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 The problem of solute transport through a water-saturated single fracture in a permeable 
rock matrix is examined using an analytical modeling approach. A closed-form analytical 
solution is obtained that accounts for transverse and longitudinal advective transport in the 
fracture and matrix and transverse diffusion in the matrix. The solution also accounts for 
both diffusive and advective solute exchange between the fracture and matrix and a general 
solute source position in either the fracture or matrix. The novel features are the 
incorporation of advective transport in the matrix and a general source position into a 
closed-form solution for the solute-transport problem. Examples of the solution behavior 
are presented, which demonstrate the effects of matrix advection in combination with 
advection along the fracture, transverse diffusion in the matrix for solute release in the 
fracture and matrix. A semianalytical solution in the form of a superposition integral is also 
derived that includes these transport features, plus independent levels of longitudinal 
diffusion and dispersion in the matrix and fracture, respectively. Examples are presented 
that include advective transport in the fracture and matrix, longitudinal and transverse 
diffusion in the matrix, longitudinal dispersion in the fracture, as well as solute release from 
the fracture and matrix. An approximate criterion is proposed to evaluate the significance of 
longitudinal diffusion and dispersion relative to longitudinal spreading caused by fracture- 
matrix interaction. 

 
 

 

1 Introduction 

Solute transport in groundwater flow through frac- tured 
rock is a subject that has been investigated for nuclear waste 
disposal and other environmental groundwater con- 
tamination problems [National Research Council, 1996]. 
Fractures are a common feature of consolidated rock sys- 
tems and typically present much higher permeability than 
unfractured rock matrix, such that flow through fractures 
often dominates overall flow behavior. Matrix, on the other 
hand, typically dominates the overall pore volume of a 
fractured rock. These attributes often lead to much higher 
solute-transport velocities through fractures than in unfrac- 
tured rock or unconsolidated soils [Berkowitz, 2002]. This 
behavior often makes fracture flow and transport critical 
characteristics to examine for any geologic site where sol- 
ute transport is a concern. However, despite their impor- 
tance, fractures remain a difficult feature to represent 
accurately in mathematical models for groundwater flow 
and transport [Matth€ai et al., 2009 ; Wu and Pruess, 2000]. 
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Flow through fractures displays highly heterogeneous and 
complex flow patterns controlled by small-scale fracture 
features. Furthermore, transport processes at small scales 
that govern fracture-matrix exchange can dramatically 
influence larger-scale transport behavior [Grisak and Pick- 
ens, 1980]. 

Transport through saturated fractured rock was first 
investigated in an analytical model by Neretnieks [1980]. 
Tang et al. [1981] extended this work to include the effects 
of longitudinal dispersion in the fracture, and Sudicky and 
Frind  [1982] and Maloszewski and Zuber [1985] further 
generalized the transport problem from a single fracture to 
a system of parallel fractures with interceding rock matrix. 
Sharifi Haddad et al. [2012] developed a semianalytical 
model of solute transport in a system of parallel fractures 
for a radially symmetric flow field associated with well 
injection.  Maloszewski and  Zuber [1990] considered  the 
effects of linear kinetic interactions between solute and the 
rock for a single fracture and rock matrix. All of these mod- 
els were restricted to advective transport in the fracture, 
transverse diffusion in the matrix, and diffusive fracture- 
matrix solute exchange. A review of these modeling 
approaches  among  others  is  provided  by  Bodin  et  al. 
[2003a, 2003b]. Cihan and Tyner [2011] developed exact 
analytical solutions for advective transport through cylin- 
drical macropores and diffusive exchange with a soil ma- 
trix,   for   an   instantaneous   release   of   solute   into   a 
macropore, a constant concentration of solute at the top of 
a macropore, and a pulse release of solute into a macropore.



They also compared their analytical solutions with numeri-
cal simulations that included longitudinal and transverse
matrix advection and longitudinal dispersion in the macro-
pore. Roubinet et al. [2012] added the effects of transverse
dispersion in a fracture and longitudinal diffusion in the
matrix to these mechanisms, and found that transverse dis-
persion in fractures had little effect on solute transport, but
that longitudinal diffusion in the matrix becomes important
at low Peclet numbers. The solution provided by Roubinet
et al. [2012] also is capable of treating spatially varying
and time-dependent source conditions.

[4] Other modeling efforts have focused on advective-
dominated systems. Birkhölzer et al. [1993a, 1993b] pres-
ent an analytical model for transport through a two-
dimensional fracture network and permeable rock matrix
under conditions in which fracture-matrix exchange is
dominated by advective processes, such that diffusion
could be neglected. A diffusion-advection number was also
developed to help ascertain conditions for which diffusive
fracture-matrix exchange is negligible compared with ad-
vective fracture-matrix exchange. The methodology devel-
oped by Birkhölzer et al. [1993a, 1993b] was used by
Rubin et al. [1996] to investigate a tracer slug injection in a
fractured rock with permeable rock matrix, and by Rubin et
al. [1997] to investigate transport for cases with slow ad-
vective velocities in the fracture. Odling and Roden [1997]
used a numerical model to study transport in fracture net-
works embedded in a permeable rock matrix, focusing on
the role the permeable rock matrix plays when fracture net-
works have limited connectivity, including fractures that
are disconnected from the network.

[5] Cortis and Birkholzer [2008] and Geiger et al.
[2010] have utilized a continuous-time random-walk nu-
merical method to investigate the effects of diffusion and
advection in fractured, permeable rock. Transport calcula-
tions for a two-dimensional fracture network having a
range of fracture and matrix permeabilities were used to
identify the parameter ranges over which matrix advection
has a significant role or may be neglected.

[6] Houseworth [2006] extended analytical modeling
approaches for unsaturated flow, and included longitudinal
and transverse flow and advective transport in the matrix,
as well as advective and diffusive transport between the
fracture and rock matrix. Longitudinal diffusion/dispersion
was not included for the fracture or matrix, because this
greatly simplifies the analytical model and is a reasonable
approximation in some cases. For an unsaturated fractured
rock, local differences in capillary conditions between the
fracture and the rock matrix tend to dominate fracture-
matrix flow exchange, such that flow exchange is more
likely to result either in fracture discharge into the matrix
or convergent matrix flow into the fracture.

[7] An analogous problem was analyzed by Zhan et al.
[2009] for transport through a saturated system consisting
of an aquifer confined above and below by aquitards of infi-
nite extent. The analogy is that the aquifer corresponds to
the fracture and the aquitards correspond to the rock matrix
surrounding a fracture. Longitudinal advection and longitu-
dinal and transverse dispersion were included as transport
mechanisms in the aquifer. Transport in the aquitards was
limited to the transverse direction but included both advec-
tion and diffusion. The general solution led to analytical

results in the Laplace domain that required numerical
inversion. Transverse dispersion in the aquifer and a more
general treatment of transverse advection were new fea-
tures introduced into the analyses. Zhan et al. [2009] com-
pared their solution with previously derived solutions in
which solute concentration was assumed to be transversely
well mixed in the aquifer. They concluded that accounting
for transverse solute gradients and transverse solute-
transport processes in the aquifer had a significant impact
on the results. In addition, the total solute mass entering the
aquitard from the aquifer was found to be sensitive to the
Peclet number for advective and diffusive transport in the
aquitards.

[8] The analytical model presented here is for solute
transport during steady state saturated flow occurring in a
single fracture and a porous, permeable rock matrix. This
model goes beyond existing analytical models by including
the combination of lateral matrix diffusion and flow
through the matrix in any direction relative to the orienta-
tion of the fracture axis, as well as flow through the frac-
ture. Thus, the flow direction in the matrix and fracture
may have components both parallel to and orthogonal to
the fracture axis, leading to fracture-matrix exchange
through cross-flow [Birkhölzer and Rouve, 1994]. Diffusive
fracture-matrix exchange and general diffusive transport
orthogonal to the fracture axis in the rock matrix is also
included. The location of solute release as an instantaneous
point source is generalized for an arbitrary point within the
model domain. Closed-form analytical solutions for trans-
port are obtained for these conditions neglecting longitudi-
nal diffusion and dispersion. Solutions are also developed
including simultaneous dispersive transport along the frac-
ture and longitudinal diffusion in the matrix. These solu-
tions take the form of superposition integrals of the closed-
form results.

2. Flow Model

[9] Transport processes are considered for a two-
dimensional, saturated flow system with a single fracture
embedded in a permeable rock matrix. Specification of the
flow field is a necessary first step to define the transport
problem. The permeability of the rock matrix is taken to be
homogeneous and isotropic and the fracture is assigned a
different, higher, permeability than the matrix along the
fracture axis. It also has permeability equal to that of the
matrix in the direction transverse to the fracture axis. This
anisotropy in the fracture simplifies the flow problem. In
general, the transverse permeability of the fracture is gener-
ally not too significant because of the narrow transverse
dimension of the fracture, unless this permeability is much
lower than the matrix and represents a flow barrier. Flow is
also restricted to steady state conditions, implying steady
state pressure boundary conditions. For simplicity, the flow
process will be discussed for a situation in which flow is
driven exclusively by pressure differences.

[10] The flow system investigated is a generalization of
the flow driven by a simple uniform pressure gradient
aligned with the fracture axis. To understand the steady
state, two-dimensional flow field, the flow system is dia-
grammed in Figure 1 with the fracture axis oriented in the
same direction as the z axis. The corners of the rectangular
flow domain are the origin, z ¼ x ¼ 0; z ¼ Lz; x ¼ 0;
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z ¼ Lz; x ¼ Lx ; and z ¼ 0; x ¼ Lx, moving around the
rectangle in counterclockwise order. The red arrows at
the corners of the domain are axes displaying pressure. The
pressures at the corners are set so that pressure drops across
the domain in the longitudinal and transverse directions are
uniform. From this configuration, it is clear that there will
be a uniform transverse flow within the domain with the
water flux rates qfx ¼ qmx. Longitudinal water flux rates
within the matrix qmzð Þ and the fracture qfz

� �
are uniform

within their respective domains; however, qfz > qmz. The
total pressure gradient is also shown and is uniform across
the entire flow domain.

[11] Rotating the flow system in Figure 1 such that the
rotated z coordinate, z0, aligns with the total pressure gradi-
ent results in the flow diagram given in Figure 2. This flow
system is equivalent to the system shown in Figure 1.
Because the z0 coordinate is parallel to the total pressure gra-
dient, there is no flow along the constant x0 boundaries
(upper and lower boundaries in Figure 2) and the constant z0

boundaries (left and right boundaries in Figure 2) coincide
with contours of constant pressure. The flow field (relative
to the fracture) remains the same as in Figure 1. Through
this rotation, the flow field in Figure 1 is shown to be equiva-
lent to a flow field resulting from a uniform pressure gradi-
ent that is not (necessarily) aligned with the fracture axis.

[12] The transport problem to be solved is assumed to be
sufficiently far from the pressure boundaries that any effects
of these boundaries on transport are negligible. The configu-
ration as shown in Figure 1 is used to compute transport
processes, with the longitudinal direction defined to be the
same direction as the axis of the fracture and the transverse
direction is defined to be orthogonal to the fracture.

3. Transport Model

[13] A schematic diagram of the transport process to be
analyzed is given in Figure 3. Longitudinal transport by

advection occurs in both the matrix and fracture ; transverse
advective and diffusive transport occurs in the matrix. Sol-
ute exchange occurs through transverse advective and dif-
fusive mechanisms. Because flow occurs in the matrix,
there is formally both diffusion and hydrodynamic disper-
sion occurring in the matrix [Bear, 1972]. For the model
development, we assume that matrix diffusion dominates in
comparison with hydrodynamic dispersion and will be
referred to as matrix diffusion rather than matrix dispersion.
Further discussion of this issue is given in section 5. Trans-
verse exchange between the fracture and matrix are treated
through specifying source-sink terms at the fracture-matrix
interface. Solute sorption and decay in both fracture and
matrix are included. Solute release can be located at any

Figure 1. Steady state flow field for single fracture in permeable rock matrix.

Figure 2. Rotated steady state flow field for single frac-
ture in permeable rock matrix, equivalent to that shown in
Figure 1.
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point within the matrix or in the fracture. Because of a gen-
eral solute release location and uni-directional transverse
flow, solute concentrations are not, in general, symmetric
about the fracture, and mathematical solutions for solute
concentration on each side of the fracture must be
developed.

[14] Also shown in Figure 3 is the assumption of a well-
mixed solute within the fracture in the transverse direction;
therefore, there is no need to define a transverse fracture ve-
locity or transverse diffusion in the fracture for lateral trans-
port within the fracture. As a result, the fracture transport
problem is one-dimensional in the longitudinal direction.

[15] Certain restrictions are required for the well mixed
assumption to be valid. Consider the time for a solute
released at a point within the fracture aperture or the aqui-
fer to become well mixed across the fracture aperture
through diffusion or dispersion. Classical diffusion theory
shows that the diffusive mixing time td is proportional to
b2=DT , where b is the fracture aperture and DT is the trans-
verse diffusion (or dispersion) coefficient. Investigations
into transport during flow through channels indicate that
the mixing time required for solute concentrations to
become uniform across the cross section is given by, td ¼
b2=4DT [Dentz and Carrera, 2007]. This time should be
much smaller than other times of interest, such as the frac-
ture advective time scale, tf ¼ ze=vf , where ze is the down-
stream solute travel distance of interest and vf is the
advective velocity in the fracture, giving the restriction
vf b2=DT ze � 4. For a system that includes both diffusion
and transverse advection, the mixing time may be com-
pared with the advective travel time across a fracture,
tm ¼ b=vft, where vft is the advective velocity in the fracture
transverse to the fracture axis, leading to a restriction on
the transverse Peclet number, vftb=DT � 4.

[16] The validity of the well mixed assumption imposes
more restrictive conditions for larger fracture apertures.
Natural fracture apertures generally range from a few
microns up to a few millimeters [e.g., Nelson, 1985; Pyrak-
Nolte and Morris, 2000; Hooker et al., 2013]. Solute trans-

verse dispersion coefficients inside fractures are not well
known. For open fractures, solute diffusion in water may be
appropriate, generally on the order of 10�9 m2/s. Fractures
with filling material would have reduced levels of molecular
diffusion as a result of tortuosity effects, but would also ex-
perience additional mixing caused by transverse hydrody-
namic dispersion associated with flow through the filled
fracture. Using a value of 10�9 m2/s for transverse disper-
sion, the diffusive mixing time for a large fracture with a 1
cm aperture is 2.5 � 104 s, or about 7 h. A fracture with a 1
mm aperture would have a diffusive mixing time of 250 s
and for an aperture of 0.1 mm, the diffusive mixing time is
2.5 s. As a rough approximation, assume that ‘‘<<4’’ in the
criteria above may be interpreted to mean ‘‘<0.4.’’ Then,
over a 100 m travel distance, this leads to restrictions on the
longitudinal fracture velocity to be less than about 35, 3.5 �
103, and 3.5 � 105 m/d, respectively, for the three cases
(apertures of 1 cm, 1 mm, and 0.1 mm). Similarly, the trans-
verse velocity in the fracture for these cases would be re-
stricted to values less than about 3.5 � 10�3, 3.5 � 10�2,
and 0.35 m/d, respectively, to be consistent with the well
mixed assumption. These restrictions are expected to be eas-
ily met in many circumstances.

[17] Solutions will first be obtained neglecting longitudi-
nal diffusion/dispersion in the fracture and rock matrix,
indicated in Figure 3 by the italic font for these processes.
Neglecting longitudinal diffusion/dispersion simplifies the
analysis and allows for a closed-form solution of the trans-
port problem; in many cases, this is a suitable approxima-
tion. A method to include these transport mechanisms is
subsequently derived, and analytical results including these
processes are presented.

[18] The model to be analyzed does not address certain
phenomena that have been identified and remain research
questions concerning transport in fractured rock systems.
Processes not analyzed here include scale-dependent diffu-
sion effects, exchange between flowing and stagnant water
within fractures, channeled flow in fractures due to asper-
ities, and fracture skin effects [Liu et al., 2004, Zhou et al.,
2007, Robinson et al., 1998].

3.1. Conservation Equation for Solute Transport in
the Fracture

[19] For a single fracture in a porous rock matrix, the
tracer mass conservation equation for the fracture is:

�f

@cf

@t
þ �cf

� �
þ �bf

@cfa

@t
þ �cfa

� �
þ qf

@cf

@z

¼ Avfm

�
1

2
�mDm

@cm

@x
jx¼0s þ 1

2
�mDm

@cm

@x
jx¼0o

þ 1

2
qfmjx¼0s cmjx¼0sþ 1

2
qfm

����
x¼0o

cm

����
x¼0o

�
ð1Þ

with initial and boundary conditions as follows:

cf z; 0ð Þ ¼ 0 ð2Þ

lim
z!1

cf z; tð Þ ¼ 0 ð3Þ

cf z; tð Þ ¼ cm z; 0s; tð Þ ¼ cm z; 0o; tð Þ ð4Þ

Figure 3. Solute transport mechanisms for single-fracture
in permeable rock matrix. Note: fracture processes in blue,
matrix processes in green, and fracture-matrix exchange
processes in red. Longitudinal dispersion/diffusion processes
are in italic font to recognize the development of solutions
in this paper both neglecting and including these processes.
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where, cf is aqueous solute concentration in the fracture
water, cfa is the mass of solute sorbed per unit mass of min-
erals in the fracture, cm is the aqueous solute concentration
in the matrix, and qf is the water flux in the fracture. The in-
dependent variables t, z, and x represent time, longitudinal
distance, and transverse distance, respectively. The first
and second terms in equation (1) represent the rate of
change in solute mass dissolved and sorbed to mineral
surfaces, respectively, including radioactive decay repre-
sented by the decay constant �. The intrinsic porosity of
the fracture (i.e., the fracture pore volume divided by the
fracture bulk volume) is �f, and �bf is the bulk density of
minerals in the fracture. If the fracture has no minerals
within the fracture itself, cfa would be defined as the sorbed
solute per unit area of mineral surface represented by the
fracture walls, in which case �bf becomes the mineral sur-
face area per unit fracture bulk volume. In some cases, it
may be necessary to incorporate sorption on both fracture
walls and minerals. The third term in equation (1) repre-
sents the net longitudinal advective flux of solute at a point
for a longitudinal fracture water flux rate qf. Longitudinal
diffusive/dispersive transport in the fracture is not
included.

[20] Terms on the right-hand side of equation (1) repre-
sent advective and diffusive solute exchange between the
fracture and matrix. The matrix diffusion coefficient is Dm,
�m is the matrix porosity, and Avfm ¼ 2=b is the fracture-
matrix interface area per unit fracture bulk volume where b
is the fracture aperture. The x axis is defined separately for
each side of the fracture. The origin for each x axis is zero
at the fracture wall, and then increases moving away from
the fracture. Fracture-matrix interface conditions are distin-
guished with respect to the side of the fracture where the
tracer is released. The side of the fracture where tracer is
released is designated with a superscript or subscript s
denoting the source side of the fracture, and with a super-
script or subscript o for the opposite side of the fracture
from where the tracer is released. The fracture-matrix water
fluxes are denoted by qfmjx¼0s and qfmjx¼0o . Both are posi-
tive for flow away from the fracture (the positive x direc-
tion for each side). Given the steady state flow fields
described earlier,

qfmjx¼0s ¼ �qfmjx¼0o ð5Þ

[21] The conservation equation requires a constitutive
model to link sorbed and solute concentrations. The sim-
plest form of such a relationship, used here, is the linear, in-
finite capacity sorption model,

cfa ¼ Kdf cf ð6Þ

and an analogous relationship for sorption in the matrix,

cma ¼ Kdmcm ð7Þ

where Kdf and Kdm are the fracture and matrix sorption
coefficients, respectively, and cma is the sorbed solute mass
per unit mass rock matrix. Using this sorption model and
conditions in equations (4) and (5), equation (1) may be
rewritten more compactly using dimensionless retardation
factors, Rf ¼ 1þ �bf Kdf =�f and Rm ¼ 1þ �bmKdm=�m for

the fracture and matrix, respectively,

@cf

@t
þ �cf þ vf

@cf

@z
¼ Avfm

�mRm

�f Rf

D�m
2

�
@cm

@x

����
x¼0s

þ @cm

@x

����
x¼0o

�
ð8Þ

where �bm is the bulk mineral density in the matrix, vf ¼
qf =�f Rf is the fracture advective transport velocity, and
D�m ¼ Dm=Rm is the retarded diffusion coefficient. Further
simplification is achieved using the following transforma-
tions to decay-neutral concentrations:

cf � ¼ cf exp �tð Þ ð9Þ

cm� ¼ cmexp �tð Þ ð10Þ

giving

@cf �

@t
þ vf

@cf �

@z
¼ Avfm

�mRm

�f Rf

D�m
2

@cm�

@x

����
x¼0s

þ @cm�

@x

����
x¼0o

� �
ð11Þ

with initial and boundary conditions

cf � z; 0ð Þ ¼ 0 ð12Þ

lim
z!1

cf � z; tð Þ ¼ 0 ð13Þ

cf � z; tð Þ ¼ cm� z; 0s; tð Þ ¼ cm� z; 0o; tð Þ ð14Þ

3.2. Conservation Equation for Solute Transport in
the Matrix

[22] The conservation equation for solute mass in the
matrix is:

�m
@cmk

@t
þ �cmk

� �
þ �bm

@cmak

@t
þ �cmak

� �

þqmz
@cmk

@z
þ qmxk

@cmk

@x
¼ �mDm

@2cmk

@x2

ð15Þ

where subscript k refers to the source (s) or the opposite (o)
side of the fracture with respect to the tracer release loca-
tion. The transverse flux, qmxk, is defined to be positive
when flowing away from the fracture for each side; there-
fore, qmxs ¼ �qmxo. The solute concentration in matrix pore
water is cmk and the solute sorbed per unit mass of matrix
minerals is cmak ; �bm is the bulk density of minerals in the
matrix. As for the fracture conservation equation, the first
two terms represent the rate of change in dissolved and
sorbed solute mass, respectively, and the third term is the
net longitudinal advective flux of solute at a point for a lon-
gitudinal matrix-water flux rate qmz. The fourth term is the
net transverse advective flux of solute at a point for a trans-
verse matrix-water flux rate qmx. The term on the right-
hand side of equation (15) is the net transverse diffusive
flux of solute. As for the fracture conservation equation,
diffusive/dispersive transport in the longitudinal direction
is not included.

[23] The initial and boundary conditions for the matrix
conservation equation are:
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cms z; x; 0ð Þ ¼ bM0

Af �mRm
� x� x0ð Þ� zð Þ ð16Þ

cmo z; x; 0ð Þ ¼ 0 ð17Þ

cmk z; 0; tð Þ ¼ cf z; tð Þ ð18Þ

[24] Equation (16) gives the initial condition on the source
side of the fracture, while (17) gives the initial condition on
the opposite side of the fracture from the source release
point. Note that if x0¼ 0, the initial condition represents
tracer release in the fracture because of the boundary condi-
tion (18). The mass of tracer released is M0, Af is the fracture
cross-sectional area orthogonal to the fracture axis, and � is
the Dirac delta function that is dimensionally an inverse
length. The effective third dimension for defining the initial
solute-mass concentration is given by Af/b. Equation (15)
may be simplified using previously defined quantities to be

@cmk�

@t
þ vmz

@cmk�

@z
þ vmxk

@cmk�

@x
¼ D�m

@2cmk�

@x2
ð19Þ

where vmxk ¼ qmxk= �mRmð Þ and vmz ¼ qmz= �mRmð Þ and the
initial and boundary conditions become

cm�s z; x; 0ð Þ ¼ bM0

Af �mRm
� x� x0ð Þ� zð Þ ð20Þ

cm�o z; x; 0ð Þ ¼ 0 ð21Þ

cm�k z; 0; tð Þ ¼ cf z; tð Þ ð22Þ

lim
x!1

cm�k z; x; tð Þ ¼ 0 ð23Þ

3.3. Transformation to a Moving Reference Frame

[25] Solution of the coupled fracture-matrix conservation
equations requires a reduction in dimensionality of the ma-
trix conservation equation, with explicit dependence on
gradients in both longitudinal and transverse directions.
This can be accomplished by introducing a coordinate
transformation to a reference frame moving in the z direc-
tion at a velocity of vmz. Let

& ¼ z� vmzt ð24Þ

[26] Then the fracture conservation equation becomes

@cf �

@t
þ v�f

@cf �

@&
¼ Avfm

�mRm

�f Rf

D�m
2

@cm�

@x

����
x¼0s

þ @cm�

@x

����
x¼0o

� �
ð25Þ

with initial and boundary conditions

cf � &; 0ð Þ ¼ 0 ð26Þ

lim
&!1

cf � &; tð Þ ¼ 0 ð27Þ

where v�f ¼ vf � vmz. The matrix conservation equation
becomes

@cmk�

@t
þ vmxk

@cmk�

@x
¼ D�m

@2cmk�

@x2
ð28Þ

with boundary and initial conditions

cm�s &; x; 0ð Þ ¼ bM0

Af �mRm
� x� x0ð Þ� &ð Þ ð29Þ

cm�o &; x; 0ð Þ ¼ 0 ð30Þ

cm�k &; 0; tð Þ ¼ cf &; tð Þ ð31Þ

lim
x!1

cm�k &; x; tð Þ ¼ 0 ð32Þ

3.4. Dimensionless Form

[27] The conservation equations for the fracture (25)–
(27) are put into the following dimensionless form:

@cfd

@�
þ @cfd

@�
¼ 1

2

1

Pe

@cmd

@�

����
�¼0s

þ 1

Pe

@cmd

@�

����
�¼0o

 !
ð33Þ

cfd �; 0ð Þ ¼ 0 ð34Þ

lim
�!1

cfd �; �ð Þ ¼ 0 ð35Þ

and equations (28)–(32) become:

@cmdk

@�
þ Vk

@cmdk

@�
¼ 1

Pe

@2cmdk

@�2
ð36Þ

cmds �; �; 0ð Þ ¼ � �ð Þ� � � �0ð Þ ð37Þ

cmdo �; �; 0ð Þ ¼ 0 ð38Þ

cmdk �; 0; �ð Þ ¼ cfd �; �ð Þ ð39Þ

lim
�!1

cmdk �; �; �ð Þ ¼ 0 ð40Þ

where the independent variables are � ¼ v�f t=‘,
� ¼ &=‘ ¼ z� vmztð Þ=‘, � ¼ x=‘ using the length scale
‘ ¼ b�f Rf

� �
= 2�mRmð Þ, dimensionless concentrations cfd ¼

Af �f Rf ‘cf �

� �
= 2M0ð Þ and cmd ¼ Af �f Rf ‘cm�

� �
= 2M0ð Þ, and

parameters Pe ¼ v�f ‘=D�m and Vk ¼ vmxk=v�f . The dimen-
sionless delta functions at t¼ 0 are given by � � � �0ð Þ ¼
‘� x� x0ð Þ and � �ð Þ ¼ ‘� zð Þ.

3.5. Solution of the Conservation Equations

[28] A Laplace-transform method is used to solve these
equations, similar to the solution method presented in
Houseworth [2006]. A solution of the Laplace-transformed
matrix concentration is first found in terms of the independ-
ent variables and fracture concentration. This result is used
to solve for the Laplace-transformed fracture concentration.
Then Laplace inversions are performed to determine the
concentrations in the physical time domain.

[29] The Lapace-transformed concentrations are defined
by
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H �ð Þcfd �; �ð Þ ¼ 1

2	i

Zcþi1

c�i1

ĉfd �; sð Þes�ds ð41Þ

H �ð Þcmdk �; �; �ð Þ ¼ 1

2	i

Zcþi1

c�i1

ĉmdk �; �; sð Þes�ds ð42Þ

where H(�) is the step function defined by H(�)¼ 1 for
� � 0 and 0 otherwise.

[30] Substituting for cmds �; �; �ð Þ into the equation (36)
for the source side of the fracture gives

@2ĉmds

@�2
� PeVs

@ĉmds

@�
� sPeĉmds ¼ �Pe� �ð Þ� � � �0ð Þ ð43Þ

[31] This equation is solved subject to the boundary
conditions

ĉmds �; 0; �ð Þ ¼ ĉfd �; �ð Þ ð44Þ

lim
�!1

ĉmds �; �; sð Þ ¼ 0 ð45Þ

[32] Equation (43) is solved by dividing the domain into
two parts, where ĉþmds is used for �> �0 and ĉ�mds for �< �0.
This division of the domain results in the following conti-
nuity requirements between ĉþmds and ĉ�mds :

lim �þ0 ! �0; �
�
0 ! �0 ĉþmds �; �

þ
0 ; s

� �
¼ ĉ�mds �; �

�
0 ; s

� �
ð46Þ

and

lim �þ0 ! �0; �
�
0 ! �0

@ĉþmds

@�
�; �þ0 ; s
� �

� @ĉ�mds

@�
�; ��0 ; s
� �

¼ �Pe� �ð Þ

ð47Þ

where ��0 to �þ0 are approaching �0 from smaller and larger
values of �, respectively. The second consistency require-
ment (47) arises from integrating equation (43) over � from
��0 to �þ0 , using (44) and the requirement that the integral
of ĉmds is zero in the limit as ��0 to �þ0 approaches �0.
Within each domain, equation (43) is a homogeneous,
second-order ordinary differential equation in � with con-
stant coefficients. The solution within each domain introdu-
ces two unknown coefficients that are determined using the
two boundary conditions and two consistency require-
ments. The solutions are:

ĉ�mds �; �; sð Þ ¼ ĉfd �; sð Þ � Pe� �ð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r exp � PeVs

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )
�0

" #8>><
>>:

9>>=
>>;exp

PeVs

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )
�

" #

þ Pe� �ð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r exp � PeVs

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )
�0

" #
exp

PeVs

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )
�

" # ð48Þ

ĉþmds �; �; sð Þ ¼ ĉfd �; sð Þ þ Pe� �ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r exp �PeVs

2
�0

� 	
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r
�0

 !8>><
>>:

9>>=
>>;

�exp
PeVs

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )
�

" # ð49Þ

[33] For the flow field investigated here, Vs ¼ �Vo.
Therefore, V 2

s ¼ V 2
o , and is denoted as V2.

[34] For the side opposite the matrix source, the Laplace-
transformed conservation equation is

@2ĉmdo

@�2
� PeVo

@ĉmdo

@�
� sPeĉmdo ð50Þ

subject to boundary conditions

ĉmdo �; 0; sð Þ ¼ ĉfd �; sð Þ ð51Þ

lim
�!1

ĉmd0 �; �; sð Þ ¼ 0 ð52Þ

[35] The solution is

ĉmdo �; �; sð Þ ¼ ĉfd �; sð Þexp
PeVo

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )
�

" #
ð53Þ

[36] Finally, the fracture conservation equation under a
Laplace transform is

@ĉfd

@�
þ sĉfd �

1

2Pe

@ĉ�mds

@�

����
�¼0s

� 1

2Pe

@ĉmdo

@�

����
�¼0o

¼ 0 ð54Þ

[37] Substituting for ĉ�mds and ĉmdo from equations (48)
and (53), respectively, gives
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@ĉfd

@�
þ sĉfd �

ĉfd

2Pe

PeVs

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )

�
ĉfd

2Pe

PeVo

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )

¼ � �ð Þ
2

exp � PeVs

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2V 2

4
þ sPe

r( )
�0

" # ð55Þ

which has the solution

ĉfd ¼
1

2
exp �PeVs

2
�0


 �
exp �s�f gexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

4
þ s

Pe

r
� þ Pe�0ð Þ

( )
H �ð Þ

ð56Þ

[38] Substituting the result (56) into (41) and evaluating
the Laplace inversion yields

cfd �; �ð Þ ¼ H � � �ð ÞH �ð Þ � þ Pe�0

4
ffiffiffi
	
p ffiffiffiffiffiffi

Pe
p

� � �ð Þ
3
2

exp �PeVs

2
�0

� �

�exp � � þ Pe�0ð Þ2

4Pe � � �ð Þ �
PeV 2 � � �ð Þ

4

 ! ð57Þ

[39] Similar inversions are performed to determine the
matrix concentration for the side of the fracture opposite
the source, which is found to be

cmdo �; �; �ð Þ ¼ H � � �ð ÞH �ð Þexp
PeVo � þ �0ð Þ

2

� �
� þ Pe � þ �0ð Þ

4
ffiffiffi
	
p ffiffiffiffiffiffi

Pe
p

� � �ð Þ
3
2

�exp � � þ Pe � þ �0ð Þð Þ2

4Pe � � �ð Þ � PeV 2 � � �ð Þ
4

( )

ð58Þ

and for the matrix on the source side of the fracture,

cmds �; �; �ð Þ ¼ H � � �ð ÞH �ð Þexp
PeVs � � �0ð Þ

2


 �
� þ Pe � þ �0ð Þ

4
ffiffiffi
	
p ffiffiffiffiffiffi

Pe
p

� � �ð Þ
3

2

�exp � � þ Pe � þ �0ð Þð Þ2

4Pe � � �ð Þ � PeV 2 � � �ð Þ
4

 !
þ

ffiffiffiffiffiffi
Pe
p

� �ð Þ
2
ffiffiffiffiffiffi
	�
p exp

PeVs

2
� � �0ð Þ � PeV 2�

4


 �

� exp �Pe � � �0ð Þ2

4�

( )
� exp �Pe � þ �0ð Þ2

4�

( )" #
ð59Þ

[40] Furthermore, recognizing that cfd �; �ð Þ ¼ cmds

�; 0; �ð Þ ¼ cmdo �; 0; �ð Þ, the solution for concentration is
completely specified by (58) and (59). The matrix solute
concentration on the source side of the fracture, equation
(59), has a term involving �(�). This term represents solute
in the matrix that has not interacted with the fracture and
moves at the matrix advection velocity as a concentration
spike at �¼ 0. This infinite concentration occurs because
the model does not include longitudinal solute diffusion in
the matrix. The closed-form solutions in (57)–(59)
have been verified directly by substitution into equations
(33)–(40).

[41] For some applications, it is useful to have the solu-
tion in the form of cumulative-mass arrival at a down-
stream location as a function of time. Such a mass arrival
curve from an instantaneous point source may be computed
from integrals of the solutions presented in this section,
with the resulting formulae given in the section A1. The cu-
mulative mass results have been compared with previously
published solutions (see section A2) for cases without ma-
trix advection.

4. Solution Behavior Without Longitudinal
Diffusion/Dispersion

[42] The solution behavior is examined for a set of six
cases in which the flow velocities and source positions are
varied, using a fracture within a domain that is 100 m long
as measured along the fracture axis. The domain orthogonal
to the fracture is unbounded. Hydrogeologic properties

consistent with the flow velocities used are given in Table 1.
The intrinsic fracture permeability corresponds roughly to
a parallel-plate permeability for a fracture with an aperture
of 10�4 m. For a fracture spacing of 1 m, the bulk fracture
permeability would be 1.18 � 10�13 m2.

[43] Table 2 provides the range of values for transport
parameters and Table 3 presents the fixed parameters for
the cases investigated. Note that sorption (Kdf and Kdm)
coefficients, the decay constant (�), and all longitudinal dif-
fusion/dispersion coefficients are zero for the examples in
this section. In these examples, the pressure gradient direc-
tion is varied with respect to the fracture axis. Table 2
shows this angle ranges from 0� to 84.4�. As the angle
between the pressure gradient and fracture axis vary, both
fracture and matrix velocities are affected by the changing
components of the pressure gradient. For Cases 1–3, the
source release occurs in the fracture and for Cases 4–6 the
source release occurs in the matrix 0.5 m offset from the
fracture. As mentioned before, all source releases are
assumed to be instantaneous at time t¼ 0. These examples
involve long time frames, up to 105 years, as a result of the
selected matrix permeability, domain length, magnitude

Table 1. Hydrogeologic Parameters and Domain Investigated

Matrix
Permeability
(m2)

Intrinsic Fracture
Permeability

(m2)

Regional Gradient
of Hydraulic

Head

Doman
Length

(m)

3.06 � 10�16 1.18 � 10�9 0.01 100
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and direction of the hydraulic gradient, and matrix porosity
given in Tables 1–3. While such time frames may not be of
interest for some applications, we present results to the dis-
play entire arrival curves from an instantaneous point
source for completeness. Time frames of this magnitude
are not unusual for problems involving nuclear waste dis-
posal, and safety assessments of disposal systems typically
encompass 105�106 years [Birkholzer et al., 2012].

[44] An example of the analytical model transport
responses using equations (58) and (59) is given in Figure 4
for solute release in the fracture and flow parallel to the
fracture. Figure 4a shows the contour pattern for concentra-
tion at 200 days after source release, with the elongated
profile indicative of the enhanced longitudinal transport
along the fracture. The symmetrical transverse spreading is
a result of transverse diffusion from the fracture into the
matrix. Advective longitudinal transport in the matrix can-
not be resolved in this figure, because the trailing concen-
tration front is at a longitudinal position of only 0.005 m.
The cumulative-mass arrival and mass-arrival rates at 100
m from the origin are given in Figures 4b and 4c, respec-
tively. Cumulative-mass-arrival curves are computed using
equations (A3), (A6), and (A7) from Appendix A, and the
mass-arrival rates are computed from the time derivatives
of these equations. Mass arrivals and arrival rates are given
for the fracture and for each side of the matrix. The ‘‘matrix
source’’ and ‘‘matrix opposite’’ terms in Figures 4b and 4c
refer to cumulative mass and mass-arrival rates in the ma-
trix on the negative and positive sides of the fracture,
respectively, in terms of the transverse coordinate. For this
case, the matrix-mass arrivals and arrival rates are the same
on both sides of the fracture, because of the symmetry of
this problem about the fracture axis. The trailing edge of
the mass-arrival rate in Figure 4c shows a sharp decrease
near 10,000 years. This is close to the time required for a
solute to arrive 100 m downstream moving at the matrix
advection velocity (10,563 years). Because there is no lon-
gitudinal diffusion or dispersion, any solute that has had
minimal interaction with the fracture will arrive at the 100
m boundary close to this time.

[45] An example with an oblique cross-flow is shown in
Figure 5. The only difference between this case and Case 1
in Figure 4 is that the hydraulic gradient is at a 45� angle to
the fracture axis. The asymmetry of the contour plot rela-
tive to the fracture in Figure 5a is a result of the matrix
cross-flow component orthogonal to the fracture. As a
result of cross-flow, the highest concentration portion of
the profile is displaced laterally, which impedes longitudi-
nal transport of the main solute mass as shown in Figures
5b and 5c as compared with Figures 4b and 4c Solute inter-
action with the fracture is also reduced, limiting dispersion
through fracture-matrix interaction, and resulting in higher
peak concentrations. A more substantial mass of solute
arrives in the matrix at the downstream boundary as shown
in Figure 5b, arriving through the matrix on the down-
stream side (positive x coordinate side) of the fracture rela-
tive to matrix cross-flow.

[46] An example with stronger cross-flow is shown in
Figure 6, in which the hydraulic gradient is at an 84.4�

angle to the fracture axis. Contours are shown in Figure 6a
at 200 days and in Figure 6b at 6000 days. The relatively
slower velocity in the fracture and greater advective losses
of solute to the matrix reduce the rate of solute advance as
compared with Figures 4 and 5. Peak solute concentrations
are correspondingly higher than in Figures 4 and 5. By
comparison with Figure 4, where diffusion is the only
mechanism for fracture-matrix exchange, this example
clearly shows that matrix cross-flow can have a significant
influence on fracture-matrix exchange. The effects of
cross-flow create significant lateral movement of solute rel-
ative to the fracture, limiting the interaction of solute with
the fracture. Such effects would be moderated in a fracture-
network setting as a result of interactions with other frac-
tures in the network. This is also seen clearly in the mass-
arrival and arrival-rate curves in Figures 6c and 6d. A large
fraction of solute travels to the downstream location mainly
through the matrix, as indicated in Figure 6c by the large
increase in cumulative-mass arrivals close to the matrix
travel time, 100 m divided by the matrix longitudinal ve-
locity, or 1.08 � 105 years.

Table 2. Flow and Transport Parameters Varied

Case

Primary Dimensionless

vf (m/s) vmz (m/s) vmxs (m/s) Angle (�) x0 (m) t (days) Pe Vs �0 �

1 1.16 � 10�4 3 � 10�10 0 0 0 200 580 0 0 4.01 � 106

2 8.2 � 10�5 2.12 � 10�10 �2.12 � 10�10 45 0 200 410 �2.59 � 10�5 0 2.83 � 106

3 1.14 � 10�5 2.94 � 10�11 �2.99 � 10�10 84.4 0 200 56.9 �2.63 � 10�5 0 3.93 � 105

4 1.16 � 10�4 3 � 10�10 0 0 �0.5 2000 580 0 103 4.01 � 107

5 8.2 � 10�5 2.12 � 10�10 �2.12 � 10�10 45 �0.5 2000 410 �2.59 � 10�5 103 2.83 � 107

6 1.14 � 10�5 2.94 � 10�11 �2.99 � 10�10 84.4 �0.5 2000 56.9 �2.63 � 10�5 103 3.93 � 106

Table 3. Parameters Used for All Cases

Primary Dimensionless

�f �m

Kdf

(m3/kg)
Kdm

(m3/kg) b (m) ‘ (m)
Dm (m2/s)
(transverse) Af (m2) M0 (kg) � (s�1) V‘

1 0.1 0 0 10�4 5 � 10�4 10�10 1 1 0 2.59 � 10�6
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[47] The profile in Figure 7 is a result of modifying
case 1 (Figure 4, pressure gradient parallel to the fracture)
by moving the source into the matrix by 0.5 m. Solute
transport through the fracture is delayed because of the
source location, and the contours in Figure 7a are at 2000
days instead of 200 days as in Figure 4a. The resulting pro-
file shows the reduced degree of interaction between the
solute and the fracture caused by the source offset position.
Concentrations in the figure are limited to solute mass that
has diffused from the source to interact with the fracture
and thereby disperse longitudinally. The trailing concentra-
tion spike in the matrix represents solute that has not inter-
acted with the fracture and has an infinite concentration, as
a result of no longitudinal diffusion in the matrix. The early

parts of the cumulative mass-arrival and mass-arrival-rate
curves in Figures 7b and 7c are delayed relative to those in
Figures 4b and 4c and the peak mass-arrival rate is signifi-
cantly higher for Case 1.

[48] Figure 8 shows a case that is comparable with Case
2 (Figure 5, pressure gradient at a 45�angle to the fracture),
except that the source is located in the matrix 0.5 m from
the fracture. The trailing concentration spike is present in
the matrix as a result of solute in the matrix that has not yet
interacted with the fracture. Concentration contours in Fig-
ure 8a are slightly displaced to the side of the fracture op-
posite the source as compared with Figure 7a, because of
the transverse flow in the matrix in that direction. Note that
for Figure 8a, the simulation time is 2000 days compared
with 200 days for Figure 5a. The reduced fracture velocity

Figure 4. Case 1: Transport results for matrix flow paral-
lel to the fracture and solute release in the fracture. (a) Con-
centration contours at 200 days; (b) cumulative-mass
arrivals at 100 m; (c) mass-arrival rates at 100 m.

Figure 5. Case 2: Same as Case 1 but with the hydraulic
gradient at a 45�angle to the fracture. (a) Concentration
contours at 200 days; (b) cumulative-mass arrivals at 100
m; (c) mass-arrival rates at 100 m.
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and increased matrix cross-flow cause the latter part of the
cumulative arrival curve and mass-arrival rates in Figures
8b and 8c to be delayed in comparison with Case 2.

[49] Figure 9 shows Case 6, comparable with Case 3
(Figure 6, pressure gradient at a 84.4�angle to the fracture),
except that the source is located in the matrix 0.5 m from
the fracture. Contours are shown in Figure 9a at 2000 days
and in Figure 9b at 40,000 days. The relatively slower ve-
locity in the fracture reduces the rate of advance of the sol-
ute as compared with Figures 7 and 8. The concentration
contours in Figure 9b are significantly displaced to the side
of the fracture opposite the source, because of the trans-
verse flow within the matrix in that direction. The reduced
fracture velocity and increased matrix cross-flow cause the
latter part of the cumulative-arrival and arrival-rate curves
in Figures 9c and 9d to be delayed, similar to Case 3. If the
cross-flow direction is reversed for Cases 5 and 6, even
more solute travels entirely (or almost entirely) within the
matrix to the downstream observation point.

5. Longitudinal Diffusion and Dispersion

[50] Analytical models of advective-dispersive transport
in a fracture with diffusive exchange with a porous matrix
have been given by Tang et al. [1981], Sudicky and Frind
[1982], and Maloszewski and Zuber [1985, 1990]. How-
ever, these models did not include advective transport in
the matrix or longitudinal diffusion in the matrix. For the
purposes of the following analysis, diffusion in the matrix

will be assumed to dominate dispersive effects, so that dif-
fusive transport is approximately isotropic. This condition
is expected when advective velocities in the matrix are suf-
ficiently small [Bear, 1972]. Under certain conditions,
these restrictions may be relaxed; this will be discussed fol-
lowing the results for the restricted case below.

[51] Consider a simple case in which fracture and matrix
longitudinal and transverse velocities are the same, vz and
vx, respectively, and isotropic diffusion with an apparent
diffusion coefficient of D

�
. The release of an instantaneous

point source of solute, mass M0, would result in a solute
distribution, C z; x; tð Þ, that can be written down immedi-
ately as the product of independent one-dimensional solu-
tions for the x and z directions with constant drifts
[Carslaw and Jaeger, 1959, sections 10.7 and 1.15]:

C z; x; tð Þ ¼ M0

4	D�t
exp � z� vztð Þ2 þ x� vxtð Þ2

4D�t

( )
ð60Þ

[52] This solution can also be obtained by starting with
the solution excluding longitudinal diffusion:

c z; x; tð Þ ¼ M0� z� vztð Þffiffiffiffiffiffiffiffiffiffiffiffi
4	D�t
p exp � x� vxtð Þ2

4D�t

( )
ð61Þ

[53] The fundamental solution for longitudinal diffusion
from an instantaneous point source is

Figure 6. Case 3: Same as Case 1 but with the hydraulic gradient at a 84.4� angle to the fracture. (a)
Concentration contours at 200 days; (b) concentration at 6000 days—note expanded y axis scale; (c)
cumulative-mass arrivals at 100 m; (d) mass-arrival rates at 100 m. Note that the transverse scale is
expanded for this high cross-flow velocity case.
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~c z; tð Þ ¼ M z; x; tð Þffiffiffiffiffiffiffiffiffiffiffiffi
4	D�t
p exp � z2

4D�t

� �
ð62Þ

[54] Equation (61) may be used as a source term (which
is now spatially distributed in the x direction) for a longitu-
dinal diffusion process given by (62). This amounts to
freezing advection and lateral diffusion over the time pe-
riod t to assess solute diffusion in the longitudinal direction.
This can be done because diffusion in the longitudinal
direction is independent of diffusion in the transverse direc-
tion, and independent of advection in both directions. The
resulting concentration including longitudinal diffusion
takes the form of a superposition integral, involving mass

releases at all longitudinal positions according to the spatial
distribution of mass at time t, M(z,x,t) :

C z;x;tð Þ¼
Z1
�1

~c z�z0;tð ÞdM z0;x;tð Þ ð63Þ

[55] Letting dM z0; x; tð Þ ¼ c z0; x; tð Þdz0 gives

C z; x; tð Þ ¼
Z1
�1

c z0; x; tð Þ~c z� z0; tð Þdz0

¼ M0

4	D�t
exp � z� vztð Þ2 þ x� vxtð Þ2

4D�t

( ) ð64Þ

Figure 8. Case 5: Same as Case 2 but with source located
in matrix 0.5 m from fracture. (a) Concentration contours
at 2000 days; (b) cumulative-mass arrivals at 100 m; (c)
mass-arrival rates at 100 m.

Figure 7. Case 4: Same as Case 1 but with source located
in matrix 0.5 m from fracture. (a) Concentration contours
at 2000 days; (b) cumulative-mass arrivals at 100 m; (c)
mass-arrival rates at 100 m.
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which is the same result as in equation (60). The same
superposition concept was recognized by Thacker [1976]
for incorporating longitudinal dispersion occurring within
shear layers into a global transport solution for shear
dispersion.

[56] This same procedure for incorporating longitudinal
diffusion may be used even if the advective velocity in the
z direction is a function of the transverse position x. It is
perhaps simpler to visualize this method by focusing on
individual solute molecular paths. For the case with no
longitudinal diffusion, a solute molecule drifts in the lon-
gitudinal direction according to the local longitudinal ve-
locity, and also drifts in the transverse direction by the
constant transverse velocity. Transverse movement is also
caused by a transverse random walk associated with diffu-
sion. The addition of longitudinal diffusion results in a
longitudinal random walk superimposed on the original
particle movement, but does not impact the transverse
movement of the solute or the distribution of longitudinal
flow velocities experienced by the solute. The only effect
of longitudinal diffusion is to randomize the longitudinal
position of the solute according to the longitudinal diffu-
sive process.

[57] A solution analogous to equation (61) excluding
longitudinal diffusion cannot be solved for a case in which
the advective velocity in the z direction is a general func-
tion of the transverse position, x. However, the result for
cmdk from section 3 represents this type of solution for the
particular case of a single fracture and matrix involving

two longitudinal velocities. Consider again the case in
which longitudinal diffusion is the same in the fracture and
matrix, and matrix diffusion is isotropic. Since all solute
diffuses at the same rate, the solution of the transport prob-
lem including longitudinal diffusion is given by

Cmdk z; x; tð Þ ¼
Zvf t

vmzt

cmdk
z0�vmzt

‘ ; x
‘ ;

v�f t

‘

� 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4	D�mt

p exp � z� z0ð Þ2

4D�mt

( )
dz0 ð65Þ

[58] The limits of integration extend exclusively over the
range of longitudinal positions that have nonzero values of
solute concentration from the source function. Putting
equation (65) into dimensionless form yields

Cmdk �; �; �ð Þ ¼
Z�
0

cmdk �
0; �; �ð Þ

ffiffiffiffiffiffi
Pe
pffiffiffiffiffiffiffiffi

4	�
p exp �Pe � � �0ð Þ2

4�

( )
d�0

ð66Þ

[59] This method may be extended to address different
rates of diffusion/dispersion in the fracture and matrix.
With only two longitudinal velocities, the longitudinal
position of the solute defines the amount of time spent in
the fracture and matrix, because in the absence of longitu-
dinal dispersion/diffusion, this location is given by

vf tf þ vmz t � tf
� �

¼ z0 ð67Þ

Figure 9. Case 6: Same as Case 3 but with source located in matrix 0.5 m from fracture. (a) Concen-
tration contours at 2000 days; (b) concentration contours at 40,000 days; (c) cumulative-mass arrivals at
100 m; (d) mass-arrival rates at 100 m.
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where tf is the time spent in the fracture.
[60] Consider the dispersion/diffusion coefficient for any

particular solute particle path starting at z¼ 0 and t¼ 0 and
ending at z ¼ z0 in the absence of longitudinal dispersion/
diffusion. The dispersion/diffusion coefficient is a function
of time that varies in response to solute movement between
the fracture and matrix as a result of transverse advection
and diffusion Therefore, the longitudinal diffusion/disper-
sion process is described by

@~c

@t
¼ D� t; z0ð Þ @

2~c

@z2
ð68Þ

[61] This equation has the following fundamental
solution:

~c z; t; z0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4	D� t; z0ð Þt

p exp � z2

4D� t; z0ð Þt


 �
ð69Þ

where the time-averaged longitudinal diffusion/dispersion
coefficient is

D� t; z0ð Þ ¼ 1

t
D�f tf þ D�m t � tf

� �n o
ð70Þ

and D�f is the longitudinal dispersion coefficient for the
fracture divided the fracture retardation factor. Using equa-
tion (67) to solve for tf, the time-averaged longitudinal dif-
fusion/dispersion coefficient in (70) can be put in
dimensionless form:

D�r � ; �0ð Þ ¼ 1þ D�fm � 1
� 
 �0

�
ð71Þ

where D�r ¼ D�=D�m and D�fm ¼ D�f =D�m. The fact that solute
concentrations for �0 near � tend to zero as � !1 in equa-
tions (58) and (59) means that the effects of longitudinal
dispersion in the fracture tend to diminish at longer times.
This is a reflection of the fact that solute spreading into the
matrix leads to a decreasing level of solute interaction with
the fracture over time. The solute concentration including
variable diffusion and dispersion between matrix and frac-
ture is

Cmdk z; x; tð Þ ¼
Zvf t

vmzt

cmdk
z0�vmzt

‘ ; x
‘ ;

v�f t

‘

� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4	D� t; z0ð Þt

p exp � z� z0ð Þ2

4D� t; z0ð Þt

( )
dz0

ð72Þ

or, in dimensionless form,

Cmdk �; �; �ð Þ ¼
Z�
0

cmdk �
0; �; �ð Þ

ffiffiffiffiffiffi
Pe
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	D�r � ; �0ð Þ�
q exp � Pe � � �0ð Þ2

4D�r � ; �0ð Þ�

( )
d�0

ð73Þ

[62] This result has been derived for isotropic diffusion
in the matrix. If the material is inherently anisotropic or if
flow rates are sufficiently large to result in matrix disper-
sion, the diffusion or dispersion process will be anisotropic.
If a principal axis of the material anisotropy or the overall

matrix flow direction is parallel (or orthogonal) to the frac-
ture, then the principal axes for the dispersion or diffusion
processes are also in these directions. For these situations,
longitudinal and transverse dispersion are independent
processes and can be incorporated into the transport solu-
tion in the same way. The system analyzed by Roubinet et
al. [2012] also had one of the principal axes of the diffusion
process line up in the longitudinal (fracture) direction, with
the other principal axis lining up in the orthogonal (trans-
verse) direction. The case of a general orientation of the
principal axes relative to the fracture results in transverse
and longitudinal matrix diffusion/dispersion processes that
are not independent; therefore, the superposition method
presented here for incorporating longitudinal diffusion and
dispersion is not applicable.

[63] Equation (73) was used to solve a problem that
could be compared with an existing solution by Tang et al.
[1981] that includes longitudinal dispersion in the fracture.
The problem includes advection and dispersion in the frac-
ture and lateral diffusion in the rock matrix, but does not
include advection or longitudinal diffusion in the matrix.
The assumption that solute is well mixed in the fracture
cross section is also used. The Tang et al. [1981] solution
was derived by directly solving the differential equations
including longitudinal dispersion in the fracture. The prob-
lem solved by Tang et al. [1981] has a fixed concentration
in the fracture at z¼ 0 for t> 0 and an initial concentration
of zero in the fracture and matrix for z> 0. An equivalent
initial value problem was constructed using a finite series
of instantaneous point sources evenly spaced in the fracture
along the negative z axis. The concentration evolution from
each point source is given by equation (73). These concen-
trations are then linearly superimposed (summed) to gener-
ate the overall solution. The parameters of the problem are
given in Figure 10. For these parameters, 150 instantaneous
point sources, spaced 0.5 m starting at z¼�0.5 m, were
found to provide sufficient accuracy. The mass released at
each source was determined by adjusting the 150 source
masses such that the concentrations at z¼ 0 remained close
to a constant value, c0, for 2000 evenly spaced times over a

Figure 10. Exact solution including longitudinal disper-
sion for fracture concentration from Tang et al. [1981]
compared with the superposition of instantaneous point-
source solutions using equation (73); Tang et al. [1981] so-
lution without dispersion is also shown.
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5 day period. This resulted in a root-mean square difference
of 0.0035 between the 2000 computed relative concentra-
tions, c/c0, at z¼ 0 and the target value of 1. Figure 10
shows the comparison of fracture concentrations computed
using solutions based on Tang et al. [1981], both including
longitudinal dispersion in the fracture and without longitu-
dinal dispersion (Df¼ 0), and the superposition of solutions
including longitudinal dispersion based on equation (73).
The solution without longitudinal dispersion is included in
the figure to show the effects of longitudinal dispersion on
the solution. These comparisons show that the effects of
longitudinal dispersion in this case are significant, and that
the proposed method for introducing longitudinal disper-
sion into the solution matches the Tang et al. [1981]
solution.

[64] The formulation for cumulative-mass arrivals
including longitudinal dispersion/diffusion is given in the
section A3.

6. Solution Behavior Including Longitudinal
Diffusion/Dispersion

[65] An estimate of longitudinal dispersion within a frac-
ture for the configuration in this model may be derived
from the method for analyzing shear dispersion developed
by Taylor [1953, 1954] and Aris [1956]. The result for the
asymptotic shear dispersion coefficient for solute transport
between parallel plates is [Wooding, 1960]

D�f ¼ D�f 0 þ
1

210

v2
f b2

D�f 0

ð74Þ

where D�f 0 is the molecular diffusion coefficient in the
fracture divided by the fracture retardation factor. Assum-
ing D�f 0 ¼ D�m, and using values for the parameters from
Case 1 discussed in section 4, gives D�f ¼ 6:5� 10�9m2=s,
which is less than 2 orders of magnitude larger than the
molecular diffusion coefficient, D�m ¼ 10�10m2=s. Zhou et
al. [2007] evaluated dispersion data from field-test results
for both fracture networks and single fractures. Results on
solute transport and dispersion for six single-fracture tests
were documented. Their findings indicated that dispersion
in a real (single) fracture is typically more than 2 orders of
magnitude larger than for flow between parallel plates.
This is believed to be a result of fracture surface rough-
ness and spatial heterogeneity of the fracture aperture.
The tests for single fractures were found to have dispersiv-
ities ranging from 0.18 to 2.4 m and dispersion coefficients

Table 4. Fracture Longitudinal Dispersion Coefficientsa

Case 7 and 10 8 and 11 9 and 12

Fracture longitudinal
dispersion coefficient
(m2/s)

7 � 10�8 1.16 � 10�4 1.16 � 10�3

aA longitudinal matrix diffusion coefficient of 10�10 m2/s is used for
Cases 7–12. All other parameters for Cases 7–9 are the same as for Case 1
and Cases 10–12 have the same parameters as Case 4. See Tables 2 and 3.

Figure 11. Cases 7–9: Concentration contours at 200 days using Case 1 parameters but with a matrix
longitudinal diffusion coefficient of 10�10 m2/s and fracture longitudinal dispersion coefficient of (a) 7
� 10�8 m2/s; (b) 1.16 � 10�4 m2/s; (c) 1.16 � 10�3 m2/s; (d) centerline concentration profiles for Cases
1 and 7–9.
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ranging from 2 � 10�5 to 8 � 10�4 m2/s. We span this range
by computing low, moderate, and high-dispersion cases as
shown in Table 4. The two highest dispersion coefficients
were selected such that fracture dispersivities (the ratio of
the fracture dispersion coefficient to the fracture velocity)
have values of 1 and 10 m, respectively. As will be seen, the
higher levels of the dispersion coefficient are needed to
show the effects of fracture dispersion in the results. Other
parameters used for these calculations are given in Tables 2
and 3. Note that sorption (Kdf and Kdm) coefficients and the
decay constant (�) are zero.

[66] Solutions including longitudinal dispersion in the
fracture and longitudinal diffusion in the matrix are shown
in Figures 11 and 12. Cases 7–9 are shown in Figure 11

and are equivalent to Case 1, but now include varying lev-
els of longitudinal dispersion in the fracture and a fixed
level of longitudinal diffusion in the matrix (10�10 m2/s).
Some additional longitudinal spreading can be seen in the
profile in Figure 11a, also at 200 days, as compared with
Figure 4a. At higher levels of longitudinal dispersion in the
fracture in Figures 11b and 11c, the effects of dispersion on
the concentration contours becomes more noticeable, and
increased levels of solute movement upstream of the
release point are also observed. While solute diffusion
upstream of the release point can occur as a result of mo-
lecular diffusion, its enhancement as a result of higher lev-
els of longitudinal dispersion is not physical. This occurs
because longitudinal dispersion in the fracture is repre-
sented as a Fickian process, which is an approximation that
becomes valid at long times. The fracture concentration
profiles in Figure 11d show the similarity of the concentra-
tions for no dispersion (Case 1) and low dispersion (Case
7), but deviates perceptibly for the moderate dispersion
case (Case 8) and significantly for the high dispersion
(Case 9).

[67] Cases 10–12 shown in Figure 12 are for a matrix-
release initial condition and are the same as that shown in
Case 4, except here, varying levels of longitudinal disper-
sion in the fracture and a fixed level of longitudinal diffu-
sion in the matrix are included (10�10 m2/s). Longitudinal
diffusion in the matrix helps to reveal the behavior of solute
that is in the matrix prior to interaction with the fracture.
Most of the solute released has not interacted with the frac-
ture, so the concentration profile in the matrix follows a
fairly simple advection-diffusion pattern. The differences
in concentration contours caused by changes in fracture
dispersion coefficient are difficult to distinguish; therefore,
only the contours for the low-dispersion case are shown in
Figure 12a and an expanded view in Figure 12b near the
source for 2000 days. As in Figure 11d, the centerline pro-
file in Figure 12c shows virtually no difference between the
no dispersion (Case 4) and low dispersion (Case 10), and
only a modest difference for the moderate dispersion case
(Case 11), but a noticeable change for the high dispersion
(Case 12).

[68] For solute release in the matrix, solute that has
not interacted with the fracture remains at �¼ 0 (the sol-
ute release location in a coordinate system moving at
the matrix longitudinal velocity) unless longitudinal dif-
fusion is included. Roubinet et al. [2012] have shown
that at low Peclet numbers, longitudinal diffusion in the
matrix can have a significant effect on solute transport
through the fracture. For solute that has interacted with
the fracture, differential advection caused by fracture-
matrix interaction can overshadow other dispersion/dif-
fusion processes, as shown here for the low fracture-
dispersion case based on parallel-plate fracture geome-
try. Higher levels of longitudinal dispersion associated
with natural fractures can lead to a more significant
impact on the overall dispersion.

7. Evaluation of Longitudinal Diffusion and
Dispersion

[69] To determine an approximate criterion for when
longitudinal dispersion in the fracture becomes

Figure 12. Case 10: Concentration contours at 2000 days
using Case 4 parameters but with a matrix longitudinal dif-
fusion coefficient of 10�10 m2/s and fracture longitudinal
dispersion coefficient of 7 � 10�8 m2/s, (a) full-scale ver-
sion; contour lines are marked with concentrations in kg/
m3; (b) detail of contours near the source; (c) centerline
concentration profiles for Cases 4 and 10–12.
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important for the overall transport process, we first
compute the integral of the concentrations in equations
(58) and (59) over the transverse coordinate, which
gives, respectively,

Z1
0

cmdo �; �; �ð Þd� ¼ cmdo �; �ð Þ ¼

H � � �ð ÞH �ð Þ
2
ffiffiffi
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where the trailing spike on the source side is not included
because this solute has not interacted with the fracture and
is not dispersed longitudinally.

[70] Equations (75) and (76) are still complex, mainly as
a result of the effects of cross-flow and source offset from
the fracture. These factors affect the amount of spreading
caused by fracture-matrix interaction, and they also have a
similar affect on the amount of spreading caused by longi-
tudinal dispersion in the fracture, because both are
impacted mainly by the same delay in solute interaction
with the fracture imposed by these conditions. Therefore,
longitudinal spreading is evaluated for the simpler case
with �0 ¼ Vs ¼ Vo ¼ 0. Then,

cmdo �; �ð Þ ¼ cmds �; �ð Þ ¼ H � � �ð ÞH �ð Þ
2
ffiffiffi
	
p ffiffiffiffiffiffi

Pe
p ffiffiffiffiffiffiffiffiffiffiffi

� � �
p exp � �2

4Pe � � �ð Þ

� �
ð77Þ

[71] As � increases, most of the solute mass lies at longi-
tudinal positions where �� � suggesting that � � �ð Þ � �
giving

cmdo �; �ð Þ ¼ cmds �; �ð Þ ¼ H � � �ð ÞH �ð Þ
2
ffiffiffi
	
p ffiffiffiffiffiffi

Pe
p ffiffiffi

�
p exp � �2

4Pe�

� �
ð78Þ

[72] This shows that the form of the integrated solution
is like diffusion from an instantaneous point source that ori-
ginated at �¼ 0, but the solution is truncated at �¼ 0 and
�¼ � . The standard deviation of the distribution as a
dimensional quantity, not accounting for the truncation, isffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pe�‘2
p

. The truncation essentially represents a half space
over which the spreading occurs, because the boundary at
�¼ � is relatively far removed from the main solute mass.
As a result, one half of the standard deviation may be con-
sidered a length scale for the degree of longitudinal spread-
ing induced by fracture-matrix interaction, which is, as a
dimensional quantity,

Sfm 	
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pe�‘2

p
ð79Þ

[73] The spreading caused by longitudinal diffusion/dis-

persion is given by
ffiffiffiffiffiffiffiffiffi
2D�

p
t, where D� is the solute-mass

weighted average of D� :
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� �
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[74] The solute-mass concentration distribution used for
the average in (80) is the approximate distribution given by
(78). Integrating (80) using equation (70) for D� �; �ð Þ
gives
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[75] The comparable longitudinal spreading caused by
dispersion and diffusion is

Sdisp�dif 	
ffiffiffiffiffiffiffiffiffi
2D�

q
�ð Þt ð82Þ

[76] Therefore, an approximate criterion for when longi-
tudinal diffusion and dispersion in the fracture and matrix
are small relative to spreading caused by fracture-matrix
differential advection is when Sfm in (79) is large compared
with Sdisp�dif in (82). Using equations (79), (81), and (82),
and stipulating that Sdisp�dif < Sfm, gives:
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where 
 is a factor to be determined.
[77] Putting equation (83) entirely in terms of nondimen-

sional variables gives
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[78] Equation (84) indicates that fracture-matrix interac-
tion dominates longitudinal spreading if �< 1 The value of
� is strongly influenced by the Peclet number and the ratio
of the fracture longitudinal dispersion coefficient to the ma-
trix diffusion coefficient, with somewhat weaker depend-
ence on time. The value of 
 represents the ratio of
longitudinal spreading length scales associated with
fracture-matrix interaction and matrix diffusion/fracture
dispersion, such that fracture-matrix interaction dominates
longitudinal spreading. Conceptually, this is expected to be
greater than 1 but probably less than 10; therefore, 
 is
assigned a value of 3. With this choice, the values of � are
0.0014, 0.86, and 48.4 for the low, moderate, and high
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longitudinal dispersion cases in Figure 11d, respectively.
For the low, moderate, and high longitudinal dispersion
cases in Figure 12c, � is 0.0045, 0.27, and 2.7, respec-
tively. The values of � are smaller for corresponding low,
moderate, and high-dispersion cases in Figure 12c as com-
pared with Figure 11d because the value of � is an order of
magnitude larger for Figure 12c as compared with Figure
11d. These values of � indicate that longitudinal dispersion
and diffusion should have negligible effects on longitudinal
spreading for cases 7 and 10, which use the low longitudi-
nal dispersion coefficient, a minor effect for Case 8, and an
even smaller effect for Case 11, both of which use the mod-
erate longitudinal dispersion coefficient ; and significant
effects for Cases 9 and 12, where the high longitudinal dis-
persion coefficient is used.

[79] Roubinet et al. [2012] investigated the effects of
longitudinal diffusion in the matrix on transport for an
instantaneous point source and computed three cases
for different Peclet numbers. They found that longitudi-
nal matrix diffusion effects are less significant as the
Peclet number increases [Roubinet et al., 2012]. Appli-
cation of equation (84) to these cases gives values of
�of 0.2, 0.8, and 20 for high, middle, and low-Peclet
number cases, respectively. These values of � are con-
sistent with the responses found by Roubinet et al.
[2012, Figure 5], which show almost no effect of
longitudinal-matrix diffusion for the high-Peclet number
case, a small but distinct effect for the middle-Peclet
number case, and a significant effect for the low-Peclet
number case.

8. Conclusions

[80] We have developed a mathematical model for two-
dimensional flow and transport through a water-saturated
single fracture and permeable rock matrix for which ana-
lytical solutions have been obtained. This model incorpo-
rates several factors not included in existing analytical
solutions for this kind of transport problem. The new
model capabilities are (1) two-dimensional flow in the ma-
trix with an arbitrary flow direction relative to the fracture
orientation, (2) a general solute source-release point that
can be either in the fracture or matrix, and (3) independent
longitudinal dispersion and diffusion in the fracture and
matrix, respectively. A closed-form analytical solution
was obtained for two-dimensional solute concentration if
longitudinal dispersion and diffusion could be neglected.
Some example calculations show that significant delay in
radionuclide transport can occur as a result of an offset of
the source location from the fracture or as a result of ma-
trix cross-flow. We then developed a method for incorpo-
rating the effects of longitudinal dispersion in the fracture
and longitudinal diffusion in the matrix. The resulting so-
lution including these mechanisms takes the form of a
superposition integral. A closed-form analytical solution
is used to develop an approximate criterion to evaluate
conditions in which longitudinal dispersion in the fracture
and longitudinal diffusion in the matrix are expected to be
significant, relative to longitudinal spreading caused by
fracture-matrix interaction. The significance of longitudi-
nal dispersion in the fracture and longitudinal diffusion in
the matrix has been shown to be a strong function of

Peclet number, with the influence of these processes
decreasing as Peclet number increases. The effects of frac-
ture longitudinal dispersion also diminish with the ratio of
fracture longitudinal dispersion coefficient to matrix diffu-
sion coefficient. The new transport solutions presented
here are valuable for checking the influence of the various
advective and diffusive processes on transport through a
rock fracture and matrix when matrix advective transport
is not negligible, and can be used to verify the ability of
numerical simulations to capture these transport
processes.

[81] Solute transport cases analyzed with the analytical
model show that matrix cross-flow has an increasing effect
on solute transport, as the orientation of the fracture rela-
tive to the hydraulic gradient goes from parallel to orthogo-
nal. This is a result of increasing cross-flow and decreasing
flow along the fracture. The effects of cross-flow result in
reduced solute interaction with the fracture, such that a
greater degree of longitudinal advance of solute occurs in
the matrix. As the effects of cross-flow become stronger,
more of the solute transport occurs in the matrix, and trans-
port times approach the time for advection through the ma-
trix. Significant delays in transport can also occur for cases
in which solute is released into the matrix, with the main
impact found on the early breakthrough behavior and the
secondary impact on the trailing portion of the
breakthrough.

Appendix A: Results for Cumulative Arrivals at a
Downstream Location From an Instantaneous
Point Source

A1. Cumulative Arrivals Neglecting Longitudinal
Diffusion/Dispersion

[82] The results for concentrations obtained in section 3
can be integrated at a position downstream along the frac-
ture for cumulative-mass arrivals in the fracture, Mf, and on
both sides of the matrix, Mk. The procedure for the cumula-
tive mass integration is the same as reported in Houseworth
[2006].

[83] The cumulative-mass arrival in the fracture at a
location z‘ along the fracture axis is given by

Mf Tð Þ ¼
ZT

0

Af �f Rf vf cf ze; tð Þdt ðA1Þ

[84] Putting this into dimensionless form gives

Mf  ð Þ
M0

¼ 2

Z 
0

cfd �e � V‘�; 1� V‘ð Þ�ð Þexp ��d�ð Þd� ðA2Þ

[85] For the cumulative mass solutions, the following
additional dimensionless variables are defined:
V‘ ¼ vmz=vf , �e ¼ ze=‘, �d ¼ �‘=vf ,  ¼ vf T=‘, � ¼ vf t=‘,
where ze is the downstream location at which cumulative-
mass arrivals are computed and T is the time of observation
at ze. The result for cumulative-mass arrival in the fracture
is :
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[86] The cumulative-mass arrival in the downstream ma-
trix at a boundary passing through ze on the fracture axis is
given by

Mmk Tð Þ ¼
ZT

0

Z1
0

Af

b
�mRmvmzcmk ze; x; tð Þdxdt ðA4Þ

[87] Putting this into dimensionless form gives
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¼ V‘

Z 
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Z1
0

cmdk �e � V‘�; �; 1� V‘ð Þ�ð Þexp ��d�ð Þd�d�

ðA5Þ

[88] The result for cumulative-mass arrival in matrix on
opposite side of fracture from the source release location
is:
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[89] The cumulative-mass arrival in matrix on same side
of fracture as the source release location is:

Mms  ð Þ
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ðA7Þ

where the term involving the step function represents the
arrival of solute mass in the matrix that did not interact
with the fracture.

A2. Relationship Between the Solution for
Concentration From a Constant-Rate Continuous
Source and the Cumulative Mass Solution for an
Instantaneous Point Source for Cases With No
Longitudinal Diffusion or Dispersion

[90] The cumulative mass solutions in section A1
are related to the concentration from a constant-rate contin-
uous source. This is demonstrated here for a source release
in the fracture. Starting with equation (A1), we assign a
Green’s function, gf ze; tð Þ, for the fracture cumulative mass
equation through the relationship cf ze; tð Þ ¼ M0gf ze; tð Þ,
giving

Mf Tð Þ
M0

¼ Af �f Rf vf

ZT

0

gf ze; tð Þdt ðA8Þ

[91] The concentration from a continuous source solution
for a boundary concentration of c0 can be written as a
superposition integral for a constant-rate mass release _M
at the origin,

cf ¼ _M

ZT

0

gf ze; T � �ð Þd� ¼ _M

ZT

0

gf ze; tð Þdt ðA9Þ

[92] The mass release rate equals the advective mass flux
at a concentration of c0:

_M ¼ Af �f Rf vf c0 ðA10Þ

[93] Therefore,

cf

c0
¼ Mf Tð Þ

M0
¼ Af �f Rf vf

ZT

0

gf ze; �ð Þd� ðA11Þ

[94] Based on equation (A11), when V‘ ¼ V ¼ �0 ¼ 0,
equation (A3) reduces to Tang et al. [1981, equation (42)]
for concentration in the fracture from a continuous source.

[95] For the matrix, we assign a Green’s function
cmk ze; x; tð Þ ¼ M0gm ze; x; tð Þ and use it in equation (A4) to
yield,

Mmk Tð Þ
M0

¼
ZT

0

Z1
0

Af

b
�mRmvmzg ze; x; tð Þdxdt ðA12Þ
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[96] Simplifying equation (A12) gives

2‘Mmk Tð Þ
M0V‘

¼ Af �f Rf vf

ZT

0

Z1
0

g ze; x; tð Þdxdt ðA13Þ

[97] As for the fracture, the continuous source solution at
a concentration of c0 can be written as a superposition inte-
gral for a constant-rate mass release _M at the origin:

Z1
0

cmdx ¼ _M

ZT

0

Z1
0

gm ze; x; T � �ð Þdxd�

¼ _M

ZT

0

Z1
0

gm ze; x; tð Þdxdt ðA14Þ

[98] Using (A10) for _M gives

Z1
0

cm

c0
dx ¼ 2‘Mmk Tð Þ

M0V‘
¼ Af �f Rf vf

ZT

0

Z1
0

gm ze; x; tð Þdxdt ðA15Þ

[99] Based on equation (A15), when V‘ ¼ Vs ¼ �0 ¼ 0,
the expression for 2‘Mmk Tð Þ= M0V‘ð Þ using equations (A6)
or (A7) gives the same result as found when the solution
given by Tang et al. [1981, equation (44)] is integrated
over the lateral direction (x) from b to 1. Note that for
Tang et al. [1981], the integral of cm/c0 goes from b to 1
(in the notation of Tang et al. [1981]) rather than from 0 to
1, because the origin for the transverse coordinate is at the
center of the fracture. Also, b in Tang et al. [1981] notation

is the fracture half-aperture; in this paper, b is the fracture
aperture.

A3. Cumulative Arrivals Including Longitudinal
Diffusion/Dispersion

[100] Cumulative arrivals at a downstream location
including dispersion/diffusion result from advective and
diffusive/dispersive transport. Therefore, equations (A1)
and (A4) must be modified as follows:

Mf Tð Þ ¼
ZT

0

Af �f Rf vf Cmk ze; 0; tð Þdt

þ
ZT

0

Af �f Rf D�f
@Cmk z; 0; tð Þ

@z
jze

dt ðA16Þ

Mmk Tð Þ ¼
ZT

0

Z1
0

Af

b
�mRmvmzCmk ze; x; tð Þdxdt

þ
ZT

0

Z1
0

Af

b
�mRmD�m

@Cmk z; x; tð Þ
@z

jze
dxdt: ðA17Þ

where Cmk z; x; tð Þ is the dimensional form of concentration
corresponding to equation (72), accounting for longitudinal
dispersion in the fracture and longitudinal diffusion in the
matrix.

[101] The first terms in equations (A16) and (A17)
account for longitudinal advective transport; the second
terms are for longitudinal dispersive and diffusive trans-
port. These may be put into dimensionless form:
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ðA19Þ

[102] The integral over � in the matrix cumulative-mass-
arrival formula can be reduced analytically, but is left here
in the integral form.
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