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Abstract 

Proposed climate mitigation measures do not account for direct biophysical climate impacts 

of land-use change (LUC), nor do the stabilization targets modeled for the 5th Climate 

Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs).  

To examine the significance of such effects on global and regional patterns of climate 

change, a baseline and alternative scenario of future anthropogenic activity are simulated 

within the Integrated Earth System Model, which couples the Global Change Assessment 

Model, Global Land-use Model, and Community Earth System Model.  The alternative 

scenario has high biofuel utilization and approximately 50% less global forest cover 

compared to the baseline, standard RCP4.5 scenario.  Both scenarios stabilize radiative 

forcing from atmospheric constituents at 4.5 W/m2 by 2100.  Thus, differences between their 

climate predictions quantify the biophysical effects of LUC.  Offline radiative transfer and 

land model simulations are also utilized to identify forcing and feedback mechanisms 

driving the coupled response.  Boreal deforestation is found to strongly influence climate 

due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the 

alternative scenario yields a 21st century warming trend that is 0.5 °C cooler than baseline, 

driven by a 1 W/m2 mean decrease in radiative forcing that is distributed unevenly around 

the globe. Some regions are cooler in the alternative scenario than in 2005. These results 

demonstrate that neither climate change nor actual radiative forcing are uniquely related to 

atmospheric forcing targets such as those found in the RCP’s, but rather depend on 

particulars of the socioeconomic pathways followed to meet each target.    
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1 Introduction 

Land-use changes exert multiple influences on climate through direct biophysical effects on 

surface energy and water budgets as well as through changes in net greenhouse gas fluxes 

(Bonan, 2008; Foley, DeFries, Asner, & Barford, 2005).  Climate change mitigation 

activities to date, however, have focused almost exclusively on the greenhouse gas 

consequences of land-use change (Marland et al., 2003). None of the proposed regulations 

or programs, including the UN Reduced Emissions from Deforestation and Degradation 

(REDD) program (FAO, UNDP, UNEP, 2008), emerging private forest carbon offset 

programs, agricultural offsets in proposed U.S. climate regulations (U.S. Congress, 2012), or 

inventories of biofuel-induced land-use change in renewable (USEPA, 2010) and low-

carbon (California Air Resources Board, 2009) fuel policies, attempt to account for 

biophysical effects of land-use change. 

 

This differentiation in how climate effects of land-use change are treated is also evident in 

the largest global effort to simulate potential changes in future climate, the Climate Model 

Intercomparison Project, now in its 5th incarnation (CMIP5). CMIP5 utilizes a set of 

scenarios, or Representative Concentration Pathways (RCPs), generated by integrated 

assessment models (IAMs) as input to climate models. The RCPs were designed to span a 

large range of possible radiative forcing in the 21st century with a series of hypothetical 

global strategies for climate-change mitigation that constrain the future combined radiative 

forcing from greenhouse gases (GHGs) and aerosols (Moss et al., 2010; van Vuuren et al., 

2011).  

While the RCP targets include greenhouse gas emissions from land use activities, they do 
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not incorporate the direct radiative forcings, e.g., changes in albedo, or non-radiative 

climatic effects, e.g., changes in latent heat flux, that result from those same activities.  

Nevertheless, these scenarios can be used to investigate the magnitude of the non-GHG 

forcing, because mapped information on land-use change, derived via the “land-use 

harmonization” project (Hurtt et al., 2011), is now passed to the Earth system models 

(Taylor, Stouffer, & Meehl, 2011) and influences their simulations of climate change, much 

as would be the case if real policies were implemented that did not account for biophysical 

forcing due to land-use change.  

Each of the RCPs was generated with a different IAM, each with its own model-specific 

assumptions about the technologies, policies, and demographics of the future.  Due to this 

diversity in the underlying IAMs, the global patterns of deforestation and afforestation 

present in the various RCP scenarios are essentially uncorrelated with the atmospheric 

forcing target levels (van Vuuren et al., 2011), potentially introducing unsystematic 

variation in global and regional patterns of climate change across the RCP’s.  That is, 

RCP2.6 (a scenario that reaches a global radiative forcing target of 2.6 W/m2) shows 

widespread deforestation over the 21st century, whereas RCP4.5 shows widespread 

afforestation and RCP6.0 and RCP8.5 each show a mix of deforestation and afforestation in 

different regions (P. J. Lawrence et al., 2012b).  

 

The decoupling of greenhouse gas targets and land-use change within integrated assessment 

models is highlighted by Wise et al. (2009), who find that equivalent greenhouse gas targets 

can be reached with dramatically different patterns of land use depending on what kind of 

tax is used to achieve the target.  The present study examines in detail a similar set of 
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scenarios generated within the newly coupled integrated assessment and Earth system model 

known as the Integrated Earth System Model (iESM) (Edmonds et al., submitted).  We 

compare the standard CMIP5 RCP4.5 scenario and an alternative RCP 4.5 replication in 

which the forcing target is achieved through a tax on fossil fuel and industrial carbon only, 

leading to large-scale expansion of crops and loss of forest cover.   

 

Many modeling studies have examined biophysical and/or biogeochemical climate effects of 

hypothetically removing or replacing whole ecosystems – e.g., complete deforestation or 

afforestation of a given region (Bala et al., 2007; Betts, 2000; Gedney & Valdes, 2000; 

McGuffie, Henderson-Sellers, Zhang, Durbidge, & Pitman, 1995; Swann, Fung, Levis, 

Bonan, & Doney, 2010).  These studies tend to produce robust signals and shed light on the 

role that those ecosystems play in the climate system.  Another class of studies examines 

realistic estimates of past land-use change (Betts, Falloon, & Goldewijk, 2007; Findell, 

Shevliakova, Milly, & Stouffer, 2007; Kvalevåg, Myhre, Bonan, & Levis, 2009; P. J. 

Lawrence & Chase, 2010; Pitman et al., 2009), while only a few studies have examined 

plausible future scenarios of land-use change (Arora & Montenegro, 2011; Feddema et al., 

2005).  Gaps remain in distinguishing the detailed mechanisms by which land-use change 

causes observed changes in climate.  For instance, none of these studies compared coupled 

model surface flux responses to offline surface fluxes with fixed atmospheric forcing, 

although such a comparison could illuminate the role of atmospheric feedback mechanisms.   

 

By examining two scenarios that follow identical atmospheric forcing trajectories from 

GHG and aerosols, but with different policy prescriptions and thus different patterns of land-
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use change, this study uniquely examines the role that policy design can have in influencing 

climate via the biophysical effects of land-use change.  That is, we show that global mean 

temperature, radiative forcing, and the spatial pattern of climate change can differ greatly as 

a function of the policy mechanism chosen to meet an atmospheric forcing target, a result 

that has implications for the CMIP5 “parallel process” (Moss et al., 2010) by which 

differing socioeconomic scenarios are to be paired with each RCP scenario.    

 

Agricultural expansion in the alternative RCP4.5 scenario is both widespread and intense, 

but the net result avoids the total removal of whole ecosystems explored by previous studies.  

Global forest cover in 2100 is reduced by 52% relative to the standard RCP4.5.  Thus, this 

alternative scenario can be thought of as a hypothetical upper bound on agricultural 

expansion and an example of the importance of policy design details.  In addition to fully-

coupled climate simulations, we perform a series of offline radiative transfer and offline 

land model simulations to isolate forcing and feedback mechanisms that contribute to the 

Earth system response to land-use change.  These simulations allow us to compare changes 

to surface and planetary energy budgets conditioned on the inclusion or exclusion of 

atmospheric feedback mechanisms.  Breaking the climate system response down into 

component mechanisms provides insight into the drivers of the observed signals and can 

generate hypotheses regarding the response to different kinds of land-surface change.  The 

use of offline radiative transfer simulations also allows us to compute the radiative forcing 

associated the modeled pattern of land-use change, a metric that plays an important role in 

climate policy as it is used to weigh the magnitude of climate perturbation by different 

forcing agents.  While some of the aforementioned studies have computed the radiative 
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forcing from various patterns of land-use change, e.g., (Betts, 2000), this study is unique in 

its side-by-side comparison of offline and coupled surface flux responses and so is able to 

provide new insight into the mechanisms of large-scale land-use change influences on 

climate.   

 

2 Methods 

2.1 Scenarios 

The scenarios of anthropogenic activity examined in this study are generated by the Global 

Change Assessment Model (GCAM) (Kim, Edmonds, Lurz, Smith, & Wise, 2006), one of 

the four integrated assessment models used to generate scenarios as part of the Coupled 

Model Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2011).  Each scenario 

describes future emissions and land use activities for the period of 2005 to 2100.  The 

baseline scenario in this study is the standard CMIP5 Representative Concentration Pathway 

4.5 (RCP4.5), in which a universal carbon tax (UCT) is applied in order to stabilize radiative 

forcing from greenhouse gases and aerosols at 4.5 W/m2 (Thomson et al., 2011). For the 

purposes of scenario generation, radiative forcing is calculated within GCAM by the Model 

for the Assessment of Greenhouse-Gas Induced Climate Change (MAGICC) (Meinshausen, 

Raper, & Wigley, 2011), version 5.3.  Radiative forcing from dynamic changes in surface 

physical properties – i.e., alterations to the land-surface albedo – is not accounted for within 

MAGICC, nor are forcing from mineral dust and nitrate.  In this scenario, agricultural 

technology improvements combined with the high price of emitting terrestrial carbon lead to 
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afforestation worldwide with a corresponding contraction in global crop area.  Biofuels play 

an expanded role in both the energy and land use mix.   

 

In the alternative scenario, the same target of 4.5 W/m2 is reached via a fossil fuel and 

industrial carbon tax (FFICT), under which deforestation is not penalized directly for the 

resultant increases in CO2 from disturbance of forest soils and reduction in woody carbon 

storage.  However, since the target is based on atmospheric radiative forcing, fossil fuel and 

industrial sector emissions must therefore be reduced further in the FFICT scenario relative 

to the UCT scenario in order to compensate for greater land-use change emissions.  Thus, 

while the end-of-century CO2 concentrations are nearly identical within GCAM between the 

UCT and FFICT scenarios (526 and 511 ppm respectively), the relative contribution of 

fossil fuel emissions versus land-use change emissions to the change in concentration is 

much higher for the UCT scenario (97%) than for the FFICT scenario (44%).  Land-use 

change emissions increase by an order of magnitude in the FFICT scenario, from 28 to 479 

PgC. 

 

The expansion of agriculture and decline in fossil fuel emissions in the FFICT scenario is 

driven largely by bioenergy combustion for electricity and liquid fuel production combined 

with carbon-capture and storage, which represents a low cost package of technologies for 

displacing fossil fuel emissions within GCAM in the absence of a direct deforestation 

penalty.  This leads to a positive feedback whereby deforestation for biofuels increases 

atmospheric CO2 and induces a need for more biofuels in order to meet the policy target.  As 

biofuel production expands, both biofuels and traditional crops are pushed to ever more 
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marginal land where greater areas are required to produce the same yields.  The net effect of 

these dynamics is a dramatic expansion of agriculture, replacing roughly 50% of global 

forest cover by the final decade of the century (see Figure 1).  However, it should be noted 

that the footprint of bioenergy could be smaller if one assumes higher rates of future crop 

yield improvements than characterize these two scenarios (Thomson et al., 2010).  

2.2 Coupling to the Earth system model 

The present study is part of a larger effort to create an Integrated Earth System Model 

(iESM), which aims to couple the economic portions of the GCAM integrated assessment 

model with the Global Land-use Model (GLM) (Hurtt et al., 2011; 2006) and the 

Community Earth System Model (CESM) (Bitz et al., 2012; Gent et al., 2011), a physical 

Earth system model featuring component models for the atmosphere, ocean, land, and sea 

ice.  The eventual goal is to implement a two-way coupling within a single integrated system 

whereby economic decisions in GCAM translate directly into trace gas fluxes and land-use 

changes in CESM while changes in climate within CESM feed back onto crop yields, 

heating and cooling demands, etc. in GCAM.   

 

This study utilizes the one-way iESM coupling procedure with information flowing from 

GCAM to GLM to CESM.  The GLM is needed to downscale land-use change, modeled at 

the 14 economic region scale in GCAM, to a 0.5 degree latitude-longitude grid.  GLM 

computes estimates of secondary land area, and spatially allocates wood harvest values (in 

carbon units) to areas of primary and secondary ecosystems.  It also "harmonizes" the data to 

ensure a continuous transition from historical land-use data.  These values are then 

translated into changes to the areas occupied by the plant functional types implemented in 
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the Community Land Model (CLM) (D. M. Lawrence et al., 2012a), the land model 

component of CESM, following the procedure developed by P. J. Lawrence et al. (2012b), 

and upscaled to the 0.9 x 1.25 degree latitude-longitude grid used in CLM.  Land-use 

changes are linearly interpolated between each 15-year GCAM time step in order to provide 

a dynamic land-use change dataset.  Urban area does not change.  This entire procedure is 

consistent with that utilized in the CMIP5.  Thus we are able to reproduce the land-use 

change dataset used by the National Center for Atmospheric Research (NCAR) as input to 

CESM for the standard RCP4.5 scenario, which we refer to as UCT.   

 

In order to isolate the biophysical climate effect of reaching the same atmospheric forcing 

target with different patterns of land use, we force CESM with identical concentrations of 

atmospheric greenhouse gases and aerosols derived from the UCT scenario.  Thus, the full 

prognostic carbon cycle within CESM is not exercised for this experiment.  Rather, we rely 

on GCAM’s estimation of the CO2 emissions associated with both fossil fuel use and land-

use change and the resultant impact on atmospheric concentrations.  Aerosol concentrations 

and deposition rates were computed from emissions as part of the CMIP5 process utilizing 

an offline atmospheric chemical transport model (Lamarque et al., 2011).  We adopt this 

procedure despite differences in the trajectory and mix of greenhouse gas and aerosol 

forcing agents between the GCAM versions of the UCT and FFICT scenarios. The original 

FFICT scenario has greater forcing from methane and nitrous oxide due to greater 

agricultural activity as well as transiently higher levels of forcing from black carbon from 

biomass burning.  The trajectory of forcing differs as well, with the FFICT scenario 

overshooting then declining to the target value of 4.5 W/m2 and the UCT scenario gradually 
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building up to the same target.  However, CO2 concentrations are essentially equal in the 

two GCAM scenarios.  Thus by adopting the UCT concentrations for all atmospheric 

constituents, we eliminate variation in the behavior of non-CO2 forcing agents.   95% of the 

UCT forcing in 2100 and 94% of the FFICT forcing in 2100 comes from well-mixed GHGs. 

Thus, we expect that differences in forcing trajectory would be more important than 

differences in the mix of forcing agents.  

 

We run CESM at approximately 1 degree (0.9 x 1.25) resolution in a fully coupled transient 

mode with a dynamic ocean, Community Atmosphere Model 4 (CAM4) physics (Neale et 

al., submitted), and an active carbon-nitrogen biogeochemical model within CLM (Thornton, 

Lamarque, Rosenbloom, & Mahowald, 2007).  The full carbon cycle is not active since 

atmospheric concentrations of greenhouse gases and aerosols are prescribed as discussed 

above.  We use the standard CLM crop plant functional type, which is identical to the C3 

grass plant functional type.  Initial conditions for the component models are taken from a 

20th century NCAR simulation beginning from equilibrium pre-industrial conditions.   

 

We use a version of CESM that differs from the official release version 5 used for the 

CMIP5 in a handful of ways, most of which do not materially alter the climate simulation.  

The most notable difference is that the beta version 15 we have adopted corrects the orbital 

forcing observed by the sea ice model to be consistent with the other model components.  

Previous versions held the orbital forcing of the sea ice constant.  As discussed further 

below, we compare this simulation of the UCT scenario (standard RCP4.5) to an ensemble 

of 5 simulations performed at NCAR using CESM release version 5 for CMIP5.  Despite 
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differences between the version that we use and that used for CMIP5, the mean global 

temperature response and spatial pattern of temperature response as revealed by 

fingerprinting methods (discussed further below) from our simulation fall within or near the 

95% confidence interval around the ensemble mean taken from the 5 CMIP5 runs.  Thus we 

are confident that we can reasonably replicate the standard RCP4.5 scenario using the model 

version and configuration options chosen.   

 

2.3 Use of CMIP5 Data 

As part of CMIP5, researchers at NCAR have made available the outputs of 5 simulations of 

the RCP4.5 scenario (our UCT scenario), each with varying initial conditions.  These were 

performed at 0.9 x 1.25 degree resolution using identical configurations, but a slightly 

different model version than the one that we used for UCT and FFICT as discussed above.  

We analyze these data to derive estimates of model internal variability in order to evaluate 

whether differences observed between the UCT and FFICT scenarios are statistically 

significant.  We also evaluate whether our UCT scenario is statistically indistinguishable 

from the standard CMIP5 RCP4.5 scenarios.   

 

In addition, we utilize 3-hourly atmospheric history outputs from one of the CMIP5 RCP4.5 

simulations to drive the offline CLM simulations discussed below.  

 

2.4 Fingerprinting Method 

We estimate the spatial pattern or “fingerprint” of the warming trend within each simulation 

using a method based on empirical orthogonal function (EOF) analysis, which has been 
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employed in the climate change detection and attribution literature, e.g., (Santer et al., 

2004).  For computational reasons, we first we aggregate the temporally and spatially 

varying surface temperature data to annual time steps at approximately 8° x 8° resolution.  

We take the fingerprint to be the first EOF obtained from the anomalies of this aggregated 

data set.  The first EOF describes the dominant mode of variance within the data – in this 

case the overall warming trend over time.   

 

2.5 Offline Land Model Simulations 

To isolate the first-order land surface response to changes in vegetation due to land-use 

change, we perform an offline land model simulation in which atmospheric conditions are 

held fixed at the conditions exhibited in the UCT scenario, but the pattern of land-use 

change is matched to that in the FFICT scenario.  Thus the effect of rising GHG 

concentrations are present in the atmosphere, but the effects of land-use change on water 

vapor, clouds, radiation etc. are deliberately omitted.  We call this the FFICT-offline 

scenario.  The atmosphere is forced with 3 hourly data taken from one of the NCAR RCP4.5 

simulations performed for CMIP5.  CLM has built-in algorithms for interpolating the 3-

hourly atmospheric data to the 30-minute timestep that we use, including an adjustment to 

the incoming solar radiation that accounts for the cosine of the zenith angle at each timestep.  

In order to verify that this offline technique adequately reproduces the UCT climate, we also 

perform an offline UCT scenario (UCT-offline) that forces the atmosphere as above while 

maintaining the UCT pattern of land-use change.  A finding of congruence between the UCT 

and UCT-offline scenarios indicates that we have successfully reproduced the UCT climate 

in the offline simulations.     
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2.6 Offline Radiative Transfer Calculations 

To calculate the radiative forcing due to land-use change, we utilize an offline version of the 

CESM atmospheric model, the Community Atmosphere Model (CAM).  This offline version 

of CAM, known as PORT (Conley, Lamarque, & Vitt, 2012), runs only the radiative transfer 

calculations and is forced with instantaneous 3-dimensional state information saved from the 

UCT scenario at a rate of 240 samples per model year.  The samples are evenly distributed 

over seasonal and diurnal timescales.  By substituting surface albedos from the FFICT-

offline scenario into PORT driven by the UCT atmospheric states, we obtain an estimate of 

the change in top-of-atmosphere net absorbed solar radiation that is free from atmospheric 

feedbacks.    

 

3 Results 

3.1 Global and Regional Temperature Trends 

The simulated globally averaged warming trend over the 21st century differs by 0.5 °C 

between the UCT and FFICT scenarios, which exhibit warming trends of 1.2 and 0.7 °C per 

century respectively (Figure 2).  These trends are relative to the first decadal mean of each 

simulation (2005-2014).  Considering the ensemble mean and 95% confidence intervals 

surrounding this mean taken from the five RCP4.5 scenarios run at NCAR for CMIP5 

(Figure 2) it is clear that the FFICT scenario lies well outside the range of internal variability 

exhibited by the model, indicating that the temperature differences are statistically 

significant.  Meanwhile, the fact that the UCT scenario lies mostly within the confidence 
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interval around the CMIP5 ensemble mean indicates that we have successfully replicated the 

RCP4.5 scenario at this scale despite minor differences in model version. 

 

Figure 3 shows the spatial pattern of the temperature trends in the two scenarios, calculated 

by subtracting the mean of the first simulation decade (2005-2014) from the last (2090-

2099) for each scenario.  The UCT pattern of warming is typical of greenhouse gas-induced 

climate change with greater temperature change at high latitudes and over land.  The FFICT 

pattern, however, actually shows a cooling trend in some regions, particularly near areas of 

boreal deforestation in eastern Siberia and portions of Canada.  Other regions show no trend 

or trends that are similar to those found in the UCT scenario.   

 

The differences between the scenarios are more clearly shown in the seasonal June-July-

August (JJA) and December-January-February (DJF) temperature differences between the 

scenarios for the final simulation decade (Figure 4).  There is a clear pattern of relative 

cooling (i.e., less warming) in the FFICT scenario over much of the land area above 50 

degrees latitude.  This reduction in warming is strongest over the boreal forests and the 

Barents Sea and extends to the northeast of Finland, particularly during the northern 

hemisphere winter when the relative cooling is more than 6 °C in some locations.  The 

strongest cooling is found during northern hemisphere spring (not shown), consistent with 

Bonan et al. (Bonan, Pollard, & Thompson, 1992).  There is also a widespread but modest 

cooling on the order of 1 °C present over much of the Arctic Ocean during northern 

hemisphere winter and over mid-latitude oceans during northern hemisphere summer.   
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While smaller in spatial extent, there are also regions of the tropics at the edges of the 

Amazon and Congo forests where the FFICT scenario exhibits higher temperatures than the 

UCT scenario.  These are on the order of 1 °C.   

 

Stippling in Figure 4 indicates those gridcells for which the FFICT value lies outside of the 

95% confidence interval around the NCAR RCP4.5 ensemble mean.  We avoid the problem 

of underestimating variance due to temporal autocorrelation by using the ensemble variance 

rather than a time-series of values from a single simulation.  However, due to spatial 

autocorrelation and the finiteness of the sample, it is still likely that more than 5% of the 

gridcells would display significance even if the FFICT scenario were drawn from the same 

distribution as the RCP4.5 ensemble (Livezey & Chen, 1983).  Indeed, 20% of the UCT 

scenario (identical to RCP4.5 modulo differences in model version) gridcells are found to be 

significant using this test for the end-of-century decadal mean temperature difference (not 

shown).  However, many more (71%) of the FFICT gridcells are significant (panel A).   

 

3.2 Spatial Fingerprint of the Warming Trend 

Fingerprint analysis provides an alternative way to characterize the spatial significance of 

the pattern of warming present in the FFICT vs. the UCT scenario.  The fingerprints of the 

UCT and FFICT warming trends are shown in Figure 3.  Because rising GHG 

concentrations and land-use change trends are correlated in these scenarios (i.e., they are not 

orthogonal processes), their combined effect on surface temperature is mixed, at least partly, 

in the fingerprint obtained from EOF analysis.  As might be expected, the fingerprints fairly 

closely track the decadal temperature difference between the first and last simulation decade 
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(also shown in Figure 3).  The effect of Boreal deforestation in the FFICT fingerprint is 

evidenced by diminished warming at high latitudes and a patch of cooling over Eastern 

Siberia.   

 

We can readily show that the differences between the UCT and FFICT fingerprints are 

statistically significant and probably do not result from internal variability of the models.  

The demonstration follows by comparing the FFICT fingerprint against the fingerprints 

obtained from each of the NCAR RCP4.5 ensemble members.  The analytical approach 

treats each fingerprint as a vector in n-dimensional space where n is 864, the number of 

gridcells present at the resolution chosen for this analysis.  We then compute the angle 

between each fingerprint and the fingerprint obtained from the RCP4.5 ensemble mean in 

that n-dimensional space.  The ensemble members cluster near the ensemble mean at a mean 

angle of 7.0° with a standard deviation of 1.3°.  The FFICT fingerprint, on the other hand, is 

rotated by 19.5° from the ensemble mean.  Since this angle differs from the corresponding 

angles for the RCP4.5 ensemble by more than 9 standard deviations, the differences between 

the FFICT and ensemble mean are therefore highly statistically significant.  Thus, even if we 

are agnostic about the functional form of the distribution of angles around the ensemble 

mean, we can conclude from Chebyshev’s inequality that it is very unlikely to obtain the 

FFICT fingerprint from model internal variability.   

 

3.3 Surface Energy Budget Changes 

The FFICT-offline simulation, which holds atmospheric conditions fixed at UCT values, 

indicates that the first order effect of changing vegetation from the UCT to FFICT scenario 
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is an increase in reflected solar radiation of 2.2 W/m2 averaged over the global land surface 

during the final simulation decade.  As shown in Figure 5, this increase in reflected solar 

radiation is balanced by decreases in sensible (-2.0 W/m2) and latent (-0.7 W/m2) heat 

fluxes, as well as a small increase in emitted longwave radiation (0.5 W/m2).   

 

Allowing the atmosphere to respond to these changes results in feedback processes that 

further alter each term of the surface energy balance.  In the fully coupled case, altering land 

use from the UCT to FFICT scenario results in an even larger increase in reflected solar 

radiation of 4.0 W/m2.  The corresponding changes in sensible (-1.4 W/m2) and latent 

(-1.8 W/m2) heat fluxes are shifted more heavily to decreases in latent heat flux, and there is 

a large decrease in emitted longwave radiation (-4.1 W/m2), reflecting the decrease in 

surface temperature.  The increase in reflected solar radiation is partly explained by an 

increase in surface insolation of -1.7 W/m2, which appears as a negative term in the energy 

budget in order to maintain the sign convention that all fluxes are positive upward.  

Likewise, the large decrease in emitted longwave is offset by an even larger decrease in 

downward longwave radiation of 4.8 W/m2, which we show later is related to changes in the 

greenhouse effect of water vapor.  Both the offline and coupled surface energy budgets 

balance at the 0.05 W/m2 level.  We do not account for changes in ground heat storage and 

the latent heat of fusion in this analysis.  

 

Figure 6 shows the equivalent regional energy budgets averaged over the boreal and tropical 

forest areas. We define boreal as all land area from 45 to 65 degrees N and tropical as all 

land area from 15 degrees S to 10 degrees N.  While the general pattern of flux changes is 
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similar to the global pattern in each region, the scale of change in the boreal zone is much 

larger despite similar levels of deforestation in each region (9.6 M km2 in the Boreal zone 

vs. 10.2 M km2 in the tropics).   

 

The most notable qualitative difference between regions relates to the emitted longwave flux 

changes, which are strongly negative in the Boreal region and essentially neutral in tropics 

for the coupled simulations.  In the tropics, decreases in latent and sensible heat fluxes 

outweigh increases in shortwave reflectivity, requiring that the surface temperature and 

corresponding upward longwave fluxes increase to compensate.  This may indicate that the 

decrease in latent and sensible heat flux in the tropics is dominated by a decrease in surface 

roughness, which reduces the efficiency of turbulent energy fluxes, rather than the albedo 

change that dominates in the Boreal forest.   

 

3.4 Feedback Mechanisms 

Lower temperatures in the FFICT scenario relative to the UCT scenario are associated with 

greater snow and ice extent (Figure 7), which contribute to the coupled increase in, reflected 

solar radiation (Figure 8) and represent a positive feedback on temperature reductions.  The 

increase in reflected solar radiation in the coupled simulation is also due in part to an 

increase in incident solar radiation.   Changes in water vapor and atmospheric dynamics 

combine to reduce cloud cover in many regions (Figure 7), particularly at high latitudes.  

This increase in insolation is partially reflected, but also provides more energy to drive 

latent, sensible, and long wave energy fluxes.  The increase in sensible heat flux from the 

offline to coupled simulation is consistent with increased insolation, but the corresponding 
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decrease in latent heat also indicates a shift in Bowen ratio, probably due to lower surface 

temperatures and so lower vapor pressure deficit.   

 

Indeed, reductions in latent heat flux and cooler air temperatures contribute to lower 

atmospheric water vapor, both in the tropics and at high Northern latitudes (Figure 9).   

Because the baseline level of atmospheric water vapor is quite low to begin with at high 

latitudes, this change leads to a significant change in the local greenhouse effect, defined as 

the difference between emitted surface longwave radiation and the top-of-atmosphere 

outward radiation flux.  However, this effect is diminished in the tropics where the 

greenhouse effect of water vapor is more highly saturated.  The spatial pattern of greenhouse 

effect changes is shown in Figure 10, which corresponds closely with the spatial pattern of 

temperature change shown in Figure 4.  In the high latitudes, this cycle suggests a strong 

positive feedback effect – albedo and transpiration changes cool the air and reduce water 

vapor, which leads to lower downward longwave emission from the atmosphere.  This, in 

turn, further cools the surface and reduces transpiration and water vapor.  The decrease in 

emitted long wave and latent heat fluxes in the coupled simulation (Figure 6) is consistent 

with this mechanism.  However, to definitively isolate the role of snow, ice, cloud, and 

water vapor feedbacks on the surface energy budget would require additional simulations 

targeting each mechanism individually.   

 

Error! Reference source not found. shows changes in the planetary energy budget over the 

21st century that result from greenhouse gas and albedo effects in both the UCT and FFICT 

scenario.  Because the radiative forcing from anthropogenic GHGs is held fixed at 
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approximately 4.5 W/m2 for each scenario, deviations in the greenhouse effect from this 

level are due to changes in atmospheric water vapor and temperature.  In the UCT scenario, 

water vapor feedback effects increase the greenhouse effect from 4.5 W/m2 to 5.6 W/m2, 

while in the FFICT scenario, land-use change effects on water vapor reduce this to 4.1 

W/m2.  Both scenarios exhibit positive albedo feedbacks that result from loss of snow of and 

ice over the 21st century, however these effects are reduced in the FFICT scenario (0.5 

W/m2) compared to the UCT scenario (1.2 W/m2). 

 

3.5 Radiative Forcing  

Using the offline radiative transfer model to hold the 3-dimensional atmospheric conditions 

fixed at UCT scenario values while altering surface albedos according to the FFICT-offline 

scenario, we obtain a shift in top-of-atmosphere net downward shortwave flux 

of -0.96 W/m2 for the period 2091-2100.  Thus, the globally averaged forcing from land-use 

change in the FFICT scenario relative to UCT is on the same order of magnitude as forcing 

from anthropogenic GHGs in these scenarios.     

 

4 Discussion 

The results of this study indicate that under plausible scenarios, the biophysical climate 

effects of land-use change play an important role in determining the outcomes of climate 

policy at both global and regional scales.  Thus policies that do not consider these effects 

may result in unintended consequences.  In general, the climate outcomes of achieving 
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atmospheric GHG targets depend on the specific policy mechanisms employed insofar as 

those different mechanisms impact the pattern and scale of land-use change.  

 

In the context of the CMIP5 simulations, these findings challenge a fundamental assumption 

underlying the “parallel process” (Moss et al., 2010) for generating alternative technological 

and socio-economic pathways for meeting the RCP targets, namely the assumption that there 

is a unique relationship between the trajectory of radiative forcing and subsequent climate 

change impacts as predicted by any given CMIP5 climate model.  Furthermore, these results 

indicate that the RCP scenarios, which vary unsystematically in their levels and patterns of 

land-use change, may exhibit important differences in terms of regional and global climate 

outcomes that are not directly linked to the chosen GHG target.  As a result, the transient 

climate sensitivity– i.e., the magnitude of temperature change in 2100 per unit of quantified 

forcing – exhibited by each CMIP5 model is likely to differ by scenario as well.   

 

In addition to influencing the global mean temperature response, we show that land-use 

change can influence the spatial pattern or “fingerprint” of warming that is exhibited over 

time as derived from EOF analysis.  This result has implications for the use of pattern 

scaling techniques for generating new climate change scenarios.  See for example, (Mitchell, 

2003).  While it is possible to generate and scale separate response signals for GHG, 

aerosols, land-use change etc., the response signal for land-use change is highly dependent 

on geography and is likely to interact with GHG forcing.  For example, the albedo response 

from Boreal deforestation depends on snow cover, which in turn is influenced by GHG-

induced warming.  The problem of geographic dependence has been addressed for aerosols 
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in the pattern-scaling literature by deriving separate response signals by region (Schlesinger 

et al., 2000).    

 

As this work demonstrates, the forcing effect of land-use change is an important 

consideration for climate policy, both real and simulated.  Land-use change is similar in 

some regards to sulfur aerosols, which are important despite their short atmospheric lives 

and geospatially heterogeneous effects on the Earth’s energy balance.  Depending on the 

specific objectives of individual policies, it may be appropriate to incorporate the forcing 

effect of albedo change into targets and accounting frameworks.  If so, this work points to 

the inadequacy of globally averaged radiative forcing based solely on atmospheric 

constituents as the metric for doing so.  As noted by others (Pielke et al., 2002), due to the 

geographically specific and spatially heterogeneous effect of land-use change on climate, 

globally averaged metrics belie the climate effects of land-use change on the regional scales 

where they matter most to humans.  The global cooling effect of deforestation in these 

simulations is strongly concentrated in the high northern latitudes, whereas a radiatively 

equivalent reduction in GHG would be more evenly distributed across the globe, impacting 

society in different ways.  Indeed, the cooling effect of Boreal deforestation is so 

concentrated that some regions experience net cooling over the 21st century in the FFICT 

scenario despite a global mean warming of 0.7° C.  

 

Consistent with a growing body of evidence (Arora & Montenegro, 2011; Bala et al., 2007; 

Betts, 2000), this work demonstrates the significant regional cooling effect of Boreal 

deforestation, which results from strong albedo change coupled with a regional water vapor 
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greenhouse effect.  The offline land model simulations demonstrate that reduced water vapor 

flux from the surface is only partially due to the first order effect of vegetation change.  

Atmospheric feedback processes further reduce this flux.  While this experiment was not 

designed to separate different atmospheric processes from one another, a plausible 

explanation is that regional cooling driven by albedo change reduces the capacity of the 

atmosphere to retain water vapor and drives down latent heat fluxes, suggesting that albedo 

change can activate a high latitude water vapor feedback independently of changes in 

stomatal conductance.   

 

The scale of surface energy and hydrological flux changes from tropical deforestation 

predicted by CESM is smaller than that indicated by eddy covariance studies (Randow et al., 

2004).  Despite this, we find significant temperature increases – on the order of 1 °C – in 

some regions of the tropics.  Other modeling studies have found significant changes in 

precipitation resulting from tropical deforestation (Hasler, Werth, & Avissar, 2009; 

McGuffie et al., 1995; Nepstad, Stickler, Filho, & Merry, 2008).  However, there is 

substantial disagreement among models on the magnitude and sometimes the sign of 

climatic effects from land-use change (Pitman et al., 2009).  Thus, more work is needed to 

constrain model parameterizations with observational data before they can be used to make 

specific recommendations for programs such as REDD, which are likely to induce 

biophysical climate perturbations directly over large areas of the tropics and potentially 

indirectly outside the tropics via leakage mechanisms (Watson, 2000).   
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The integrated assessment model scenarios that that we examine assume that the 

biogeochemical climate effects of land-use change – that is, the associated CO2 source and 

sink changes – are perfectly compensated for by reductions or increases in fossil carbon 

emissions.  This assumption allows us to isolate the biophysical forcing and explore the 

implications of idealized policy scenarios.  However, in practice it will be difficult to 

perfectly account for and trade the CO2 fluxes from terrestrial sources – particularly those 

involving changes in soil carbon stocks – with those from fossil fuels.  Many studies have 

examined the relative climate effects of biogeochemical and biophysical forcing from land-

use change. Their results are mixed, but generally point to a stronger biogeochemical signal 

except for the case of Boreal deforestation where biophysical effects can dominate (Bala et 

al., 2007; Betts, 2000; Molen, Hurk, & Hazeleger, 2011).  Regardless of which signal 

dominates, if the CO2 flux from deforestation in the FFICT scenario were not totally 

compensated for through carbon trading, the apparent cooling signal from deforestation 

would be reduced.   

 

In these simulations we do not account for non-CO2 emissions from biomass burning, such 

as black carbon, organic carbon, and ozone precursors.  These species could have significant 

climate effects on short time scales and may impact ecosystem function and human health 

directly.  In addition, we treat all crops and grasses identically and do not prescribe special 

crop phenology or management practices.  Thus we only capture the gross energy flux 

changes associated with conversion from forest ecosystems to non-forest ecosystems.  A 

recent effort to incorporate crop-specific parameterizations into CESM (Levis et al., 2012) 

indicates that the high amplitude annual cycle in crop leaf area compared to grasses can 
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induce important seasonal effects on precipitation and surface energy fluxes.  Future work 

on the land use effects of climate policy would benefit from using such parameterizations.  

Indeed, crop phenology has been identified as a major source of variance across model 

predictions of the climate effects of land-use change (Pitman et al., 2009). 
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7 Tables 

Table 1: Mean planetary energy budget changes from the first simulation decade (2005-

2014) to the last (2090-2099) (last decade minus first) for both the UCT and FFICT 

scenarios.  The greenhouse effect designates a decrease in top-of-atmosphere longwave 

radiation relative to surface longwave radiation and the albedo effect refers to an increase in 

net absorbed shortwave radiation  

 

  

Greenhouse 

Effect 

Albedo 

Effect 

  W/m2  W/m2 

UCT  5.6  1.2 

FFICT  4.1  0.5 
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8 Figure Captions 

Figure 1: Change in a) crop cover and b) forest cover from 2005 to 2100 for the FFICT 

scenario.  

Figure 2: Global mean surface temperature anomaly relative to the first decade of each 

simulation (2005-2014) for RCP 4.5, the GCAM 4.5 UCT and GCAM 4.5 FFICT.  Data are 

smoothed using 10-year averages taken every 5 years.  Dashed lines indicate the 95% 

confidence interval around the RCP4.5 ensemble mean.   

Figure 3: Spatial pattern of temperature change over the 21st century calculated using 

decadal differences (mean of the last simulation decade (2090-2099) minus the first (2005-

2014)) for a) the UCT scenario and b) the FFICT scenario, as well as using EOF-based 

spatial fingerprint method for c) the UCT scenario and d) The FFICT scenario.  The 

fingerprints have been scaled to fit within the range -1 to 1 °C.   

Figure 4:  Spatial pattern of mean surface temperature difference between the UCT and 

FFICT scenarios (FFICT minus UCT) for the final simulation decade (2090-2099), 

calculated a) annually, b) for the northern hemisphere summer: June, July and August (JJA), 

and c) for the northern hemisphere winter: December, January, and February (DJF).  

Stippling indicates those gridcells for which the FFICT value lies outside of the 95% 

confidence interval around the NCAR RCP4.5 ensemble mean. 

Figure 5:  Changes in the global land surface energy budget between the UCT and FFICT 

scenarios (FFICT minus UCT) for the final simulation decade (2090-2099) obtained from 

both offline land model simulations and fully coupled Earth system simulations that include 

atmospheric, ocean, and sea ice feedbacks.  All fluxes are positive upward such that a 
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negative value for incident solar radiation designates an increase in insolation in the FFICT 

scenario relative to UCT.  To the right of the dashed line are terms of the surface energy 

budget that are held fixed in the offline simulations. 

Figure 6: Changes in the regional land surface energy budget for a) boreal ecosystems and b) 

tropical ecosystems between the UCT and FFICT scenarios (FFICT minus UCT) for the 

final simulation decade (2090-2099) obtained from both offline land model simulations and 

fully coupled Earth system simulations that include atmospheric, ocean, and sea ice 

feedbacks.  All fluxes are positive upward such that a negative value for incident solar 

radiation designates an increase in insolation in the FFICT scenario relative to UCT.  To the 

right of the dashed line are terms of the surface energy budget that are held fixed in the 

offline simulations.  Note the change in scale relative to Figure. 5. 

Figure 7:  Fractional changes in a) snow cover, b) sea ice, and c) cloud cover between the 

coupled UCT and FFICT scenarios (FFICT minus UCT) for the final simulation decade 

(2090-2099).   

Figure 8: Surface albedo changes between the UCT and FFICT scenarios (FFICT minus 

UCT) for the final simulation decade (2090-2099) based on a) offline land model 

simulations and b) fully coupled Earth system model simulations that account for 

atmospheric, ocean, and sea ice feedbacks.   

Figure 9: Mean atmospheric water vapor content in the final simulation decade (2090-2099) 

by latitude and height (measured in pressure units) for a) the UCT scenario and b) the 

difference between UCT and FFICT scenarios (FFICT minus UCT). 
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Figure 10: Spatial pattern of difference in the greenhouse effect during the final simulation 

decade (2090-2099) between the UCT and FFICT scenarios (FFICT minus UCT). 

Table 1: Mean planetary energy budget changes from the first simulation decade (2005-

2014) to the last (2090-2099) (last decade minus first) for both the UCT and FFICT 

scenarios.  The greenhouse effect designates a decrease in top-of-atmosphere longwave 

radiation relative to surface longwave radiation and the albedo effect refers to an increase in 

net absorbed shortwave radiation   
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9 Figures 

 

Figure 1: Change in a) crop cover and b) forest cover from 2005 to 2100 for the FFICT 

scenario. 
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Figure 2: Global mean surface temperature anomaly relative to the first decade of each 

simulation (2005-2014) for RCP 4.5, the GCAM 4.5 UCT and GCAM 4.5 FFICT.  Data are 

smoothed using 10-year averages taken every 5 years.  Dashed lines indicate the 95% 

confidence interval around the RCP4.5 ensemble mean.   
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Figure 3: Spatial pattern of temperature change over the 21st century calculated using 

decadal differences (mean of the last simulation decade (2090-2099) minus the first (2005-

2014)) for a) the UCT scenario and b) the FFICT scenario, as well as using EOF-based 

spatial fingerprint method for c) the UCT scenario and d) The FFICT scenario.  The 

fingerprints have been scaled to fit within the range -1 to 1 °C.   
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Figure 4: Spatial pattern of mean surface temperature difference between the UCT and 

FFICT scenarios (FFICT minus UCT) for the final simulation decade (2090-2099), 

calculated a) annually, b) for the northern hemisphere summer: June, July and August (JJA), 

and c) for the northern hemisphere winter: December, January, and February (DJF).  

Stippling indicates those gridcells for which the FFICT value lies outside of the 95% 

confidence interval around the NCAR RCP4.5 ensemble mean. 
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Figure 5: Changes in the global land surface energy budget between the UCT and FFICT 

scenarios (FFICT minus UCT) for the final simulation decade (2090-2099) obtained from 

both offline land model simulations and fully coupled Earth system simulations that include 

atmospheric, ocean, and sea ice feedbacks.  All fluxes are positive upward such that a 

negative value for incident solar radiation designates an increase in insolation in the FFICT 

scenario relative to UCT.  To the right of the dashed line are terms of the surface energy 

budget that are held fixed in the offline simulations. 
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Figure 6: Changes in the regional land surface energy budget for a) boreal ecosystems and b) 

tropical ecosystems between the UCT and FFICT scenarios (FFICT minus UCT) for the 

final simulation decade (2090-2099) obtained from both offline land model simulations and 

fully coupled Earth system simulations that include atmospheric, ocean, and sea ice 

feedbacks.  All fluxes are positive upward such that a negative value for incident solar 

radiation designates an increase in insolation in the FFICT scenario relative to UCT.  To the 

right of the dashed line are terms of the surface energy budget that are held fixed in the 

offline simulations.  Note the change in scale relative to Figure. 5.
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Figure 7: Fractional changes in a) snow cover, b) sea ice, and c) cloud cover between the 

coupled UCT and FFICT scenarios (FFICT minus UCT) for the final simulation decade 

(2090-2099).   
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Figure 8: Surface albedo changes between the UCT and FFICT scenarios (FFICT minus 

UCT) for the final simulation decade (2090-2099) based on a) offline land model 

simulations and b) fully coupled Earth system model simulations that account for 

atmospheric, ocean, and sea ice feedbacks.   
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Figure 9: Mean atmospheric water vapor content in the final simulation decade (2090-2099) 

by latitude and height (measured in pressure units) for a) the UCT scenario and b) the 

difference between UCT and FFICT scenarios (FFICT minus UCT) 
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Figure 10: Spatial pattern of difference in the greenhouse effect during the final simulation 

decade (2090-2099) between the UCT and FFICT scenarios (FFICT minus UCT). 
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