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ABSTRACT: Exchange coupling is quantified in lanthanide (Ln) single molecule magnets (SMMs) 

containing a bridging N2
3- radical ligand and between [Cp*2Yb]+ and bipy - in Cp*2Yb(bipy) where Cp* 

is pentamethylcyclopentadienyl and bipy is 2,2’-bipyridyl. In the case of these  lanthanide SMMs, the 

magnitude of exchange coupling between the Ln ion and the bridging N2
3-, 2J, is very similar to the 

barrier to magnetic relaxation, Ueff. A molecular version of the Hubbard model is applied to systems in 

which unpaired electrons on magnetic metal ions have direct overlap with unpaired electrons residing on 

ligands. The Hubbard model explicitly addresses electron correlation, which is essential for 

understanding the magnetic behavior of these complexes. This model is applied quantitatively to 

Cp*2Yb(bipy) to explain its very strong exchange coupling, 2J = -0.11 eV (-920 cm-1). The model is also 

used to explain the presence of strong exchange coupling in Ln SMMs in which the lanthanide spins are 

coupled via bridging N2
3- radical ligands. The results suggest that increasing the magnetic coupling in 

lanthanide clusters could lead to an increase in the blocking temperatures of exchange-coupled 

lanthanide SMMs suggesting routes to the rational design of future lanthanide SMMs. 



Introduction 
 
Single molecule magnets (SMMs), which are isolated molecules that display slow magnetic relaxation, 

have been vigorously pursued as qubits for quantum computers,1,2 molecular spin-valves,3 and as 

interesting subjects for fundamental studies of molecular magnetism.4,5 Perhaps the most important 

property of an SMM is its blocking temperature, below which the SMM displays hysteresis. This 

temperature represents the approximate upper limit for the operating temperature of any SMM-based 

device. A variety of approaches to increase the blocking temperature have been tried including 

increasing the spin of the SMM by incorporating multiple, exchange-coupled metal ions or increasing 

the magnetic anisotropy of the SMM by incorporating lanthanide (Ln) ions. However, using both 

strategies in the same SMM has proven difficult, as exchange coupling involving Ln ions is generally 

weak. In fact, typical Ln SMMs involve isolated Ln ions; for example, [Pc2Tb]- and {[Pc(OEt)8]2Dy}- 

(PcH2 = phthalocyanine) display magnetic hysteresis up to 1.7 K and 4 K, respectively.6,7 A previous 

suggestion3 that the addition of active radicals with unpaired electrons could result in higher blocking 

temperatures is consistent with recent reports for {[L2(thf)Ln]2(µ−η2:η2-N2)}-, 1, (L = N(SiMe3)2, thf = 

tetrahydrofuran), which display hysteresis to 8.3 K, and 14 K for Ln = Dy and Tb (1-Dy and 1-Tb), 

respectively.8,9 In contrast, the best transition metal SMM possesses hysteresis to 4.5 K.10 

 

Single molecule magnetic behavior arises from an energy barrier, Ueff, (usually due to zero field splitting 

in transition metal clusters and to ligand field anisotropy in lanthanide and actinide complexes) that 

inhibits magnetization reversal in an applied field and "freezes" the magnetic state of the system. The 

magnetic relaxation time of an SMM, τ, is related to the energy barrier by an Arrhenius relationship, 

τ = τ0exp(Ueff/kBT). Ideally, this thermal barrier determines the blocking temperature at which the 

hysteresis loop closes. However in most SMMs, lower energy pathways, especially tunneling through 

the barrier,11 dominate relaxation behavior, and the blocking temperature is much lower than expected 

from Ueff.6,12 For example, in the terbium phthalocyanine triple-decker complex Tb2(obPc)3, where obPc 

is the dianion of octabutoxyphthalocyanine, Ueff is comparable to that of 1-Tb, but non-Arrhenius 



relaxation pathways limit the blocking temperature to 1.5 K.13 In contrast, the hysteresis loops of 1-Dy 

and 1-Tb close at temperatures consistent with the measured values of Ueff for these molecules. At the 

blocking temperature, the most important relaxation pathway in 1 appears to be thermally activated 

relaxation due to Ueff. At lower temperatures, other pathways, presumably tunneling pathways, are more 

important, and 1-Dy and 1-Tb undergo relaxation faster than predicted by the Arrhenius relationship.8 

 

In 1, the high blocking temperature is related to antiferromagnetic exchange coupling between each 

trivalent Ln ion and the bridging dinitrogen radical, which gives rise to a molecular ferrimagnet in 

which the moments of the Ln ions are aligned with each other and anti-aligned with the moment of the 

bridging N2
3- radical. The role of the bridging dinitrogen radical may be inferred by the absence of SMM 

properties in 2, in which the closed-shell dinitrogen ligand forms a bridge between the two Ln fragments 

(see Figure 1).9 While strong exchange coupling between the magnetic ions appears necessary to 

produce high blocking temperatures in these SMMs, strong exchange coupling alone cannot guarantee 

high blocking temperatures since other relaxation pathways could decrease the blocking temperature. 

Nevertheless, understanding the origin of the strong exchange coupling between Ln3+ and N2
3- is a 

crucial first step towards rationally designing Ln SMMs with stronger exchange coupling. 
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Figure 1. Molecules discussed in this paper. Cp* is pentamethylcyclopentadienyl, bipy is 2,2’-

bipyridine, L is N(SiMe3)2, and thf is tetrahydrofuran. In all cases, the lanthanide ion is trivalent. 

  



Ideally, one would like to examine strong exchange in 1; however, their complex magnetic behavior 

makes separating the effects of magnetic exchange from other effects difficult. Fortunately, similarly 

strong magnetic-coupling occurs in other Ln complexes. In particular, Cp*2Yb(bipy), 3, where Cp* is 

pentamethylcyclopentadienyl and bipy is 2,2’-bipyridine, displays, as does 1, strong exchange coupling 

between a ligand-based radical and a trivalent Ln center.14-17  

 

Previous studies have shown that 3 is multiconfigurational.15,16 The main configuration, ⏐f13,bipy -〉, 

consists of a [Cp*2Yb]+
 fragment coordinated by a bipy radical anion (bipy -). The minor configuration, 

⏐f14,bipy〉, consists of a neutral Cp*2Yb coordinated by a neutral bipy ligand. Overall, the wave function 

may be written as Ψ = c1 ⏐f13,bipy -〉 + c2⏐f14,bipy〉, where c1 and c2 are coefficients of the two 

configurations and c1
2 = 0.83.16 Computational modeling showed that the multiconfigurational ground 

state is due to mixing of low-lying excited states into the ground state.15 The calculated stabilization of 

the singlet state is 0.28 eV, which suggests that exchange coupling should be very large in this system 

(the magnitude of the exchange coupling is equivalent to the stabilization of the singlet state in this 

case). However, quantifying exchange coupling between bipy - and the Yb3+ center has proven 

problematic due to the difficulty in modeling the magnetic susceptibility of exchange-coupled systems 

involving Ln ions.18 While it is possible to model the variable temperature magnetic susceptibility of 

two identical, exchange-coupled Ln ions,19 no analogous method currently exists for modeling the 

magnetic susceptibility of a Ln ion coupled to a non-identical spin such as an organic radical. However, 

the exchange coupling between Yb3+ and bipy - can be quantified from the temperature-independent 

paramagnetism (TIP) of the open-shell singlet ground state by extending the approach developed by 

Griffith20 to metal ions with unquenched orbital angular momentum. 

 

The strong exchange coupling in 3 may be quantitatively explained using a Hubbard-molecule model 

(HMM),21,22 which is the well-known Hubbard model23 applied to a single molecule. The HMM is 

bonding model that explicitly includes electron correlation, and can be thought of as an extension of 



Hückel theory with an additional parameter for the electron pairing energy.24 As a result, the HMM 

includes the effect of configuration interaction on the energies and wave functions of the electronic 

states of the molecule, which is essential to understand the behavior of 3 as demonstrated by the 

previous computational study.15 The HMM has been used previously to model π-bonding in ethylene24,25 

and to quantify exchange coupling in donor-acceptor systems.26 A similar configuration interaction 

model has been used as part of a larger Hamiltonian to understand covalency in Cp3Yb.27 In addition, 

Hubbard developed a related model for covalency in transition metal complexes, where the main 

difference is that Hubbard’s transition metal model addresses interactions with closed shell ligands 

while the HMM addresses interactions with ligands containing unpaired electrons.28  

 

In this paper, exchange coupling in 1 and 3 is quantified by extending the spin-only Heisenberg, Dirac, 

van Vleck (HDVV) Hamiltonian to metal ions with unquenched orbital angular momentum. In 1, the 

exchange coupling is shown to be very similar to Ueff. The very strong exchange coupling in 3 is 

explained quantitatively using the HMM. The HMM is also used to explain why the exchange coupling 

in 1 and 3 is much larger than in other lanthanide complexes with radical-based ligands. 

 

Results and discussion 

Exchange coupling in Lanthanide Single Molecule Magnets (1) 

The previous studies by Rinehart, et al., clearly demonstrate that exchange coupling is necessary for 

SMM behavior of 1;8,9 therefore, estimating the magnitude of this exchange coupling would be useful to 

better understand its effect on the magnetic relaxation of these molecules. Only the value for the Gd-

based complex was determined in Ref. 9 using a Heisenberg-Dirac-van Vleck (HDVV) Hamiltonian of 

the form H = -2J(S1+S2 Sr, where J is the effective exchange constant, S1 and S2 are the spin momenta 

of the two rare-earth ions, and Sr is the spin of the radical (an intermolecular interaction was also taken 

into account, but it is extremely weak and we will neglect it here).  

 



In principle, the same Hamiltonian describes the exchange interaction in 1 for other rare earths; 

however, the situation is complicated by the presence of the orbital moment, L, along with the spin, so 

that a significant influence of the ligand field (LF) potential is expected, which ultimately results in 

highly anisotropic coupling between the total angular momenta of the lanthanide ions and the spin of the 

radical. Fortunately, important conclusions regarding the exchange interaction can be inferred by 

studying the susceptibility curve measured for 2 (the variant of 1 with a magnetically inactive N2
2- 

radical and negligible exchange between the two Dy ions). In particular, the magnetic moments of 2 are 

very close to the free-ion values above 150 K, which implies that the energy levels corresponding to the 

LF-split ground multiplet are all thermally populated above this temperature. We can therefore safely 

assume that the crystal-field effect on the susceptibility of 1 will also be weak in this temperature range 

and that it can be accounted for by a scaling factor equal to the ratio between the measured susceptibility 

for 2 and its theoretical value for two uncoupled free ions (in other words, by varying the effective 

Landé g factor, geff). We then calculate the susceptibility curve by numerical diagonalization of the 

HDVV Hamiltonian within the whole subspace defined by the ground multiplets of the two Ln ions 

(e.g., the 6H15/2 multiplet for Dy) and the Srad = 1/2 spin moment of the radical, using the projection S = 

(geff-1)JJ  to give H = -2J(geff-1)(JJ1+JJ2 Sr, where JJ1 and JJ2 are the total angular momenta of the two 

rare earth ions (JJ  = L + S).29,30 The best fits to the experimental data published in Refs. 8 and 9 are 

shown in Figure 2, and were obtained using the parameters given in Table 1. The values obtained for geff 

do not significantly deviate from the Landé g-values, gJ, for the free trivalent rare earth ions. 

 



 
Figure 2. Experimental (dots) and calculated (lines) magnetic susceptibility for 1. All experimental data 
were taken from Refs. 8 and 9. 
  
Table 1. The values of geff and 2J obtained from the fits presented in Figure 2. The Landé g-values and 
the barrier for magnetic relaxation Ueff from Refs. 9 and 8 are included for comparison. 

Ln geff 2J (cm-1) gJ Ueff (cm-1) 
Er 1.18 21 1.20 36 
Ho 1.25 83 1.25 73 
Dy 1.28 102 1.33 123 
Tb 1.45 (108)a 1.50 227 
Gd 2.00b 54 2.00b – 

a) Modeled susceptibility does not agree with the data for Tb as discussed in the text. 
b) Fixed at g=2.00 
 
 
As shown in Figure 2, the calculated susceptibility is in good agreement with the experimental values 

for 1-Er, 1-Ho, and 1-Dy, and Table 1 shows that the values of 2J and Ueff are similar for these 

compounds. Since 2J represents the energy gap between the two lowest-lying spin states, this result 

suggests that the magnetic relaxation pathway in these complexes may be due to loss of the exchange 

interaction. Hence, the strength of the coupling between the Ln and the bridging N2
3- may determine the 

magnetic relaxation rate, which ultimately determines the blocking temperature in these complexes. On 

the other hand, we were unable to obtain a satisfactory fit for 1 with M = Tb (1-Tb) with our HDVV 

calculations, and the susceptibility curves for 2-Tb show a significant influence from the ligand-field 

potential, which is not particularly surprising since Tb complexes often display large energy gaps 

between states (e.g., first excited state of [Pc2Tb]- is roughly 400 cm-1 above the ground state).7 For this 



reason, the value of 2J for 1-Tb is not reliable and cannot be directly compared to Ueff. It is also possible 

that the high barrier in 1-Tb (227 cm-1) is due at least in part to other mechanisms not considered in the 

present study, such as Orbach transitions to higher-lying ligand-field states.18,31 

 

These results suggest that the Ueff in 1 may be due to exchange coupling between the lanthanide ions and 

the bridging N2
3- radical, but these results do not explain why other relaxation pathways in 1 appear to 

be suppressed. Previous investigations have observed that exchange coupling can enhance SMM 

behavior in Ln complexes.12,32-36 

 

Exchange coupling in Cp*2Yb(bipy) (3) 

Since exchange coupling in 1 is intimately related to its SMM behavior, understanding why exchange 

coupling in 1 is so much stronger than typically encountered in lanthanide systems would be useful. 

However, the SMM behavior of 1 complicates this investigation; therefore, the origin of very strong 

exchange coupling between a Ln-ion and an organic radical was studied in a different system, 3, with 

the goal of applying the information gained about 3 to explain the strong exchange coupling in 1. As 

noted in the introduction, 3 has been extensively studied and shown to have a singlet ground state with a 

large energy gap to the excited triplet state.15 At low temperatures, 3 is best described as a temperature 

independent paramagnet with χTIP = 0.0016(2) emu where the error given in parentheses reflects the 

difficulty in determining the value of χTIP in the presence of the “Curie tail” (paramagnetic contribution 

due to the presence of impurities). The temperature independent magnetism (TIP) of 3 results from the 

unquenched orbital angular momentum of the electron on the Yb(III) center. Consequently, 3 is quite 

paramagnetic: the TIP is approximately 2 Bohr magneton at room temperature.  

 

If spin-orbit coupling was insignificant in 3, 2J could be determined from χTIP using eqn 1,20 where c1 is 

the coefficient for the ⏐f13,bipy -〉 configuration that gives rise to the TIP, N is Avogadro’s number, β is 

the Bohr magneton, gi are the g-values for Yb3+ in 3, and g - is the g-value of bipy -.  
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Equation 1 is appropriate for the spin-only Heisenberg, Dirac, van Vleck (HDVV) spin Hamiltonian, 

H
 
=-2JSYb3+ S -. Since 3 posses unquenched orbital angular momentum, eqn 1 is not directly 

applicable but can be used once the presence of unquenched orbital angular momentum is taken into 

account. To accomplish this, the spin of Yb3+ is first projected onto its total angular momentum, JJYb3+, as 

was done for 1, using SYb3+ = (gJ-1)JJYb3+, which gives H = -(gJ-1)2JJJYb3+ S -.29,30 Due to the 

unquenched orbital angular momentum of 3, the coupling between JJYb3+ and S - is highly anisotropic.  

For the ground Kramer’s doublet of Yb3+ in 3, gJJJYb3+ = gYb3+ ͠͠SYb3+ where gYb3+ and ͠͠SYb3+ are the g-tensor 

and effective spin for the ground Kramer’s doublet, respectively, and the Hamiltonian may be written as 

H =-2J[(gJ-1)/gJ](gYb3+ ͠͠SYb3+ S -.30 In this way, the anisotropy in the exchange may be expressed in 

terms of measurable quantities, the EPR g-values of the ground Kramers’s doublet of the Yb3+ fragment. 

The corresponding relationship between χTIP and J is given by eqn 2. 

!TIP " c1
2 N#2

12J

gJ(gi $gbipy $ )2

gi 1$gJ( )i=x,y,z
%       (2) 

Although the g-values for Yb3+ spins in 3 cannot be readily determined, those of the closely related 

complex [Cp*2Yb(bipy)]+I- (3+I-) are 7.050, 1.731, and 1.165.19 Since the structures of 3+I- and 3 are 

almost identical, the complexes must have similar ligand fields, and the g-values of 3+I- should be good 

estimates for those of 3. In this way, the information about the ligand field and unquenched orbital 

angular momentum of 3 needed for eqn 2 is obtained from its diamagnetic substitute, 3+I-.19,37 Using χTIP 

and the g-values of 3+I–, eqn 2 yields 2J = -0.11(2) eV or -920(180) cm-1. This surprisingly large value is 

consistent with the large value predicted computationally.15 

 



Hubbard-molecule model 

The exchange coupling in 3 is approximately three orders of magnitude larger than exchange coupling 

in typical lanthanide systems as well as an order of magnitude greater than in 1. The previous 

computational study clearly shows that both the strong exchange coupling in 3 and its 

multiconfigurational ground state are related to the mixing of low-lying singlet states into the ground 

state. The strong exchange coupling in 3 may be quantitatively explained using a Hubbard-molecule 

model (HMM).21,22 The HMM includes two sites, two electrons and two parameters: t and U. The 

transfer integral, t, determines how readily a single electron may move between the two sites and is the 

stabilization of the bonding orbital due to the overlap of the orbitals containing the unpaired electrons (t 

is equivalent to -β in the Hückel model for π-electrons).23 Electron repulsion, U, is the energy needed to 

pair the electrons on a single site and is closely related to charge transfer within the molecule.  

 

The HMM allows t and U to be determined spectroscopically, so that the extent of exchange coupling 

predicted by the HMM may be compared with that determined from the TIP of 3. In the case of 3, the 

ligand-field potential isolates a doublet ground state ( ͠͠SYb3+ = 1/2) for the 4f13 configuration of Yb3+, and 

the HMM basis set includes the six states shown in Figure 3. Following the recent work on covalency in 

Cp3Yb,27 states Ψ1-Ψ4 describe ionic bonding in which the charges are localized on Cp*2Yb+
 and bipy -. 

State Ψ5 describes covalent bonding in which an electron on bipy - has been shared with Cp*2Yb+. State 

Ψ6 describes covalent bonding where an electron on Cp*2Yb+
 has been shared with the bipy ; however, 

Ψ6 is at very high energy because it involves a tetravalent Yb ion, so Ψ6 will not be used below. 

Likewise, the Yb3+ 5d-orbitals are much higher in energy and do not contribute significantly to the 

behavior of 1 apart from hybridizing with the 4f-orbitals to improve their overlap with the ligand 

orbitals (the single, half-occupied orbital labeled “4f” in Figure 3 is actually a 4f-5d hybrid orbital). In 

the absence of any interaction between the spin on the Yb3+ ion and the bipy - radical (i.e., when t = 0), 

states Ψ1 through Ψ4 are degenerate and Ψ5 is greater in energy by U, the energy needed to pair the 

electrons on the Yb center. The Hamiltonian for the system in which the Yb3+ and bipy - do not interact, 



H0, can be written as H0= HYb3+ + H -, where HYb3+ and H - are the Hamiltonians for the 

unpaired electrons on the isolated Yb3+ and bipy - fragments, respectively.  
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Figure 3. Electronic states that form the basis for the Hubbard-molecule model for Cp*2Yb(bipy). The 

4f-orbital corresponds to the single half-occupied 4f-orbital of Yb3+, and the π* is the lowest lying 

antibonding orbital of bipy ligand, which is also half-occupied.  
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Figure 4. Energy levels in Hubbard molecule model for Cp*2Yb(bipy). States on the left have no 

interaction between the Yb3+ and bipy - spins; states on the right result from including that interaction. 

  

Allowing the spins on the bipy radical and Yb3+ center to interact produces the perturbed Hamiltonian 

H1= H0+h1 where h1 contains the interactions between the Yb3+ and bipy - fragments (the Hamiltonian 

for the HMM is given in the SI). These interactions allow the mixing of Ψ5
 into Ψ1-Ψ4, which lifts the 

degeneracy of states Ψ1-Ψ4 and destabilizes Ψ5 as illustrated in Figure 4. Perturbation theory allows 2J 



to be expressed in terms of t and U: 2J = ΔE = -2t2/U, where t = 〈ΨYb3+⏐h1⏐Ψ -〉 and 

U = 〈Ψ1⏐H0⏐Ψ1〉 -  〈Ψ5⏐H0⏐Ψ5〉. To first order, the resulting singlet, ground-state wave function, ΨS, 

is given in eqn 3.  

!S = c 1
2( ) !1 "!2( )+ 2 t

U( )!5#
$%

&
'(
, 1
c
= 1+ 2 t

U( )2    (3) 

As in the computational model, the ground state is multiconfigurational and can be described as a 

largely ionic bond, where c is the ionic character in the wave function, which also contains small 

amount of covalent character due to Ψ5. In this case, the exchange coupling, 2J, is also the strength of 

the covalent interaction, ΔE. The relationship between the strength of the exchange coupling and the 

HMM parameters t and U is straightforward: increasing t (by increasing the overlap between the orbitals 

containing the unpaired electrons, for example) or decreasing U (by making the radical more strongly 

reducing, for example) strengthens the exchange coupling. 

 

Analysis of exchange coupling in Cp*2Yb(bipy) using the HMM 

The HMM decouples the Hamiltonian that gives rise to the electronic structures of [Cp*2Yb]+ and bipy -, 

H0, from the perturbation, h1, that contains the interactions between the spins on the two fragments. 

This decoupling allows the interaction between the spins on Cp*2Yb+ and bipy - to be evaluated without 

knowing the details of the electronic structures of either fragment. In practice, this means that the 

interactions between the spins can be evaluated without knowing the crystal field parameters for 3, 

which is important since its low symmetry makes evaluating the crystal field parameters extremely 

difficult. Using this approach allows t and U to be determined from previous spectroscopic studies of 3.  

 

As noted in the introduction, the wave function of 3 may be written as Ψ = c1 ⏐f13,bipy -〉 + c2⏐f14,bipy〉, 

where c1 and c2 are coefficients of the two configurations. X-ray absorption near-edge spectroscopy 

shows that 3 is multiconfigurational with c1
2 equal to 0.83(3).16 The absorption spectra of 3 and related 



complexes have been extensively studied, and a low-lying transition at 4750(250) cm-1 has been 

assigned as a ligand-to-metal charge transfer band (ELMCT).38 Using these values of c1
2 and ELMCT, t and U 

are 0.13(1) eV and 0.42(4) eV, respectively, since c1
2 = c2 in eqn 3, and ELMCT = U + 4J = U+4(t/U)2 (see 

Figure 4). The resulting value of 2J is -0.09(1) eV or -700(90) cm-1, which is in good agreement with the 

value of -0.11(2) eV determined from the susceptibility of 3. 

 

The value of t/U determined using perturbation theory is large, 0.32(1), which calls into question the 

validity of the perturbative solution. Therefore, the HMM was also solved exactly; the ground state, ΨS, 

is given in eqn 4, and ΔE is given in eqn 5.  
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!E = U" U2+8t2
2        (5) 

The values of t, U, and 2J may be determined numerically to give t = 0.16(2) eV, U = 0.39(2) eV, and 

2J = -0.10(2) eV, which are similar to the perturbative solution but in better agreement with the value 

determined from the TIP of 3. While the exact solution seems more accurate, the perturbative solution 

allows a more intuitive understanding of the relationship between t and U and 2J. 

 

The value of 2J predicted by the HMM is in good agreement with that determined experimentally. More 

importantly, the HMM underscores the intimate relationship between the strong exchange coupling and 

the multiconfigurational behavior of 3 and is illustrated in a simple manner. In 3, configuration 

interaction is strong, due largely to the small value of U.  This interaction results in substantial mixing 

of covalent Ψ5 into the otherwise ionic bond between [Cp*2Yb]+ and bipy -. The strength of the covalent 

interaction is 2J.  



 

Implication of the HMM for exchange coupling in lanthanide single molecule magnets 

The HMM can also be used to understand the strong exchange coupling between the dinitrogen radical, 

N2
3-, and each Ln center in 1. The primary reason that exchange coupling in 1 is so much larger than in 2 

is that coupling between N2
3- radical and the Ln centers in 1 is due to the direct overlap of the orbitals 

containing the unpaired electrons, while coupling between the two Ln centers bridged by closed-shell 

N2
2- in 2 is due to superexchange (i.e., there is no direct overlap of the orbitals containing unpaired 

spins). This difference is best illustrated by noting that exchange coupling in 1-Gd is approximately 50 

times stronger than in 2-Gd. This effect has been observed previously for transition metal ions bridged 

by chloranilate dianion (CA2-) and CA -, where the interaction with the bridging radical ligand was 

much stronger than superexchange via the closed shell CA2- ligand.39,40 A recent DFT study of 1-Gd 

reaches similar conclusions about the role of the bridging radical in this complex.41 

 

 While direct overlap between the Ln orbitals and the orbitals containing the unpaired electron is 

important, it is not sufficient to explain the strong exchange coupling in 1. Direct overlap is also 

possible in Ln complexes containing stable radicals such as nitroxyl, yet these complexes display much 

weaker exchange coupling.42-47 The HMM clearly explains why exchange coupling in 1 and 3 is strong 

while exchange coupling between Ln centers and ligands containing stable radicals such nitroxyl 

radicals is much weaker.42-47 Trivalent lanthanide ions have large, negative reduction potentials, so 

strongly reducing ligands with similarly large, negative reductions potentials are needed to minimize U. 

Both N2
3 and bipy - are strongly reducing, so U should be relatively small in 1 and 3. In complexes with 

stable radical ligands, U will be much larger because these radicals are not strongly reducing. 

 

The HMM not only explains the strong exchange coupling in 1; it also illustrates a subtler but equally 

interesting effect. As shown in Table 1, the exchange coupling of 1-Dy is roughly twice that of 1-Gd. 

While this may seem counterintuitive (Gd has a larger pure-spin moment than Dy, and the 4f electrons 



have a larger radial extent in 1-Gd relative to 1-Dy due of the Ln contraction), an obvious explanation 

can be found within the HMM: Dy2+ is more stable than Gd2+, so U must be smaller in 1-Dy than in 1-

Gd, and N2
3- is more effective in creating exchange pathways in Dy than in Gd complexes.  

  

Conclusion 

The strong exchange coupling observed between lanthanides and strongly reducing radical ligands in 1 

and 3 has been quantified. The similarity of the value of 2J for 1-Dy, 1-Ho, and 1-Er to their thermal 

relaxation barrier, Ueff, suggests that the exchange coupling in 1 is an important factor in determining the 

behavior of these complexes, including the blocking temperature. The exchange coupling in both 1 and 

3 is very large, and can be explained using a HMM. For 3, the good correspondence between the level 

scheme derived from spectroscopic data and that determined using magnetic susceptibility shows that 

this model can accurately describe the singlet-triplet gap in lanthanide complexes displaying strong 

exchange coupling. The HMM illustrates in a simple manner how configuration interaction introduces 

covalency into an otherwise ionic bond through strong electron correlation. The HMM expresses the 

strength of this covalent interaction, 2J, in terms of t and U, which can be readily determined 

spectroscopically. 

 

The HMM suggests two approaches to maximize exchange coupling in Ln systems. Matching the redox 

properties of the radical and the Ln can minimize U. Due to the large, negative reduction potentials of 

the Ln3+ ions, strongly reducing radical ligands should lower the value of U, especially when coupled to 

lanthanides that have accessible divalent states (Nd, Eu, Sm, Dy, Tm, and Yb). Likewise, strongly 

oxidizing ligands may lower the value of U for lanthanides that have accessible tetravalent states (Ce, 

Pr, and Tb). In addition, increasing the overlap between the radical ligand and the metal ion can increase 

t, which might be accomplished through the use of actinide ions, where the radial extent of the 5f-

orbitals is greater than the radial extent of the Ln 4f-orbitals. In any case, the exchange coupling found 

in 3, 920 cm-1, shows that strong magnetic exchange is possible for Ln ions and that the coupled state 



may persist to relatively high temperatures. In comparison, the coupling in 1-Dy is approximately an 

order of magnitude weaker than in 3, which suggests that the exchange coupling in Ln-cluster SMMs 

can be increased substantially. 
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Exchange coupling has been quantified in lanthanide complexes including lanthanide single molecule 
magnets and Cp*2Yb(bipy) and modeled using a Hubbard molecule model. 
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