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Abstract 

In this study, we have developed an analytical solution for thermal single-well injection-

withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture 

is radial. The dimensionless forms of the governing equations and the initial and 

boundary conditions in the radial flow system can be written in a form identical to those 

in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), 

A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, 

Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the 

analytical solutions developed in Jung and Pruess (2012) can be applied to compute the 

time dependence of temperature recovery at the injection/withdrawal well in a 

horizontally oriented fracture with radial flow.  

 

  



1. Introduction 

Single-well injection-withdraw (SWIW) tracer tests have been proposed and studied as a 

method for characterization of fractured geothermal reservoirs. For instance, the SWIW 

test may be used to estimate hydraulic and thermal properties (Capuano et al., 1983; 

Kocabas and Horne, 1987, 1990), the number of fractures created by hydraulic 

stimulation and their permeability (Nalla and Shook, 2005), or heat transfer areas (Pruess 

et al., 2005; Pruess and Doughty, 2010). During an SWIW test, either fluid with tracers 

(Kocabas and Horne, 1987; Haggerty et al., 2001; Nalla and Shook, 2005; Ghergut et al., 

2006, 2009; Neretnieks, 2007) or cold water (Kocabas and Horne, 1990; Kocabas, 2005, 

2010; Pruess and Doughty, 2010, Jung and Pruess, 2012) is injected into a well and, after 

some rest period, the water is produced out of the same well. The solute or temperature 

recovery curves at the well are monitored during the production phase and used to infer 

the properties of interest.    

In our previous study, we have developed a closed-form analytical solution for 

thermal SWIW tests in a fractured reservoir, which is highly flexible to implement 

various injection schemes, including multiple shut-in periods, and capable of providing a 

comprehensive understanding of heat transfer in fractured rocks (Jung and Pruess, 2012). 

A theoretical approach was employed to understand the heat transfer in a vertically 

oriented fracture where the flow along the fracture was linear. Here, we have extended 

the analytical solution to a reservoir system where a horizontal fracture intersects an 

injection/withdrawal well. The analytical solution developed is verified by comparisons 

with numerical solutions using TOUGH2 (Pruess et al., 1999). In addition, we present a 



normalized form of the analytical solution, which brings out an important parameter 

group for interpretation of temperature recovery curves.  

 

2. Theory 

We consider a horizontally oriented fracture with uniform aperture 2b and porosity f . 

Fluid flow through the fracture is radial, and instantaneous thermal equilibrium is 

assumed for fluids and rocks within the fracture. The r axis is in the direction of the 

fracture, and the z axis is perpendicular to the fracture-matrix interface. Cold water is 

injected into the fracture at a constant volumetric flow rate, q. Because of symmetry, we 

need to consider only one half of the actual model for the solution. The heat transport in 

the system during the injection phase can be described as follows (see “nomenclature” for 

notation): 
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where wwfmmfff ccc   )1(  
is the specific heat of rock and fluid in the fracture 

per unit volume. Note that heat conduction in the radial direction is neglected. 

 Similar to the previous study (Jung and Pruess, 2012), we assume that the 

temperature is initially uniform throughout the system and the temperature of the injected 

fluid is constant during the injection phase. Note that the injection temperature is defined 

at the radial wall of the well. In addition, the temperature in the matrix at the fracture 



walls is always identical to that in the fracture. Then, the initial and boundary conditions 

can be written as  

0at         1011  tTTT mf          (2a) 

winjf rrTT  at                1          (2b) 

0at                11  zTT mf          (2c) 

 zTTm  as              01          (2d) 

To simplify the analysis, we define the following dimensionless variables:  
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Using the dimensionless variables, Eqs. 1a and 1b can be expressed as follows: 
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The initial and boundary conditions become 

0at         0 111  DDmDf tTT         (5a) 

wDDDf rrT  at                     11        (5b) 

0at               11  DDmDf zTT         (5c) 

 DDmT z as                 01        (5d) 



The formats of the governing equations and the initial and boundary conditions 

are identical to those of the dimensionless governing equations (Eqs. 4a and 4b) and the 

initial and boundary conditions (Eqs. 5a-5d) in Jung and Pruess (2012), except that the 

boundary of the model on the radial axis is defined at a non-zero value of wDr . To 

simplify the boundary condition, the dimensionless variable for the r coordinate can be 

redefined as 

wDDSD rrr            (6) 

Upon the shift of the dimensionless variable Dr , Eqs. 4a and 4b can be rewritten: 
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The boundary condition in Eq. 5b can also be redefined: 

0at                     11  SDDf rT         (8) 

Now, the dimensionless governing equations and the initial and boundary 

conditions in a radial geometry are identical to those defined in a linear geometry, and 

similar modifications can be done for the rest and withdrawal periods. Therefore, the 

analytical solutions developed in Jung and Pruess (2012) can be applied to compute the 

time dependence of temperature recovery at the injection/withdrawal well in a 

horizontally oriented fracture with radial flow. The detailed derivation processes are 

given in Appendices A and B in Jung and Pruess (2012), and the analytical solution for 

thermal SWIW tests involving injection, quiescent, and withdrawal phases is shown 

below. 
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For a SWIW test conducted with no quiescent time, the solution (9) can simply be 

rewritten as 
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3. Results and Discussion 

3.1. Verification of Solution 

In order to verify the analytical solution, it is compared with the numerical solution using 

TOUGH2 (Pruess et al., 1999). Since the difference in computational effort between Eqs. 

9 and 10 is significant (Jung and Pruess, 2012), here we only show the result of the 

analytical solution evaluation for the case of no quiescent time ( qt  = 0). The parameter 



values used for comparison are listed in Table 1. The fracture is modeled as a porous 

domain with large permeability (5 × 10-12 m2) and porosity (50 %), considering fracture 

walls to be rough and allowing for the presence of minerals in the fracture itself. The grid 

for the fracture consists of 1,000 blocks of 1 cm radial extent each, for a total length of 10 

m in the r direction. The matrix domain is discretized in a non-uniform way to accurately 

model the heat exchange between the fracture and the rock matrix; the grid spacing for 

the matrix gradually increases from 0.01 cm at the fracture wall to 2 m, for a total 

thickness of 10 m in the z direction, so as to be infinite-acting for the time period 

considered here. At the end of the fracture opposite the injection block, boundary 

conditions are maintained constant at their initial values. The analytical solutions show 

excellent agreement with the TOUGH2 simulations (see Fig. 1). Note that TOUGH2 

normally updates the specific heat and density of water at every time step according to 

the change in temperature. Here, this functionality in TOUGH2 was turned off to 

compare with the analytical solution, which assumes these parameters to be constant 

throughout the system over time. 

 

  



Table 1. Parameter values used for TOUGH2 simulation 
Reservoir Properties Value 

Fracture permeability  5 × 10-12 m2 

Matrix permeability  1 × 10-18 m2 
Fracture porosity, f   0.5 

Fracture aperture, 2b  2 cm 
Well radius, rw  0.15 m 
Thermal conductivity of matrix, mk   2.1 W/m/ºC 

Specific heat of matrix, mc   1000 J/kg/ºC 

Density of matrix, m   2650 kg/ m3 

Injection/withdrawal volumetric flow rate, q  1 × 10-4 m3/s 
Temperature of injected water, injT   20 ºC 

Total injection time, it   5 hr 

Total quiescent time, qt   0 hr 

Specific heat of water, wc   4200 J/kg/ºC 

Density of water, w   1000 kg/ m3 

Initial conditions   
      Pressure  200 bar 
      Temperature, 0T      200 ºC 

 

 

Figure 1. Comparison of the analytical solution with the numerical (TOUGH2) 
simulation. Temperature return profiles at the well during the withdrawal period. 



3.2. Normalized Form of Solution 

The analytical solutions developed for the linear and radial flow systems can be 

normalized by dividing the dimensionless time variable by the dimensionless form of the 

total injection time Dit  or the total quiescent time Dqt . Here, we only show the 

normalized form of the analytical solution (10) by Dit , since the analytical solution (9) 

can be similarly transformed by Dqt . After normalization by Dit  at SDr = 0, Eq. 10 

becomes 
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where 
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As shown in the analytical solution (11), the product of θ and tDi is the only 

parameter affecting temperature return curves. The importance of these parameters has 

been pointed out in Jung and Pruess (2012), and a sensitivity analysis for the key 

parameters was conducted. For the analytical solution with a rest period, therefore, tDq is 



the additional parameter that has an impact on return temperatures. In addition, using 

these normalized analytical solutions helps reduce errors in numerical calculations of this 

multi-dimensional improper integral. 

 

Nomenclature 

b = half fracture aperture, m 

fc = average specific heat of rock and fluid in fracture, J/kg/ºC 

mc  = specific heat of rock matrix, J/kg/ºC 

wc = specific heat of water, J/kg/ºC 

mk = thermal conductivity of rock matrix, W/m/ºC 

q = volumetric flow rate, m3/s 

r = distance along flow direction, m 

rw = well radius, m 

t = time, seconds 

it  = total injection time, seconds 

qt  = total quiescent time, seconds 

T = temperature, ºC 

injT = temperature of injected fluid, ºC 

0T = initial reservoir temperature, ºC 

z = distance normal to flow direction, m 

f  = porosity of fracture 

f = average density of rock and fluid in fracture, kg/m3 



m = density of rock matrix, kg/m3 

w = density of water, kg/m3 

 = dimensionless parameter in (3c) ( ffmm cc  / ) 

 

Subscripts 

f = fracture 

m = matrix 

w = water 

D = dimensionless 

N = normalization 

S = shift 

1 = injection phase 

2 = quiescent period  

3 = withdrawal phase 
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