
Combining Analysis of Random Elastic Polycrystals with

Poroelasticity for Granular Composites having Porous Grains and

Fluid-Filled Pores

James G. Berryman1, ∗

1University of California, Lawrence Berkeley National Laboratory,

One Cyclotron Road MS74R316C, Berkeley, CA 94720, USA

Abstract

Analysis of random polycrystals has typically been applied to solid grains of anisotropic elastic

materials. Poroelastic analysis has typically been applied to otherwise isotropic systems with

pores having a variety of shapes and filled with fluids. Present effort is focused on combining these

two types of geomechanical analyses by treating anisotropic poroelastic grains jumbled together

to form an overall polycrystalline poroelastic material. This problem is approximately twice as

difficult to solve as the typical elastic polycrystal problem because the polycrystal analysis must

be carried through twice: once for the drained (pore-fluid free to escape) constants, and again for

the undrained (pore-fluid trapped) poroelastic constants.
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1. Introduction

Poroelastic analysis [1–7] considers the range of responses possible in fluid-saturated

porous earth materials when mechanical, seismic, acoustical, ultrasonic or other types of

applied stresses are acting on such systems. The inherent symmetries of pertinent poroelastic

systems are often transversely isotropic if the entire sample or region to be studied is layered;

or they could be more complicated due to various geological processes, in which case one of

the most general cases often considered for analysis purposes could be that of orthotropic

symmetry [7].

While the well-known Voigt [8] and Reuss [9] bounds, and the Voigt-Reuss-Hill [10] elas-

tic constant estimators for random polycrystals are all easily calculated once the elastic

constants of anisotropic crystals are known, the Hashin-Shtrikman bounds [11] and related

self-consistent [12] estimators for the same constants are comparatively more difficult to

compute. Some recent work [13,14] has shown how to simplify these harder to compute

estimators to some extent. The present discussion gives an overview with the main new

point being to show how this extra work does provide added value, since — in particular —

the well-known Voigt-Reuss-Hill estimators often do not fall within the Hashin-Shtrikman

bounds, but the self-consistent estimators (for good reasons [15]) have always been found to

do so.

Estimators termed “self-consistent” can take a variety of forms, and not all of these forms

are equivalent or equally valid. In particular, Hill’s version of self-consistency is not the same

as the ones that are based on physical arguments and scatterng theory such as the ones that

are sometimes called the “coherent potential approximation,” including Soven [16], Taylor

[17], Gubernatis and Krumhansl [18], Berryman [19], and Olsen and Avellaneda [20]. This

class of approximations is one considered specifically by Willis [15], and is one that seems

to give reliable results – by which statement we mean to imply in part that the results have

been found to be consistent with rigorous bounds. A related class of approximations, also

called “self-consistent,” is discussed by Kanaun and Levin [21].

Earlier work on Hashin-Shtrikman bounds or on self-consistent estimators has concen-

trated mostly on one or the other of these approaches, without making an effort to compare,

contrast, and/or mutually validate them. Some recent work of the author [13,14] has ad-

dressed some of these issues, including the orthorhombic case that will be the main emphasis

2



here.

In outline, the paper first introduces the poroelastic analysis and then the polycrystal

problem. Section 2 treats the poroelastic analysis. Sections 3 and 4 emphasize the drained

(fluid freely flowing) and undrained (trapped fluid) constants. Section 5 then introduces the

orthotropic polycrystal problem. Section 6 presents the mathematical formulation needed

to analyze the bounds and estimators for the polycrystal problems. Section 7 presents

an overview of the polycrystal results including results for seven examples, and also some

comparisons among both the rigorous and the approximate methods. Section 8 then makes

use of the self-consistent polycrystal results by treating these bulk and shear modulus values

as effective grain constants. Using these results, it is straightforward to estimate drained

constants for specific materials when some assumption is made about shapes and density of

cracks within these average grains. Then, it is also possible to estimate undrained constants.

Section 9 gives an overview of the various results obtained here, and finally summarizes our

conclusions.

2. Analysis of Anisotropic Poroelastic Grains

Consider that each poroelastic grain is anisotropic due to some nonrandom alignment of

the solid constituents and/or to the presence of oriented pores or fractures. We consider the

orthorhombic anisotropic version of the poroelastic equations:
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The eii (no summation over repeated indices) are strains in the i = 1, 2, 3 directions. The

σii are the corresponding stresses. The fluid pressure is pf . The increment of fluid content is

ζ , which (like the strains) is dimensionless. The drained (fluid is not trapped) compliances

are Sd
ij ≡ Sij. The drained Reuss average bulk modulus [9] is defined via

1

Kd
R

≡

∑

ij=1,2,3

Sd
ij , (2)

a quantity which is what one commonly takes to be the definition of the bulk modulus

of such a simple (non-heterogeneous) anisotropic system. The corresponding undrained
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compliances will be symbolized by Su
ij. For the Reuss average undrained bulk modulus Ku

R,

we have drained compliances replaced by undrained compliances in a formula otherwise

identical in form to (2). Off-diagonal coefficients βi = Si1 + Si2 + Si3 − 1/3Kg
R, where Kg

R

is again the Reuss average modulus of the grains, i.e., simply replace d’s with g’s in (2) to

determine Kg
R. The alternative Voigt [8] average (also see Hill [10]) of the stiffnesses will

play no role in this discussion. And, finally, coefficient γ =
∑

i=1−3 βi/B in (1), where B is

the second Skempton [2] coefficient, which will be defined shortly.

The shear terms due to twisting motions (i.e., strains e23, e31, e12 and stresses σ23, σ31,

σ12) are excluded from this part of the presention because they typically do not couple

to the modes of interest for anisotropic systems having orthotropic symmetry, or to more

symmetric systems such as those having transversely isotropic or isotropic symmetry.

Summing the off-diagonal coefficients βi, we find

β1 + β2 + β3 =
1

Kd
R

−
1

Kg
R

=
αR

Kd
R

, (3)

where we introduce (similar to the isotropic case) a Reuss effective stress coefficient: αR ≡

1 − Kd
R/Kg

R. Furthermore, we have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(

1

Kf

−
1

Kg
R

)

, (4)

since a rigorous definition in this notation by Berryman [7] for the Skempton [2] B coefficient

is given by

B ≡
1 − Kd

R/Ku
R

1 − Kd
R/Kg

R

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Kg

R)
. (5)

Another related formula that will prove very useful to us later is:

Ku
R =

Kd
R

1 − αRB
, (6)

for undrained modulus.

More general versions [4] of the B definition include another bulk modulus for pore

response that differs from the grain response if the medium consists of a more heterogeneous

collection of grains and/or pores, not being included within our current scope. (But see

Brown and Korringa [4] for a thorough discussion of this point. We will also return briefly

to this issue in the final technical section of the paper.) With this one caveat, all these

formulas presented are rigorous statements based on anisotropic analysis. Appearances of

Reuss average quantities Kd
R and αR are rigorous statements, not approximations (except
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for already noted limitations). The specific choices of notation made will also help us to

emphasize the similarity between rigorous anisotropic and isotropic formulas, such as those

of Gassmann [1].

3. Off-Diagonal Poroelastic Coefficients βi

Results follow for the off-diagonal βi coefficients. Then, a general proof of their correctness

is presented. The coefficients βi are determined by

βi = Sd
i1 + Sd

i2 + Sd
i3 −

1

3Kg
R

, (7)

where Kg
R is the Reuss average of the grain modulus. Equation (7) holds for homogeneous

grains, such that Kg
R = Kg. However, when the grains themselves are anisotropic, we also

need to allow for this possibility by defining three directional grain bulk moduli determined

using:
1

3K
g

i

≡ Sg
i1 + Sg

i2 + Sg
i3 = Sg

1i + Sg
2i + Sg

3i, (8)

for i = 1, 2, 3. The second equality follows from symmetry of the compliance matrix. We

call these quantities in (8) the partial grain-compliance sums, and the K
g

i are pertinent

directional grain bulk moduli. Then, the formula in (7) may be replaced by

βi = Sd
i1 + Sd

i2 + Sd
i3 −

1

3K
g

i

. (9)

The preceding results are for perfectly aligned grains. If the grains are instead perfectly

randomly oriented, then it is clear that the formulas in (7) hold as before, but now the

definition of the Reuss average grain bulk modulus Kg
R must be reformulated in analogy to

(2).

All of these statements about the βi’s are easily proven by considering a particular com-

bination of the applied stresses, such that σ11 = σ22 = σ33 = −pc = −pf . Then, from (1),

we have:

−eii =
(

Sd
i1 + Sd

i2 + Sd
i3

)

pc + βi(−pf )

= (Sg
i1 + Sg

i2 + Sg
i3) pf ≡

pf

3K
g
i

, (10)

in the most general of the cases to be discussed. This result holds true for each value of

i = 1, 2, 3. This statement about the strain eii (no sum over i) would always hold in the

situation considered, as it must be the same if these anisotropic (or inhomogeneous) grains
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are immersed in fluid, while measurements are taken of strains observed in each of the three

directions i = 1, 2, 3, during variations of this uniformly applied pressure pf . This argument

is analogous to ones given by Biot and Willis [3] for isotropic, homogeneous examples.

The relationship of coefficient γ to the other coefficients is easily established because the

main issue involves determining the role of the various other constants contained in the

definition of Skempton’s coefficient [2] B. Again, from (1), we find that

−ζ = 0 = − (β1 + β2 + β3) σc − γpf , (11)

for undrained boundary conditions. We find that

pf

pc

≡ B =
β1 + β2 + β3

γ
, (12)

where pc = −σc is the external confining pressure. Thus, the scalar coefficient γ is determined

uniquely, and given by

γ =
β1 + β2 + β3

B
=

αR/Kd
R

B
= αR/Kd

R + φ

(

1

Kf

−
1

Kg
R

)

. (13)

This formula also provides an alternative (but nevertheless equivalent) definition of Skemp-

ton’s second coefficient:

B =
αR

γKd
R

, (14)

although this special result is limited to systems having homogeneous grains.

4. Undrained Compliance Matrix Su
ij

The undrained compliance matrix Su
ij can be determined easily now. A general condition

for undrained behavior is given by:

−ζ = 0 = −(β1σ11 + β2σ22 + β3σ33) − γpf , (15)

which relates the undrained pf to all the values of the applied external stresses σ11, σ22, and

σ33. Then, (1) is replaced by
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where pf = −(β1σ11 + β2σ22 + β3σ33)/γ from (15). Rewriting this expression in its most

intuitive form gives:
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, (17)

where

Su
ij = Sd

ij −
βiβj

γ
. (18)

To distinguish drained (d) and undrained (u) compliances, we have added superscripts ac-

cordingly. Compliances without superscripts are always assumed to be drained, so Sij = Sd
ij.

5. Analysis of Random Polycrystals Composed of Orthotropic Elastic Meterials

Now we briefly review random polycrystal analysis. We use the common convention of

reducing elastic tensors to 6 × 6 matrices using the Voigt prescription:
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. (19)

Again, the σij ’s are the stresses, and the ǫij ’s are the strains, for i, j = 1, 2, 3, corresponding

respectively to spatial axes x, y, z. Compliances are symmetric, so S21 = S12, etc. And we

consider orthotropic symmetry, which is not the most general case, but one case frequently

treated in practice. The elastic compliances S44, S55, S66 are those for the twisting shear

strains: ǫ23, ǫ13, ǫ12, and their related stresses. For isotropic elastic materials, the stiffness

(inverse of compliance) moduli satisfy C11 = C22 = C33 = λ+2µ, C44 = C55 = C66 = µ, and

C12 = C13 = C23 = λ, where λ and µ are the two Lamé constants, and the isotropic bulk

and shear moduli are given (but only in the isotropic case) by K = λ + 2µ/3 and G = µ,

respectively.

It is well-understood that, for such orthorhombic media, there are typically only three

simple eigenvectors and eigenvalues, and these are the ones associated again with the twisting
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shear modes and the compliances, namely S44, S55, and S66, corresponding to rotations about

spatial axes x, y, z, respectively. There are also three eigenmodes associated with the 3 × 3

submatrix in the upper lefthand corner of the full elastic matrix. However, these modes are

not related in any simple way either to pure compression/extension or to pure shear modes.

It follows that our analysis of effective moduli such as effective bulk and shear modulus of

polycrystals requires understanding a rather complex relationship between the simpler ideas

of a bulk modulus for pure compression or extension, and a shear modulus for one of the five

potentially distinct shear modes of any elastic material. The resulting mixing of the modes is

the main cause of any difficulties we may have when analyzing the average modal behavior of

(by assumption) perfectly isotropic polycrystals (on average), and therefore makes use of the

comparatively tedious methods under discussion. Most studies of such systems are aimed

at quantifying the behavior of random polycrystals — where the word “random” as used in

this context usually implies that the polycrystals are composed of a large number of small

crystallites typically oriented arbitrarily in space so the overall polycrystalline behavior is

either isotropic or sufficiently close to isotropic for most purposes. The resulting effective

isotropic constants can then be chosen to be effective bulk K and shear G moduli.

The main goal of the rest of this paper will therefore be to find ways of estimating these

bulk and shear moduli of such an overall isotropic average medium. The means we use to

quantify these constants are rigorous bounds, and approximate theoretical estimators.

6. Bounds and Estimators

Results of Watt [22] for bounds on bulk modulus bounds K±

HS and those of Middya and

Basu [23] for self-consistent estimates K∗

SC of bulk modulus can both be written in virtually

the same form:

K±

HS = K± +
3B±

1 + 2B±

2

3 + α±(3B±

1 + 2B±

2 )
, (20)

where

3B±

1 + 2B±

2 =
9(KV − K±) + 2β±(d± + e± − c±) + 3β2

±
Ω±

1 − a±β± − 9γ±(KV − K±) + D±

. (21)

The coefficients a±, b±, c±, d±, e± are defined here (see the Appendix). The coefficients

α±, β±, γ± are defined below following Eq. (28). Ω± is defined in (34) and (35). For self-

consistency, simply replace the subscripts or superscripts ± with either ∗’s or SC symbols

as desired, while also removing the HS (and/or PM) subscripts.
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The denominator of expression (21) is the same as the denominator of the first term in

15B±

2 = a±−b±+β±(2d±−2c±−e±)+3γ±(d±−c±+e±)+α±β±Ω±

1−a±β±−9γ±(KV −K±)+D±

+ 3(G± + ζ±)2
(

3
G±+ζ±

−
1

C44+ζ±
−

1
C55+ζ±

−
1

C66+ζ±

)

,
(22)

and D± is defined in

D± = β±(β± + 2γ±)(c± − d±) − 2e±β±γ± −
α±β2

±
Ω±

3
. (23)

The Voigt average of the bulk modulus is

KV =
1

9
[C11 + C22 + C33 + 2(C12 + C23 + C13)] . (24)

Similarly, the Voigt average of the shear modulus is

GV =
1

15
[C11 + C22 + C33 − C12 − C23 − C13 + 3(C44 + C55 + C66)] . (25)

For completeness, we also note that the corresponding Reuss averages [2] for orthorhombic

crystals are given by

1

KR

= (S11 + S22 + S33) + 2 (S23 + S31 + S12) (26)

and
15

GR

= 4 (S11 + S22 + S33) − 4 (S23 + S31 + S12) + 3 (S44 + S55 + S66) , (27)

where the Sij ’s are the compliance matrix elements, related to the stiffness matrix elements

by the matrix equation S = C−1.

The equation corresponding to bulk modulus K result (20) for the shear modulus G is

given by

G±

PM = G± +
B±

2

1 + 2β±B±

2

, (28)

where PM indicates the contribution of Peselnick and Meister [24], who were early evaluators

of the pertinent HS bounds. The Hashin-Shtrikman bounds themselves are then given

exactly by K±

HS ≡ K±

PM and G±

HS ≡ G±

PM . Again KV is the Voigt average of bulk modulus.

Definitions of another useful shear factor Gv
eff depend on the specific crystal symmetry

under consideration (see Refs. [13, 14] for specifics).

Factor B±

2 itself was defined in (22).
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Parameters α± and β± appear repeatedly above and can be related to Eshelby [25] results

by rewriting them in the forms:

−
1

α±

= K± + 4G±/3 (29)

and

−
1

2β±

= G± + ζ±. (30)

Another combination of these two frequently appearing in the formulas is

γ± ≡
α± − 3β±

9
. (31)

Using these definitions, we find that:

1

K±

HS + 4G±/3
=

1 − (B±

1 + 2B±

2 /3)/(K± + 4G±/3)

K± + 4G±/3
, (32)

which is valid for orthorhombic and some more symmetric crystal structures, such as hexag-

onal, tetragonal, and trigonal. Eq. (32) may then be compared to the analogous shear

formula given by
1

G±

PM + ζ±
=

1 − B±

2 /(G± + ζ±)

G± + ζ±
, (33)

which is valid for the same crystal symmetries, with (32) and (33) being analogous forms

respectively for the bulk and shear moduli.

As previously noted, these equations are for the upper and lower bounds K±

HS on the

bulk modulus. Resulting bounds are obtained when the constraints are optimal. Then the

determinant of the matrix X± is given by

Ω±
≡ det (X±) = X±

11X
±

22X
±

33 +2X±

12X
±

23X
±

13 −X±

11

(

X±

23

)2
−X±

22

(

X±

13

)2
−X±

33

(

X±

12

)2
, (34)

and we must have Ω± = det(X±) ≡ 0. Here X± is a 3×3 positive- or negative-semi-definite

matrix, as defined by

X±

11 = C11 − K± −
4
3
G±, X±

12 = C12 − K± + 2
3
G±,

X±

22 = C22 − K± −
4
3
G±, X±

13 = C13 − K± + 2
3
G±,

X±

33 = C33 − K± −
4
3
G±, X±

23 = C23 − K± + 2
3
G±.

(35)

Vanishing of det(X) is a necessary requirement because then, and only then, have we found

either the greatest lower bound, or the smallest upper bound.
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Middya and Basu [23] have already shown these same equations can be used to deter-

mine self-consistent estimates, as well as the bounds. Self-consistent values are determined

specifically by considering two conditions: B2 = 0 and 3B1 + 2B2 = 0. Both conditions

must apply simultaneously if the self-consistency conditions are to be satisfied. And so, it

follows that B1 = 0; but we never need to impose this condition on B1 separately. The

self-consistency conditions are therefore (obviously) given by:

KSC = K∗ and GSC = G∗, (36)

where the conditions that determine the values of K∗ and G∗ are exactly the ones that

guarantee the two factors B1 and B2 to vanish simultaneously. Although this simultaneity

condition might sound hard to achieve, it has been found in practice to be very easy to

satisfy by applying an iterative process wherein some initial K0 and G0 values are first

chosen and substituted into (32) and (28) for the K± and G± values. The results that are

next obtained for the left-hand-sides of both these equations then become the new trial

values for K0 and G0. Repeating this process has always been found to converge quickly as

long as some reasonably intelligent choices are made for the initial values of K0 and G0. So

this part of the overall search procedure is not difficult to implement in practice.

Determining the HS bounds from this same set of equations is harder by comparison, but

some tricks were developed in previous work of the author [14] that made the computational

process more efficient. This work will be only briefly elaborated. In particular, a useful

“shooting method of optimization” (which makes use of the computed values of the self-

consistent estimates in order to speed up the search for HS bounds) was developed previously

to streamline the algorithm used to produce the Hashin-Shtrikman bounds [11, 13, 14, 22].

We refer the interested reader in particular to Ref. [14] for more details of this approach.

The basic outline is this: Having already computed the pertinent self-consistent values, and

knowing the Reuss and Voigt bounds on both K and G, we scan from the simple bounding

values towards the SC point. We then take care to observe where sign changes in these

functionals occur. In this way, the optimal bounds (those closest) to the SC estimates can

be quickly determined.
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7. Discussion of Bounds and Estimators

A variety of other bounds and estimators are found in the literature [27-30] in addition

to the ones that we discuss here in detail.

Although we consider (in this section) only seven specific examples in the following anal-

ysis of the bounds and estimates, we are nevertheless able to show that a number of rather

plausible hypotheses about possible relationships between and among the various bounds

and estimates can be quickly excluded via specific counterexamples. The numerical values

of the various bounds and estimates for the cases considered are summarized in Table 1.

First, we correctly anticipate that the self-consistent (SC) estimates always lie inside the

Hashin-Shtrikman (HS) bounds. This expectation follows from the form of the equations

for the self-consistent approximation, being based as they are — here for orthorhombic

materials only — on essentially the same equations as those for the HS bounds. However,

a further hypothesis (which might have seemed reasonable) that the SC estimates could

always lie at or near the center of the HS bounding region is quickly disproven. Of these

seven orthorhombic examples considered, six produce results close to an edge of the HS

bounding box. Only for Danburite among the examples computed do the SC estimates

appear to be nearly centered in the HS bounding box. In all six of the remaining cases, the

SC estimates lie either on or very near to a point on the boundary of the HS bounding box.

Another general observation is that the relative differences between the SC estimates

and the VRH estimates for these five orthorhombic materials are quantitatively small, i.e.,

typically being fractions of 1%. This fact suggests that, for applications not requiring very

high precision estimates, the VRH estimates will continue to be of some value.

Among all the cases considered here, only Danburite has the SC point well-centered

within the HS bounding box.

8. Drained and Undrained Constants for Fractured Poroelastic Polycrystalline

Systems

In order to complete our generalization of the polycrystalline analysis to poroelastic

systems, we need to find ways to compute both drained and undrained constants for these

systems. Similarly, Berryman and Grechka [36] discuss related issues for fractured systems
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without fluids, which case is essentially the same as that for drained poroelastic systems. If

Gg and Kg are the bulk and shear grain moduli for the nonporous (polycrystalline) system

(in our examples these would correspond to the self-consistent values of G and K [37-39]),

and Gd and Kd are the effective isotropic drained moduli when cracks or pores are present.

Then we have respectively
1

Gd
−

1

Gg
≃

4ρ

3
η2 (37)

and
1

Kd
−

1

Kg
≃ 2ρη2. (38)

Here we have kept only the contributions from the second crack parameter η2 in the pertinent

expansions, because it is known that η1 normally contributes less than a 5 percent correction,

and η3 and higher terms produce still smaller corrections.

The most significant factor η2 itself can be determined independently within the nonin-

teraction approximation (NIA) by

η2 =
8(1 − ν0)(5 − ν0)

15G0(2 − ν0)
, (39)

where ν0 = (3K0 − 2G0)/2(3K0 + G0) is the pertinent value of Poisson’s ratio. For this

problem, the nonporous values obtained using the self-consistent method are the preferred

numerical values that should be used.

Results for drained, undrained, and nonporous values are shown in Table 2. For easy

reference, the values of η2 used in producing Table 2 are displayed in Table 3.

The final step in the process of finding all the pertinent parameters for granular poroelastic

systems is the one where we obtain the undrained constants from the drained constants. The

formula for doing this is well-known to be:

Ku
R =

Kd
R

1 − αRB
, (40)

where αR is the Biot-Willis coefficient (4), B is Skempton’s second coefficient (5), and Kd
R

is the drained bulk modulus, which we have calculated above for these various materials in

the preceding section. For a crack density ρ = na3, we need to multiply by (4π/3)×(aspect

ratio) to determine the pertinent porosity. For ρ = 0.1, we find porosity φ ≃ 0.04 for an

aspect ratio of 0.1. We assume here that the pore-fluid is water, so Kf = 2.25 GPa.

In Table 2, we also display the ratio of the differences: drained to undrained over those

from drained to nonporous. Results show that there are significant differences in these ratios,
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both when comparing rsults for shear and bulk moduli for the same material, and also when

comparing the results for different elastic materials.

9. Overview and Conclusions

To summarize: Once the full set of elastic constants for an orthorhombic material con-

stituting the random elements of the composite is known, the easiest isotropic estimators to

compute are always the Voigt and Reuss averages for both bulk and shear moduli. Among

the typical estimators most workers might consider computing, the next easiest and most

useful quantities to compute are the self-consistent estimates. These SC estimates can also

be used to speed up the computation of the Hashin-Shtrikman bounds as shown previously

[14], and observed again here. The self-consistent estimators themselves are very closely

related to the HS bounds, and knowledge of the SC values is therefore useful in pinning

down the optimal zeroes of the functionals needed to determine these HS bounds.

It is also possible to redo some of the analysis presented here using the popular differen-

tial scheme [39,40]. However, for the polycrystal analysis, it seems that Hashin-Shtrikman

bounds and self-consistent estimates are very closely related estimators, and also some-

what easier to compute than differential scheme results. So the main reason to switch to a

differential-scheme-based approach is likely to be in situations where it is known that the

microstructure (of the actual materials to be studied) is better represented by the implicit

microstructure of the differential scheme. With modern microtomography methods now

being applied to rocks, such circumstances could easily arise in the near future [42].
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Appendix: Coefficients a± − e±

The remaining constants appearing in (22) are given by

a± = X±

11 + X±

22 + X±

33, b± = X±

12 + X±

23 + X±

13,

c± = X±

11X
±

22 + X±

22X
±

33 + X±

33X
±

11, d± =
(

X±

12

)2
+

(

X±

23

)2
+

(

X±

13

)2
,

e± = X±

12X
±

13 + X±

13X
±

23 + X±

23X
±

13 −X±

11X
±

23 − X±

22X
±

13 − X±

33X
±

12,

(41)

where the X± matrix elements were defined in (35). [Note: The symbol ± always appears as

a subscript for scalar quantities, except for the scalar Hashin-Shtrikman bounds themselves,

where the bound label is used as a subscript. The symbol ± appears as a superscript for all

quantities that are themselves matrix elements (therefore having additional subscripts), and

for quantities that are combinations only of such matrix elements. For scalar quantities that

are themselves combinations of scalars and also quantities derived from matrix elements, the

subscript version is again used – except as already noted for the scalar bounds themselves.]
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Table 1. Comparisons of bounds and estimates for the bulk (K) and shear moduli (G) of

polycrystals (composites of randomly oriented crystals of uniform type) for seven

orthorhombic elastic materials: α-Uranium, Aragonite (CaCO3), Danburite (CaB2Si2O8),

Enstatite (MgSiO3), Forsterite (Mg2SiO4), Sulfur (S), and Topaz (Al2(F,OH)2SiO4).

Estimators shown are: Reuss lower bound (R), Hashin-Shtrikman lower bound (HS−),

Self-consistent estimate (SC∗), Hashin-Shtrikman upper bound (HS+), and Voigt (V )

upper bound, respectively, for both the bulk (K) and shear moduli (G). All effective

constants are in units of GPa (gigapascal).

K, G R HS− SC∗ HS+ V

α-Uranium K 111.3 112.5 112.7 113.1 114.6

G 80.7 83.6 84.1 84.9 87.9

Aragonite K 44.71 45.56 46.36 46.41 49.04

G 36.62 37.56 38.31 38.35 40.41

Danburite K 90.52 91.37 91.89 92.40 92.89

G 62.47 63.50 64.27 65.06 65.87

Enstatite K 107.29 107.65 107.83 107.83 108.29

G 75.18 75.52 75.70 75.71 76.15

Forsterite K 127.27 128.49 128.49 128.49 131.67

G 79.54 80.35 80.35 80.89 82.58

Sulfur K 17.56 18.76 18.85 18.87 20.60

G 6.17 6.61 6.64 6.66 7.22

Topaz K 166.19 167.37 167.46 167.73 168.67

G 113.54 114.73 115.06 115.09 116.00
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Table 2. Polycrystal constants for drained, undrained, and nonporous examples in units

of GPa (gigapascal). The final column provides a measure of the relative importance of the

changes in values from drained to undrained in comparison to those from drained to

nonporous.

K, G Drained Undrained Nonporous (SC∗) U−D
N−D

α-Uranium K 85.7 91.8 112.7 .226

G 43.4 73.1 84.1 .730

Aragonite K 36.3 38.4 46.36 .209

G 16.3 32.6 38.31 .741

Danburite K 70.2 79.1 91.89 .410

G 56.1 58.3 64.27 .269

Enstatite K 81.7 88.9 107.83 .276

G 65.9 66.7 75.70 .008

Forsterite K 95.2 104.7 128.49 .285

G 70.1 71.3 80.35 .117

Sulfur K 12.10 16.09 18.85 .591

G 5.87 5.90 6.64 .039

Topaz K 126.37 141.3 167.46 .339

G 100.15 103.8 115.06 .245
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Table 3. Values of η2 used in computations for Table 2.

η2 (GPa−1)

α-Uranium 0.014

Aragonite 0.030

Danburite 0.017

Enstatite 0.015

Forsterite 0.014

Sulfur 0.149

Topaz 0.010
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