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Abstract 

Previous research on the effects of wind energy facilities on surrounding home values has been 

limited by small samples of relevant home-sale data and the inability to account adequately for 

confounding home-value factors and spatial dependence in the data. This study helps fill those 

gaps. We collected data from more than 50,000 home sales among 27 counties in nine states. 

These homes were within 10 miles of 67 different wind facilities, and 1,198 sales were within 1 

mile of a turbine—many more than previous studies have collected. The data span the periods 

well before announcement of the wind facilities to well after their construction. We use OLS and 

spatial-process difference-in-difference hedonic models to estimate the home-value impacts of 

the wind facilities; these models control for value factors existing before the wind facilities’ 

announcements, the spatial dependence of unobserved factors effecting home values, and value 

changes over time. A set of robustness models adds confidence to our results. Regardless of 

model specification, we find no statistical evidence that home values near turbines were affected 

in the post-construction or post-announcement/pre-construction periods. Previous research on 

potentially analogous disamenities (e.g., high-voltage transmission lines, roads) suggests that the 

property-value effect of wind turbines is likely to be small, on average, if it is present at all, 

potentially helping to explain why no evidence of an effect was found in the present research.   
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1. Introduction 

In 2012, approximately 13 gigawatts (GW) of wind turbines were installed in the United States, 

bringing total U.S. installed wind capacity to approximately 60 GW from more than 45,000 

turbines (AWEA, 2013). Despite uncertainty about future extensions of the federal production 

tax credit, U.S. wind capacity is expected by some to continue growing by approximately 5–6 

GW annually owing to state renewable energy standards and areas where wind can compete with 

natural gas on economics alone (Bloomberg, 2013); this translates into approximately 2,750 

turbines per year.1 Much of that development is expected to occur in relatively populated areas 

(e.g., New York, New England, the Mid-Atlantic and upper Midwest) (Bloomberg, 2013). 

In part because of the expected wind development in more-populous areas, empirical 

investigations into related community concerns are required. One concern is that the values of 

properties near wind developments may be reduced; after all, it has been demonstrated  that in 

some situations market perceptions  about an area’s disamenities (and amenities)2 are capitalized 

into home prices (e.g., Boyle and Kiel, 2001; Jackson, 2001; Simons and Saginor, 2006). The 

published research about wind energy and property values has largely coalesced around a finding 

that homes sold after nearby wind turbines have been constructed do not experience statistically 

significant property value impacts.  Additional research is required, however, especially for 

homes located within about a half mile of turbines, where impacts would be expected to be the 

largest. Data and studies are limited for these proximate homes in part because setback 

requirements generally result in wind facilities being sited in areas with relatively few houses, 

limiting available sales transactions that might be analyzed. 

This study helps fill the research gap by collecting and analyzing data from 27 counties across 

nine U.S. states, related to 67 different wind facilities.  Specifically, using the collected data, the 

study constructs a pooled model that investigates average effects near the turbines across the 

sample while controlling for the local effects of many potentially correlated independent 

variables. Property-value effect estimates are derived from two types of models: (1) an ordinary 
                                                 
1 Assuming 2-MW turbines, the 2012 U.S. average (AWEA, 2013), and 5.5 GW of annual capacity growth. 
2 Disamenities and amenities are defined respectively as disadvantages (e.g., a nearby noxious industrial site) and 
advantages (e.g., a nearby park) of a location. 
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least squares (OLS) model, which is standard for this type of disamenity research (see, e.g., 

discussion in Jackson, 2003; Sirmans et al., 2005), and (2) a spatial-process model, which 

accounts for spatial dependence. Each type of model is used to construct a difference-in-

difference (DD) specification—which simultaneously controls for preexisting amenities or 

disamenities in areas where turbines were sited and changes in the community after the wind 

facilities’ construction was announced—to estimate effects near wind facilities after the turbines 

were announced and, later, after the turbines were constructed.3 

The remainder of the report is structured as follows. Section 2 reviews the current literature. 

Section 3 details our methodology. Section 4 describes the study data. Section 5 presents the 

results, and Section 6 provides a discussion and concluding remarks.  

2. Previous Literature 

Although the topic is relatively new, the peer-reviewed literature investigating impacts to home 

values near wind facilities is growing. To date, results largely have coalesced around a common 

set of non-significant findings generated from home sales after the turbines became operational. 

Previous Lawrence Berkeley National Laboratory (LBNL) work in this area (Hoen et al., 2009, 

2011) found no statistical evidence of adverse property-value effects due to views of and 

proximity to wind turbines after the turbines were constructed (i.e., post-construction or PC). 

Other peer-reviewed and/or academic studies also found no evidence of PC effects despite using 

a variety of techniques and residential transaction datasets. These include homes surrounding 

wind facilities in Cornwall, United Kingdom (Sims and Dent, 2007; Sims et al., 2008); multiple 

wind facilities in McLean County, Illinois (Hinman, 2010); near the Maple Ridge Wind Facility 

in New York (Heintzelman and Tuttle, 2011); and, near multiple facilities in Lee County, Illinois 

(Carter, 2011).  Analogously, a 2012 Canadian case found a lack of evidence near a wind facility 

in Ontario to warrant the lowering of surrounding assessments (Kenney v MPAC, 2012).  In 

contrast, one recent study did find impacts to land prices near a facility in North Rhine-

Westphalia, Germany (Sunak and Madlener, 2012). Taken together, these results imply that the 
                                                 
3 Throughout this report, the terms “announced/announcement” and “constructed/construction” represent the dates 
on which the proposed wind facility (or facilities) entered the public domain and the dates on which facility 
construction began, respectively. Home transactions can either be pre-announcement (PA), post-announcement/pre-
construction (PAPC), or post-construction (PC). 
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PC effects of wind turbines on surrounding home values, if they exist, are often too small for 

detection or sporadic (i.e., a small percentage overall), or appearing in some communities for 

some types of properties but not others. 

In the post-announcement, pre-construction period (i.e., PAPC), however, recent analysis has 

found more evidence of potential property value effects: by theorizing  the possible existence of, 

but not finding, an effect (Laposa and Mueller, 2010; Sunak and Madlener, 2012); potentially 

finding an effect (Heintzelman and Tuttle, 2011)4; and, consistently finding what the author 

terms an “anticipation stigma” effect (Hinman, 2010). The studies that found PAPC property-

value effects appear to align with earlier studies that suggested lower community support for 

proposed wind facilities before construction—potentially indicating a risk-averse (i.e., fear of the 

unknown) stance by community members—but increased support after facilities began operation 

(Gipe, 1995; Palmer, 1997; Devine-Wright, 2005; Wolsink, 2007; Bond, 2008, 2010). Similarly, 

researchers have found that survey respondents who live closer to turbines support the turbines 

more than respondents who live farther away (Braunholtz and MORI Scotland, 2003; Baxter et 

al., 2013), which could also indicate more risk-adverse / fear of the unknown effects (these 

among those who live farther away).  Analogously, a recent case in Canada, although dismissed, 

highlighted the fears that nearby residents have for a planned facility (Wiggins v. WPD Canada 

Corporation, 2013) 

Some studies have examined property-value conditions existing before wind facilities were 

announced (i.e., pre-announcement or PA). This is important for exploring correlations between 

wind facility siting and pre-existing home values from an environmental justice perspective and 

also for measuring PAPC and PC effects more accurately. Hoen et al. (2009, 2011) and Sims and 

Dent (2007) found evidence of depressed values for homes that sold before a wind facility’s 

announcement and were located near the facility’s eventual location, but they did not adjust their 

PC estimates for this finding. Hinman (2010) went further, finding value reductions of 12%–20% 

for homes near turbines in Illinois, which sold prior to the facilities’ announcements; then using 

these findings to deflate their PC home-value-effect estimates.  
                                                 
4 Heintzelman and Tuttle do not appear convinced that the effect they found is related to the PAPC period, yet the 
two counties in which they found an effect (Clinton and Franklin Counties, NY) had transaction data produced 
almost entirely in the PAPC period.  
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Some research has linked wind-related property-value effects with the effects of better-studied 

disamenities (Hoen et al., 2009). The broader disamenity literature (e.g., Boyle and Kiel, 2001; 

Jackson, 2001; Simons and Saginor, 2006) suggests that, although property-value effects might 

occur near wind facilities as they have near other disamenities, those effects (if they do exist) are 

likely to be relatively small, are unlikely to persist some distance from a facility, and might fade 

over time as home buyers who are more accepting of the condition move into the area (Tiebout, 

1956).  

For example, a review of the literature investigating effects near high-voltage transmission lines 

(a largely visual disturbance, as turbines may be for many surrounding homes) found the 

following: property-value reductions of 0%–15%; effects that fade with distance, often only 

affecting properties crossed by or immediately adjacent to a line or tower; effects that can 

increase property values when the right-of-way is considered an amenity; and effects that fade 

with time as the condition becomes more accepted (Kroll and Priestley, 1992). While potentially 

much more objectionable to residential communities than turbines, a review of the literature on 

landfills (which present odor, traffic, and groundwater-contamination issues) indicates effects 

that vary by landfill size (Ready, 2010). Large-volume operations (accepting more than 500 tons 

per day) reduce adjacent property values by 13.7% on average, fading to 5.9% one mile from the 

landfill. Lower-volume operations reduce adjacent property values by 2.7% on average, fading to 

1.3% one mile away, with 20%–26% of lower-volume landfills not having any statistically 

significant impact. A study of 1,600 toxic industrial plant openings found adverse impacts of 

1.5% within a half mile, which disappeared if the plants closed (Currie et al., 2012).  Finally, a 

review of the literature on road noise (which might be analogous to turbine noise) shows 

property-value reductions of 0% –11% (median 4%) for houses adjacent to a busy road that 

experience a 10-dBA noise increase, compared with houses on a quiet street (Bateman et al., 

2001). 

It is not clear where wind turbines might fit into these ranges of impacts, but it seems unlikely 

that they would be considered as severe a disamenity as a large-volume landfill, which present 

odor, traffic, and groundwater-contamination issues. Low-volume landfills, with an effect near 

3%, might be a better comparison, because they have an industrial (i.e., non-natural) quality, 

similar to turbines, but are less likely to have clear health effects.  If sound is the primary 
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concern, a 4% effect (corresponding to road noise) could be applied to turbines, which might 

correspond to a 10-dBA increase for houses within a half mile of a turbine (see e.g., Hubbard and 

Shepherd, 1991). Finally, as with transmission lines, if houses are in sight but not within sound 

distance of turbines, there may be no property-value effects unless those homes are immediately 

adjacent to the turbines. In summary, assuming these potentially analogous disamenity effects 

can be entirely transferred, turbine impacts might be 0%–14%, but more likely might coalesce 

closer to 3%–4%. 

Of course, wind turbines have certain positive qualities that landfills, transmission lines, and 

roads do not always have, such as mitigating greenhouse gas emissions. no air or water pollution, 

no use of water during the generation of energy, and no generation of solid or hazardous waste 

that requires permanent storage/disposal (IPCC, 2011). Moreover, wind facilities can, and often 

do, provide economic benefits to local communities (Lantz and Tegen, 2009; Slattery et al., 

2011; Brown et al., 2012; Loomis et al., 2012), which might not be the case for all other 

disamenities. Similarly, wind facilities can have direct positive effects on local government 

budgets through property tax or other similar payments  (Loomis and Aldeman, 2011), which 

might, for example, improve school quality and thus increase nearby home values (e.g., Haurin 

and Brasington, 1996; Kane et al., 2006). These potential positive qualities might mitigate 

potential negative wind effects somewhat or even entirely.  Therefore for the purposes of this 

research we will assume 3-4% is a maximum possible effect. 

The potentially small average property-value effect of wind turbines, possibly reduced further by 

wind’s positive traits, might help explain why effects have not been discovered consistently in 

previous research. To discover effects with small margins of error, large amounts of data are 

needed. However, previous datasets of homes very near turbines have been small. Hoen et al. 

(2009, 2011) used 125 PC transactions within a mile of the turbines, while others used far fewer 

PC transactions within a mile: Heintzelman and Tuttle (2012) (n ~ 35); Hinman (2010) (n ~ 11), 

Carter (2011) (n ~ 41), and Sunak and Madlener (2012) (n ~ 51). Although these numbers of 

observations are adequate to examine large impacts (e.g., over 10%), they are less likely to 

reveal small effects with any reasonable degree of statistical significance. Using results from 

Hoen et al. (2009) and the confidence intervals for the various fixed-effect variables in that study, 

estimates for the numbers of transactions needed to find effects of various sizes were obtained. 
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Approximately 50 cases are needed to find an effect of 10% and larger, 100 cases for 7.5%, 200 

cases for 5%, 350 cases for 4%, 700 cases for 3%, and approximately 1,000 cases for a 2.5% 

effect.5 Therefore, in order to detect an effect in the range of 3%–4%, a dataset of approximately 

350–700 cases within a mile of the turbines will be required to detect it statistically, a number 

that to-date has not been amassed by any of the previous studies. 

As discussed above, in addition to being relatively small on average, impacts are likely to decay 

with distance.  As such, an appropriate empirical approach must be able to reveal spatially 

diminishing effects. Some researchers have used continuous variables to capture these effects, 

such as linear distance (Hoen et al., 2009; Sims et al., 2008) and inverse distance (Heintzelman 

and Tuttle, 2012; Sunak and Madlener, 2012), but doing so forces the model to estimate effects 

at the mean distance. In some cases, those means can be far from the area of expected impact. 

For example, Heintzelman and Tuttle (2012) estimated an inverse distance effect using a mean 

distance of more than 10 miles from the turbines, while Sunak and Madlener (2012) used a mean 

distance of approximately 1.9 miles. Using this approach weakens the ability of the model to 

quantify real effects near the turbines, where they are likely to be stronger. More importantly, 

this method encourages researchers to extrapolate their findings to the ends of the distance curve, 

near the turbines, despite having few data at those distances to support these extrapolations. This 

was the case for Heintzelman and Tuttle (2012), who had fewer than 10 cases within a half mile 

in the two counties where effects were found and only a handful that sold in those counties after 

the turbines were built, yet they extrapolated their findings to a quarter mile and even a tenth of a 

mile, where they had very few (if any) cases. Similarly, Sunak and Madlener (2012) had only six 

PC sales within a half mile and 51 within 1 mile, yet they extrapolated their findings to these 

distance bands. 

One way to avoid using a single continuous function to estimate effects at all distances is to use a 

spline model, which breaks the distances into continuous groups (Hoen et al., 2011), but this 

method still imposes structure on the data by forcing the ends of each spline to tie together. A 

second and more transparent method is to use fixed-effect variables for discrete distances, which 

imposes little structure on the data (Hoen et al., 2009; Hinman, 2010; Carter, 2011; Hoen et al., 

                                                 
5 This analysis is available upon request from the authors. 
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2011). Although this latter method has been used in a number of studies, because of a paucity of 

data, the resulting models are often ineffective at detecting what might be relatively small effects 

very close to the turbines. As such, when using this method (or any other, in fact) it is important 

that the underlying dataset is large enough to estimate the anticipated magnitude of the effect 

sizes. 

Finally, one rarely investigated aspect of potential wind-turbine effects is the possibly 

idiosyncratic nature of spatially averaged transaction data used in the hedonic analyses. Sunak 

and Madlener (2012) used a geographically weighted regression (GWR), which estimates 

different regressions for small clusters of data and then allows the investigation of the 

distribution of effects across all of the clusters. Although GWR can be effective for 

understanding the range of impacts across the study area, it is not as effective for determining an 

average effect or for testing the statistical significance of the range of estimates. Results from 

studies that use GWR methods are also sometimes counter-intuitive.6  As is discussed in more 

detail in the methodology section, a potentially better approach is to estimate a spatial-process 

model that is flexible enough to simultaneously control for spatial heterogeneity and spatial 

dependence, while also estimating an average effect across fixed discrete effects.  

In summary, building on the existing literature, further research is needed on property-value 

effects in particularly close proximity to wind turbines. Specifically, research is needed that uses 

a large set of data near the turbines, accounts for home values before the announcement of the 

facility (as well as after announcement but before construction), accounts for potential spatial 

dependence in unobserved factors effecting home values, and uses a fixed-effect distance model 

that is able to accurately estimate effects near turbines.  

3. Methodology 

The present study seeks to respond to the identified research needs noted above, with this section 

describing our methodological framework for estimating the effects of wind turbines on the 

value of nearby homes in the United States.  
                                                 
6 For example, Sunak and Madlener (2012) find larger effects related to the turbines in a city that is farther from the 
turbines than they find in a town which is closer. Additionally, they find stronger effects in the center of a third town 
than they do on the outskirts of that town, which do not seem related to the location of the turbines. 
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3.1. Basic Approach and Models  

Our methods are designed to help answer the following questions: 

1. Did homes that sold prior to the wind facilities’ announcement (PA)—and located within 

a short distance (e.g., within a half mile) from where the turbines were eventually 

located—sell at lower prices than homes located farther away? 

2. Did homes that sold after the wind facilities’ announcement but before construction 

(PAPC)—and located within a short distance (e.g., within a half mile)—sell at lower 

prices than homes located farther away? 

3. Did homes that sold after the wind facilities’ construction (PC)—and located within a 

short distance (e.g., within a half mile)—sell at lower prices than homes located farther 

away? 

4. For question 3 above, if no statistically identifiable effects are found, what is the likely 

maximum effect possible given the margins of error around the estimates? 

To answer these questions, the hedonic pricing model (Rosen, 1974; Freeman, 1979) is used in 

this paper, as it has been in other disamenity research (Boyle and Kiel, 2001; Jackson, 2001; 

Simons and Saginor, 2006). The value of this approach is that is allows one  to disentangle and 

control for the potentially competing influences of home, site, neighborhood, and market 

characteristics on property values, and to uniquely determine how home values near announced 

or operating facilities are affected.7  To test for these effects, two pairs of “base” models are 

estimated, which are then coupled with a set of “robustness” models to test and bound the 

estimated effects. One pair is estimated using a standard OLS model, and the other is estimated 

using a spatial-process model. The models in each pair are different in that one focuses on all 

homes within 1 mile of an existing turbine (one-mile models), which allows the maximum 

number of data for the fixed effect to be used, while the other focuses on homes within a half 

mile (half-mile models), where effects are more likely to appear but fewer data are available. We 

assume that, if effects exist near turbines, they are larger for the half-mile models than the one-

mile models. 

                                                 
7 See Jackson (2003) for a further discussion of the Hedonic Pricing Model and other analysis methods. 
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As is common in the literature (Malpezzi, 2003; Sirmans et al., 2005), a semi-log functional form 

of the hedonic pricing model is used for all models, where the dependent variable is the natural 

log of sales price. The OLS half-mile model form is as follows: 

1 2 3 4ln( ) ( ) ( ) ( ) ( )i i i i i i i i i
a b

SP T S W X C D Pα β β β β ε= + + + + +∑ ∑    (1) 

where 

SPi represents the sale price for transaction i, 

α is the constant (intercept) across the full sample, 

Ti is a vector of time-period dummy variables (e.g., sale year and if the sale occurred in winter) 

in which transaction i occurred, 

Si is the state in which transaction i occurred, 

Wi is the census tract in which transaction i occurred,  

Xi is a vector of home, site, and neighborhood characteristics for transaction i (e.g., square feet, 

age, acres, bathrooms, condition, percent of block group vacant and owned, median age of block 

group),8 

Ci is the county in which transaction i occurred, 

Di is a vector of four fixed-effect variables indicating the distance (to the nearest turbine) bin (i.e., 

group) in which transaction i is located (e.g., within a half mile, between a half and 1 mile, 

between 1 and 3 miles, and between 3 and 10 miles), 

Pi is a vector of three fixed-effect variables indicating the wind project development period in 

which transaction i occurred (e.g., PA, PAPC, PC), 

B1-3 is a vector of estimates for the controlling variables, 

Β4 is a vector of 12 parameter estimates of the distance-development period interacted variables 

of interest, 

εi is a random disturbance term for transaction i. 

This pooled construction uses all property transactions in the entire dataset.  In so doing, it takes 

advantage of the large dataset in order to estimate an average set of turbine-related effects across 

all study areas, while simultaneously allowing for the estimation of controlling characteristics at 
                                                 
8 A “block group” is a US Census Bureau geographic delineation that contains a population between 600 to 3000 
persons. 
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the local level, where they are likely to vary substantially across the study areas.9 Specifically, 

the interaction of county-level fixed effects (Ci) with the vector of home, site, and neighborhood 

characteristics (Xi) allows different slopes for each of these independent variables to be estimated 

for each county. Similarly, interacting the state fixed-effect variables (Si) with the sale year and 

sale winter fixed effects variables (Ti) (i.e., if the sale occurred in either Q1 or Q4) allows the 

estimation of the respective inflation/deflation and seasonal adjustments for each state in the 

dataset.10 Finally, to control for the potentially unique collection of neighborhood characteristics 

that exist at the micro-level, census tract fixed effects are estimated.11 Because a pooled model is 

used that relies upon the full dataset, smaller effect sizes for wind turbines will be detectable. At 

the same time, however, this approach does not allow one to distinguish possible wind turbine 

effects that may be larger in some communities than in others.  

As discussed earlier, effects might predate the announcement of the wind facility and thus must 

be controlled for. Additionally, the area surrounding the wind facility might have changed over 

time simultaneously with the arrival of the turbines, which could affect home values. For 

example, if a nearby factory closed at the same time a wind facility was constructed, the 

influence of that factor on all homes in the general area would ideally be controlled for when 

estimating wind turbine effect sizes.  

To control for both of these issues simultaneously, we use a difference-in-difference (DD) 

specification (see e.g., Hinman, 2010; Zabel and Guignet, 2012) derived from the interaction of 

                                                 
9 The dataset does not include “participating” landowners, those that have turbines situated on their land, but does 
include “neighboring” landowners, those adjacent to or nearby the turbines. One reviewer notes that the estimated 
average effects also include any effects from payments “neighboring” landowners might receive that might transfer 
with the home.  Based on previous conversations with developers (see Hoen et al, 2009), we expect that the 
frequency of these arrangements is low, as is the right to transfer the payments to the new homeowner.  Nonetheless, 
our results should be interpreted as “net” of any influence whatever “neighboring” landowner arrangements might 
have. 
10 Unlike the vector of home, site, and neighborhood characteristics, sale price inflation/deflation and seasonal 
changes were not expected tovary substantially across various counties in the same states in our sample and 
therefore the interaction was made at the state level.  This assumption was tested as part of the robustness tests 
though, where they are interacted at the county level and found to not affect the results. 
11 In part because of the rural nature of many of the study areas included in the research sample, these census tracts 
are large enough to contain sales that are located close to the turbines as well as those farther away, thereby ensuring 
that they do not unduly absorb effects that might be related to the turbines. Moreover each tract contains sales from 
throughout the study periods, both before and after the wind facilities’ announcement and construction, further 
ensuring they are not biasing the variables of interest.  
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the spatial (Di) and temporal (Pi) terms. These terms produce a vector of 11 parameter estimates 

(β4) as shown in Table 1 for the half-mile models and in Table 2 for the one-mile models. The 

omitted (or reference) group in both models is the set of homes that sold prior to the wind 

facilities’ announcement and which were located more than 3 miles away from where the 

turbines were eventually located (A3). It is assumed that this reference category is likely not 

affected by the imminent arrival of the turbines, although this assumption is tested in the 

robustness tests. 

Using the half-mile models, to test whether the homes located near the turbines that sold in the 

PA period were uniquely affected (research question 1), we examine A0, from which the null 

hypothesis is A0=0. To test if the homes located near the turbines that sold in the PAPC period 

were uniquely affected (research question 2), we first determine the difference in their values as 

compared to those farther away (B0-B3), while also accounting for any pre-announcement (i.e., 

pre-existing) difference (A0-A3) and any change in the local market over the development 

period (B3-A3). Because all covariates are determined in relation to the omitted category (A3), 

the null hypothesis collapses B0-A0-B3=0. Finally, in order to determine if homes near the 

turbines that sold in the PC period were uniquely affected (research question 3), we test if C0-

A0-C3=0. Each of these DD tests are estimated using a linear combination of variables that 

produces the “net effect” and a measure of the standard error and corresponding confidence 

intervals of the effect, which enables the estimation of the maximum (and minimum) likely 

impacts for each research question. We use 90% confidence intervals both to determine 

significance and to estimate maximum likely effects (research question 4).  

Following the same logic as above, the corresponding hypothesis tests for the one-mile models 

are as follows: PA, A1=0; PAPC, B1-A1-B3=0; and, PC, C1-A1-C3=0. 
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Table 1: Interactions between Wind Facility Development Periods and Distances – ½ Mile 

 

Table 2: Interactions between Wind Facility Development Periods and Distances - 1 Mile 

 

3.2. Spatial Dependence 

As discussed briefly above, a common feature of the data used in hedonic models is the spatially 

dense nature of the real estate transactions. While this spatial density can provide unique insights 

into local real estate markets, one concern that is often raised is the impact of potentially omitted 

variables given that this is impossible to measure all of the local characteristics that affect 

housing prices. As a result, spatial dependence in a hedonic model is likely because houses 

located closer to each other typically have similar unobservable attributes. Any correlation 

between these unobserved factors and the explanatory variables used in the model (e.g., distance 

to turbines) is a source of omitted-variable bias in the OLS models. A common approach used in 

Within 
1/2 Mile

Between 
1/2 and 1 

Mile

Between 
1 and 3 
Miles

Outside of 
3 Miles

Prior to Announcement A0 A1 A2
A3        

(Omitted)
After Announcement 
but Prior to 
Construction

B0 B1 B2 B3

Post Construction C0 C1 C2 C3

Distances to Nearest Turbine

Wind Facility 
Development Periods

Within 1 
Mile

Between 
1 and 3 
Miles

Outside of 
3 Miles

Prior to Announcement A1 A2
A3        

(Omitted)
After Announcement 
but Prior to 
Construction

B1 B2 B3

Post Construction C1 C2 C3

Wind Facility 
Development Periods

Distances to Nearest Turbine
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the hedonic literature to correct this potential bias is to include local fixed effects (Hoen et al., 

2009, 2011; Zabel and Guignet, 2012), which is our approach as described in formula (1). 

In addition to including local fixed effects, spatial econometric methods can be used to help 

further mitigate the potential impact of spatially omitted variables by modeling spatial 

dependence directly. When spatial dependence is present and appropriately modeled, more 

accurate (i.e., less biased) estimates of the factors influencing housing values can be obtained. 

These methods have been used in a number of previous hedonic price studies; examples include 

the price impacts of wildfire risk (Donovan et al., 2007), residential community associations 

(Rogers, 2006), air quality (Anselin and Lozano-Gracia, 2009), and spatial fragmentation of land 

use (Kuethe, 2012). To this point, however, these methods have not been applied to studies of the 

impact of wind turbines on property values. 

Moran’s I is the standard statistic used to test for spatial dependence in OLS residuals of the 

hedonic equation. If the Moran’s I is statistically significant (as it is in our models – see Section  

5.1.2), the assumption of spatial independence is rejected. To account for this, in spatial-process 

models, spatial dependence is routinely modeled as an additional covariate in the form of a 

spatially lagged dependent variable Wy, or in the error structure ,μ λWμ ε= + where ε is an 

identically and independently distributed disturbance term (Anselin, 1988). Neighboring 

criterion determines the structure of the spatial weights matrix W, which is frequently based on 

contiguity, distance criterion, or k-nearest neighbors (Anselin, 2002). The weights in the spatial-

weights matrix are typically row standardized so that the elements of each row sum to one.  

The spatial-process model, known as the SARAR model (Kelejian and Prucha, 1998)12, allows 

for both forms of spatial dependence, both as an autoregressive process in the lag-dependent and 

in the error structure, as shown by: 

 
,

.
y Wy X

W
ρ β µ

µ λ µ ε
= + +
= +

 (2)   

                                                 
12 SARAR refers to a “spatial-autoregressive model with spatial autoregressive residuals”. 
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Equation (2) is often estimated by a multi-step procedure using generalized moments and 

instrumental variables (Arraiz et al., 2009), which is our approach. The model allows for the 

innovation term ε in the disturbance process to be heteroskedastic of an unknown form (Kelejian 

and Prucha, 2010). If either λ or ρ are not significant, the model reduces to the respective spatial 

lag or spatial error model (SEM).  In our case, as is discussed later, the spatial process model 

reduces to the SEM, therefore both half-mile and one-mile SEMs are estimated, and, as with the 

OLS models discussed above, a similar set of DD “net effects” are estimated for the PA, PAPC, 

and PC periods. One requirement of the spatial model is that the x/y coordinates be unique across 

the dataset. However, the full set of data (as described below) contains, in some cases, multiple 

sales for the same property, which consequently would have non-unique x/y coordinates.13 

Therefore, for the spatial models, only the most recent sale is used. An OLS model using this 

limited dataset is also estimated as a robustness test.  

In total, four “base” models are estimated: an OLS one-mile model, a SEM one-mile model, an 

OLS half-mile model, and a SEM half-mile model. In addition, a series of robustness models are 

estimated as described next. 

3.3. Robustness Tests 

To test the stability of and potentially bound the results from the four base models, a series of 

robustness tests are conducted that explore:  the effect that outliers and influential cases have on 

the results; a micro-inflation/deflation adjustment by interacting the sale-year fixed effects with 

the county fixed effects rather than state fixed effects; the use of only the most recent sale of 

homes in the dataset to compare results to the SEM models that use the same dataset; the 

application of a more conservative reference category by using transactions between 5 and 10 

miles (as opposed to between 3 and 10 miles) as the reference; and  a more conservative 

                                                 
13 The most recent sale weights the transactions to those occurring after announcement and construction, that are 
more recent in time.  One reviewer wondered if the frequency of sales was affected near the turbines, which is also 
outside the scope of the study, though this “sales volume” was investigated in Hoen et al. (2009), where no evidence 
of such an effect was discovered. Another correctly noted that the most recent assessment is less accurate for older 
sales, because it might overestimate some characteristics of the home (e.g., sfla, baths) that might have changed (i.e., 
increased) over time.  This would tend to bias those characteristics’ coefficients downward. Regardless, it is 
assumed that this occurrence is not correlated with proximity to turbines and therefore would not bias the variables 
of interest. 
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reference category by using transactions more than 2 years PA (as opposed to simply PA) as the 

reference category. Each of these tests is discussed in detail below. 

3.3.1. Outliers and Influential Cases 

Most datasets contain a subset of observations with particularly high or low values for the 

dependent variables, which might bias estimates in unpredictable ways. In our robustness test, 

we assume that observations with sales prices above or below the 99% and 1% percentile are 

potentially problematic outliers. Similarly, individual sales transactions and the values of the 

corresponding independent variables might exhibit undue influence on the regression coefficients. 

In our analysis, we therefore estimate a set of Cook’s Distance statistics (Cook, 1977; Cook and 

Weisberg, 1982) on the base OLS half-mile model and assume any cases with an absolute value 

of this statistic greater than one to be potentially problematic influential cases. To examine the 

influence of these cases on our results, we estimate a model with both the outlying sales prices 

and Cook’s influential cases removed. 

3.3.2. Interacting Sale Year at the County Level 

It is conceivable that housing inflation and deflation varied dramatically in different parts of the 

same state. In the base models, we interact sale year with the state to account for inflation and 

deflation of sales prices, but a potentially more-accurate adjustment might be warranted. To 

explore this, a model with the interaction of sale year and county, instead of state, is estimated. 

3.3.3. Using Only the Most Recent Sales 

The dataset for the base OLS models includes not only the most recent sale of particular homes, 

but also, if available, the sale prior to that. Some of these earlier sales occurred many years prior 

to the most recent sale. The home and site characteristics (square feet, acres, condition, etc.) used 

in the models are populated via assessment data for the home. For some of these data, only the 

most recent assessment information is available (rather than the assessment from the time of 

sale), and therefore older sales might be more prone to error as their characteristics might have 
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changed since the sale.14 Additionally, the SEMs require that all x/y coordinates entered into the 

model are unique; therefore, for those models only the most recent sale is used. Excluding older 

sales therefore potentially reduces measurement error, and also enables a more-direct comparison 

of effects between the base OLS model and SEM results.  

3.3.4. Using Homes between 5 and 10 Miles as Reference Category 

The base models use the collection of homes between 3 and 10 miles from the wind facility (that 

sold before the announcement of the facility) as the reference category in which wind facility 

effects are not expected. However, it is conceivable that wind turbine effects extend farther than 

3 miles. If homes outside of 3 miles are affected by the presence of the turbines, then effects 

estimated for the target group (e.g., those inside of 1 mile) will be biased downward (i.e., 

smaller) in the base models. To test this possibility and ensure that the results are not biased, the 

group of homes located between 5 and 10 miles is used as a reference category as a robustness 

test.  

3.3.5. Using Transactions Occurring More than 2 Years before Announcement as 

Reference Category 

The base models use the collection of homes that sold before the wind facilities were announced 

(and were between 3 and 10 miles from the facilities) as the reference category, but, as discussed 

in Hoen et al. (2009, 2011), the announcement date of a facility, when news about a facility 

enters the public domain, might be after that project was known in private. For example, wind 

facility developers may begin talking to landowners some time before a facility is announced, 

and these landowners could share that news with neighbors. In addition, the developer might 

erect an anemometer to collect wind-speed data well before the facility is formally “announced,” 

which might provide concrete evidence that a facility may soon to be announced. In either case, 

this news might enter the local real estate market and affect home prices before the formal 

facility announcement date. To explore this possibility, and to ensure that the reference category 

                                                 
14 As discussed in more detail in the Section 4, approximately 60% of all the data obtained for this study (that 
obtained from CoreLogic) used the most recent assessment to populate the home and site characteristics for all 
transactions of a given property. 
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is unbiased, a model is estimated that uses transactions occurring more than 2 years before the 

wind facilities were announced (and between 3 and 10 miles) as the reference category. 

Combined, this diverse set of robustness tests allows many assumptions used for the base models 

to be tested, potentially allowing greater confidence in the final results. 

4. Data  

The data used for the analysis are comprised of four types: wind turbine location data, real estate 

transaction data, home and site characteristic data, and census data. From those, two additional 

sets of data are calculated: distance to turbine and wind facility development period. Each data 

type is discussed below. Where appropriate, variable names are shown in italics. 

4.1. Wind Turbine Locations 

Location data (i.e., x/y coordinates) for  installed wind turbines were obtained via an iterative 

process starting with Federal Aviation Administration obstacle data, which were then linked to 

specific wind facilities by Ventyx15 and matched with facility-level data maintained by LBNL. 

Ultimately, data were collected on the location of almost all wind turbines installed in the U.S. 

through 2011 (n ~ 40,000), with information about each facility’s announcement, construction, 

and operation dates as well as turbine nameplate capacity, hub height, rotor diameter, and facility 

size. 

4.2. Real Estate Transactions 

Real estate transaction data were collected through two sources, each of which supplied the 

home’s sale price (sp), sale date (sd), x/y coordinates, and address including zip code. From 

those, the following variables were calculated: natural log of sale price (lsp), sale year (sy), if the 

sale occurred in winter (swinter) (i.e., in Q1 or Q4). 

The first source of real estate transaction data was CoreLogic’s extensive dataset of U.S. 

residential real estate information.16 Using the x/y coordinates of wind turbines, CoreLogic 

                                                 
15 See the EV Energy Map, which is part of the Velocity Suite of products at www.ventyx.com. 
16 See www.corelogic.com. 

http://www.ventyx.com/
http://www.corelogic.com/
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selected all arms-length single-family residential transactions between 1996 and 2011 within 10 

miles of a turbine in any U.S. counties where they maintained data (not including New York – 

see below) on parcels smaller than 15 acres.17 The full set of counties for which data were 

collected were then winnowed to 26 by requiring at least 250 transactions in each county, to 

ensure a reasonably robust estimation of the controlling characteristics (which, as discussed 

above, are interacted with county-level fixed effects), and by requiring at least one PC 

transaction within a half mile of a turbine in each county (because this study’s focus is on homes 

that are located in close proximity to turbines). 

The second source of data was the New York Office of Real Property Tax Service 

(NYORPTS),18 which supplied a set of arms-length single-family residential transactions 

between 2001 and 2012 within 10 miles of existing turbines in any New York county in which 

wind development had occurred prior to 2012. As before, only parcels smaller than 15 acres 

were included, as were a minimum of 250 transactions and at least one PC transaction within a 

half mile of a turbine for each New York county. Both CoreLogic and NYORPTS provided the 

most recent home sale and, if available, the prior sale. 

4.3. Home and Site Characteristics 

A set of home and site characteristic data was also collected from both data suppliers: 1000s of 

square feet of living area (sfla1000), number of acres of the parcel (acres), year the home was 

built (or last renovated, whichever is more recent) (yrbuilt), and the number of full and half 

bathrooms (baths).19 Additional variables were calculated from the other variables as well: log of 

1,000s of square feet (lsfla1000),20 the number of acres less than 1 (lt1acre),21 age at the time of 

sale (age), and age squared (agesqr).22 

                                                 
17 The 15 acre screen was used because of a desire to exclude from the sample any transaction of property that might 
be hosting a wind turbine, and therefore directly benefitting from the turbine’s presence (which might then increase 
property values).  To help ensure that the screen was effective, all parcels within a mile of a turbine were also 
visually inspected using satellite and ortho imagery via a geographic information system. 
18 See www.orps.state.ny.us  
19 Baths was calculated in the following manner: full bathrooms + (half bathrooms x 0.5). Some counties did not 
have baths data available, so for them baths was not used as an independent variable. 
20 The distribution of sfla1000 is skewed, which could bias OLS estimates, thus lsfla1000 is used instead, which is 
more normally distributed. Regression results, though, were robust when sfla1000 was used instead. 

http://www.orps.state.ny.us/
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Regardless of when the sale occurred, CoreLogic supplied the related home and site 

characteristics as of the most recent assessment, while NYORPTS supplied the assessment data 

as of the year of sale.23  

4.4. Census Information 

Each of the homes in the data was matched (based on the x/y coordinates) to the underlying 

census block group and tract via ArcGIS. Using the year 2000 block group census data, each 

transaction was appended with neighborhood characteristics including the median age of the 

residents (medage), the total number of housing units (units), the number vacant (vacant) homes, 

and the number of owned (owned) homes. From these, the percentages of the total number of 

housing units in the block group that were vacant and owned were calculated, i.e., pctvacant and 

pctowned.  

4.5. Distances to Turbine 

Using the x/y coordinates of both the homes and the turbines, a Euclidian distance (in miles) was 

calculated for each home to the nearest wind turbine (tdis), regardless of when the sale occurred 

(e.g., even if a transaction occurred prior to the wind facility’s installation).24 These were then 

broken into four mutually exclusive distance bins (i.e., groups) for the base half-mile models: 

inside a half mile, between a half and 1 mile, between 1 and 3 miles, and between 3 and 10 miles. 

They were broken into three mutually exclusive bins for the base one-mile models: inside 1 mile, 

between 1 and 3 miles, and between 3 and 10 miles. 

4.6. Wind Facility Development Periods 

After identifying the nearest wind turbine for each home, a match could be made to Ventyx’ 

dataset of facility-development announcement and construction dates. These facility-

development dates in combination with the dates of each sale of the homes determined in which 

                                                                                                                                                             
21 This variable allows the separate estimations of the 1st acre and any additional acres over the 1st. 
22 Age and agesqr together account for the fact that, as homes age, their values usually decrease, but further 
increases in age might bestow countervailing positive “antique” effects. 
23 See footnote 13. 
24 Before the distances were calculated, each home inside of 1 mile was visually inspected using satellite and ortho 
imagery, with x/y coordinates corrected, if necessary, so that those coordinates were on the roof of the home.  
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of the three facility-development periods (fdp) the transaction occurred: pre-announcement (PA), 

post-announcement-pre-construction (PAPC), or post-construction (PC).  

4.7. Data Summary 

After cleaning to remove missing or erroneous data, a final dataset of 51,276 transactions 

was prepared for analysis.25 As shown in the map of the study area (Figure 1), the data are 

arrayed across nine states and 27 counties (see Table 4), and surround 67 different wind 

facilities.  

Table 3 contains a summary of those data. The average unadjusted sales price for the sample is 

$122,475. Other average house characteristics include the following: 1,600 square feet of living 

space; house age of 48 years26; land parcel size of 0.90 acres; 1.6 bathrooms; in a block group in 

which 74% of housing units are owned, 9% are vacant, and the median resident age is 38 years; 

located 4.96 miles from the nearest turbine; and sold at the tail end of the PA period.  

 

The data are arrayed across the temporal and distance bins as would be expected, with smaller 

numbers of sales nearer the turbines, as shown in Table 5. Of the full set of sales, 1,198 occurred 

within 1 mile of a then-current or future turbine location, and 376 of these occurred post 

construction; 331 sales occurred within a half mile, 104 of which were post construction. Given 

these totals, the models should be able to discern a post construction effect larger than ~3.5% 

within a mile and larger than ~7.5% within a half mile (see discussion in Section 2). These 

effects are at the top end of the expected range of effects based on other disamenities (high-

voltage power lines, roads, landfills, etc.). 

                                                 
25 Cleaning involved the removal of all data that did not have certain core characteristics (sale date, sale price, sfla, 
yrbuilt, acres, median age, etc.) fully populated as well as the removal of any sales that had seemingly miscoded 
data (e.g., having a sfla that was greater than acres, having a yrbuilt more than 1 year after the sale, having less than 
one bath) or that did not conform to the rest of the data (e.g., had acres or sfla that were either larger or smaller, 
respectively, than 99% or 1% of the data). OLS models were rerun with those “nonconforming” data included with 
no substantive change in the results in comparison to the screened data presented in the report.  
26 Age could be as low as -1(for a new home) for homes that were sold before construction was completed. 
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Figure 1: Map of Transactions, States, and Counties 

 

 

Table 3: Summary Statistics 

  

 

Variable Description Mean Std. Dev. Min Max
sp sale price in dollars 122,475$   80,367$   9,750$   690,000$ 
lsp natural log of sale price 11.52 0.65 9.19 13.44
sd sale date 1/18/2005 1,403 days 1/1/1996 9/30/2011
sy sale year 2005 3.84 1996 2011
sfla1000 living area in 1000s of square feet 1.60 0.57 0.60 4.50
lsfla1000 natural log of sfla1000 0.41 0.34 -0.50 1.50
acres number of acres in parcel 0.90 1.79 0.03 14.95
acreslt1* acres less than 1 -0.58 0.34 -0.97 0.00
age age of home at time of sale 48 37 -1 297
agesq age squared 3689 4925 0 88209
baths** number of bathrooms 1.60 0.64 1.00 5.50
pctowner fraction of house units in block group that are owned (as of 2000) 0.74 0.17 0.63 0.98
pctvacant fraction of house units in block group that are vacant (as of 2000) 0.09 0.10 0.00 0.38
med_age median age of residents in block group (as of 2000) 38 6 20 63
tdis distance to nearest turbine (as of December 2011) in miles 4.96 2.19 0.09 10.00
fdp*** facility development period of nearest turbine at time of sale 1.94 0.87 1.00 3.00
Note: The number of cases for the full dataset is 51,276
* acreslt1 is calculated as follows:  acres (if less than 1) * - 1
** Some counties did not have bathrooms populated; for those, these variables are entered into the regression as 0.
*** fdp periods are: 1, pre-announcement,; 2, post-announcement-pre-construction; and, 3, post-construction.
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Table 4: Summary of Transactions by County 

 

 

Table 5: Frequency Crosstab of Wind Turbine Distance and Development Period Bins 

 

County State <1/2 mile 1/2-1 mile 1-3 miles 3-10 miles Total
Carroll IA 12           56           331          666          1,065       
Floyd IA 3             2             402          119          526          
Franklin IA 8             1             9             322          340          
Sac IA 6             77           78           485          646          
DeKalb IL 4             8             44           605          661          
Livingston IL 16           6             237          1,883       2,142       
McLean IL 18           88           380          4,359       4,845       
Cottonwood MN 3             10           126          1,012       1,151       
Freeborn MN 17           16           117          2,521       2,671       
Jackson MN 19           28           36           149          232          
Martin MN 7             25           332          2,480       2,844       
Atlantic NJ 34           96           1,532       6,211       7,873       
Paulding OH 15           58           115          309          497          
Wood OH 5             31           563          4,844       5,443       
Custer OK 45           24           1,834       349          2,252       
Grady OK 1             6             97           874          978          
Fayette PA 1             2             10           284          297          
Somerset PA 23           100          1,037       2,144       3,304       
Wayne PA 4             29           378          739          1,150       
Kittitas WA 2             6             61           349          418          
Clinton NY 4             6             49           1,419       1,478       
Franklin NY 16           41           75           149          281          
Herkimer NY 3             17           354          1,874       2,248       
Lewis NY 5             6             93           732          836          
Madison NY 5             26           239          3,053       3,323       
Steuben NY 5             52           140          1,932       2,129       
Wyoming NY 50           50           250          1,296       1,646       
Total 331 867 8,919 41,159 51,276

<1/2 mile 1/2-1 mile 1-3 miles 3-10 miles total
PA 143 383 3,892 16,615 21,033
PAPC 84 212 1,845 9,995 12,136
PC 104 272 3,182 14,549 18,107

total 331 867 8,919 41,159 51,276
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As shown in Table 6, the home sales occurred around wind facilities that range from a single-

turbine project to projects of 150 turbines, with turbines of 290–476 feet (averaging almost 400 

feet) in total height from base to tip of blade and with an average nameplate capacity of 1,637 

kW. The average facility was announced in 2004 and constructed in 2007, but some were 

announced as early as 1998 and others were constructed as late as 2011.  

Table 6: Wind Facility Summary 

  

4.8. Comparison of Means  

To provide additional context for the analysis discussed in the next section, we further 

summarize the data here using four key variables across the sets of development period (fdp) and 

distance bins (tdis) used in the one-mile models.27 The variables are the dependent variable log 

of sale price (lsp) and three independent variables: lsfla100, acres, and age. These summaries are 

provided in Table 7; each sub-table gives the mean values of the variables across the three fdp 

bins and three tdis bins, and the corresponding figures plot those values.  

The top set of results are focused on the log of the sales price, and show that, based purely on 

price and not controlling for differences in homes, homes located within 1 mile of turbines had 

lower sale prices than homes farther away; this is true across all of the three development periods. 

Moreover, the results also show that, over the three periods, the closer homes appreciated to a 

somewhat lesser degree than homes located farther from the turbines. As a result, focusing only 

on the post-construction period, these results might suggest that home prices near turbines are 
                                                 
27 Summaries for the half-mile models reveal a similar relationship, so only the one-mile model summaries are 
shown here. 

mean min
25th 

percentile median
75th 

percentile max
turbine rotor diameter (feet) 262 154 253 253 269 328
turbine hub height (feet) 256 197 256 262 262 328
turbine total height (feet) 388 290 387 389 397 476
turbine capacity (kW) 1637 660 1500 1500 1800 2500
facility announcement year 2004 1998 2002 2003 2005 2010
facility construction year 2007 2000 2004 2006 2010 2011
number of turbines in facility 48 1 5 35 84 150
nameplate capacity of facility (MW) 79 1.5 7.5 53 137 300
Note:  The data correspond to 67 wind facilities located in the study areas.  Mean values are rounded to integers
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adversely impacted by the turbines.  After all, the logarithmic values for the homes within a mile 

of the turbines (11.39) and those outside of a three miles (11.72) translate into an approximately 

40% difference, in comparison to an 21% difference before the wind facilities were announced 

(11.16 vs. 11.35).28 Focusing on the change in average values between the pre-announcement 

and post-construction periods might also suggest an adverse effect due to the turbines, because 

homes inside of 1 mile appreciated more slowly (11.16 to 11.39, or 25%) than those outside of 3 

miles (11.35 to 11.72, or 45%). Both conclusions of adverse turbine effects, however, disregard 

other important differences between the homes, which vary over the periods and distances.  

Similarly, comparing the values of the PA inside 1 mile homes (11.16) and the PC outside of 3 

miles homes (11.72), which translates into a difference of 75%, and which is the basis for 

comparison in the regressions discussed below, but also ignores any differences in the underlying 

characteristics. 

The remainder of Table 7, for example, indicates that, although the homes that sold within 1 mile 

are lower in value, they are also generally (in all but the PA period) smaller, on larger parcels of 

land, and older. These differences in home size and age across the periods and distances might 

explain the differences in price, while the differences in the size of the parcel, which add value, 

further amplifying the differences in price. Without controlling for these possible impacts, one 

cannot reliably estimate the impact of wind turbines on sales prices. 

In summary, focusing solely on trends in home price (or price per square foot) alone, and for 

only the PC period, as might be done in a simpler analysis, might incorrectly suggest that wind 

turbines are affecting price when other aspects of the markets, and other home and sites 

characteristic differences, could be driving the observed price differences. This is precisely why 

researchers generally prefer the hedonic model approach to control for such effects, and the 

results from our hedonic OLS and spatial modeling detailed in the next section account for these 

and many other possible influencing factors.  

                                                 
28 Percentage differences are calculated as follows: exp(11.72-11.39)-1=0.40 and exp(11.35-11.16)-1=0.21. 
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Table 7: Dependent and Independent Variable Means 

 

5. Results 

This section contains analysis results and discussion for the four base models, as well as the 

results from the robustness models. 

5.1. Estimation Results for Base Models 
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Estimation results for the “base” models are shown in Table 8 and Table 9.29 In general, given 

the diverse nature of the data, the models perform adequately, with adjusted R2 values ranging 

from 0.63 to 0.67 (bottom of Table 9). 

5.1.1. Control Variables 

The controlling home, site, and block group variables, which are interacted at the county level, 

are summarized in Table 8. Table 8 focuses on only one of the base models, the one-mile OLS 

model, but full results from all models are shown in the Appendix. 30 To concisely summarize 

results for all of the 27 counties, the table contains the percentage of all 27 counties for which 

each controlling variable has statistically significant (at or below the 10% level) coefficients for 

the one-mile OLS model. For those controlling variables that are found to be statistically 

significant, the table further contains mean values, standard deviations, and minimum and 

maximum levels.  

Many of the county-interacted controlling variables (e.g., lsfla1000, lt1acre, age, agesqr, baths, 

and swinter) are consistently (in more than two thirds of the counties) statistically significant 

(with a p-value < 0.10) and have appropriately sized mean values. The seemingly spurious 

minimum and maximum values among some of the county-level controlling variables (e.g., 

lt1acre minimum of -0.069) likely arise when these variables in particular counties are highly 

correlated with other variables, such as square feet (lsfla1000), and also when sample size is 

limited.31 The other variables (acres and the three block group level census variables: pctvacant, 

pctowner, and med_age) are statistically significant in 33-59% of the counties. Only one 

variable’s mean value—the percent of housing units vacant in the block group as of the 2000 

census (pctvacant)—was counterintuitive.  In that instance, a positive coefficient was estimated, 

when in fact, one would expect that increasing the percent of vacant housing would lower prices; 

                                                 
29 The OLS models are estimated using the areg procedure in Stata with robust (White’s corrected) standard errors 
(White, 1980). The spatial error models are estimated using the gstslshet routine in the sphet package in R, which 
also allows for robust standard errors to be estimated. See: http://cran.r-project.org/web/packages/sphet/sphet.pdf 
30 The controlling variables’ coefficients were similar across the base models, so only the one-mile results are 
summarized here.  
31 The possible adverse effects of these collinearities were fully explored both via the removal of the variables and 
by examining VIF statistics.  The VOI results are robust to controlling variable removal and have relatively low (< 
5) VIF statistics. 
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this counter-intuitive effect may be due to collinearity with one or more of the other variables, or 

possible measurement errors.32  

The sale year variables, which are interacted with the state, are also summarized in Table 8, with 

the percentages indicating the number of states in which the coefficients are statistically 

significant. The inclusion of these sale year variables in the regressions control for inflation and 

deflation across the various states over the study period. The coefficients represent a comparison 

to the omitted year, which is 2011. All sale year state-level coefficients are statistically 

significant in at least 50% of the states in all years except 2010, and they are significant in two 

thirds of the states in all except 3 years. The mean values of all years are appropriately signed, 

showing a monotonically ordered peak in values in 2007, with lower values in the prior and 

following years. The minimum and maximum values are similarly signed (negative) through 

2003 and from 2007 through 2010 (positive), and are both positive and negative in years 2003 

through 2006, indicating the differences in inflation/deflation in those years across the various 

states. This reinforces the appropriateness of interacting the sale years at the state level. Finally, 

although not shown, the model also contains 250 fixed effects for the census tract delineations, 

of which approximately 50% were statistically significant. 

 

                                                 
32 The removal of this, as well as the other block group census variables, however, did not substantively influence 
the results of the VOI. 
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Table 8: Levels and Significance for County- and State-Interacted Controlling Variables33 

  

5.1.2. Variables of Interest 

The variables of interest, the interactions between the fdp and tdis bins, are shown in Table 9 for 

the four base models. The reference (i.e., omitted) case for these variables are homes that sold 

prior to the wind facilities’ announcement (PA) and are located between 3 and 10 miles from the 

                                                 
33 Controlling variable statistics are provided for only the one-mile OLS model but did not differ substantially for 
other models. All variables are interacted with counties, except for sale year (sy), which is interacted with the state. 

Variable Mean St Dev Min Max
lsfla1000 100% 0.604 0.153 0.332 0.979
acres 48% 0.025 0.035 -0.032 0.091
lt1acre 85% 0.280 0.170 -0.069 0.667
age 81% -0.006 0.008 -0.021 0.010
agesqr 74% -0.006 0.063 -0.113 0.108
baths* 85% 0.156 0.088 0.083 0.366
pctvacant 48% 1.295 3.120 -2.485 9.018
pctowner 33% 0.605 0.811 -0.091 2.676
med_age 59% -0.016 0.132 -0.508 0.066
swinter 78% -0.034 0.012 -0.053 -0.020
sy1996 100% -0.481 0.187 -0.820 -0.267
sy1997 100% -0.448 0.213 -0.791 -0.242
sy1998 100% -0.404 0.172 -0.723 -0.156
sy1999 100% -0.359 0.169 -0.679 -0.156
sy2000 88% -0.298 0.189 -0.565 -0.088
sy2001 88% -0.286 0.141 -0.438 -0.080
sy2002 67% -0.261 0.074 -0.330 -0.128
sy2003 67% -0.218 0.069 -0.326 -0.119
sy2004 75% -0.084 0.133 -0.208 0.087
sy2005 67% 0.082 0.148 -0.111 0.278
sy2006 67% 0.128 0.158 -0.066 0.340
sy2007 67% 0.196 0.057 0.143 0.297
sy2008 56% 0.160 0.051 0.084 0.218
sy2009 50% 0.138 0.065 0.071 0.219
sy2010 33% 0.172 0.063 0.105 0.231

* % of counties significant is reported only for counties that had the baths variable populated 
(17 out of 27 counties)

% of Counties/States 
Having Significant                                  

(p -value <0.10) 
Coefficients

Statistics for Significant Variables
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wind turbines’ eventual locations. In relation to that group of transactions, three of the eight 

interactions in the one-mile models and four of the 11 interactions in the half-mile models 

produce coefficients that are statistically significant (at the 10% level). 

Across all four base models none of the PA coefficients show statistically significant differences 

between the reference category (outside of 3 miles) and the group of transactions within a mile 

for the one-mile models (OLS: -1.7%, p-value 0.48; SEM: -0.02%, p-value 0.94)34 or within a 

half- or between one-half and one-mile for the half-mile models (OLS inside a half mile: 0.01%, 

p-value 0.97; between a half and 1 mile: -2.3%, p-value 0.38; SEM inside a half mile: 5.3%, p-

value 0.24; between a half and 1 mile: -1.8%, p-value 0.60). Further, none of the coefficients are 

significant, and all are relatively small (which partially explains their non-significance). Given 

these results, we find an absence of evidence of a PA effect for homes close to the turbines 

(research question 1).  These results can be contrasted with the differences in prices between 

within-1-mile homes and outside-of-3-miles homes as summarized in Section 4.8 when no 

differences in the homes, the local market, the neighborhood, etc. are accounted for. The 

approximately 75% difference in price (alone) in the pre-announcement period 1-mile homes, as 

compared to the PC 3-mile homes, discussed in Section 4.8, is largely explained by differences 

in the controlling characteristics, which is why the pre-announcement distance coefficients 

shown here are not statistically significant. 

Turning to the PAPC and PC periods, the results also indicate statistically insignificant 

differences in average home values, all else being equal, between the reference group of 

transactions (sold in the PA period) and those similarly located more than 3 miles from the 

turbines but sold in the PAPC or PC periods. Those differences are estimated to be between -

0.8% and -0.5%.  

The results presented above, and in Table 8, include both OLS and spatial models. Prior to 

estimating the spatial models, the Moran’s I was calculated using the residuals of an OLS model 

that uses the same explanatory variables as the spatial models and the same dataset (only the 

most recent transactions). The Moran’s I statistic (0.133) was highly significant (p-value 0.00), 

                                                 
34 p-values are not shown in the table can but can be derived from the standard errors, which are shown. 
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which allows us to reject the hypothesis that the residuals are spatially independent. Therefore, 

there was justification in estimating the spatial models. However, after estimation, we 

determined that only the spatial error process was significant. As a result, we estimated spatial 

error models (SEMs) for the final specification. The spatial autoregressive coefficient, lambda 

(bottom of Table 9), which is an indication of spatial autocorrelation in the residuals, is sizable 

and statistically significant in both SEMs (0.26, p-value 0.00). The SEM models’ variable-of-

interest coefficients are quite similar to those of the OLS models. In most cases, the coefficients 

are the same sign, approximately the same level, and often similarly insignificant, indicating that 

although spatial dependence is present it does not substantively bias the variables of interest. The 

one material difference is the coefficient size and significance for homes outside of 3 miles in the 

PAPC and PC periods, 3.3% (p-value 0.000) and 3.1% (p-value 0.008), indicating there are 

important changes to home values over the periods that must be accounted for in the later DD 

models in order to isolate the potential impacts that occur due to the presence of wind turbines. 
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Table 9: Results of Interacted Variables of Interest: fdp and tdis 

 

one-mile one-mile half-mile half-mile
OLS SEM OLS SEM

fdp tdis β (se) β (se) β (se) β (se)
-0.017 0.002               

(0.024) (0.031)               
-0.015 0.008               

(0.011) (0.016)               
Omitted Omitted               

n/a n/a               
-0.035 -0.038               

(0.029) (0.033)               
-0.001 -0.033.               

(0.014) (0.018)               
-0.006 -0.033***               

(0.008) (0.01)               
0.019 -0.022               

(0.026) (0.032)               
0.044*** -0.001               
(0.014) (0.019)               
-0.005 -0.031**               

(0.010) (0.012)               
0.001 0.053

(0.039) (0.045)
-0.023 -0.018

(0.027) (0.035)
-0.015 0.008

(0.011) (0.016)
Omitted Omitted

n/a n/a
-0.028 -0.065

(0.049) (0.056)
-0.038 -0.027

(0.033) (0.036)
-0.001 -0.034.

(0.014) (0.017)
-0.006 -0.033***

(0.008) (0.009)
-0.016 -0.036

(0.041) (0.046)
0.032 -0.016

(0.031) (0.035)
0.044*** -0.001
(0.014) (0.018)
-0.005 -0.031**

(0.010) (0.012)
0.247 *** 0.247 ***
(0.008) (0.008)

Note: p-values: < 0.1 *, < 0.05 **, <0.01 ***.

n 51,276 38,407 51,276 38,407
adj R-sqr 0.67 0.64 0.67 0.64

PAPC

1-2 miles

> 3 miles

< 1 milePA

PA

PA

PAPC

1-2 miles

> 3 miles

< 1 mile

1-2 miles

> 3 miles

< 1/2 mile

1/2 - 1 mile

PA

PA

PAPC

PC

PC

PC

< 1 mile

PA

PC

PC

1-2 miles

PA > 3 miles

< 1/2 mile

1/2 - 1 mile

< 1/2 mile

1/2 - 1 mile

PAPC 1-2 miles

PAPC > 3 miles

PAPC

PAPC

1-2 miles

PC

PC > 3 miles

lambda
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5.1.3. Impact of Wind Turbines 

As discussed above, there are important differences in property values between development 

periods for the reference group of homes (those located outside of 3 miles) that must be 

accounted for. Further, although they are not significant, differences between the reference 

category and those transactions inside of 1 mile in the PA period still must be accounted for if 

accurate measurements of PAPC or PC wind turbine effects are to be estimated. The DD 

specification accounts for both of these critical effects.  

Table 10 shows the results of the DD tests across the four models, based on the results for the 

variables of interest presented in Table 9.35 For example, to determine the net difference for 

homes that sold inside of a half mile (drawing from the half-mile OLS model) in the PAPC 

period, we use the following formula: PAPC half-mile coefficient (-0.028) less the PAPC 3-mile 

coefficient (-0.006) less the PA half-mile coefficient (0.001), which equals -0.024 (without 

rounding), which equates to 2.3% difference,36 and is not statistically significant.  

None of the DD effects in either the OLS or SEM specifications are statistically significant in the 

PAPC or PC periods, indicating that we do not observe a statistically significant impact of wind 

turbines on property values. Some small differences are apparent in the calculated coefficients, 

with those for PAPC being generally more negative/less positive than their PC counterparts, 

perhaps suggestive of a small announcement effect that declines once a facility is constructed. 

Further, the inside-a-half-mile coefficients are more negative/less positive than their between-a-

half-and-1-mile counterparts, perhaps suggestive of a small property value impact very close to 

turbines.37 However, in all cases, the sizes of these differences are smaller than the margins of 

error in the model (i.e., 90% confidence interval) and thus are not statistically significant. 

Therefore, based on these results, we do not find evidence supporting either of our two core 

hypotheses (research questions 2 and 3). In other words, there is no statistical evidence that 

homes in either the PAPC or PC periods that sold near turbines (i.e., within a mile or even a half 
                                                 
35 All DD estimates for the OLS models were calculated using the post-estimation “lincom” test in Stata, which uses 
the stored results’ variance/covariance matrix to test if a linear combination of coefficients is different from 0. For 
the SEM models, a similar test was performed in R.  
36 All differences in coefficients are converted to percentages in the table as follows: exp(coef)-1. 
37 Although not discussed in the text, this trend continues with homes between 1 and 2 miles being less 
negative/more positive than homes closer to the turbines (e.g., those within 1 mile). 
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mile) did so for less than similar homes that sold between 3 and 10 away miles in the same 

period.  

Further, using the standard errors from the DD models we can estimate the maximum size an 

average effect would have to be in our sample for the model to detect it (research question 4). 

For an average effect in the PC period to be found for homes within 1 mile of the existing 

turbines (therefore using the one-mile model results), an effect greater than 4.9%, either positive 

or negative, would have to be present to be detected by the model.38 In other words, it is highly 

unlikely that the true average effect for homes that sold in our sample area within 1 mile of an 

existing turbine is larger than +/-4.9%. Similarly, it is highly unlikely that the true average effect 

for homes that sold in our sample area within a half mile of an existing turbine is larger than +/-

9.0%.39 Regardless of these maximum effects, however, as well as the very weak suggestion of a 

possible small announcement effect and a possible small effect on homes that are very close to 

turbines, the core results of these models show effect sizes that are not statistically significant 

from zero, and are considerably smaller than these maximums.40  

                                                 
38 Using the 90% confidence interval (i.e., 10% level of significance) and assuming more than 300 cases, the critical 
t-value is 1.65. Therefore, using the standard error of 0.030, the 90% confidence intervals for the test will be +/-
0.049. 
39 Using the critical t-value of 1.66 for the 100 PC cases within a half mile in our sample and the standard error of 
0.054. 
40 It is of note that these maximum effects are slightly larger than those we expected to find, as discussed earlier.  
This likely indicates that there was more variation in this sample, causing relatively higher standard errors for the 
same number of cases, than in the sample used for the 2009 study (Hoen et al., 2009, 2011). 
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Table 10: "Net" Difference-in-Difference Impacts of Turbines 

 

5.2. Robustness Tests 

Table 11 summarizes the results from the robustness tests. For simplicity, only the DD 

coefficients are shown and only for the half-mile OLS models.41 The first two columns show the 

base OLS and SEM half-mile DD results (also presented earlier, in Table 9), and the remaining 

columns show the results from the robustness models as follows: exclusion of outliers and 

influential cases from the dataset (outlier); using sale year/county interactions instead of sale 

year/state (sycounty); using only the most recent sales instead of the most recent and prior sales 

(recent); using homes between 5 and 10 miles as the reference category, instead of homes 

between 3 and 10 miles (outside5); and using transactions occurring more than 2 years before 

announcement as the reference category instead of using transactions simply before 

announcement (prior).  

                                                 
41 Results were also estimated for the one-mile OLS models for each of the robustness tests and are available upon 
request: the results do not substantively differ from what is presented here for the half-mile models. Because of the 
similarities in the results between the OLS and SEM “base” models, robustness tests on the SEM models were not 
prepared as we assumed that differences between the two models for the robustness tests would be minimal as well.  

< 1 Mile < 1 Mile < 1/2 Mile < 1/2 Mile
OLS SEM OLS SEM

fdp tdis b/se b/se b/se   b/se   
-1.2% NS -0.7% NS

(0.033) (0.037)

4.2% NS 0.7% NS

(0.030) (0.035)

-2.3% NS -8.1% NS

(0.060) (0.065)

-0.8% NS 2.5% NS

(0.039) (0.043)

-1.2% NS -5.6% NS

(0.054) (0.057)

6.3% NS 3.4% NS

(0.036) (0.042)

Note: p-values: > 10% NS , < 10% *, < 5% **, <1 % ***

1/2 - 1 milePC

< 1/2 mile

< 1 milePAPC

< 1 milePC

PAPC

1/2 - 1 milePAPC

< 1/2 milePC
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The robustness results have patterns similar to the base model results: none of the coefficients 

are statistically different from zero; all coefficients (albeit non-significant) are lower in the 

PAPC period than the PC period; and, all coefficients (albeit non-significant) are lower (i.e., less 

negative/more positive) within a half mile than outside a half mile.42 In sum, regardless of 

dataset or specification, there is no change in the basic conclusions drawn from the base model 

results: there is no evidence that homes near operating or announced wind turbines are impacted 

in a statistically significant fashion. Therefore, if effects do exist, either the average impacts are 

relatively small (within the margin of error in the models) and/or sporadic (impacting only a 

small subset of homes). Moreover, these results seem to corroborate what might be predicted 

given the other, potentially analogous disamenity literature that was reviewed earlier, which 

might be read to suggest that any property value effect of wind turbines might coalesce at a 

maximum of 3%–4%, on average. Of course, we cannot offer that corroboration directly because, 

although the size of the coefficients in the models presented here are reasonably consistent with 

effects of that magnitude, none of our models offer results that are statistically different from 

zero.   

                                                 
42 This trend also continues outside of 1 mile, with those coefficients being less negative/more positive than those 
within 1 mile. 
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Table 11: Robustness Half-Mile Model Results 

 

  

Base 
OLS

Base 
SEM outlier sycounty recent outside5 prior

fdp tdis β (se) β (se) β (se) β (se) β (se) β (se) β (se)
-2.3% NS -8.1% NS -4.7% NS -4.2% NS -5.6% NS -1.7% NS 0.1% NS

(0.060) (0.065) (0.056) (0.060) (0.066) (0.060) (0.062)

-0.8% NS 2.5% NS -1.7% NS -2.5% NS 2.3% NS -0.2% NS 0.4% NS

(0.039) (0.043) (0.036) (0.039) (0.043) (0.039) (0.044)

-1.2% NS -5.6% NS -0.5% NS -1.8% NS -4.3% NS -0.3% NS 1.3% NS

(0.054) (0.057) (0.047) (0.054) (0.056) (0.054) (0.056)

6.3% NS 3.4% NS 6.2% NS 3.8% NS 4.1% NS 7.1% NS 7.5% NS

(0.036) (0.041) (0.033) (0.036) (0.042) (0.036) (0.041)

Note: p-values: > 0.1 NS , < 0.1 *, <0.5 **, <0.01 ***

n 51,276 38,407 50,106 51,276 38,407 51,276 51,276
adj R-sqr 0.67 0.64 0.66 0.67 0.66 0.67 0.67

Robustness OLS Models

PC 1/2 - 1 mile

PAPC < 1/2 mile

PAPC 1/2 - 1 mile

PC < 1/2 mile
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6. Conclusion 

Wind energy facilities are expected to continue to be developed in the United States. Some of 

this growth is expected to occur in more-populated regions, raising concerns about the effects of 

wind development on home values in surrounding communities. 

Previous published and academic research on this topic has tended to indicate that wind facilities, 

after they have been constructed, produce little or no effect on home values. At the same time, 

some evidence has emerged indicating potential home-value effects occurring after a wind 

facility has been announced but before construction. These previous studies, however, have been 

limited by their relatively small sample sizes, particularly in relation to the important population 

of homes located very close to wind turbines, and have sometimes treated the variable for 

distance to wind turbines in a problematic fashion. Analogous studies of other disamenities—

including high-voltage transmission lines, landfills, and noisy roads—suggest that if reductions 

in property values near turbines were to occur, they would likely be no more than 3%–4%, on 

average, but to discover such small effects near turbines, much larger amounts of data are needed 

than have been used in previous studies. Moreover, previous studies have not accounted 

adequately for potentially confounding home-value factors, such as those affecting home values 

before wind facilities were announced, nor have they adequately controlled for spatial 

dependence in the data, i.e., how the values and characteristics of homes located near one 

another influence the value of those homes (independent of the presence of wind turbines). 

This study helps fill those gaps by collecting a very large data sample and analyzing it with 

methods that account for confounding factors and spatial dependence. We collected data from 

more than 50,000 home sales among 27 counties in nine states. These homes were within 10 

miles of 67 different then-current or existing wind facilities, with 1,198 sales that were within 1 

mile of a turbine (331 of which were within a half mile)—many more than were collected by 

previous research efforts. The data span the periods well before announcement of the wind 

facilities to well after their construction. We use OLS and spatial-process difference-in-

difference hedonic models to estimate the home-value impacts of the wind facilities; these 

models control for value factors existing prior to the wind facilities’ announcements, the spatial 

dependence of home values, and value changes over time. We also employ a series of robustness 
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models, which provide greater confidence in our results by testing the effects of data outliers and 

influential cases, heterogeneous inflation/deflation across regions, older sales data for multi-sale 

homes, the distance from turbines for homes in our reference case, and the amount of time before 

wind-facility announcement for homes in our reference case. 

Across all model specifications, we find no statistical evidence that home prices near wind 

turbines were affected in either the post-construction or post-announcement/pre-

construction periods. Therefore, if effects do exist, either the average impacts are relatively 

small (within the margin of error in the models) and/or sporadic (impacting only a small subset 

of homes).  Related, our sample size and analytical methods enabled us to bracket the size of 

effects that would be detected, if those effects were present at all. Based on our results, we find 

that it is highly unlikely that the actual average effect for homes that sold in our sample area 

within 1 mile of an existing turbine is larger than +/-4.9%. In other words, the average value of 

these homes could be as much as 4.9% higher than it would have been without the presence of 

wind turbines, as much as 4.9% lower, the same (i.e., zero effect), or anywhere in between. 

Similarly, it is highly unlikely that the average actual effect for homes that sold in our sample 

area within a half mile of an existing turbine is larger than +/-9.0%. In other words, the average 

value of these homes could be as much as 9% higher than it would have been without the 

presence of wind turbines, as much as 9% lower, the same (i.e., zero effect), or anywhere in 

between.   

Regardless of these potential maximum effects, the core results of our analysis consistently show 

no sizable statistically significant impact of wind turbines on nearby property values. The 

maximum impact suggested by potentially analogous disamenities (high-voltage transmission 

lines, landfills, roads etc.) of 3%-4% is at the far end of what the models presented in this study 

would have been able to discern, potentially helping to explain why no statistically significant 

effect was found. If effects of this size are to be discovered in future research, even larger 

samples of data may be required. For those interested in estimating such effects on a more micro 

(or local) scale, such as appraisers, these possible data requirements may be especially daunting, 

though it is also true that the inclusion of additional market, neighborhood, and individual 

property characteristics in these more-local assessments may sometimes improve model fidelity.   
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8. Appendix – Full Results 

 

Variables coef se coef se coef se coef se
Intercept 11.332*** (0.058) 11.330*** (0.058) 11.292*** (0.090) 11.292*** (0.090)
fdp3tdis3_11 -0.017 (0.024) 0.002 (0.031)
fdp3tdis3_12 -0.015 (0.011) 0.008 (0.016)
fdp3tdis3_21 -0.035 (0.029) -0.038 (0.033)
fdp3tdis3_22 -0.001 (0.014) -0.033* (0.017)
fdp3tdis3_23 -0.006 (0.008) -0.033*** (0.009)
fdp3tdis3_31 0.019 (0.026) -0.022 (0.031)
fdp3tdis3_32 0.044*** (0.014) -0.001 (0.018)
fdp3tdis3_33 -0.005 (0.010) -0.031*** (0.012)
fdp3tdis4_10 0.001 (0.039) 0.053 (0.045)
fdp3tdis4_11 -0.023 (0.027) -0.018 (0.035)
fdp3tdis4_12 -0.015 (0.011) 0.008 (0.016)
fdp3tdis4_20 -0.028 (0.049) -0.065 (0.056)
fdp3tdis4_21 -0.038 (0.033) -0.027 (0.036)
fdp3tdis4_22 -0.001 (0.014) -0.034* (0.017)
fdp3tdis4_23 -0.006 (0.008) -0.033*** (0.009)
fdp3tdis4_30 -0.016 (0.041) -0.036 (0.046)
fdp3tdis4_31 0.032 (0.031) -0.016 (0.035)
fdp3tdis4_32 0.044*** (0.014) -0.001 (0.018)
fdp3tdis4_33 -0.005 (0.010) -0.031*** (0.012)
lsfla1000_ia_car 0.750*** (0.042) 0.749*** (0.042) 0.723*** (0.045) 0.722*** (0.045)
lsfla1000_ia_flo 0.899*** (0.054) 0.900*** (0.054) 0.879*** (0.060) 0.88*** (0.060)
lsfla1000_ia_fra 0.980*** (0.077) 0.980*** (0.077) 0.932*** (0.083) 0.934*** (0.083)
lsfla1000_ia_sac 0.683*** (0.061) 0.683*** (0.061) 0.633*** (0.065) 0.633*** (0.064)
lsfla1000_il_dek 0.442*** (0.037) 0.441*** (0.037) 0.382*** (0.040) 0.38*** (0.040)
lsfla1000_il_liv 0.641*** (0.030) 0.641*** (0.030) 0.643*** (0.046) 0.643*** (0.046)
lsfla1000_il_mcl 0.512*** (0.019) 0.512*** (0.019) 0.428*** (0.029) 0.428*** (0.029)
lsfla1000_mn_cot 0.800*** (0.052) 0.800*** (0.052) 0.787*** (0.077) 0.787*** (0.077)
lsfla1000_mn_fre 0.594*** (0.028) 0.595*** (0.028) 0.539*** (0.031) 0.539*** (0.031)
lsfla1000_mn_jac 0.587*** (0.101) 0.587*** (0.101) 0.551*** (0.102) 0.55*** (0.102)
lsfla1000_mn_mar 0.643*** (0.025) 0.643*** (0.025) 0.603*** (0.029) 0.603*** (0.029)
lsfla1000_nj_atl 0.421*** (0.012) 0.421*** (0.012) 0.389*** (0.014) 0.389*** (0.014)
lsfla1000_ny_cli 0.635*** (0.044) 0.635*** (0.044) 0.606*** (0.045) 0.606*** (0.045)
lsfla1000_ny_fra 0.373*** (0.092) 0.375*** (0.092) 0.433*** (0.094) 0.436*** (0.094)
lsfla1000_ny_her 0.520*** (0.034) 0.520*** (0.034) 0.559*** (0.035) 0.559*** (0.035)
lsfla1000_ny_lew 0.556*** (0.054) 0.556*** (0.054) 0.518*** (0.057) 0.518*** (0.057)
lsfla1000_ny_mad 0.503*** (0.025) 0.503*** (0.025) 0.502*** (0.025) 0.502*** (0.025)
lsfla1000_ny_ste 0.564*** (0.032) 0.564*** (0.032) 0.534*** (0.034) 0.534*** (0.034)
lsfla1000_ny_wyo 0.589*** (0.034) 0.589*** (0.034) 0.566*** (0.034) 0.566*** (0.034)
lsfla1000_oh_pau 0.625*** (0.080) 0.624*** (0.080) 0.567*** (0.090) 0.565*** (0.090)
lsfla1000_oh_woo 0.529*** (0.030) 0.529*** (0.030) 0.487*** (0.035) 0.487*** (0.035)
lsfla1000_ok_cus 0.838*** (0.037) 0.838*** (0.037) 0.794*** (0.046) 0.793*** (0.046)
lsfla1000_ok_gra 0.750*** (0.063) 0.750*** (0.063) 0.706*** (0.072) 0.706*** (0.072)
lsfla1000_pa_fay 0.332*** (0.111) 0.332*** (0.111) 0.335*** (0.118) 0.334*** (0.118)
lsfla1000_pa_som 0.564*** (0.025) 0.564*** (0.025) 0.548*** (0.031) 0.548*** (0.031)
lsfla1000_pa_way 0.486*** (0.056) 0.486*** (0.056) 0.44*** (0.063) 0.44*** (0.063)
lsfla1000_wa_kit 0.540*** (0.073) 0.540*** (0.073) 0.494*** (0.078) 0.494*** (0.078)

OneMile OLS HalfMile OLS OneMile SEM HalfMile SEM
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Variables coef se coef se coef se coef se
acres_ia_car 0.033 (0.030) 0.033 (0.030) 0.013 (0.032) 0.013 (0.032)
acres_ia_flo 0.050*** (0.014) 0.050*** (0.014) 0.044*** (0.014) 0.044*** (0.014)
acres_ia_fra -0.008 (0.022) -0.008 (0.022) -0.009 (0.022) -0.009 (0.022)
acres_ia_sac 0.064*** (0.014) 0.064*** (0.014) 0.054*** (0.015) 0.054*** (0.015)
acres_il_dek 0.068** (0.027) 0.064** (0.027) 0.055* (0.029) 0.048* (0.029)
acres_il_liv 0.023 (0.014) 0.023 (0.014) 0.014 (0.018) 0.014 (0.018)
acres_il_mcl 0.091*** (0.010) 0.091*** (0.010) 0.092*** (0.011) 0.092*** (0.011)
acres_mn_cot -0.030*** (0.011) -0.030*** (0.011) -0.024* (0.013) -0.024* (0.013)
acres_mn_fre -0.002 (0.007) -0.002 (0.007) 0.002 (0.008) 0.002 (0.008)
acres_mn_jac 0.019 (0.016) 0.020 (0.016) 0.03* (0.016) 0.03* (0.016)
acres_mn_mar 0.020** (0.008) 0.020** (0.008) 0.017* (0.009) 0.017* (0.009)
acres_nj_atl -0.041 (0.031) -0.041 (0.031) -0.013 (0.026) -0.013 (0.026)
acres_ny_cli 0.019*** (0.007) 0.019*** (0.007) 0.022*** (0.007) 0.022*** (0.007)
acres_ny_fra 0.009 (0.010) 0.009 (0.010) 0.014 (0.011) 0.014 (0.011)
acres_ny_her -0.004 (0.008) -0.004 (0.008) 0.012 (0.008) 0.012 (0.008)
acres_ny_lew 0.014* (0.008) 0.014* (0.008) 0.014 (0.009) 0.014 (0.009)
acres_ny_mad 0.021*** (0.003) 0.021*** (0.003) 0.021*** (0.004) 0.021*** (0.004)
acres_ny_ste 0.009* (0.005) 0.009* (0.005) 0.007 (0.005) 0.007 (0.005)
acres_ny_wyo 0.016*** (0.004) 0.016*** (0.004) 0.019*** (0.004) 0.019*** (0.004)
acres_oh_pau -0.010 (0.020) -0.010 (0.020) 0.01 (0.024) 0.009 (0.024)
acres_oh_woo -0.007 (0.010) -0.007 (0.010) 0.002 (0.010) 0.002 (0.010)
acres_ok_cus -0.037* (0.019) -0.037* (0.019) -0.034 (0.022) -0.034 (0.022)
acres_ok_gra 0.014 (0.010) 0.014 (0.010) 0.019* (0.011) 0.019* (0.011)
acres_pa_fay -0.006 (0.023) -0.006 (0.023) 0.01 (0.023) 0.01 (0.023)
acres_pa_som 0.003 (0.009) 0.004 (0.009) 0.009 (0.010) 0.009 (0.010)
acres_pa_way 0.017** (0.007) 0.017** (0.007) 0.024*** (0.007) 0.024*** (0.007)
acres_wa_kit 0.009 (0.010) 0.009 (0.010) 0.014 (0.011) 0.014 (0.011)
acreslt1_ia_car 0.446*** (0.136) 0.448*** (0.136) 0.559*** (0.144) 0.56*** (0.143)
acreslt1_ia_flo 0.436*** (0.112) 0.435*** (0.112) 0.384*** (0.118) 0.383*** (0.118)
acreslt1_ia_fra 0.670*** (0.124) 0.668*** (0.124) 0.684*** (0.139) 0.68*** (0.139)
acreslt1_ia_sac 0.159 (0.115) 0.160 (0.115) 0.222* (0.123) 0.221* (0.123)
acreslt1_il_dek 0.278*** (0.066) 0.285*** (0.066) 0.282*** (0.073) 0.294*** (0.073)
acreslt1_il_liv 0.278*** (0.063) 0.276*** (0.063) 0.383*** (0.088) 0.38*** (0.088)
acreslt1_il_mcl -0.069*** (0.021) -0.070*** (0.021) -0.007 (0.032) -0.007 (0.032)
acreslt1_mn_cot 0.529*** (0.093) 0.529*** (0.093) 0.466*** (0.120) 0.465*** (0.120)
acreslt1_mn_fre 0.314*** (0.053) 0.314*** (0.053) 0.294*** (0.061) 0.293*** (0.061)
acreslt1_mn_jac 0.250* (0.144) 0.247* (0.145) 0.169 (0.146) 0.162 (0.146)
acreslt1_mn_mar 0.452*** (0.062) 0.452*** (0.062) 0.461*** (0.069) 0.462*** (0.069)
acreslt1_nj_atl 0.135*** (0.048) 0.135*** (0.048) 0.044 (0.047) 0.043 (0.047)
acreslt1_ny_cli 0.115*** (0.044) 0.115*** (0.044) 0.108** (0.047) 0.108** (0.047)
acreslt1_ny_fra 0.118 (0.100) 0.118 (0.100) 0.113 (0.115) 0.113 (0.115)
acreslt1_ny_her 0.364*** (0.047) 0.364*** (0.047) 0.331*** (0.050) 0.332*** (0.050)
acreslt1_ny_lew 0.119* (0.061) 0.120** (0.061) 0.117* (0.067) 0.117* (0.067)

OneMile OLS HalfMile OLS OneMile SEM HalfMile SEM
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Variables coef se coef se coef se coef se
acreslt1_ny_mad 0.017 (0.031) 0.018 (0.031) 0.043 (0.032) 0.043 (0.032)
acreslt1_ny_ste 0.100** (0.042) 0.100** (0.042) 0.18*** (0.047) 0.18*** (0.047)
acreslt1_ny_wyo 0.144*** (0.035) 0.144*** (0.035) 0.137*** (0.039) 0.137*** (0.039)
acreslt1_oh_pau 0.426*** (0.087) 0.425*** (0.087) 0.507*** (0.120) 0.507*** (0.120)
acreslt1_oh_woo 0.124*** (0.034) 0.124*** (0.034) 0.114*** (0.041) 0.114*** (0.041)
acreslt1_ok_cus 0.103 (0.070) 0.104 (0.070) 0.091 (0.092) 0.093 (0.092)
acreslt1_ok_gra -0.038 (0.054) -0.038 (0.054) -0.065 (0.066) -0.065 (0.066)
acreslt1_pa_fay 0.403*** (0.153) 0.403*** (0.153) 0.42** (0.165) 0.42** (0.164)
acreslt1_pa_som 0.243*** (0.039) 0.243*** (0.039) 0.223*** (0.047) 0.223*** (0.047)
acreslt1_pa_way 0.138** (0.062) 0.138** (0.062) 0.108 (0.077) 0.109 (0.077)
acreslt1_wa_kit 0.335** (0.134) 0.335** (0.134) 0.342** (0.164) 0.342** (0.164)
age_ia_car -0.013*** (0.001) -0.013*** (0.001) -0.011*** (0.001) -0.011*** (0.001)
age_ia_flo -0.013*** (0.002) -0.013*** (0.002) -0.013*** (0.002) -0.013*** (0.002)
age_ia_fra -0.012*** (0.003) -0.012*** (0.003) -0.011*** (0.003) -0.011*** (0.003)
age_ia_sac -0.013*** (0.003) -0.013*** (0.003) -0.011*** (0.003) -0.011*** (0.003)
age_il_dek -0.004*** (0.001) -0.004*** (0.001) -0.004*** (0.001) -0.004*** (0.001)
age_il_liv -0.001 (0.001) -0.002 (0.001) -0.003 (0.002) -0.003 (0.002)
age_il_mcl -0.004*** (0.001) -0.004*** (0.001) -0.006*** (0.001) -0.006*** (0.001)
age_mn_cot -0.021*** (0.003) -0.021*** (0.003) -0.013*** (0.005) -0.013*** (0.005)
age_mn_fre -0.013*** (0.001) -0.013*** (0.001) -0.012*** (0.002) -0.012*** (0.002)
age_mn_jac -0.018*** (0.005) -0.018*** (0.005) -0.018*** (0.005) -0.018*** (0.005)
age_mn_mar -0.010*** (0.001) -0.010*** (0.001) -0.009*** (0.002) -0.009*** (0.002)
age_nj_atl -0.004*** (0.000) -0.004*** (0.000) -0.003*** (0.001) -0.003*** (0.001)
age_ny_cli -0.005*** (0.001) -0.005*** (0.001) -0.005*** (0.001) -0.005*** (0.001)
age_ny_fra -0.004 (0.003) -0.005 (0.003) -0.005* (0.003) -0.005* (0.003)
age_ny_her -0.008*** (0.001) -0.008*** (0.001) -0.008*** (0.001) -0.008*** (0.001)
age_ny_lew -0.008*** (0.001) -0.008*** (0.001) -0.009*** (0.001) -0.009*** (0.001)
age_ny_mad -0.006*** (0.001) -0.006*** (0.001) -0.006*** (0.001) -0.006*** (0.001)
age_ny_ste -0.006*** (0.001) -0.006*** (0.001) -0.007*** (0.001) -0.007*** (0.001)
age_ny_wyo -0.006*** (0.001) -0.006*** (0.001) -0.006*** (0.001) -0.006*** (0.001)
age_oh_pau 0.003 (0.003) 0.003 (0.003) 0.003 (0.004) 0.003 (0.004)
age_oh_woo 0.008*** (0.001) 0.008*** (0.001) 0.01*** (0.001) 0.01*** (0.001)
age_ok_cus -0.000 (0.002) -0.000 (0.002) 0.002 (0.003) 0.002 (0.003)
age_ok_gra -0.000 (0.002) -0.000 (0.002) 0.001 (0.002) 0.001 (0.002)
age_pa_fay 0.010** (0.004) 0.010** (0.004) 0.01** (0.005) 0.01** (0.005)
age_pa_som -0.006*** (0.001) -0.006*** (0.001) -0.008*** (0.001) -0.008*** (0.001)
age_pa_way 0.006*** (0.002) 0.006*** (0.002) 0.007*** (0.002) 0.007*** (0.002)
age_wa_kit 0.010*** (0.003) 0.010*** (0.003) 0.014*** (0.003) 0.014*** (0.003)
agesq_ia_car 0.034*** (0.011) 0.034*** (0.000) 0.022* (0.012) 0.022* (0.012)
agesq_ia_flo 0.040*** (0.016) 0.040** (0.016) 0.044*** (0.016) 0.044*** (0.016)
agesq_ia_fra 0.025 (0.022) 0.025 (0.022) 0.02 (0.023) 0.021 (0.023)
agesq_ia_sac 0.032 (0.022) 0.032 (0.022) 0.025 (0.023) 0.025 (0.023)
agesq_il_dek 0.008 (0.010) 0.008 (0.010) 0.013 (0.012) 0.013 (0.011)
agesq_il_liv -0.023** (0.009) -0.023** (0.009) -0.011 (0.014) -0.011 (0.014)
agesq_il_mcl 0.005 (0.007) 0.005 (0.007) 0.021* (0.011) 0.021* (0.011)
agesq_mn_cot 0.109** (0.043) 0.109** (0.043) 0.032 (0.069) 0.033 (0.069)
agesq_mn_fre 0.046*** (0.010) 0.045*** (0.010) 0.044*** (0.012) 0.044*** (0.012)
agesq_mn_jac 0.103*** (0.035) 0.104*** (0.035) 0.1*** (0.034) 0.101*** (0.034)
agesq_mn_mar 0.012 (0.012) 0.012 (0.012) 0.006 (0.014) 0.006 (0.014)

OneMile OLS HalfMile OLS OneMile SEM HalfMile SEM
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Variables coef se coef se coef se coef se
agesq_nj_atl 0.010*** (0.003) 0.010*** (0.003) 0.003 (0.005) 0.003 (0.005)
agesq_ny_cli 0.011* (0.006) 0.011* (0.006) 0.011* (0.006) 0.011* (0.006)
agesq_ny_fra -0.011 (0.022) -0.011 (0.022) -0.002 (0.020) -0.002 (0.020)
agesq_ny_her 0.022*** (0.005) 0.022*** (0.005) 0.022*** (0.006) 0.022*** (0.006)
agesq_ny_lew 0.031*** (0.006) 0.031*** (0.006) 0.032*** (0.007) 0.032*** (0.007)
agesq_ny_mad 0.017*** (0.003) 0.017*** (0.003) 0.023*** (0.003) 0.023*** (0.003)
agesq_ny_ste 0.013** (0.005) 0.013** (0.005) 0.018*** (0.005) 0.018*** (0.005)
agesq_ny_wyo 0.016*** (0.005) 0.016*** (0.005) 0.017*** (0.005) 0.017*** (0.005)
agesq_oh_pau -0.044** (0.022) -0.045** (0.022) -0.043 (0.028) -0.043 (0.028)
agesq_oh_woo -0.074*** (0.007) -0.074*** (0.007) -0.091*** (0.009) -0.091*** (0.009)
agesq_ok_cus -0.091*** (0.019) -0.091*** (0.019) -0.113*** (0.026) -0.113*** (0.026)
agesq_ok_gra -0.081*** (0.023) -0.081*** (0.023) -0.097*** (0.029) -0.097*** (0.029)
agesq_pa_fay -0.112*** (0.032) -0.112*** (0.032) -0.105*** (0.034) -0.106*** (0.034)
agesq_pa_som 0.000 (0.008) 0.002 (0.008) 0.016* (0.009) 0.016* (0.009)
agesq_pa_way -0.000*** (0.012) -0.052*** (0.012) -0.053*** (0.014) -0.053*** (0.014)
agesq_wa_kit -0.000*** (0.027) -0.097*** (0.027) -0.132*** (0.031) -0.132*** (0.031)
bathsim_ia_sac -0.050 (0.073) -0.050 (0.073) -0.082 (0.077) -0.081 (0.077)
bathsim_il_dek -0.005 (0.015) -0.005 (0.015) 0.001 (0.018) 0.001 (0.018)
bathsim_ny_cli 0.090*** (0.025) 0.090*** (0.025) 0.087*** (0.024) 0.087*** (0.024)
bathsim_ny_fra 0.246*** (0.062) 0.245*** (0.062) 0.213*** (0.064) 0.212*** (0.064)
bathsim_ny_her 0.099*** (0.022) 0.099*** (0.022) 0.079*** (0.022) 0.079*** (0.022)
bathsim_ny_lew 0.168*** (0.030) 0.167*** (0.030) 0.142*** (0.031) 0.142*** (0.031)
bathsim_ny_mad 0.180*** (0.014) 0.180*** (0.014) 0.157*** (0.013) 0.157*** (0.013)
bathsim_ny_ste 0.189*** (0.019) 0.189*** (0.019) 0.166*** (0.020) 0.166*** (0.020)
bathsim_ny_wyo 0.107*** (0.021) 0.107*** (0.021) 0.1*** (0.021) 0.1*** (0.021)
bathsim_oh_pau 0.095* (0.051) 0.095* (0.051) 0.149*** (0.057) 0.149*** (0.057)
bathsim_oh_woo 0.094*** (0.017) 0.094*** (0.017) 0.092*** (0.019) 0.092*** (0.019)
bathsim_pa_fay 0.367*** (0.077) 0.367*** (0.077) 0.301*** (0.082) 0.302*** (0.082)
bathsim_pa_way 0.082** (0.036) 0.082** (0.036) 0.081** (0.041) 0.081** (0.041)
pctvacant_ia_car -2.515* (1.467) -2.521* (1.468) -2.011 (1.936) -2.019 (1.937)
pctvacant_ia_flo 0.903 (1.152) 0.921 (1.152) 1.358 (1.409) 1.339 (1.410)
pctvacant_ia_fra 8.887** (3.521) 8.928** (3.518) -2.596 (1.703) -2.6 (1.703)
pctvacant_ia_sac 0.672 (0.527) 0.673 (0.527) 1.267*** (0.377) 1.266*** (0.377)
pctvacant_il_dek 0.052 (0.639) 0.062 (0.638) 0.037 (0.964) 0.069 (0.961)
pctvacant_il_liv -0.475 (0.474) -0.476 (0.474) -0.699 (0.872) -0.701 (0.872)
pctvacant_il_mcl -0.365 (0.397) -0.366 (0.397) 0.445 (0.670) 0.442 (0.670)
pctvacant_mn_cot 1.072* (0.592) 1.072* (0.592) 0.272 (1.039) 0.273 (1.039)
pctvacant_mn_fre -1.782** (0.703) -1.787** (0.703) -1.372 (0.965) -1.384 (0.965)
pctvacant_mn_jac -1.345 (0.883) -1.318 (0.884) -1.285 (1.084) -1.313 (1.084)
pctvacant_mn_mar 2.178*** (0.502) 2.175*** (0.502) 1.53** (0.622) 1.528** (0.622)
pctvacant_nj_atl -0.054 (0.062) -0.054 (0.062) 0.096 (0.085) 0.095 (0.085)
pctvacant_ny_cli 0.709*** (0.224) 0.709*** (0.224) 0.842*** (0.251) 0.841*** (0.251)
pctvacant_ny_fra 6.173*** (2.110) 6.104*** (2.113) 0.519 (0.710) 0.499 (0.709)
pctvacant_ny_her -1.226*** (0.247) -1.226*** (0.247) -1.347*** (0.288) -1.347*** (0.288)
pctvacant_ny_lew -0.125 (0.127) -0.125 (0.127) -0.266* (0.159) -0.266* (0.159)
pctvacant_ny_mad 0.750*** (0.196) 0.752*** (0.196) 0.767*** (0.246) 0.765*** (0.246)
pctvacant_ny_ste 0.280 (0.190) 0.281 (0.190) 0.039 (0.242) 0.04 (0.242)
pctvacant_ny_wyo 0.179* (0.101) 0.178* (0.101) 0.225* (0.119) 0.224* (0.119)
pctvacant_oh_pau -1.473 (1.498) -1.473 (1.499) -1.341 (1.951) -1.256 (1.952)

OneMile OLS HalfMile OLS OneMile SEM HalfMile SEM
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Variables coef se coef se coef se coef se
pctvacant_oh_woo -0.565 (0.400) -0.565 (0.400) -0.304 (0.563) -0.306 (0.563)
pctvacant_ok_cus -0.127 (0.358) -0.140 (0.359) -0.167 (0.521) -0.189 (0.521)
pctvacant_ok_gra 1.413* (0.777) 1.414* (0.777) 0.537 (1.045) 0.536 (1.045)
pctvacant_pa_fay 0.227 (0.596) 0.229 (0.596) 0.232 (0.807) 0.235 (0.807)
pctvacant_pa_som 0.517*** (0.098) 0.516*** (0.098) 0.562*** (0.138) 0.562*** (0.138)
pctvacant_pa_way 0.445*** (0.156) 0.444*** (0.156) 0.446** (0.175) 0.446** (0.175)
pctvacant_wa_kit -0.076 (0.546) -0.075 (0.546) -0.377 (0.282) -0.377 (0.281)
pctowner_ia_car -0.225 (0.244) -0.225 (0.244) -0.156 (0.324) -0.156 (0.324)
pctowner_ia_flo 0.579** (0.238) 0.578** (0.238) 0.75*** (0.290) 0.75*** (0.290)
pctowner_ia_fra 0.207 (0.310) 0.206 (0.310) 0.172 (0.393) 0.169 (0.393)
pctowner_ia_sac 0.274 (0.585) 0.261 (0.586) -0.34 (0.545) -0.345 (0.545)
pctowner_il_dek 0.075 (0.088) 0.073 (0.087) 0.032 (0.123) 0.028 (0.123)
pctowner_il_liv 0.176 (0.140) 0.176 (0.140) 0.265 (0.200) 0.264 (0.200)
pctowner_il_mcl 0.389*** (0.051) 0.388*** (0.051) 0.331*** (0.101) 0.331*** (0.101)
pctowner_mn_cot 0.375*** (0.138) 0.375*** (0.138) 0.609** (0.254) 0.609** (0.254)
pctowner_mn_fre -0.119 (0.090) -0.120 (0.090) -0.072 (0.124) -0.073 (0.124)
pctowner_mn_jac -0.206 (0.474) -0.205 (0.474) -0.175 (0.569) -0.185 (0.570)
pctowner_mn_mar 0.262*** (0.076) 0.262*** (0.076) 0.151 (0.103) 0.151 (0.103)
pctowner_nj_atl -0.087** (0.037) -0.087** (0.037) -0.036 (0.052) -0.037 (0.052)
pctowner_ny_cli -0.229 (0.171) -0.229 (0.171) -0.305 (0.199) -0.303 (0.199)
pctowner_ny_fra 2.743* (1.500) 2.693* (1.505) -0.315 (1.447) -0.398 (1.442)
pctowner_ny_her 0.246*** (0.095) 0.246*** (0.095) 0.213* (0.109) 0.213* (0.109)
pctowner_ny_lew -0.034 (0.185) -0.034 (0.185) -0.126 (0.219) -0.126 (0.219)
pctowner_ny_mad 0.750*** (0.075) 0.750*** (0.075) 0.723*** (0.084) 0.723*** (0.084)
pctowner_ny_ste 0.192 (0.128) 0.191 (0.128) -0.083 (0.162) -0.084 (0.162)
pctowner_ny_wyo -0.089 (0.111) -0.089 (0.111) -0.109 (0.138) -0.108 (0.138)
pctowner_oh_pau -0.187 (0.347) -0.185 (0.348) -1.245*** (0.473) -1.249*** (0.474)
pctowner_oh_woo 0.263*** (0.092) 0.264*** (0.092) 0.274** (0.136) 0.274** (0.136)
pctowner_ok_cus 0.068 (0.104) 0.068 (0.104) -0.041 (0.146) -0.043 (0.146)
pctowner_ok_gra 0.271* (0.159) 0.271* (0.159) 0.253 (0.217) 0.253 (0.217)
pctowner_pa_fay -0.413 (1.736) -0.420 (1.736) -0.15 (2.037) -0.165 (2.037)
pctowner_pa_som 0.171 (0.114) 0.170 (0.114) 0.098 (0.173) 0.098 (0.173)
pctowner_pa_way -0.351 (0.441) -0.348 (0.441) -0.251 (0.345) -0.252 (0.345)
pctowner_wa_kit 0.257 (2.139) 0.259 (2.139) -0.358 (1.889) -0.361 (1.890)
med_age_ia_car 0.002 (0.002) 0.002 (0.002) 0.003 (0.003) 0.003 (0.003)
med_age_ia_flo 0.003 (0.002) 0.003 (0.002) 0.004 (0.003) 0.004 (0.003)
med_age_ia_fra 0.066*** (0.015) 0.066*** (0.015) 0.014** (0.006) 0.014** (0.006)
med_age_ia_sac 0.028** (0.014) 0.028** (0.014) 0.012 (0.010) 0.012 (0.010)
med_age_il_dek -0.001 (0.002) -0.001 (0.002) -0.001 (0.003) -0.001 (0.003)
med_age_il_liv -0.004 (0.004) -0.004 (0.004) -0.005 (0.005) -0.005 (0.005)
med_age_il_mcl -0.006*** (0.002) -0.006*** (0.002) -0.006** (0.003) -0.006** (0.003)
med_age_mn_cot 0.017*** (0.005) 0.017*** (0.005) 0.018** (0.008) 0.018** (0.008)
med_age_mn_fre 0.012*** (0.002) 0.012*** (0.002) 0.013*** (0.002) 0.013*** (0.002)
med_age_mn_jac 0.013 (0.008) 0.013 (0.008) 0.012 (0.010) 0.012 (0.010)
med_age_mn_mar 0.013*** (0.003) 0.013*** (0.003) 0.012*** (0.003) 0.012*** (0.003)
med_age_nj_atl 0.010*** (0.001) 0.010*** (0.001) 0.016*** (0.002) 0.016*** (0.002)
med_age_ny_cli 0.020*** (0.004) 0.020*** (0.004) 0.02*** (0.004) 0.02*** (0.004)
med_age_ny_fra -0.517*** (0.198) -0.511*** (0.198) 0.008 (0.040) 0.01 (0.039)
med_age_ny_her 0.007* (0.003) 0.007* (0.003) 0.005 (0.003) 0.005 (0.003)

OneMile OLS HalfMile OLS OneMile SEM HalfMile SEM
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med_age_ny_lew 0.013*** (0.005) 0.013*** (0.005) 0.008 (0.005) 0.008 (0.005)
med_age_ny_mad 0.004** (0.002) 0.004** (0.002) 0.004* (0.002) 0.004* (0.002)
med_age_ny_ste 0.012*** (0.003) 0.012*** (0.003) 0.001 (0.004) 0.001 (0.004)
med_age_ny_wyo 0.008 (0.005) 0.007 (0.005) 0.008 (0.006) 0.008 (0.006)
med_age_oh_pau 0.034*** (0.013) 0.034*** (0.013) 0.019 (0.012) 0.019 (0.012)
med_age_oh_woo -0.004 (0.003) -0.004 (0.003) -0.004 (0.004) -0.004 (0.004)
med_age_ok_cus 0.004 (0.002) 0.004 (0.002) 0.008** (0.004) 0.008** (0.004)
med_age_ok_gra 0.011 (0.009) 0.011 (0.009) 0 (0.006) 0 (0.006)
med_age_pa_fay 0.049 (0.073) 0.049 (0.073) 0.052 (0.095) 0.052 (0.095)
med_age_pa_som 0.008*** (0.002) 0.008*** (0.002) 0.012*** (0.004) 0.012*** (0.004)
med_age_pa_way -0.005 (0.012) -0.005 (0.012) 0.002 (0.007) 0.002 (0.007)
med_age_wa_kit -0.015 (0.095) -0.015 (0.095) 0.025 (0.034) 0.025 (0.034)
swinter_ia -0.034** (0.015) -0.034** (0.015) -0.039*** (0.015) -0.039*** (0.015)
swinter_il -0.020** (0.008) -0.020** (0.008) -0.013 (0.012) -0.013 (0.012)
swinter_mn -0.053*** (0.009) -0.053*** (0.009) -0.057*** (0.011) -0.057*** (0.011)
swinter_nj -0.007 (0.006) -0.007 (0.006) -0.008 (0.007) -0.008 (0.007)
swinter_ny -0.030*** (0.007) -0.030*** (0.007) -0.026*** (0.007) -0.026*** (0.007)
swinter_oh -0.048*** (0.012) -0.048*** (0.012) -0.055*** (0.014) -0.055*** (0.014)
swinter_ok -0.039** (0.015) -0.039** (0.015) -0.024 (0.018) -0.024 (0.018)
swinter_pa -0.025* (0.015) -0.025* (0.015) -0.02 (0.017) -0.02 (0.017)
swinter_wa -0.004 (0.046) -0.004 (0.046) 0.014 (0.051) 0.013 (0.051)
sy_1996_ia -0.436*** (0.137) -0.433*** (0.137) -0.493*** (0.157) -0.489*** (0.157)
sy_1996_il -0.267*** (0.037) -0.267*** (0.037) -0.344*** (0.061) -0.344*** (0.061)
sy_1996_mn -0.521*** (0.058) -0.521*** (0.059) -0.585*** (0.065) -0.585*** (0.065)
sy_1996_nj -0.820*** (0.022) -0.820*** (0.022) -0.717*** (0.038) -0.717*** (0.038)
sy_1996_oh -0.298*** (0.042) -0.298*** (0.042) -0.43*** (0.053) -0.43*** (0.053)
sy_1996_ok -0.444*** (0.073) -0.444*** (0.073) -0.846*** (0.079) -0.846*** (0.079)
sy_1996_pa -0.584*** (0.060) -0.584*** (0.060) -0.604*** (0.067) -0.604*** (0.067)
sy_1997_il -0.242*** (0.036) -0.242*** (0.036) -0.234*** (0.052) -0.232*** (0.052)
sy_1997_mn -0.445*** (0.055) -0.445*** (0.055) -0.535*** (0.060) -0.535*** (0.060)
sy_1997_nj -0.791*** (0.021) -0.791*** (0.021) -0.686*** (0.038) -0.686*** (0.038)
sy_1997_oh -0.302*** (0.043) -0.302*** (0.043) -0.39*** (0.053) -0.39*** (0.053)
sy_1997_pa -0.458*** (0.057) -0.458*** (0.057) -0.51*** (0.066) -0.51*** (0.066)
sy_1998_ia -0.442*** (0.078) -0.441*** (0.078) -0.633*** (0.099) -0.634*** (0.099)
sy_1998_il -0.156*** (0.031) -0.156*** (0.031) -0.175*** (0.048) -0.175*** (0.048)
sy_1998_mn -0.391*** (0.054) -0.391*** (0.054) -0.484*** (0.059) -0.484*** (0.059)
sy_1998_nj -0.723*** (0.020) -0.723*** (0.021) -0.633*** (0.037) -0.633*** (0.037)
sy_1998_oh -0.217*** (0.040) -0.217*** (0.040) -0.302*** (0.047) -0.302*** (0.047)
sy_1998_ok -0.394*** (0.048) -0.395*** (0.048) -0.816*** (0.059) -0.818*** (0.059)
sy_1998_pa -0.481*** (0.059) -0.480*** (0.059) -0.554*** (0.068) -0.552*** (0.067)
sy_1998_wa -0.433*** (0.115) -0.433*** (0.115) -0.356** (0.161) -0.356** (0.161)
sy_1999_ia -0.347*** (0.085) -0.345*** (0.086) -0.568*** (0.117) -0.565*** (0.117)
sy_1999_il -0.155*** (0.031) -0.156*** (0.031) -0.215*** (0.046) -0.214*** (0.046)
sy_1999_mn -0.302*** (0.055) -0.303*** (0.055) -0.367*** (0.059) -0.368*** (0.059)
sy_1999_nj -0.679*** (0.020) -0.679*** (0.020) -0.583*** (0.036) -0.583*** (0.036)
sy_1999_oh -0.161*** (0.040) -0.161*** (0.040) -0.243*** (0.047) -0.243*** (0.047)
sy_1999_ok -0.347*** (0.044) -0.348*** (0.044) -0.743*** (0.050) -0.743*** (0.050)
sy_1999_pa -0.452*** (0.058) -0.452*** (0.058) -0.515*** (0.066) -0.515*** (0.066)
sy_1999_wa -0.432*** (0.114) -0.432*** (0.114) -0.454*** (0.166) -0.453*** (0.165)

OneMile OLS HalfMile OLS OneMile SEM HalfMile SEM
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sy_2000_ia -0.165 (0.145) -0.164 (0.146) -0.246 (0.183) -0.246 (0.183)
sy_2000_il -0.088*** (0.031) -0.088*** (0.031) -0.172*** (0.045) -0.171*** (0.045)
sy_2000_mn -0.148*** (0.051) -0.149*** (0.051) -0.224*** (0.053) -0.224*** (0.053)
sy_2000_nj -0.565*** (0.020) -0.565*** (0.020) -0.461*** (0.036) -0.462*** (0.036)
sy_2000_oh -0.098** (0.041) -0.098** (0.041) -0.161*** (0.047) -0.16*** (0.047)
sy_2000_ok -0.330*** (0.050) -0.331*** (0.050) -0.748*** (0.059) -0.749*** (0.059)
sy_2000_pa -0.394*** (0.057) -0.395*** (0.057) -0.478*** (0.067) -0.478*** (0.067)
sy_2000_wa -0.463*** (0.115) -0.463*** (0.115) -0.403** (0.160) -0.402** (0.160)
sy_2001_ia -0.334*** (0.065) -0.332*** (0.065) -0.435*** (0.066) -0.433*** (0.066)
sy_2001_il -0.080** (0.031) -0.080*** (0.031) -0.101** (0.048) -0.101** (0.048)
sy_2001_mn -0.119** (0.050) -0.119** (0.050) -0.204*** (0.051) -0.204*** (0.052)
sy_2001_nj -0.438*** (0.018) -0.438*** (0.018) -0.333*** (0.034) -0.333*** (0.034)
sy_2001_oh -0.033 (0.036) -0.033 (0.036) -0.078** (0.040) -0.078** (0.040)
sy_2001_ok -0.250*** (0.041) -0.251*** (0.041) -0.648*** (0.044) -0.648*** (0.044)
sy_2001_pa -0.402*** (0.055) -0.402*** (0.055) -0.446*** (0.063) -0.447*** (0.063)
sy_2001_wa -0.378*** (0.122) -0.378*** (0.122) -0.275* (0.163) -0.275* (0.163)
sy_2002_ia -0.130** (0.059) -0.128** (0.059) -0.264*** (0.064) -0.261*** (0.064)
sy_2002_il 0.008 (0.030) 0.007 (0.030) -0.013 (0.043) -0.013 (0.043)
sy_2002_mn -0.072 (0.050) -0.072 (0.050) -0.138*** (0.051) -0.139*** (0.051)
sy_2002_nj -0.330*** (0.019) -0.330*** (0.019) -0.195*** (0.035) -0.195*** (0.035)
sy_2002_ny -0.307*** (0.020) -0.307*** (0.020) -0.342*** (0.020) -0.342*** (0.020)
sy_2002_oh -0.022 (0.038) -0.022 (0.038) -0.053 (0.042) -0.053 (0.042)
sy_2002_ok -0.249*** (0.045) -0.249*** (0.045) -0.649*** (0.052) -0.649*** (0.052)
sy_2002_pa -0.313*** (0.053) -0.313*** (0.053) -0.355*** (0.059) -0.354*** (0.059)
sy_2002_wa -0.241** (0.123) -0.241** (0.123) -0.216 (0.166) -0.216 (0.166)
sy_2003_ia -0.195** (0.081) -0.194** (0.081) -0.311*** (0.085) -0.314*** (0.084)
sy_2003_il 0.034 (0.030) 0.034 (0.030) 0.021 (0.040) 0.021 (0.040)
sy_2003_mn 0.034 (0.049) 0.034 (0.049) -0.026 (0.049) -0.026 (0.049)
sy_2003_nj -0.119*** (0.017) -0.119*** (0.017) 0.023 (0.033) 0.023 (0.033)
sy_2003_ny -0.247*** (0.020) -0.247*** (0.020) -0.276*** (0.020) -0.276*** (0.020)
sy_2003_oh 0.005 (0.036) 0.005 (0.036) -0.019 (0.039) -0.019 (0.039)
sy_2003_ok -0.229*** (0.046) -0.229*** (0.046) -0.632*** (0.053) -0.632*** (0.053)
sy_2003_pa -0.191*** (0.052) -0.191*** (0.052) -0.213*** (0.054) -0.213*** (0.054)
sy_2003_wa -0.326*** (0.114) -0.326*** (0.114) -0.335** (0.159) -0.337** (0.159)
sy_2004_ia -0.209*** (0.076) -0.208*** (0.076) -0.307*** (0.087) -0.308*** (0.087)
sy_2004_il 0.087*** (0.029) 0.087*** (0.029) 0.105*** (0.034) 0.105*** (0.034)
sy_2004_mn 0.082* (0.049) 0.081* (0.049) 0.036 (0.049) 0.036 (0.049)
sy_2004_ny -0.179*** (0.019) -0.179*** (0.019) -0.2*** (0.020) -0.2*** (0.020)
sy_2004_oh 0.059 (0.037) 0.059 (0.037) 0.067* (0.039) 0.067* (0.039)
sy_2004_ok -0.143*** (0.041) -0.143*** (0.041) -0.511*** (0.044) -0.511*** (0.044)
sy_2004_pa -0.146*** (0.052) -0.146*** (0.052) -0.145*** (0.053) -0.145*** (0.053)
sy_2004_wa -0.144 (0.113) -0.144 (0.113) -0.082 (0.152) -0.081 (0.152)
sy_2005_ia -0.074** (0.037) -0.075** (0.037) -0.151*** (0.040) -0.151*** (0.040)
sy_2005_il 0.125*** (0.027) 0.125*** (0.027) 0.139*** (0.032) 0.138*** (0.032)
sy_2005_mn 0.163*** (0.048) 0.162*** (0.048) 0.12** (0.048) 0.119** (0.048)
sy_2005_nj 0.278*** (0.018) 0.278*** (0.018) 0.453*** (0.034) 0.453*** (0.034)
sy_2005_ny -0.110*** (0.019) -0.111*** (0.019) -0.122*** (0.019) -0.122*** (0.019)
sy_2005_oh 0.112*** (0.036) 0.112*** (0.036) 0.099*** (0.037) 0.098*** (0.037)
sy_2005_ok -0.018 (0.038) -0.018 (0.038) -0.354*** (0.038) -0.354*** (0.038)

OneMile OLS HalfMile OLS OneMile SEM HalfMile SEM
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Variables coef se coef se coef se coef se
sy_2005_pa -0.060 (0.051) -0.060 (0.051) -0.058 (0.053) -0.058 (0.053)
sy_2005_wa -0.070 (0.111) -0.070 (0.111) 0.025 (0.153) 0.025 (0.153)
sy_2006_ia -0.050* (0.028) -0.051* (0.028) -0.106*** (0.028) -0.106*** (0.028)
sy_2006_il 0.192*** (0.026) 0.192*** (0.026) 0.215*** (0.030) 0.215*** (0.030)
sy_2006_mn 0.206*** (0.049) 0.206*** (0.049) 0.164*** (0.049) 0.164*** (0.049)
sy_2006_nj 0.340*** (0.017) 0.340*** (0.017) 0.514*** (0.032) 0.514*** (0.032)
sy_2006_ny -0.066*** (0.019) -0.066*** (0.019) -0.073*** (0.019) -0.073*** (0.019)
sy_2006_oh 0.147*** (0.034) 0.147*** (0.034) 0.144*** (0.035) 0.144*** (0.035)
sy_2006_ok 0.025 (0.039) 0.026 (0.039) -0.3*** (0.037) -0.3*** (0.037)
sy_2006_pa 0.008 (0.051) 0.008 (0.051) -0.001 (0.052) -0.001 (0.052)
sy_2006_wa -0.066 (0.131) -0.066 (0.131) 0.02 (0.160) 0.021 (0.160)
sy_2007_ia 0.013 (0.028) 0.012 (0.028) -0.019 (0.028) -0.019 (0.028)
sy_2007_il 0.218*** (0.025) 0.218*** (0.025) 0.251*** (0.028) 0.251*** (0.028)
sy_2007_mn 0.177*** (0.049) 0.177*** (0.049) 0.145*** (0.048) 0.144*** (0.048)
sy_2007_nj 0.297*** (0.017) 0.297*** (0.017) 0.459*** (0.031) 0.459*** (0.031)
sy_2007_ny -0.020 (0.019) -0.020 (0.019) -0.022 (0.019) -0.022 (0.019)
sy_2007_oh 0.144*** (0.035) 0.143*** (0.035) 0.138*** (0.036) 0.138*** (0.036)
sy_2007_ok 0.149*** (0.037) 0.150*** (0.037) -0.154*** (0.034) -0.154*** (0.034)
sy_2007_pa 0.030 (0.051) 0.030 (0.051) 0.067 (0.052) 0.067 (0.052)
sy_2007_wa 0.189* (0.110) 0.189* (0.110) 0.209 (0.147) 0.209 (0.147)
sy_2008_ia 0.011 (0.029) 0.010 (0.029) -0.029 (0.029) -0.029 (0.029)
sy_2008_il 0.219*** (0.026) 0.218*** (0.026) 0.217*** (0.029) 0.217*** (0.029)
sy_2008_mn 0.149*** (0.050) 0.149*** (0.050) 0.108** (0.049) 0.108** (0.049)
sy_2008_nj 0.195*** (0.018) 0.195*** (0.018) 0.35*** (0.032) 0.35*** (0.032)
sy_2008_ny -0.000 (0.019) -0.000 (0.019) -0.008 (0.019) -0.008 (0.019)
sy_2008_oh 0.084** (0.036) 0.084** (0.036) 0.061* (0.037) 0.061* (0.037)
sy_2008_ok 0.154*** (0.039) 0.153*** (0.039) -0.145*** (0.035) -0.145*** (0.035)
sy_2008_pa 0.044 (0.053) 0.044 (0.053) 0.055 (0.053) 0.056 (0.053)
sy_2008_wa 0.178 (0.117) 0.179 (0.117) 0.326** (0.148) 0.325** (0.148)
sy_2009_ia -0.056 (0.036) -0.057 (0.036) -0.102*** (0.036) -0.102*** (0.036)
sy_2009_il 0.158*** (0.026) 0.158*** (0.026) 0.176*** (0.028) 0.176*** (0.028)
sy_2009_mn 0.104** (0.051) 0.104** (0.051) 0.089* (0.050) 0.089* (0.050)
sy_2009_nj 0.071*** (0.019) 0.071*** (0.019) 0.238*** (0.032) 0.238*** (0.032)
sy_2009_ny -0.005 (0.019) -0.005 (0.019) -0.013 (0.019) -0.013 (0.019)
sy_2009_oh 0.036 (0.035) 0.036 (0.035) 0.028 (0.036) 0.028 (0.036)
sy_2009_ok 0.219*** (0.038) 0.219*** (0.038) -0.102*** (0.034) -0.101*** (0.034)
sy_2009_pa 0.009 (0.053) 0.010 (0.053) 0.0003 (0.054) 0.0004 (0.054)
sy_2010_ia 0.018 (0.029) 0.017 (0.029) -0.004 (0.028) -0.004 (0.028)
sy_2010_il 0.105*** (0.028) 0.105*** (0.028) 0.104*** (0.029) 0.104*** (0.029)
sy_2010_mn 0.181*** (0.050) 0.180*** (0.050) 0.137*** (0.049) 0.137*** (0.049)
sy_2010_nj 0.010 (0.019) 0.010 (0.019) 0.177*** (0.032) 0.178*** (0.032)
sy_2010_ny 0.003 (0.021) 0.003 (0.021) -0.006 (0.020) -0.006 (0.020)
sy_2010_oh -0.017 (0.036) -0.017 (0.036) -0.024 (0.036) -0.024 (0.036)
sy_2010_ok 0.231*** (0.038) 0.231*** (0.038) -0.074** (0.033) -0.074** (0.033)
sy_2010_pa 0.013 (0.057) 0.013 (0.057) 0.013 (0.057) 0.013 (0.057)
sy_2010_wa 0.207 (0.127) 0.207 (0.127) 0.305* (0.165) 0.305* (0.165)
note:  *** p<0.01, ** p<0.05, * p<0.1

N
Adjusted R2

OneMile OLS HalfMile OLS OneMile SEM HalfMile SEM

0.660.66
51,27651,276 38,407 38,407

0.64 0.64
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