
 1

 

 

 

 

 

 

Unsaturated Properties for Non-Darcian Water Flow in Clay  

 

Hui-Hai Liu*, Lianchong Li and Jens Birkholzer  

Earth Science Division 
Lawrence Berkeley National Laboratory 

Berkeley, CA 94720 
 
 
 
 

Key Words: Unsaturated flow; Clay Rock; Non‐Darcian flow; Geological Repository, Shale Gas 
 
 
 
 
 
 

Submitted to Journal of Hydrology for publication 
 
 
 
 
 
 
 

* Corresponding author; hhliu@lbl.gov; Phone: (510)486-6452; Fax: (510)486-5686 
 
 

 
 
 
 
 



 2

Abstract 
 

Clay rock formations, and compacted clay (e.g., bentonite) used as backfill within 

disposal drifts, have been considered as natural and engineered barriers, respectively, for 

isolating high-level nuclear wastes in mined geologic repositories. Accurately modeling 

unsaturated flow in those clay materials is important for assessing the performance of a 

geological repository. While the non-Darcian behavior of water flow in clay materials has 

been demonstrated in the literature, a systematic study of modeling unsaturated non-

Darcian flow is still lacking. Based on a hypothesis that pore water in clay becomes non-

Newtonian as a result of water-clay interaction, we propose new constitutive relationships 

for unsaturated flow, including a relationship between water flux and hydraulic gradient 

and those among capillary pressure, water saturation, and hydraulic conductivity. An 

evaluation based on a set of laboratory experimental observations supports the usefulness 

of the proposed relationships. More experimental studies are desirable for further 

confirming the non-Newtonian water flow behavior in clay materials and evaluating the 

proposed relationships.  
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1. Introduction 

    Clay/shale formations have been considered as potential host rock for geological 

disposal of high-level radioactive waste because of its low permeability, low diffusion 

coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. 

For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), 

Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay 

at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom Clay at the Mol site, 

Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific 

investigation with field experiments conducted in underground research laboratories. 

These investigations, which also included laboratory experiments and modeling analyses, 

have focused on achieving a better understanding of a variety of rock properties and their 

relationships to flow and transport processes associated with geological disposal of 

radioactive waste. 

     In geologic repositories for radioactive waste disposal, compacted expansive clay soils 

(bentonites) are often considered as buffer materials within an engineered barrier system, 

to be placed in the repository tunnels between the radioactive waste and the host rock. 

The bentonite is usually compacted at low water content, and then progressively wetted 

by water from the surrounding host formation. As a result, an unsaturated zone generally 

develops within the near field of a clay repository. The unsaturated wetting process is 

accompanied by bentonite swelling which ensures acceptable sealing of open spaces 

between waste packages and the corresponding host formation. At the same time, heat 

emanating from the decaying radioactive waste causes thermal gradients and unsaturated 

flow within the engineered and natural barriers. Accurately modeling unsaturated flow in 

such clay materials, and how it is related to swelling and heat transfer processes, is 

critical for assessing the performance of both clay rock and buffer materials for isolating 

radioactive wastes at a disposal site. 

     It has been documented in the literature that water flow in clays cannot be adequately 

described by Darcy’s law, which states that water flux is directly proportional to the 

hydraulic gradient. For example, Hansbo (2001) reported that water flux is proportional 

to a power function of the hydraulic gradient when the gradient is less than a critical 

value, whereupon the relationship between water flux and gradient becomes linear for 
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large gradient values. He explained this behavior by positing that a certain hydraulic 

gradient is required to overcome the maximum binding energy of mobile pore water. In 

contrast, Dixon et al. (1999) presented measured hydraulic conductivity data for clays, 

finding no “critical” or “threshold” gradients from their observations. However, they did 

find that there were “transitional” gradients that define two separate regions of Darcian 

flow. Lower hydraulic conductivities were observed for hydraulic gradients less than the 

transitional gradient. Dixon et al. (1999) indicated that clay could contain considerable 

quantities of structured water that shears at gradients above the transitional gradient, 

allowing it to participate in advective flow. Finally, Zou (1996) proposed a nonlinear 

flux-gradient relationship depending on the activation energy of pore liquid. He assumed 

that the activation energy of pore water in clay (or other fine-grained materials) is not 

only variable with the distance from the solid particle surface, but also with the flow 

velocity of pore water. His model, including several empirical parameters, was able to fit 

a number of data sets that show nonlinear flux-gradient relationships at low hydraulic 

gradients and linear relationships at high gradients. More studies of non-Darcian behavior 

for water flow in clay can be found in references cited in Hansbo (2001), Dixon et al. 

(1999), and Zou (1996). Although some inconsistency seems to exist among these 

studies, in general these studies demonstrated the existence of non-Darcian flow behavior 

in clay under conditions of relatively low hydraulic gradients.  

      Note that such studies are all for saturated flow conditions. It is expected that non-

Darcian flow behavior becomes more significant under unsaturated conditions, because 

in such conditions, pore water exists as water films or occurs in relatively small pores, 

and therefore should be subject to relatively strong interactions with the clay surface. (As 

reported in Low (1961), soil-water properties change as a result of the interactions 

including hydration and double-diffusive-layer effects.) This seems to be supported by 

experimental observations recently reported by Cui et al. (2008). They observed non-

Darcian behavior for the full range of observed hydraulic gradients under unsaturated 

conditions. 

    While several models have been proposed for describing non-Darcian flow in clay in 

saturated conditions, a systematic investigation of constitutive models for unsaturated 



 5

flow in clay materials is still lacking. The objective of this work is to develop such a 

model under unsaturated conditions, by considering pore water as a non-Newtonian fluid.    

    

2. Theoretical Model   

    This section presents a theoretical model describing non-Darcian flow under 

unsaturated conditions. The model will be verified in the next section with data from a 

laboratory experiment. Theoretical development of the model is based on the hypothesis 

that pore water in clay materials is non-Newtonian and that flow is driven by the 

hydraulic gradient. 

 

2.1 Newtonian and non-Newtonian fluids  

   In general, fluids can be classified as Newtonian or non-Newtonian. The former has a 

constant viscosity; thus, its shear stress is directly proportional to the shear rate defined as 

the velocity gradient perpendicular to the plane of shear. For non-Newtonian fluid, the 

viscosity is not constant anymore, but rather a function of shear rate and/or time. For 

example, Figure 1 shows typical relations between shear stress and shear rate for a 

Newtonian fluid and three non-Newtonian fluids. Pseudoplastic or shear-thinning fluids 

have a lower apparent viscosity at higher shear rates, and dilatant, or shear-thickening 

fluids increase in apparent viscosity at higher shear rates (e.g., Wu and Pruess, 1998). 

Bingham plastic fluids have a linear shear stress/shear strain relationship and require a 

finite yield stress before they begin to flow. In other words, the plot of shear stress 

against shear strain does not pass through the origin (Figure 1).  

   A relatively simple way to describe non-Newtonian behavior is to express the apparent 

viscosity ( e ) as a power function of shear rate 
y

u




  (e.g., Christopher and Middleman, 

1965): 

1













n

e y

u                                                                                  (1) 

where  is a constant, u is water velocity parallel to the plane of shear, y is a coordinate 

perpendicular to the plane of shear, and n is a dimensionless number. The corresponding 

fluids are called “power-law fluids.” In this case, the shear stress of fluid, , is given by 
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Equations (1) and (2) correspond to pseudoplastic fluids (n <1), Newtonian fluids (n =1), 

and dilatant fluids (n >1), respectively. In this study, we focus on power-law fluids 

following Equations (1) and (2); Bingham plastic fluid is not considered. As 

demonstrated below, these equations seem to capture the non-Darcian behavior of pore 

water under unsaturated conditions reasonably well. Note that the methodology 

developed in this study can be easily applied to Bingham plastic fluids as well, when 

needed.     

    It is well documented in the literature that water properties will change near the clay 

surface as a result of water-clay interaction. Like other researchers (e.g., Zou, 1996), we 

believe that the observed non-Darcian behavior for water flow is caused by non-

Newtonian properties of pore water in clay materials. These properties should be a direct 

result of strong water-clay interaction. However, this argument is largely based on 

observations at core scales, and to the best of our knowledge has not been directly 

confirmed by measured viscosity and shear-rate data at pore scale. Thus, at this point, it is 

appropriate to treat the considered correlation between non-Darcian behavior and non-

Newtonian properties as a hypothesis.    

 

2.2 Relationship between flux and hydraulic gradient for a capillary tube 

    In this subsection, we derive a relationship between water flux and hydraulic gradient 

for a capillary tube with radius R (Figure 2). This will be used as the basis for developing 

corresponding relationships for clay materials. For simplicity, we consider a horizontal 

capillary tube here, although this relationship could easily be extended to capillary tubes 

with other orientations.  

     Considering water to be a non-Newtonian fluid in the capillary tube and using 

Equations (1) and (2), we can write the shear-stress relationship as 

n

dr

du








                                                                                       (3) 
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where r is the radius coordinate. For a water surface with radius r and length dx (Figure 

2), the total shearing force is 

 dxrF  2                                                                                     (4) 

Then, the net shearing force for a water element with thickness dr within the capillary 

tube, dF, is given by )()(2  rddxdF  . For laminar flow, the inertial effect can be 

ignored. In this case, the shearing force should be balanced by an opposing pressure on 

the water element that is )2)()(( rdrdp  . Therefore, we have: 

)2)()(()()(2 rdrdprddxdF                                                     (5) 

Combining (3), (4) and (5) yields: 

dr

dr

du
rd

dr

rd

dx

dp
r

n

)(
)( 













                                                          (6) 

The above equation can be solved for shear rate (or velocity gradient 
dr

du
) 

n

dr

du
rC

dx

dpr








 

2

2

                                                                      (7) 

where C is a constant and determined to be zero by the following boundary condition 

(that is a result of symmetry): 

 

0
0


rdr

du
                                                                                         (8) 

Note 
dr

du

dr

du
  for the capillary tube under consideration. Then (7) can be rewritten as  

nn
r

dx

dp

dr

du
/1/1

2

















                                                                    (9) 

Further, using non-slip conditions on the surface of the capillary tube (u = 0 at r = R), the 

solution to (9) is given as  
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The above equation gives the velocity distribution along the radius direction. The average 

water flux across the cross-sectional area of the tube is then determined by  

n
n

n

R

C dx

dp
R

nn

nn

R

rdrru

q
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1
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2
0
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            (11) 

 

2.3 Theoretical model for unsaturated clay materials 

     The pore space in a porous medium is often conceptualized as a group of capillary 

tubes with different tortuosity values and sizes (van Genuchten, 1980; Burdine, 1953). 

Thus, Equation (11) for a single capillary tube can be extended to represent the 

relationship between water flux, q, and hydraulic gradient 
dx

dH
 in porous media: 

i
dx

dH
Kq

n

1









                                                                          (12) 

where H is the hydraulic head, K is hydraulic conductivity, and i is the unit vector for 

hydraulic gradient. Note that for a single capillary tube, K is proportional to nR
1

1
, rather 

than 2R . (The latter is valid for Newtonian fluids corresponding to n = 1.) The 

relationship between hydraulic conductivity for a capillary tube and its radius R is the 

foundation for studying relative permeability under unsaturated conditions. Equations 

similar to (12) were reported by a number of researchers (e.g., Pascal 1983; Wu and 

Pruess, 1998; Lopez et al., 2003). Most previous studies deal with single-phase fluid flow 

except Wu and Pruess (1998), who did not, however, consider how non-Newtonian 

behavior may affect unsaturated flow properties. As discussed below, the major focus of 

this study is on determining how non-Newtonian behavior impacts the unsaturated 

properties of clay materials.     

    For unsaturated media, capillary pressure Pc can be related to water saturation by the 

well-known Brooks-Corey (1964) relationship: 













d

c
e P

P
S      for dc PP                                                     (13-1) 

1eS                 for dc PP                                                            (13-2) 
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In (13),   is a fitting factor related to pore-size distribution, dP  is the air entry value, and 

eS  is the effective saturation defined by 

rs

r
eS






                                                                               (14) 

where , s , and r  are water content, saturated water content, and residual water 

content, respectively.  

     In the literature, the relative permeability for unsaturated media has often been 

provided by the Burdine (1953) model: 
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                                                           (15) 

where satK  is saturated hydraulic conductivity. In Equation (15), 2
eS  represents tortuosity, 

and 
cP

1
characterizes the size (or radius) of the capillary tube (or pore space) under 

saturation eS . The power value of –2 in the two integrals results from the fact that, for 

Newtonian fluids, hydraulic conductivity for a capillary tube is proportional to the square 

of its radius. Therefore, Equation (15) is valid for Newtonian fluid only, because for a 

non-Newtonian fluid, the hydraulic conductivity of a capillary tube is not proportional to 

the square of the radius. Based on Equation (11), the Burdine (1953) model for a non-

Newtonian fluid needs to be rewritten as: 
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Combining Equations (13) and (16) yields 

)31
1

( 
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c
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P
K                                                                (17) 

and 
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     In deriving Equations (17) and (18), we assumed that pore geometry does not change 

with saturation or capillary pressure. The hydraulic conductivity change is purely a 

function of changes in saturation. In reality, clay swells (or shrinks) with changes in 

saturation. In this case, the relative conductivity is given by 
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           (19) 

The subscript ref refers to the reference case in which measurements are available. For 

mechanically deformed media, it is convenient to define relative hydraulic conductivity 

respective to a reference case. In this case, relative conductivity can be larger than one. 

Also, in (19), we assumed, for simplicity, that pore-size distribution (or parameter ) 

remains unchanged during swelling/shrinkage.  

    Based on the principle of Leverett (1941) scaling, relative changes in pore size can be 

approximately characterized by relative changes in porosity . By definition of air entry 

value dP and using (11), we have: 

refd

dref

P
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,                                                                                       (20) 
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where parameter  >1 accounts for the fact that the porosity ratio may underestimate the 

corresponding size ratio for those well-connected pores that determine the hydraulic 

conductivity. Dixon et al. (1999) showed that  > 2.3 for some saturated clay materials 

within a Darcian-flow regime.     

     Combining (19), (20), and (21), we obtain 
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In the right-hand side of (22), the first and second terms represent conductivity changes 

resulting from changes in capillary pressure and swelling (shrinkage), respectively. The 

second term needs to be determined by measurements or estimated using geomechanical 

simulators. Equations (12), (13), and (22) give the constitutive relationships required for 

modeling unsaturated flow in clay materials. Their validity will be evaluated in the next 

section by examining their consistency with data.   

 

3. Comparisons with experimental observations 

    As previously indicated, non-Darcian flow is a result of non-Newtonian properties of 

pore water in clay. However, experimental studies of non-Newtonian flow in porous 

media are very limited for unsaturated flow conditions. Most recently, Cui et al. (2008) 

reported on measurements of unsaturated hydraulic conductivity for a compacted sand-

bentonite mixture. To the best of our knowledge, this work provided the first reliable data 

set of water flux as a function of hydraulic gradient under unsaturated conditions. 

    The tests of Cui et al. (2008) were conducted under two experimental boundary 

conditions: constant volume and free swelling. In this study, we focus on the data for 

constant-volume conditions only, based on the reasoning that under constant-volume 

conditions and for a given capillary pressure, hydraulic processes and pore structures are 

approximately the same at different locations within the soil sample (Cui et al., 2008). 

Experimental determinations of the flux-gradient relationships required the use of this 

approximation. Cui et al. (2008) used the instantaneous profile method to determine the 

unsaturated hydraulic conductivity for infiltration tests of a vertical sand-bentonite 

column. The sand-bentonite mixture was directly compacted in a metallic cylinder (50 

mm in inner diameter, 250 mm high). The bottom of the test cell was connected to a 

water source, and the upper end to an air source under atmospheric pressure. Under 

transient water-flow conditions, vertical distributions of capillary pressure were directly 

measured as a function of time at several locations along the column. The relationship 

between water content and capillary pressure was independently measured under constant 

volume conditions. This relationship enables them to estimate vertical distributions of 

water content from the capillary-pressure measurements. Based on these vertical 

distributions at different times, and on the mass balance at each location within the soil 
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column, they  estimated the water flux at that location as a function of capillary pressure 

and hydraulic gradient. The details of this instantaneous method can be found in Daniel 

(1982) and Cui et al. (2008). 

    Figure 3 shows estimated water flux (data points) as a function of hydraulic gradient 

under several capillary pressures. Obviously, very strong nonlinear (non-Darcian) 

behavior emerges at all the different capillary pressures, indicating that Darcy’s law is not 

valid for the range of hydraulic gradients under consideration. Based on Figure 8 of Cui 

et al. (2008), the unit of hydraulic gradient in Figure 3 is kPa/m. This seems to support 

the notion that non-Darcian flow behavior becomes more significant under unsaturated 

conditions. In unsaturated materials, pore water exists in water films or resides in 

relatively small pores, and therefore is subject to relatively strong interactions with the 

clay surface, as previously indicated.  

    Figure 3 also matches Equation (12) (solid lines) with data for the six capillary 

pressures. The single value of n = 0.28 is able to fit all the data points reasonably well. In 

general, n can be considered a measure of non-Newtonian behavior that may be 

saturation (or capillary pressure) dependent. Thus, n may also be a function of saturation 

in a general case. It appears that the data of Cui et al. (2008) support the use of a constant 

n for different capillary pressures—but more evaluations are needed before the issue can 

be fully resolved.  

   The solid curve in Figure 4 shows the values for relative hydraulic conductivity defined 

in Equation (19). The properties at capillary pressure of 35 MPa are used as reference 

properties. Thus, *
rK  = 1 in Figure 4 at that capillary pressure. Note that for Darcian 

unsaturated flow in a rigid material, hydraulic conductivity always decreases with 

capillary pressure, which is not the case here. This underscores the importance of the fact 

that conventional unsaturated flow theory and methodology cannot be simply borrowed 

for clay materials. The data presented in Figure 4 are from laboratory measurements 

reported by Cui et al. (2008). The flux and hydraulic gradient data provided by Cui et al. 

(2008)—the data needed to compute relative hydraulic conductivity—are limited to the 

capillary pressure range of the data points given in Figure 4.  

      The observed relationship between hydraulic conductivity and capillary pressure can 

be explained with Equation (22), in which the first and second terms represent 
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conductivity changes resulting from changes in capillary pressure and swelling 

(shrinkage), respectively. For the observed range of capillary pressures, the effects of 

shrinkage (as a result of increasing capillary pressure) may dominate the changes in *
rK . 

To further demonstrate our reasoning, assume that porosity and capillary pressure obey 

the following relationship: 






















 1exp

,cref

c

ref P

P





                                                                  (23) 

where  is a fitting factor. The above equation is based on the consideration that the 

amount of clay swelling seems to be an exponential function of capillary pressure (Pham 

et al., 2007), and that porosity change may be proportional to the amount of swelling (or 

shrinkage) under constant-volume conditions.  

     The solid curve in Figure 4 is calculated using Equations (22) and (23) with n = 0.28 

(obtained from Figure 3),   = 0.21 (obtained from Figure 2 of Cui et al., 2008),  =3.27, 

and  = 1.13, and matches the observed conductivities. Note that *
rK  decreases with 

increasing capillary pressure for small levels of capillary pressure, and then increases 

with increasing capillary pressure for higher levels of capillary pressure. This is because 

for relatively small capillary pressures, the behavior of *
rK  is dominated by the first term 

on the right-hand side of Equation (22); and for relatively large capillary pressures, the 

behavior of *
rK  is dominated by the second term, representing the effects of clay 

shrinkage. Although the definition of hydraulic conductivity in Cui et al. (2008) is 

different from ours, their results show similar behavior to the solid curve in Figure 4. 

However, it is important to emphasize that the solid curve in the figure should be 

considered as an illustrative case, because the derivation of Equation (23) requires some 

untested assumptions. The accurate determination of porosity change under test 

conditions of Cui et al. (2008) needs to be rigorously based on coupled hydro-mechanical 

processes. Nevertheless, comparisons between our theoretical results and data (Figures 3 

and 4) support the usefulness of our approach.    

More experimental studies are needed to further confirm the non-Newtonian behavior 

and evaluate the proposed relationships for the unsaturated flow properties. Development 

of more efficient and applied experimental procedures is desirable for collecting relevant 
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data sets. Along this line, it is useful to note that a commonly used method to estimate 

unsaturated soil properties for Newtonian fluids is the so-called Boltzmann 

transformation method (Bruce and Klute, 1956). It is based on a mathematical 

transformation of the partial differential equation describing unsaturated water flow in a 

horizontal soil column to an ordinary differential equation (ODE). Then water content (or 

saturation) data from the soil column are used to derive the unsaturated properties using 

the ODE. The appendix to this paper extends the method to non-Newtonian fluids, while 

swelling/shrinkage effects are not yet considered. Incorporation of these effects requires 

further study.          

 

4 Concluding remarks 

   Unsaturated flow occurs over a period of time in the engineered barrier and in the near 

field of a clay repository for high-level radioactive waste. Therefore, accurately modeling 

unsaturated flow in clay materials is important for assessing the performance of a 

geological repository in isolating the radioactive waste. The non-Darcian behavior of 

water flow in clay materials has been demonstrated in the literature. While several 

models have been proposed for dealing with non-Darcian behavior for saturated flow 

conditions, a systematic study of modeling unsaturated non-Darcian flow is still lacking. 

Based on the hypothesis that pore water in clay becomes non-Newtonian as a result of 

water-clay interaction, we proposed constitutive relationships for unsaturated flow, 

including a relationship between water flux and hydraulic gradient and those among 

capillary pressure, water saturation, and hydraulic conductivity. An evaluation based on a 

set of laboratory experimental observations supports the usefulness of the proposed 

relationships.  
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Appendix A 

Based on continuity, a flow equation describing the movement of water in a horizontal, 

semi-infinite unsaturated porous rock is given by:  

 

x

q

t
x








                                    (A-1) 

 

where θ is the volumetric moisture content, t is the time since start of test, x is the 

horizontal distance from inlet, and qx  is the water flux given by (12). Inserting (12) into 

(A-1) gives 
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where water diffusivity
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 is the moisture diffusivity. Equation (A-2) can be 

reduced to an ordinary differential equation by incorporating a new Boltzmann 

transformation: 
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Note that for an Newtonian fluid (n=1), the power value in the above equation is –0.5. 

This value has been widely used in the literature of soil physics (Bruce and Klute, 1956). 

Combining (A-2) and (A-3) yields: 
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      To determine parameter n and water diffusivity from the above equation, water 

content data need to be collected from the soil column. In general, water is applied at one 

end of a long horizontal tube of air-dried or partially wet soil, at a small but constant 

pressure, and allowed to move into the soil column for a measured period of time. The 

column must be sufficiently long to be regarded as semi-infinite in length. Parameter n 

may be determined in such a way that the observed water content value is a function of   

only through adjusting the n value in (A-3). Once n is determined, the detailed procedure 

for estimating water diffusivity as a function of water content from measurements is 

available from Bruce and Klute (1956).  
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Figures  

 

 

 

Figure 1. Schematic demonstration of relations between shear stress and stress rate for a 

Newtoniain fluid and three typical non-Newtonian fluids  
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Figure 2. A water element in a capillary tube with radius R. The variable r is the radius 

of a water element within the capillary tube and ranges from zero to R. 
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Figure 3. Comparisons between calculated (solid curves) and estimated (data points) 

water flux (m/s) as a function of hydraulic gradient (kPa/m) for different capillary 

pressures. The calculation is based on Equation (12). Data from Cui et al. (2008). 
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Figure 4. Calculated unsaturated hydraulic conductivity as a function of capillary 

pressure. The data points are determined from Figure 3. The solid curve is calculated 

from Eqs. (22) and (23) as an illustrative case. Unsaturated conductivity is defined in 

Eq. (19) with reference properties given at capillary pressure of 35 MPa.  Data from 

Cui et al. (2008). 
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