling; the same could be used/ih 1
coupling, and is stiffer than the true bulk modulus. Thisragpnate estimation of(;,. in 2W coupling schemes may cause
numerical instability or non-convergence by violating themerical stability criterion determined by Kim et al. (2@). We
will demonstrate this numerical behavior with three-disienal numerical examples in a later section.



For elastoplasticity, the elastoplastic tangent bulk nhaglis estimated from the relationship (Kim et al., 2011d)
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where K. and Kj” are the elastic and elastoplastic drained bulk moduli,eetsely, and:, . ande, , are the elastic and
plastic volumetric strains, respectively.
For the oil and water system discussed earlier, Equatiora@de written as

} {(Pg+1 —- P} — S,g“;% (Sptt — S,u",)} +3ar b (T —T") — AQ, (25)
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whereP,, S,,, andT are chosen as the primary variables for the solution of thblpm.

In reservoir simulation, 2W coupling between fluid flow andgechanics has been implemented through the porosity
function and its correction term (Settari and Mourits, 19B&n et al., 2004). However, the pore pressure in theséestisl
not clearly defined. For example, the approach proposed tigrEand Mourits (1998) becomes identical to Equation 25 fo
linear elasticity only when the pore pressure in SettariMiodrits (1998) is defined as the equivalent pore-pressupa@med
in this paper. If the pore pressure is defined as the oil presthe approach of Settari and Mourits (1998) neglectseaima t
related to capillary pressure in Equation 25, which is assed with deformation of porous media caused by changdsein t
water saturation and is akin to drying-related shrinkagaiirwater systems. If the pore pressure is defined as thegwer
pore-pressure (a widely used approach in many engineesis fie.g., Wan (2002) and Gai (2004)), large errors or nizaler
instability can result when strong capillarity is involyecbnversely, using the equivalent pore-pressure defineGdussy
(2004) in Equation 21 yields numerical stability and accyraThe interested reader is refered to Kim et al. (2011ajfor
detailed discussion of the concepts of the average andalgotypore pressures.

The computational efforts for 1W and 2W couplings are alnttussame. The additional computational cost associatéd wit
2W coupling involves only the local calculation of Lagraisggorosity correction terrh ®, which is negligible when compared
to the global computational cost. In terms of memory requést, the 2W coupling approach necessitates the allocafion
additional memory only foP;, T', andS; (or the volumetric (mean) total stress) at the- 1 time step. The porosity function
is updated anyway, and the code modification is easy andstfaiward.

Numerical examples

We first tested the coupled TOUGH+HYDRATE and FLAC3D codesrehfter referred to as THF, and incorporating both 1W
and 2W coupling options with correspondingly different stitutive relationships — in the validation of the classjmablems

of Terzaghi (Wang, 2000) and Mandel (Abousleiman et al. 6)9%/e then obtain the THF solutions of representative 2D and
3D problems of system behavior during gas production fronBHBvolving the coupled processes of hydrate dissociation
fluid flow, strong heat exchanges and the corresponding gedtanecal system responses. In the validation studies aall in
subsequent test cases we employ the staggered method witteation, also called the sequential non-iterative o@th

Validation. Figures 2a and 2b describe the Terzaghi problem and an a@pyatien to the Mandel problem, respectively. Thor-
ough descriptions and analytical solutions to the TerzagdiMandel problems are presented in Wang (2000) and Abmasie
et al. (1996), respectively.

The instantaneous pressure buildug at 0 in the Terzaghi problem, or the initial pressure rise in thanllel problem
cannot be handled by 1W coupling because this approachapafte of providing (and solving) the appropriate consti¢u
relations that accurately describe the two problems. Twg-aoupling between fluid flow and geomechanics involves the
appropriate — also more scientifically and numerically sibuequations and yields accurate solutions, capturingdhsoli-
dation effects in the two aforementioned problems. Thus,c®Wpling provides more rigorous constitutive relatiorsntiW
coupling.

The Terzaghi problem (see Figure 2a) involves a 1-D systefrfin) of a water-saturated porous medium, with drainage
boundary at the top of the domain (where the fluid pressufgis= 10 M Pa) and a no-flow boundary at the bottom. The
total stress imposed by the overburden at the top boundary=H® x 10 M Pa, and a no-displacement boundary condition is
applied at the bottom. The homogeneous domain has a length-ef18 m, and is subdivided into 9 grid blocks of uniform size
Az = 2m. Inall gridblocks, Az = Ay = 1m. The initial temperature and fluid pressure &re= 12.5 °C andP; = 10 M Pa,
respectively. The water thermophysical properties (dgngscosity, and compressibility) are determined froeesh tables as
functions of P andT. The permeability of the porous mediumkig = 5.92 x 104 m?(= 60 md), the porosity ispy = 0.3,
the constrained modulus Isg,- = 900 M Pa, and the Biot coefficient is = 1.0. The system specifications include (a) no fluid
production or injection, (b) omission of gravitationalefs, and (c) an observation point at the bottom grid blagtaintaneous
loading att = 0 results in an increase iR, followed by a decrease (dissipation) caused by pressffusidin, as shown in the
left of Figure 3. We assign much stiffer mechanical projgsrtb the top layer to conform to the boundary conditions used
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Figure 2: Configurations of the Terzaghi (a) and Mandel (b) pr  oblems. The triangles and circles at the boundaries of the tw 0 domains
denote fixed displacement and rollers to constrain displace ments, respectively.

the Abousleiman et al. (1996) study (see Figure 2b) thatlyael analytical solution, to which the THF solution is congshr
This approximation is equivalent to the penalty method, theraatical approximation for solving mechanics with cosists
(Hughes, 1987). The homogeneous domain is subdividedliite 2 grid blocks in(z, z). The thickness and the Young’s
modulus of the first and second layer &e = 0.001 m, £ = 90 GPa andAz = 0.999 m, E = 900 M Pa, respectively.
The geomechanical boundary conditions include (a) an ovdem-induced total stress at the the sop= 2 x 10 M Pa, (b)
no horizontal displacement at the center, and (c) no vérisplacement at the bottom (see Figure 2b). Bothoundaries
have a side burden af, = 10 M Pa. The initial temperature and fluid pressure dte= 12.5 °C and P, = 10 M Pa,
respectively. The medium properties are as follogis:= 0.3, Poisson’s ratior = 0.0, b = 1.0, a horizontal permeability
ko = 6.02 x 10~5m?2(= 6.1 md), and a very high permeability.o = 5.0 x 107% m?(= 5.07 x 10° md) in the vertical
direction to facilitate horizontal fluid flow. The system sfieations also include (a) drainage boundariex at 0 and
T = x4 Kept at a constant boundary fluid pressuré’pf = 10 M Pa, (b) no-flow boundaries at the top and bottom of the
domain, (c) omission of gravitational effects, and (d) areslation point at the central gridblock (i.e., (row, colm(2, 9)).
The pressure rises at an eatlyecause of multi-dimensional mechanics (the Mandel-Geffect), as shown in Figure 3.
Comparison of the THF to the analytical solutions of the twtidation problems shows (a) coincidence in the Terzaghi
problem (Figure 3a), and (b) an excellent match in the Mapdablem. The small differences between the numerical and
analytical solution at early times in Figure 3b are due toapproximation of boundary conditions in the Mandel prohlem

The Terzaghi problem The Mandel problem

O TOUGH+FLAC3D
Analytical Sol

O TOUGH+FLAC3D
Analytical Sol ] 13

0 0.5 1 15 2 25 0 0.01 0.02 0.03 0.04 0.05 0.06
_ 2 _ 2
t 4 (-4cv t/Lz") t ’ (-4cV t/Lx")

Figure 3: Comparison of the THF solutions to the analytical s olutions of (a) the Terzaghi problem (Wang, 2000) on the left  , and (b) the

Mandel problem (Abousleiman et al., 1996) on the right. tg = <4ch)t2 and ty = (4;—”;2 for the Terzaghi and Mandel problems, respectively,

where ¢, is the consolidation coefficient defined as Ccy = m ca and p4 are the compressibility and viscosity of the
aqueous phase. L. and L, are vertical and horizontal lengths of the reservoir domain s, respectively.

Two-dimensional test problem. The first test problem involves gas production by means ofedespirization-induced disso-
ciation from a hydrate accumulation using a horizontal weetid is depicted in Figure 4. Although the reservoir deplidcte
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Figure 4ais a 3D system, because of symmetry about the) axis and the assumption of uniformity along thelirection,
only the 2D subdomain (single slice, withyy = 10 m) of the domain shown in Figure 4b need be simulated (i.e.ptaee
strain mechanics (Rutqvist and Moridis, 2009)). This 2D domis subdivided int®0 x 10 uniformly-sized gridblocks in
(z, z), with gridblock dimensions oAz = 10 m, Ay = 10 m, andAz = 10 m. For a solid saturatio§;(= Sz + Sr) = 0,
the Young’s modulus and the Poisson’s ratio Are- 200 M Pa andv = 0.15, but E = 1.4 GPa andv = 0.15 for a full solid
saturation, i.e.S; = 1. For a givenS, (0 < S; < 1), E andv are obtained from a linear interpolation between the fyo
limits (Rutqvist and Moridis, 2009). Other medium propestare:p, = 2600 kg m =3, ¢ = 0.3, b = 1.0, P. = 0, a medium
specific heat of0r = 1000 Jkg—! °C—!, awetthermal conductivityks,, = 3.1 Wm~! °C~1, adry thermal conductivity
of kgg = 0.5 Wm~1t°C~1, and a composite thermal conductivity computed from theitset al. (2005) relationship. The
initial conditions are:P; = 9.71 M Pa, T; = 12.5 °C, a hydrate saturatiofy = 0.5, and an aqueous saturatidn = 0.5.
The system has no-flow boundaries on all sides. The geomieahboundaries include no-horizontal displacement banied
atx = 0 andx = x,,4,, NO-Vertical displacement boundaries at the bottom, anbovden-induced principal total stress of
g = —9.71 M Pa, and no strain at = 0.

We consider two cases: A high-permeability case With= ko 0. = 2.96 x 10~ 3m?(= 300 md), and a low-permeability
case Withkg = ko min = 2.96 x 10~ 15m?(= 3 md). We investigate the performance of the coupled THF simrativith both
1W and 2W coupling capabilities in the analysis of a varidtgroblems: depressurization-induced dissociation and flaw,
both neglecting and accounting for gravitational effeictsyhich case the pressure distribution with depth folloheshydraulic
pressure gradient, witR;, = 9.71 M Pa at the top layer; system response behavior during therradirig; and an evaluation
of the role of plasticity. We determine the sensitivity oétifHF solutions to several important variables, paramedats
conditions, and we compare the solutions obtained usirty Bat and 2W couplings. For 1W coupling and elastic conditions
the drained modulus for the rock compressibility,. is the constrained modulu’ﬁdc; because of the horizontally constrained
boundary condition, which produces more accurate reshéts dther possiblé’;,. estimates; for 2W coupling under elastic
conditions, thek 4, estimate is obtained from the 3D drained bulk modu(iy’. The termsK§. and K37 are defined as

T A +r)(1-2w) dr 7 31— 2v)
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! . o
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Figure 4: 2D problem of depressurization-induced gas produ ction from a hydrate deposit using a single horizontal well: ( a) overall
system description (left), and (b) description of the simul ated domain, and of the flow and geomechanical boundary condi tions (right).

Depressurization-induced hydrate dissociation and resar fluid production. We first investigate the behavior of the elas-
tic reservoir in Figure 4 in order to understand the intetieh between fluid flow, heat transfer and geomechanicsdnatg
reservoirs under depressurization-induced productioavi@tional effects are ignored in this first study. Thelhwear elastic-
ity is driven by the change in the solid saturati®y even though the rock itself is linearly elastic. Resertloids are produced
from Well 1 at the gridblock located at (row, column) = (5, tpdotal mass rate @), = 5.0 x 10~ 2kg/s (see Figure 4b)Q,
includes both gas and aqueous phase contributions. Theteramonitoring wells: Well 2 at (1, 1) and Well 3 at (10, 1).

In Figure 5 we compare the THF solutions at two observatiantpdWells 1 and 3), using 1W and 2W couplings for
the high reservoir intrinsic permeability, i.e., whéf = ko mq- The variablely on thez-axis of the graphs in Figure 5 is
defined ag, = Q,t/M; (wherel; is the initial reservoir mass-in-place), and represergspttoduced reservoir fluids as a
fraction of M; while at the same time providing a direct measure of the tioneach that point becausg, is constant. At
tq ~ 1.0 x 1073, gas evolves in the hydrate deposit (.65 > 0) at the locations of both Wells 1 and 3 (not shown in this
paper). Because of continuous production, the pressutgeisystem declines monotonically. The evolution of pressait
Wells 1 and 2 (Figures 5a and 5b) is described by the reladivegnsionless) pressuvg, = P4 /P, i.e., as a fraction of the
original (discovery) reservoir pressuf®, and indicates practical coincidence of the THF solutiarsliV and 2W couplings
over the entire domain because the fast diffusion of pres@aused by the larg ,,...) prevails over the mechanics-induced
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change in pressure. Similarly, the volumetric straipsn Figures 5¢ and 5d from the 1W and 2W coupling formulatiores a
shown to be practically identical at these two (as well adl atlaer) locations in the domain.

(a) Well 1 (b) Well 3
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Figure 5: Comparison of the THF solutions for the high-perme ability ( ko = ko,maz) case of the 2D problem using one-way (1W) and
two-way (2W) coupling formulations: (a) Pressure evolution a t Well 1; (b) Pressure evolution at Well 3; (c) Evolution of th e volumetric
total strain ¢, at Well 1; and (d) Evolution of &, at Well 3.

The analogous THF solutions in Figure 6 correspond to theplesmneability casek(, = ko i) and paint a very different
picture, exhibiting substantial differences between tiegligtions based on 1W and 2W couplings. In this case, cotigpear
dilation of the reservoir occurs predominantly due to sleesgure diffusion and loading effects resulting from thedpiction
of fluids. There is no difference between tRg predictions from the two coupling methods at the productdell 1 (Figure
6a). However, fluid production transfers increasingly éangechanical loads from the reservoir fluids to the reseskateton,
thus generating mechanical loading that results in congpaat the locations of Wells 2 and 3.

When invoking the 2W coupling formulation, the reservoir gaation and slow pressure diffusion at early times leaddo th
pressure buildup observed at the locations of Wells 2 anldd@yis in Figures 6 (b) and (c). The pressures at Wells 2 andid beg
decreasing after a relatively short time because of prestitfusion, and exhibit significant deviations from the 1@fugions
at all times during the simulation period. This pressureave@r cannot be captured by 1W coupling, which is incapalble o
describing the effects of geomechanics on flow.

Figure 6(d) shows the different propagation pathways oéffective stresses (i.er;,, andr),) at Well 3, as estimated using
the 1W and 2W coupling methods, where

/ / / /
o, + o o7 — O
91 3 r 91 3
O =~ and 7, = 5

ando} ando’ are the maximum and minimum principal effective stressspectively. If the Mohr-Coulomb failure criterion
is defined by a cohesion of, = 0.15 M Pa and a friction angle oft y = 7 /6 (represented by the MC line in Figure 6(d)), the
shear failure that occurs &t = 1.4 x 1072 can be detected by the 2W coupling, but is completely misgetd1W coupling
method.

In addition to changes in pressure, the strongly coupledgases involved in hydrate dissociation result in signitica
changes in a wide range of flow and thermodynamic parameaters@nditions. Some of them are shown in Figure 7, which
provides additional insights into the differences betwi#enTHF solutions at the Well 2 location using 1W and 2W caupli
schemes for thé, = ko .., Case of the 2D problem. As is obvious from Figure 7(b), no gabes in 1W and 2W predictions.
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Invoking the 2W coupling scheme, the pressure increase IlMgee 5(b)) leads to an increase in the temperature ticaeels
the initial oneT; (as described by the relative temperatilije= 7/T; > 1 for t; < 2.3 x 10~2; see Figure 7(a)) because of
the coupling between the equilibrium dissociatiBnandT, (Figure 1). Similarly, the evolution of hydrate saturati§p in
Figure 7(c) to levels above its initial value shows that thi¢ &cheme predicts the formation of secondary hydrate astiimat
correspond to the highd? at Well 2 (Figure 7(c)), which is consistent with expectasipindicates that the rise A outweighs
the counter-effects of a risirtf, and leads to the lower effective permeabilify of Figure 7(d). The 1W coupling method is
unable to describe the risesdn P, andSy, as well as the corresponding decling:jy that the 2W scheme captures.
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Figure 6: Comparison of the THF solutions in the low-permeabi lity (ko = ko,min) case of the 2D problem using one-way (1W) and
two-way (2W) coupling formulations: (a) pressure evolution a t Well 1; (b) pressure evolution at Well 2; (c) pressure evolu tion at Well 3;
and (d) effective stress propagation at Well 3. The M line indicates the Mohr-Coulomb model. Note that the tensil e stress is positive.

To further analyze the different behaviors predicted wii two coupling methods, we repeat the= kg ,,in 2D Study
but now using a modified domain, i.e., one in which the gridkéohave the samaxz and Ay, but a uniform and smaller
Az = 1.0 m, resulting in an aspect ratio for the entire domain that,(al 2is higher than the one discussed in the earlier
2D problem. The THF results in Figure 8 exhibit the same dttersstics identified in Figure 6 in terms of the differenaes
behavior between the 1W- and 2W-associated predictionsyAvom the production well (Figure 8 (a)), the pressuresrise
early times because of compaction, and then decreases dressture diffusion. Figure 8(b) indicates that, if elaktsficity is
described by the Mohr-Coulomb model with = 0.05 M Pa and¥; = 7/6, 2W coupling can capture failure at earlier time
(ta = 9.3 x 107?) than 1W coupling.

Fundamentally, the differences between the solutions f'drand 2W couplings in the THF simulations are a consequence
of the characteristics of quasi-static mechanics, whishltén different time scales for fluid flow and geomechanitisat is,
a perturbation at any given point (including boundary pgine.g., a change caused by production in flow, or by traction
in mechanics, affects the entire domain as it propagatds té infinite speed of sound, and changes instantaneously th
flow conditions, parameters and properties such as pressatrtgation, temperature, porosity, and permeabilitheentire
domain. Additionally, when changes in the mechanical mio@ug., bulk and shear moduli) occur due to changes in hgdrat
and/or ice saturation, the total and the effective streasesedistributed, affecting in turn the distribution afat, porosity,
and permeability in the domain. As a result, 2W coupling swmechanics and fluid flow is necessary if it is important to
capture the complicated reservoir behaviors describedsaldile 1W coupling simplifies or averages all the resargoupled
processes. This simplification or averaging is more pronedrnn low permeability fields.



13

(a) Well 2 (b) Well 2
1.0005 1
— — — One-way
O Two-way
16 0.5 1
e
f 0.9995 o’
=
|_
0.999 -0.5
— — — One-way
O Two-way
0.9985 . : -1 : :
0 1 2 3 0 1 2 3
t7Qp * UM, x10° 1=Qp ¥ UM, x10°
(c) Well 2 (d) Well 2
0.5012 S 0.321
— — — One-way OO — — — One-way
0.501 O  Two-way OO 0.32 O Two-way |
@)
0.5008 &
S = 0319
O £ (1183
w- 0.5006 Y £
O o
RS _ =~ 0.318
0.5004 & -7
0.5002 S - 0.317
0.5¢ 0.316
0 1 2 3 0 1 2 3
tszp x UM, x107° tszp x UM, x107°
Figure 7: Comparison of the THF predictions of important var iables and conditions at the location of Well 2 in the low-perm eability

(ko = ko,min) case of the 2D problem using one-way (1W) and two-way (2W) coupli ng formulations: (a) relative temperature  T; (b) gas
saturation Sg; () hydrate saturation Sgr; and (d) effective permeability k. The differences between the 1W and 2W predictions are
attributed to reservoir compaction and slow pressure diffu sion.
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Figure 8: Evolution of (a) pressure and (b) effective stress es at Well 3 during the THF simulation of the ko = ko, m:n System and a high
aspect ratio (20:1). We observe differences between 1W and 2W coupling methods.
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Thermal loading.In depressurization-induced dissociation, it may be reargsto inject heat directly into the 2-D domain
through the production well (e.g., electrical heating)idgrproduction in order to avoid the formation of ice or sedany
hydrate in the vicinity of the well. Evolution of these sofittases could significantly reduce permeability, inhibitvfland
even ultimately result in complete flow blockage.

We investigate the performance of the two coupling methndkeé THF simulator in the case of thermal loading resulting
from direct heat injection at a rate 6f, = 2.0 x 10* W into Well 1 of the 2-D system witlty = kg i, that we described
earlier (Figure 4). Figure 9 shows the evolution/f T,; ande, at the production well (Well 1) and at the bottom observation
well (Well 3). The two coupling methods yield the same resattWell 1 (Figure 9 (a)), but we observe a different behaaior
Well 3 (Figures 9 (b), (c), and (d), with significant deviaitsobetween the 1W and 2W predictions). The temperature at3Vel
increases initially slightly abové&; due to the thermodynamic equilibrium constraint and théa&igressure, which builds up
because of reservoir compaction and the undrained conditiearly times (Figure 9 (b), (c), and (d)).
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Figure 9: Comparison of the 1W and 2W formulations in the THF s olutions in the low-permeability ( ko = ko,min) case of the 2-D
problem with thermal loading: (a) pressure evolution at Well 1; (b) pressure evolution at Well 3; (c) evolution of total vo lumetric strain
at Well 3; and (d) effective stress propagation at Well 3. Not e the proximity of the two solutions at Well 1 (the production well), and the
significant deviations at the location of Well 3 (see Figure 4 b).

Plasticity and geological stabilityJsing the 2-D system shown in Figure 4, we investigate thawieh of nonlinear elastic
reservoirs, in which the nonlinearity of mechanics resfutis the change in solid saturation (i.e., hydrate and/ey.itn this
section, we study the geomechanical stability of the hydraservoirs, introducing elastoplasticity. We employ khehr-
Coulomb model for elastoplasticity (embedded in the FLAGRnponent of THF), which is widely used to model failure in
cohesive frictional materials. The yield criterigrand the plastic potential functignare written as

L — o sinWy — cp cos Uy <0, (27)

g = T —0o sinVy—cpcos¥y <0,

whereV¥y; is the dilation angle.
As shown in Figure 10, the yield function of the Mohr-Coulomiodel includes six corners and a common vertex on the
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tension side of the hydrostatic axis. The discontinuous@&srmay cause numerical instability in return mapping j@8et al.,
2003; Wang et al., 2004).

@
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Figure 10: Mohr-Coulomb yield surface on (a) the principle e ffective stress space, and (b) on the deviatoric plane. o}, 0’2, and o'z are
the principal effective stresses. All the effective stress es are located inside the yield surface.

We use again the reservoir domain in Figure 4(b) with = 10.0 m andko = ko,m:n- We use a very high cohesion
in the entire domain, making the system behave elastioakigept at the top layer; therg = 0.1 M Pa atS; = 0, and
cp, = 0.3 MPaatS; = 1. We then evaluate the geomechanical stability of the xeltiweak top layer during production,
while all other layers behave elastically. The friction adithtion angles arél; = 7/6 and¥; = 0.0, respectively. The
mass production and thermal injection rates@pe= 0.1 kg s—! and2.0 x 10* W, respectively, and gravitational effects are
considered.

In Figure 11(a), there is a significant difference in the agsephase pressure between the THF predictions based on the
1W and 2W coupling methods. Compaction induced by fluid pctidn causes a high pressure buildup at early times. The
two different coupling methods exhibit different evolutipaths of the effective stresses during the simulation. hasva in
Figure 11(b), the 2W-associated solution enters the plasgime at an earlier time (i.e., & ~ 1.7 x 1073, wheno/, ~
0.13 M Pa) than the solution from the 1W formulation does (occurringza~ 3.4 x 103, wheno!, ~ 0.68 M Pa). Note
the curved line betwees/,, ~ 0.0 ~ 0.435 M Pa andt), = 0.0 ~ 0.36 M Pa when using the 2W coupling, while the 1W
coupling yields a nearly straight or much less curved linkisTeature can also be seen in Figures 6 (d) and 8 (d). Thes, th
2W coupling method can detect the danger of failure in wealtaggcal media much earlier and more accurately than the 1W
coupling method can, which fails to capture the danger dfi sucevent even when the failure is in progress.

(a) Well 2 (b) Well 2
1.04 0.8
— — — One-way — — — One-way
O  Two-way O  Two-way
1.02 S
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T 1 - =
o -
o £
[
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0 2 4 6 8 -0.8 -0.6 -0.4 -0.2 0
tszp x t/Mt %1072 o (MPa)

Figure 11: Geomechanical stability of the weak top layer where ¢, = 0.1 MPaatS; = 0and ¢, = 0.3 MPa at S = 1. The other
layers behave elastically. (a): evolution of the aqueous ph ase pressure at Well 2; (b) propagation of the effective stre sses. Note the
significant differences between the THF solutions with the 1W a nd 2W couplings.

Three-dimensional test problem. Investigating a more realistic problem, we study the codijpiecesses of fluid flow, heat
transport and geomechanics in a three dimensional hydegtesit in a simulation that accounts for gravity, body formed
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elasticity. In addition to the hydrate-bearing strata,dimeulation domain includes other important geologicalrming forma-
tions: the overburden, the underburden, and side burdégsré=12 (a)). Because of symmetry, we only consider a quafte
the domain, which comprises a total2f x 23 x 16 grid blocks in ¢, y, z) — see Figure 12 (b). The hydrate-bearing stratum
involves20 x 20 x 10 grid blocks in , y, z), and the remaining gridblocks in each direction desctieecbrresponding bound-
ing formations. The space discretization is based on unifsized gridblocks with dimensionsz = 10 m, Ay = 10 m, and

Az =10 m.

The geomechanical boundary conditions involve an ovediurélated total stress ef9.41 M Paq at the top of the domain,
zero-vertical displacements at the bottom and zero-hotédisplacements along the sides of the domain. The hsdiradiring
formation is surrounded by no-flow boundaries on all siddse ihitial pressure distribution follows the hydrostatiadient,
with P, = 9.7 M Pa at the top layer. The remaining initial conditions and rethproperties are uniformly distributed in the
deposit, and are as follow§;; = 12.5°C, ¢g = 0.3, S4 = 0.5, Sy = 0.5 andb = 1.0. Reservoir fluids are produced from
a single vertical well at the center of the system (see Fig@rén)) at a mass rat@, = 5.0 x 1072 kg s~ ' with no wellbore
heating. We assume that the zones outside the hydrate zeingaty permeable, and then the coupled problem outside the
hydrate reservoir converges to the representation of tomgehanics problem with drained moduli. In this study, wesider
two cases with different intrinsic permeabilities and gtasoduli.

Vertical Well

i Overburden
I ‘b O on e m—
¢ 1
I | ! ; T ervation Wells |
| o

Hydrate Zone ' 1= ,&e@:// I ] B ‘Hydrate Zone[|
| ) )
| Sideburden

Underburden

Underburden

ESD11-031

Figure 12: 3D problem of depressurization-induced gas prod uction from a hydrate deposit using a single vertical well: (a ) overall
system description, depicting the overburden, underburde n and sideburdens (left), and (b) description of the simulat ed domain, which
represents only a quarter of the system because of symmetry ( right). OB-1 and OB-2 denote observation wells.

Determination of the bulk modulus in fluid flowln this simulation example, the hydrate-bearing layer hdsa@ed bulk
modulusK3P = 200 M Pa and a shear modulus 6#;, = 300 M Pa that apply over the full range of, while all other
zonesK3P = 2 M Pa andG4,. = 3 M Pa. The intrinsic permeability of the porous medium in the tatdrbearing zone is
ko = 2.96 x 10~ m?(= 0.3md). Because of the reasons already discussed in detail inquesections, the 1W formulation
is not used in this and subsequent 3D studies, all of whiclhased on a 2W coupling in the THF simulator.

When using 2W coupling, it is possible to choose differenkbmbduli for the rock compressibility (Equation 23) in the
description of the flow problem, e.g., the constrained rrmmg; instead of the 3D drained bulk modul&s;” (Equation 26),
when the reservoir is horizontally constrained.

For simple boundary conditions of linear elastic mechanies can obtain the true (exact) local bulk modulg, for
the estimation of the rock compressibility in the flow prableFor example K’ = K¢ for the Terzaghi problem (Wang,
2000), orK!, = K3P for a fully unconstrained boundary of linear elastic mec¢t@nHowever, the true bulk modulus for the
rock compressibility cannot be obtained because of hetaity, complex mechanical boundary conditions in two oe¢h
dimensions, or because of material non-linearity in meisa\ccording to the mathematical analysis in Kim et al.1(2@), a
less stiff bulk modulus is appropriate to attain numeritabgity and convergence. Based the a-priori stability eoavergence
estimates, the constrained moduli§. is not an appropriate choice because it is always stiffer tha true bulk modulus, and
it may cause non-convergence or numerical instability (imal., 2011d). In such cases, the approach recommendedby Ki
et al. (2011d) provides a less-stiff estimate of the bulk uosi for a given dimension (e.gis32 for 3D problems). In Kim
et al. (2011d), a 2D consolidation problem is used to suppert-priori stability and convergence estimates. In wbks,
we confirm that the mathematical analysis in Kim et al. (2014 @lso supported by full 3D problems.

Figure 13 shows the evolution of pressure at two observaibints (OB-1 and OB-2) in the domain when the constrained
modulusK§. = 600 M Pa and the 3D drained bulk modulus3? = 200 M Pa are used in the estimation of rock compress-
ibility. Note that the constrained modulusy. is stiffer than the true moduluk’, , whereas the 3D drained bulk modulus
K¢ is less stiff than the true modulus},.. As is evident from Figure 13, severe oscillation and nearcmnvergence occur
when we use the constrained bulk modulus. More importaatigprding to the a-priori estimates (Kim et al., 2011d)s thi
non-convergence cannot be fixed by reducing time step sizalisappear for high permeability. Independence from siee



17

size is surprising because most researchers believe thating time step size could fix numerical non-convergence the
other hand, the THF solutions based on the 3D drained bullutasegield monotonic and convergent pressures.

(a) OB-1 (b) OB-2
1.25
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a° 1.05
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td:Qp x UM, x 107 td:Qp x UM, x 107

Figure 13: Pressure evolution at (a) OB-1 and (b) OB-2. Use of th e constrained modulus Kgf; = 600 M Pa with 2W coupling in the flow

problem causes severe oscillations and near non-convergen ce. The less stiff 3D drained bulk modulus KgTD = 200 M Pa results in
stable and convergent solutions.

Mass production with high permeability and stiff surroundgs. We repeated the 3D simulation using the same domain,
initial and boundary conditions, and system propertieswith a largerk, = 2.96 x 10~ *m?(= 30 md). The values of the
drained bquK;}’TD and sheat7 ;. moduli for each zone used in the THF simulation are listedabl& 1. The highek;, yields
fast pressure diffusion at locations OB-1 and OB-2, as shiowigure 14. The pressure decreases initially very rapidly
OB-1 (which is the production point) while hydrates disstei— see Figure 14(a). After hydrates completely disseeitthis
gridblock (an event which occurs &f ~ 6.83 x 10~%), the pressure increases because of an increase in pelitgéakhe
hydrate-free medium, and finally appears to stabilize wheretis balance between production and fluid release (rpleat)
from hydrate dissociation. Given the const&py production, a further pressure decline is inevitable agésrtimes. The
evolution of pressure at location OB-2 — see Figure 14(bjicates a monotonic pressure decline, and indicates tluates
have not completely dissociated at the corresponding Igiétb Here, we obtain the stable and monotonic solutionswiig.
is used for the estimation of the rock compressibility in filoev problem. We also observe the stable and monotonic solsiti
for low permeabilityky = 2.96 x 10~°m?2(= 0.3 md) (not shown in this paper). The reason for the stable and roaiot
solutions is that the drained bulk modulus of the side buatea (3” = 300M Pa) is much stiffer than that in the previous
case (3P = 2M Pa). The hydrate zone is more constrained horizontally thahiththe previous case, thus the constrained
modulusK§. for the rock compressibility within the hydrate zone is metbse to the local true bulk modulus?,..

In the previous case, when we us&” = 20GPa for the drained bulk modulus of the side burden area instéad o
K3P = 2M Pa, we observe that the solutions are stable and monotonistiwtn in this paper), becausg;. in the hydrate
zone is close td(’, . All these numerical behaviors including the earlier siatioin 3D results are the unique characteristics
in coupled flow and geomechanics, and we find that the matleshanalysis and discussion in Kim et al. (2011d) are also
supported by these 3D hydrate reservoir simulations.

Figure 15 shows distributions of the pressure, hydrateratdm Sy, total volumetric straire,, and L, norm of the de-
viatoric straine, wheree = ¢ — %51,1, along the diagonal plane of the reservoir domain at the drgintulation, i.e., at
ta = 7.6 x 1073. As expected, due to depressurization, hydrates dissommat compaction occurs around the production well
(Well 1). As a result, the compaction around the producti@ll wauses a relatively large area of shear deformatioru¢€ig
15 (d)), compared with the area of compaction (Figure 15 (p)en, the shear deformation may trigger shear failure and
geological instability for weak cohesive frictional magds.

Table 1: Drained moduli at each zone of the reservoir domain.

Elastic moduli  Overburden Side burden Underburden Hydrate
KS’TD 20 M Pa 300 M Pa 2 GPa 100 M Pa atSy = 0.0,400 M Pa atSy = 1.0
Gar 30 M Pa 450 M Pa 3 GPa 150 M Pa atSy = 0.0, 600 M Pa atSy = 1.0
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Figure 14: Evolution at the pressure at OB-1 (a) and OB-2 (b). Du e to the high permeability, the water pressure diffuses fast. At OB-1,

the pressure drops at early time until the hydrate saturatio n becomes non-zero. After the hydrates completely dissocia te at OB-1, the
pressure increases and then stabilizes.
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Figure 15: Distributions of the pressure (a), hydrate satur ation Sy (b), total volumetric strain ¢, (¢), and L2 norm of the deviatoric strain
e (d), along the diagonal plane of the reservoir domain. Note t he hydrate dissociation around the well because of depressur ization.
Large shear deformation may induce shear failure and geolog ical instability for weak cohesive frictional materials.
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Summary and Conclusions.

We have developed, verified, and demonstrated the use dftytapupled sequential approach for modeling hydraterveses
involving the TOUGH+HYDRATE simulator (Moridis et al., 28D and the FLAC3D (ltasca, 2006) commercial code. We
employed the fixed-stress split method for two-way (2W) cimgphs a sequential method that provide numerically staide a
convergent solutions. The computational effort of 2W coypls almost the same as that of one-way (1W) coupling. Twg-wa
coupling method used in this study provides a rigorous 2Whtemlisimulator that can readily be applied to large scalblpros
related to processes in hydrate-bearing sediments.

In several test cases involving depressurization, thelmaaling, and plasticity we found noticeable differencethimsim-
ulation results between 1W and 2W coupling methods. Therdiffces are due to the following factors: (i) hydrate resesv
typically have a high coupling strength, because the s&kteson becomes soft during the dissociation of hydratdsaaier is
highly incompressible, although gas is compressibleflgiyl flow and geomechanics processes occur on differentstakes;
because the mechanics response is quasi-static, thelyzidur by fluid production or injection is propagated inssaeously
and affects the flow (hydraulic) parameters and propertes, (iii) the existence of the solid phases (i.e., hydratt iaa)
leads to low permeability, even though the intrinsic pernilég is high. For early times or a low permeability systethe
effects resulting from the different time scales of fluid flamd geomechanics can become large. We also confirm thaCiull 3
simulations for hydrate reservoirs support the a-priormetical stability and convergence estimates in Kim et @1(21).
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Nomenclature.

C,- Drained-isothermal elasticity tensor

C Skeleton volumetric heat capacity

C, Total volumetric heat capacity

Cp,s Volumetric specific heat capacity at constant pressureiphase/
Cgr Heat capacity of the porous media

D% Hydrodynamic dispersion tensor

E Young’s modulus

K, Drained isothermal bulk modulus

K§,., K5" Elastic and elastoplastic bulk moduli

K¢ Constrained modulus

K3P 3D drained bulk modulus

K, True (exact) local bulk modulug’,

K, Intrinsic solid grain bulk modulus

J* Diffusive mass flux of the componehtin the phase/
M, Total initial mass in place

M = {M;k} Biot modulus matrix

Ny Hydration number

N = {N,k} Inverse matrix of the Biot modulus matrix
Qp Specific enthalpy of hydrate formation/dissociation
Q@n Enthalpy injection

@, Total mass production rate
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S Total entropy

S; Saturation of the phasgé

T Temperature

Wk Molecular weight of the componeht

X* Mass fraction of the componehtin the phase/

b Biot coefficient in single phase flow

b, Biot coefficient for of the phasé

¢y, Cohesion for the Mohr-Coulomb failure criterion
¢y Compressibility of the fluid phasé

¢, Pore compressibility

¢, Consolidation coefficient

e Deviatoric strain

ey Specific internal energy of the phage

£ Flux of the heat

f, g Yield criterion and the plastic potential function
g Gravity vector

kx Klinkenberg factor

k Absolute permeability tensor

k.; Relative permeability for the fluid phase

kow, koq Wet and dry thermal conductivities, respectively
mY;, mY; Pseudostorage terms for the hydrate

m" Mass of componeri

m? Accumulation of the heat

P,., (P.) Capillary pressure between oil and water
Pr Equivalent pore-pressure

P; Pressure for the fluid phase

q" Source of mass of the componént

sy Specific entropy

¢” Source of the heat

t Traction

u Displacement

wk Convective mass flux of the componénin the phase/
Az Grid spacing in the: axis

Ay Grid spacing in they axis

Az Grid spacing in the axis

A® Porosity correction
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& Lagrange’s porosity

®. Critical porosity

U, ¥y Friction and dilation angles for the Mohr-Coulomb failurit@rion
3ar Volumetric skeleton thermal dilation coefficient

3ay, 3oy Coefficients of thermal dilation related to porosity and piase/
e Linearized total strain tensor

g, Total volumetric strain

Ev,er Ev,p Elastic and plastic volumetric strains

~1, 72 Coefficients for permeability

wy Viscosity for the fluid phaséd

v Poisson’s ratio

¢ True porosity, Euler’s porosity

pp Bulk density

py Density of the phasd

pr Density of the porous media

o Cauchy total-stress tensor

o’ Effective stress tensor

o1, 04, o5 Maximum, intermediate, and minimum principal effectiveestes
74 Gas tortuosity

f* Flux of mass of the componeht

(-)? Heat component

(-)o Reference state

(-)a Dimensionless quantity
(-)™ Time level

() Time derivative

Grad Gradient operator
Div Divergence operator

1 Rank-2 identity tensor
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