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ABSTRACT

AFM-based roughness measurement reveals the topography of EUV masks, but is only sensitive to the top surface [1].
Scatterometry provides a more accurate approach to characterize the effective phase roughness of the multilayer, and it
becomes important to determine the valid metrology for roughness characterization. In this work, the power spectral
density calculated from scatterometry is compared to that from AFM for measurements before and after coating of
substrates with a range of roughness levels. Results show noticeable discrepancies between AFM- and scatterometry-
measured roughness, and indicates that when the physical surface roughness increases with deposition the EUV
penetration into the multilayer tends to mitigate this effect. In this paper, we describe an EUV scatterometry-based
measurement method for the determination of phase roughness with the goal of minimizing the amount of physical
scattering data to be collected and rendering the method compatible with potential future standalone EUV reflectometer
tools.

1. INTRODUCTION

It has been known that one of the contributors to the line edge roughness (LER) in resists is mask phase roughness [2].
At 13.5nm, small roughness on a reflective mask can induce significant phase modulation that affects the replication of
the mask objects on the wafer [3]. Of highest concern is the correlated scattering coming from phase coherent roughness.
This comes from roughness that propagates conformally through the multilayer directly mapping to random phase errors
in the reflected field. This is referred to as replicated surface roughness (RSR) [4]. It is therefore important to determine
a valid metrology to characterize the phase roughness of EUV masks.

Atomic Force Microscopy (AFM) measurement of EUV mask surface has been the method of record for characterizing
mask roughness [5] [6] [7]. However, the AFM measures only the top surface of the mask, which is not necessarily
indicative of the true roughness within the multilayer.

In this work, six test mask blanks with various roughness levels were prepared. The roughness on the mask substrates
was distributed from 60 pm to 100 pm. The substrates were then coated using lon Beam Deposition (IBD) at the
SEMATECH Mask Blank Development Center. AFM measurements were performed on both the substrates and the
multilayer blank. Scatterometry measurement was then performed on four of the six masks after multilayer coating and
converted to power spectral density (PSD) for comparison.

2. TEST MASKS AND AFM DATA

Figure | shows the PSD calculated from the AFM measurements. Root mean square (RMS) values are noted on top of
each PSD graph. The blue curves show the PSD of the substrate and green curves show the PSD of the top surface of the
multilayer. At high frequencies (=3x 107 lines/nm) and low frequencies (<107 lines/nm), the deposition did not
effectively increase the roughness. For the medium frequencies (107 lines/nm to 3x107 lines/nm) the IBD coating
generally roughened the surface, as apparent from the increase in the RMS from Pre-deposition to Post-deposition. This
change in roughness from substrate to the top surface suggests that the EUV scatterometry which depends on the overall
roughness inside the multilayers may show an RMS level between that of the top and substrate. We note that this IBD
data shows a different result than previously demonstrated with magnetron coating, where the top surface of the
multilayers was consistently smoother than the substrate [4].
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Figure 1. PSD of the six test masks as a function of frequency. Blue curves represented the PSD before coating and green curves
represented that after coating. The RMS values were noted on top of the graphs and in the unit of nm.

3. SCATTEROMETRY MEASUREMENT

Scatterometry measurements were performed using the synchrotron-based reflectometer at the Calibrations and
Standards Beamline 6.3.2 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL). The
beamline has a high spectral purity of 99.98%, wavelength precision of 0.007%, and a reflectance precision of 0.08%

(8]
3.1 In-Plane Measurement

In-Plane measurement refers to the set up where the detector is placed in the plane of incidence. The angle of incidence

was set at 6 degrees. The detector was set on the specular reflection side and scanned from 1 degree beyond specular to

31 degrees beyond specular. Assuming the roughness to be conformally replicated, the PSD can be calculated by [9]
1dP 16m?
PdQ ¢

cos® ;R PSD(f)

where P, is the incident power, dP is the scattered power into the solid angle d@, the frequency fis related to scattered
angle 05 (from normal) by

f A =sin(6,) — sin(H;)

and the incidence angle 8;= 6 degrees.
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Figure 2. PSD of the four selected test masks calculated from AFM and scatterometry as a function of frequency.

Figure 2 shows the PSD calculated from scatterometry measurement compared with that from the AFM measurements.
Dark blue and black dots are duplicates of the same measurement with slightly shifted angles for each measured point.
Green and light blue dots (AFM-QZ) are the AFM measurements on the mask substrate within a region of 2um by 2um
and 10pm by 10pum, respectively. Red and purple dots (AFM-ML) are AFM measurements on the mask blank within a
region of 2um by 2um and 10pm by 10um, respectively. The black curve is the theoretical reflectivity in arbitrary units
as a function of reflected angle. Interestingly, its roll-off is consistent with the change in slope of the scatterometry curve
and its ripples are reproduced in the measured scattering data. In the mid spatial frequency roughness regime
(approximately 107 to 10 nm™") the scatterometry PSD is dropping below the AFM PSD. In 3 of the 4 cases it is 1.5
times lower and in the case where IBD increased the top surface AFM the most the scaterrometry PSD is 2.5 times
lower. In fact, the EUV scatterometry PSD at 5 x 10” nm™ appears to roughly reverse the increase in AFM PSD as
measured by its RMS value in going from substrate to multilayer coating top surface. Thus EUV penetration into the
multilayer is reducing the impact in the physical growth of surface roughness.

4. DISCUSSION

The comparison of AFM and scatterometry measured data given by Figure 2 showed that the typical AFM method to
measure surface roughness on the multilayer overestimated the phase roughness obtained by scatterometry.



Scatterometry measured roughness appears to match the substrate roughness at low spatial frequencies and approach the
multilayer roughness before it is limited by the multilayer angular bandwidth. From the four masks we measured here,
AFM on mask blank overestimated the RMS value by ~70% to ~100%. This was also obvious throughout medium and
high frequencies, where the overestimation took place. Possibly due to a significant decrease in mask blank reflectivity,
at high frequencies (f>3x107 nm™), the roughness given by scattering light was even below that of the mask substrate.
The effect of reflectivity is also evident from the ripples in the scatterometry data.

The implication here is that AFM is not sufficiently accurate to provide a quantitative description of the true EUV phase
roughness as required to assess the masks imaging performance from the perspective of induced wafer plane LER.
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