
 

 
 

 

 

Seasonally-Managed Wetland Footprint Delineation using Landsat 

ETM+ Satellite Imagery 

 

 

 

 

Nigel W.T. Quinn PhD, P.E., D.WRE 

Lawrence Berkeley National Laboratory 

1 Cyclotron Road, Bld.14-134  

Berkeley, CA 94720, USA 

 

and 

 

Olga Epshtein 

School of Sustainable Engineering and the Built Environment 

Arizona State University,  

Tempe, AZ 85287, USA 

 
 

 
January 12, 2014 

 
 
 
 

This work was supported by the U.S. Bureau of Reclamation under US Department of Interior Interagency 
Agreement No. 3-AA-20-10970, through Contract No. DE-AC02-05CH11231 between Lawrence Berkeley National 
Laboratory and the U. S. Department of Energy. 

 
 

 



 

ii 
 

 
 
 

ACKNOWLEDGEMENTS 
 
 

This work was supported by the U.S. Department of Energy, Center for Science and Engineering 

Education and the U.S. Bureau of Reclamation, Science and Technology Program and MP-400. 

Our gratitude is extended to Chuck Johnson for his continued support of our wetland ET research 

program and to Linda Colella, MP-400 for maintaining the wetland sensor research program 

initiated by the late Mike Heaton. Thanks to Ric Ortega, General Manager, Grassland Water 

District for his technical support and provision of south Grassland Water District wetland 

monitoring data. Thanks also to Professor Luis Garcia, Director of the Integrated Decision 

Support Group at Colorado State University and Dr. Aymn Elhaddad for provision of the ReSET 

model and for user support. We also wish to acknowledge Dr. Richard Snyder and Professor 

Susan Ustin (Department of Land, Air and Water Resources, University of California, Davis), 

for valuable input.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

 

 

 

DISCLAIMER 

 

This document was prepared as an account of work sponsored by the United States Government. 

While this document is believed to contain correct information, neither the United States 

Government nor any agency thereof, nor the Regents of the University of California, nor any of 

their employees, makes any warranty, express or implied, or assumes any legal responsibility for 

the accuracy, completeness, or usefulness of any information, apparatus, product, or process 

disclosed, or represents that its use would not infringe privately owned rights. Reference herein 

to any specific commercial product, process, or service by its trade name, trademark, 

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof, or the 

Regents of the University of California. The views and opinions of authors expressed herein do 

not necessarily state or reflect those of the United States Government or any agency thereof or 

the Regents of the University of California. 
 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

Seasonally-Managed Wetland Footprint Delineation in the western San 

Joaquin Basin, California using Landsat ETM+  Satellite Imagery 

 

 

Nigel W.T. Quinn PhD, P.E., D.WRE 

Lawrence Berkeley National Laboratory 

1 Cyclotron Road, Bld.14-134  

Berkeley, CA 94720, USA 

 

Olga Epshtein 
bSchool of Sustainable Engineering and the Built Environment 

Arizona State University,  

Tempe, AZ 85287, USA 

 

 

 

 

Published in the Elsevier Journal of Environmental Modelling and Software.  

Vol. 54, April 2014, pp 9-23.  

 http://dx.doi.org/10.1016/j.envsoft.2013.12.012 

 

 

 

 

Corresponding author Quinn at: Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 

Bld.14-132, Berkeley, CA 94720, USA. Tel.: +1 510 486 7056; fax: + 1 510 486 7152. Email 

address: nwquinn@lbl.gov (N.W.T. Quinn).  

 

 

 

 



 

2 
 

 

 

Abstract 

 

One major challenge in water resource management is the estimation of evapotranspiration 

losses from seasonally managed wetlands. Quantifying these losses is complicated by the 

dynamic nature of the wetlands’ areal footprint during the periods of flood-up and drawdown. In 

this study we present a data-lean solution to this problem using an example application in the San 

Joaquin River Basin of California, USA. Through analysis of high-resolution (30 meter) Landsat 

Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric for more fully 

capturing the extent of total flooded wetland area. The procedure is validated using year-long, 

continuously-logged field datasets at two separate wetlands within the study area. Based on this 

record, the proposed classification using a Landsat ETM+ Band 5 (mid-IR wavelength) to Band 

2 (visible green wavelength) ratio improves estimates by 30-50% relative to previous attempts at 

wetland delineation. Requiring modest ancillary data, the results of our study provide a practical 

and efficient option for wetland management in data-sparse regions or un-gauged watersheds.  
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Highlights 

 

 A method to delineate seasonal wetlands in the San Joaquin Basin is proposed. 

 Surface temperature differs between open water, flooded and terrestrial vegetation.  

 A Landsat ETM+ 5/2 band ratio improves wetland delineation up to 50%. 

 Classification is corroborated using year-long field-based datasets. 
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1.  Introduction 

Seasonally managed wetlands are man-made impoundments that undergo a complex hydrologic 

cycle of inundation and drainage designed to mimic natural ecohydrologic function. In 

seasonally managed wetlands, changes associated with standing water inundation and vegetation 

response also play a role in energy cycling, by influencing solar radiation partitioning into latent 

heat by plant transpiration and thermal energy storage in the water column. Prevailing climate 

and temperature conditions determine the timing of the annual progression of wetland flooding, 

holding, and draw down. The areal extent of the wetland during this cycle is known as the 

“wetland footprint.” At any point in time, direct evaporation, transpiration, and seepage (soil 

infiltration) losses from the wetlands are a function of their footprint.  

 

During flood-up, the footprint gradually expands as water is diverted into each impoundment 

until the pond is filled to an elevation set by weir boards at the pond outlet. As the pond begins to 

fill, the clay-rich soils which had become desiccated during the dewatering period provide a 

dense network of preferential flow paths. This results in significant losses to soil infiltration. As 

wetland sediments become fully saturated, the clay soils swell and “seal”. In response to 

increased soil water availability, plant community composition shifts; macrophytes begin to 

displace terrestrial grasses; emergent wetland vegetation grows to pond shooting depth, and 

transpiration increases. Similarly, during wetland drawdown, pond sediments become exposed to 

the atmosphere as water elevation recedes until there is no further outflow from the pond. 

Infiltration, direct water and soil evaporation, and plant transpiration rates undergo another shift.  

 

The temporal and spatial dynamics of these losses are resource-intensive to measure in the field 

and difficult to accurately quantify through indirect methods. Yet despite the challenge, these 

dynamics are crucial for informed, science-based wetland management – both from a water 

resource allocation and an ecosystem function perspective. This paper examines the potential for 

satellite imagery and image processing thermal algorithms to provide a signal consistently 

differentiating open water, bare soil, emergent wetland vegetation, and terrestrial vegetation. A 

successful methodology would result in improved estimates of the dynamic “wetland footprint.”  



 

5 
 

 

1.1. Applications of Remote Sensing to Wetland and Land-Water Interface Delineation 

Remote sensing offers the potential to track temporal changes in wetland hydrology, chemistry, 

and vegetation dynamics, thereby accounting for fluxes in water and constituent cycling. 

Multispectral imagery has been successfully used in the past for year-round open water 

delineation, as well as for vegetation classification and change detection in a variety of 

ecosystems. Mapping studies by Lunetta and Balogh (1999), Berberoglu et al. (2004), Klemas 

(2005), Phillips et al. (2005), Frohn et al. (2009), and Klemas (2011), have demonstrated the 

potential of applying remote sensing methods to wetland identification. None of these, however, 

were concerned with the wetland footprint as a direct foundation for water management 

decision-making based on modeled simulations of water quality. Whereas delineation of open 

water and general vegetation characterization is sufficient for wetland identification, the 

objectives of our study required capturing the wetland footprint transparently and consistently 

enough to aid in decision-support.  

 

The feedbacks between vegetation characteristics and environmental function of wetland 

ecosystems were studied by Kokaly et al. (2003) and Lin and Liquan (2006). These studies 

illustrate how vegetation characteristics such as density, vitality, and spatial extent may serve as 

important ecohydrologic indicators. Remote sensing-based vegetation mapping by Macleod and 

Congalton (1998), Phinn et al. (1999), Harvey and Hill (2001), and Schmidt et al. (2004) has 

been successful at a number of spatial scales. While we can base the legitimacy of remote 

sensing-based approaches for wetland analysis on these and more recent studies, they have been 

particularly effective in permanent wetlands in which vegetation composition and extent of 

flooded area remain relatively static throughout the year. Though permanent wetlands are subject 

to water losses to infiltration, evaporation, and plant transpiration, they are rarely – if ever - 

completely dewatered. Conversely, in seasonal wetlands inundation and dewatering occur with 

regularity and represent a key boundary condition regulating both the ecologic and hydrologic 

response of the system. This hydrologic seasonality exerts an important control on plant 

community composition, transpiration, and spectral characteristics. However, time-lags between 

the recession of water and the vegetation community’s response create additional complexity. 
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We aimed to address these important limitations by developing methods appropriate to seasonal 

wetlands.  

 

Though coastal and wetland systems are not identical, there is some overlap, particularly in the 

delineation of the land-water interface. Klemas (2013) provides an overview of the latest 

airborne remote sensing methods applied to the analysis of coastal features and processes. Many 

techniques, such as close-range aerial photography, airborne LiDAR surveys, kinematic 

differential GPS post-processing, and airborne hyperspectral imagery, are compatible with 

wetland delineation. However, the accuracy of many land-water interface delineation methods in 

wetland systems is limited by the spatial resolution of the satellite imagery, spectral signature 

overlap between wetland vegetation species, and by the high ecological complexity and spatial 

irregularity of the wetlands (Ozesmi and Bauer, 2002).  

 

Since Ozesmi and Bauer’s review, image processing techniques have improved. The efforts 

driving these developments can be grouped into two main camps. The first is concerned with 

computational methods and signal processing. Baker et al. (2006) and Wright and Gallant (2007) 

used classification trees, a computational technique which originated in computational biology 

but has since spread to other fields as well, to combine Landsat  imagery with field-based 

observations. The authors found that while ancillary environmental data improved classification 

accuracies, hard classification remained problematic. Wright and Gallant concluded that 

probability landscapes, rather than hard classification, may be the more practical approach to 

classifying wetlands. Similarly, pixel classification using artificial neural networks is quite 

promising for deciphering the spatial and temporal dynamics of wetland ecosystems. However, 

based on the work of Bagan et al. (2005), Ĉerná and Chytrý (2005), and Xie et al. (2008), neural 

network analysis becomes very computationally expensive for all but the smallest datasets.   

 

Approaching the problem from a function, rather than process, perspective, others have sought to 

inform remote sensing by drawing on methods from landscape ecology. Cushman et al. (2008) 

and Kelly et al. (2011) looked at using landscape metrics as proxies for ecologic characterization 

to aid in wetland delineation. Such approaches are well-suited for analysis over broad spatial 

scales, yet have an important limitation. The authors conclude that due to the variability of both 
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structural and functional landscape characteristics, the identification of appropriate matrices for a 

given study area may well form a separate study in itself. As such, pattern metrics are not readily 

generalizable across geographic regions. 

 

Alongside advances in image processing, higher resolution imagery has become more readily 

available both from commercial vendors and through further advances in airborne, rather than 

satellite, sensors. Maxa and Bolstad (2009) employed high resolution IKONOS satellite imagery 

merged with 1-meter resolution LiDAR data to map and classify wetlands in the Wisconsin 

Wetland Inventory. LiDAR data was also used by Cook et al. (2009) in conjunction with ultra-

fine precision commercial QuickBird imagery to estimate wetland plant productivity. Adam et 

al. (2010) review recent multispectral and hyperspectral remote sensing wetland studies, noting 

in particular the advantages of remote sensing data acquisition via hand-held sensors. These 

improvements, driven in part by advances in mechanical and optical engineering, are valuable 

contributions to the field. Nevertheless, the cost of commercial imagery or airborne sensor 

deployment remains an obstacle and hinders the application of higher-resolution imagery in 

studies requiring multi-temporal analysis for monitoring and evaluation of highly dynamic 

systems. Cost is of particular concern for studies at large spatial scales, such as river basins, and 

when regulatory pressures and an increasingly constrained water management environment 

provide the motivation, but not the resources, to execute the analysis.  

 

1.2.  Study Area 

To better understand the feedbacks between energy and water fluxes as they relate to mapping 

the dynamic wetland “footprint,” and to demonstrate how a better understanding could improve 

response to environmental regulation, a region of the Sacramento-San Joaquin River Delta of 

California was chosen as a case study. The Sacramento-San Joaquin Delta covers 840,000 acres 

of floodplain estuary lying at the confluence of the Sacramento and San Joaquin River basins. 

Suisun Marsh forms the largest continuous brackish water marsh in the western United States 

and contains more than 10 percent of California’s remaining natural wetlands (DWR, 2008). 

Both marsh and delta lie along key migration paths of anadromous fish and wildfowl on the 

Pacific Flyway. Peat soils, abundant water supplies, and a moderate marine climate contribute to 

high agricultural productivity. In addition to being a vital ecological and agricultural resource, 
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the Delta serves California’s two largest water systems - the federal Central Valley Project and 

the State Water Project. Its water exports maintain managed wetlands and riparian corridors both 

within and upstream of the Delta, support two-thirds of the state’s urban population, and irrigate 

3-million acres of agricultural land state-wide (DWR, 2008).  

 

 

Figure 1: The Sacramento and San Joaquin River Basins drain to the Sacramento-San Joaquin 
Delta (center image). Within the Delta, the Grassland Ecological Area (right-most image) 
encompasses over 77,000 hectares of seasonal and permanent wetlands. These wetlands are used 
as the case study presented in this paper. 
 
 

Within the San Joaquin River Basin portion of the greater Delta area, the Grasslands Ecological 

Area (GEA) forms a contiguous mixture of 77,000 hectares of seasonal and permanent wetlands 

(Figure 1, right-most inset). Once part of a much larger wetland complex, the GEA is now 

actively managed as wildfowl habitat. Throughout the San Joaquin River Basin, water deliveries 

from the San Joaquin River and imports from the Delta support wild and aquatic life, managed 

wetland vegetation, agriculture, grazing, and municipal and industrial uses – resulting in a highly 

constrained, over-allocated system.  
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1.3. Application in Basin-Scale Water Quality Management Decision Support Systems 

Adaptive resource management is a technique of “learning-by-doing” which is increasingly 

being used to push back at regulatory pressures that reduce operational flexibility. Within the 

study area, real-time water quality management seeks to improve compliance with San Joaquin 

River salinity objectives by better coordination of saline drainage from the west-side of the San 

Joaquin Basin with high quality reservoir releases from the east-side of the Basin (Quinn and 

Karkoski, 1998; Quinn, 2009; Quinn et al., 2010 a-c). Implementation of real-time water quality 

management will rely on web-sharing of flow and water quality (salinity) monitoring data on 

public sites such as the California Data Exchange, and commercial remote monitoring and sensor 

control platforms such as YSI-EcoNET (YSI/Xylem, 2012). Currently, a YSI-EcoNET 

application in the Grassland Ecological Area provides real-time access to data sampled at a 15-

minute resolution from 46 flow and salinity monitoring stations. These data are passed into 

WISKI (KISTERS North America Inc., 2011) for analysis and validation. Following QA, the 

data are exported to an FTP site owned by the U.S. Bureau of Reclamation. 

Data from this system are being used to calibrate a wetland management model of the Grassland 

Ecological Area. The model will perform daily water and salinity balances of wetland subareas 

that receive water supply from the same canals and that drain to the same drainage channels. 

Wetland inflow and outflow are tracked using the system of distributed field sensors. These data 

are used to simulate wetland evapotranspiration and seepage as well as daily changes in pond 

storage. Numerical simulation of water and salinity balances in these wetland subareas is 

necessary because it would be too costly and time consuming to construct monitoring stations at 

each pond inlet and outlet. The simulation model will provide decision support to wetland 

managers with responsibility for meeting salinity load objectives that will eventually be set for 

the State and Federal wildlife refuges and private wetland entities that make up the Grassland 

Ecological Area.  

 

The primary goal of this study was to develop an efficient and robust method to capture the 

dynamics of the wetland footprint. Wetland delineation and remote sensing-based 

evapotranspiration estimates will (1) support the development of a real-time GEA wetland 

simulation model, and (2) lay the foundations for a basin-scale water resource management 
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decision-support model in the San Joaquin Basin.  Consequently, the approach was to be both 

computationally and financially inexpensive, readily applicable, and able to garner support from 

a wide range of stakeholders; among them, water managers, state and federal environmental 

regulatory agencies, and agricultural users. Insofar as it is achieves these aims and remains 

generalizable to other climates and ecologic regimes, the methods presented in this paper are of 

use to others tasked with the important issue of water resource management in wetland systems 

(USEPA, 2002). In the following sections, the theoretical framework and data processing 

methodology is laid out, and the final procedure for delineating the wetland footprint is 

discussed. This is followed by a performance assessment based on field data from a matched 

study of two separate wetlands within the GEA. Finally, current limitations pertaining to the 

applicability of these methods to wetland systems at large are summarized.  

 

2. Methods 

 

2.1. Theoretical Framework    

 

The wetland “footprint” was derived using ERDAS Imagine to process a year-long dataset of 

multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM +) satellite imagery captured 

over the course of wetland flood-up and drawdown. Thermal image-processing algorithms were 

expected to provide a discernible signal to separate water covered by emergent vegetation from 

terrestrial vegetation and upland areas. Ideally, this approach would allow mapping the total 

extent of wetland inundation, overcoming the limitations posed by analysis of vegetation spectral 

signal alone. This study tested whether ground surface temperature can be used as proxy for 

standing water availability; and if so, whether this approach could be used to track wetland ponds 

through different stages of inundation.  

 

The change of state of water during the process of wetland open water evaporation and plant 

transpiration produces a drop in air temperature above the pond surface and above and around 

the transpiring plant. Consequently, remotely-sensed surface temperature and sensible heat flux 

of actively transpiring, vegetated pixels were expected to show lower values than those of 

adjacent, non-vegetated, non-transpiring areas. Terrestrial vegetation, even with a shallow 
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groundwater table common beneath wetlands, will generally be more water-limited than flooded 

emergent vegetation. Consequently, vegetation growing outside inundated zones will transpire at 

lower rates or shut off transpiration more frequently. Decreased evapotranspiration (ET) results 

in less evaporative cooling and produces correspondingly higher surface temperature. While this 

is a common assumption for croplands (Burman et al., 1986), it also holds true for other types of 

vegetation (Porporato et al., 2001), such as the moist soil plant vegetation associated with 

seasonal wetlands. Furthermore, open water evaporation rates will generally exceed soil 

evaporation – particularly in cases where terrestrial vegetation shields soils from direct radiation. 

Transforming a multispectral Landsat ETM+ image into a spatially-distributed grid of surface 

temperature values was expected to produce different signals for each of the categories of 

interest – open water, emergent vegetation, terrestrial vegetation, and bare soil. Applied to a 

sequence of Landsat images, this classification could be used for mapping flood-up extent and 

seasonal progression of wetland inundation.  

 

Despite the dominant effect of water availability on ET rates, the cycles of inundation and draw-

down combined with the growth rates of wetland vegetation create a highly dynamic system with 

multiple feedback loops (Drexler et al., 2003). The GEA wetlands are complex systems both 

spatially (network of irregular ponds) and functionally (high inter-pond vegetation diversity and 

intra-pond community spatial variability). Both factors were expected to influence plant 

function, water and energy cycling, and expected thermal output (Donohue et al., 2007). As a 

result, the methods used in this study also tested (by proxy) whether GEA wetland habitat is 

sufficiently functionally homogeneous to validate the conceptual model or whether other factors, 

such as species composition, may exert a dominant effect on the thermal signal and mask that 

associated with standing water. 

 

2.2. ReSET and Thermal Data Processing 

 

Evapotranspiration was calculated using a series of thermal algorithms in ReSET (Remote 

Sensing of Evapotranspiration). ReSET is a satellite image-processing program developed by the 

Integrated Decision Support (IDS) Group at Colorado State University. The program is 

complimentary to other remote sensing-based evapotranspiration models that have been 
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developed to provide high-resolution evapotranspiration estimates for large study areas. ReSET 

is most closely based on METRIC (Mapping Evapotranspiration at High Resolution, developed 

by Allen et al., 2007), which in turn came into being as an offshoot of SEBAL (Surface Energy 

Balance Algorithm for Land, initially developed by Bastiaanssen et al., 1998). Similarly to its 

predecessors, ReSET uses the thermal infrared Landsat band and vegetation reflectance to 

calculate a spatially-distributed grid of instantaneous ET loss estimates (Elhaddad and Garcia, 

2007, 2008). In basin-scale applications, the daily contributions of ET losses to the water balance 

from individual wetland ponds are an aggregation of discrete point-scale ET values within a 

processed satellite image, clipped to exclude open water surface area. Open water evaporation is 

estimated from monitored pan evaporation rate data and scaled according to the ratio of surface 

area between the evaporation pan and wetland. 

 

Landsat 7 (ETM +) scenes were collected for the study area to generate a year-long dataset 

(Table 1). Landsat ETM+ images consist of eight spectral bands with a spatial resolution of 30 

meters for bands 1-5 and band 7. Bands 1-3 collect radiation in the visible spectrum, detecting 

the spectral response of visible blue (band 1), green (band 2), and red (band 3) wavelengths. 

Bands 4-7 collect data in the near infrared (band 4), middle infrared (bands 5 and 7) and thermal 

infrared (band 6, 60-meter resolution) wavelengths. Band 8 is a panchromatic (grayscale) band 

that detects the visible red, green and blue portions of the electromagnetic spectrum. Captured at 

a resolution of 15 meters, band 8 is used for image sharpening.  Thermal infrared (band 6) is 

collected at two separate gain settings at once; the low gain (band 6(1)) setting was used in 

ReSET. Although low gain results in a somewhat lower resolution, the band 6(1) signal is less 

likely to experience issues with saturation.  Spectral bands 1-5, 6(1) low gain, and 7 were stacked 

to create a multispectral, 30 meter resolution image.  

 

Table 1: Image identification for the 15 Landsat ETM+ scenes used in this analysis 

Acquisition Date Cloud Cover Path Row Landsat ID 
12 April 2011 16% 43 34 LE70430342011166EDC00
15 June 2011 0% 43 34 LE70430342011182EDC00
01 July 2011 0% 43 34 LE70430342011182EDC00
17 July 2011 3% 43 34 LE70430342011198EDC00
02 August 2011 0% 43 34 LE70430342011214EDC00
18 August 2011 1% 43 34 LE70430342011230EDC00
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03 September 2011 1% 43 34 LE70430342011246EDC00
19 September 2011 0% 43 34 LE70430342011262EDC00
21 October 2011 3% 43 34 LE70430342011294EDC00
24 December 2011 0% 43 34 LE70430342011358EDC00
09 January 2012 0% 43 34 LE70430342012009EDC00
26 February 2012 1% 43 34 LE70430342012057EDC00
30 April 2012 9% 43 34 LE70430342012121EDC00
01 June 2012 0% 43 34 LE70430342012153EDC00
17 June 2012 0% 43 34 LE70430342012169EDC00

 

A digital elevation model (DEM) was obtained from the USGS National Elevation Database at a 

spatial resolution of 1 arcsecond (30-meter precision). The DEM is used to adjust surface 

temperature in order to differentiate cooling effects of elevation from those caused by high rates 

of ET. Additionally, the DEM is used to calculate pixel slope and aspect – which is used to 

adjust solar radiation to account for the relationship between intercepted extraterrestrial radiation 

and radiation at the land surface. Total daily wind run was calculated from 15-minute resolution 

wind speed data, obtained from a local weather monitoring station operated by the Grasslands 

Water District within the study area. The wind run grid was used alongside surface roughness to 

calculate the friction velocity and aerodynamic resistance to heat transport. Frictional velocity 

and aerodynamic resistance determine sensible heat flux, which, coupled with net radiation and 

ground heat flux, close the surface energy balance and determine the residual energy partitioned 

to latent heat flux (converted into instantaneous ET). 

 

The actual radiant energy available at the ground surface is the energy flux density of net 

incoming radiation (Rn): Rn = (1 – α)Rs↓ + RL↓ – RL↑ – (1 – ε0) RL↓; where Rs↓ is the incident 

shortwave radiation (W/m2); α is the surface albedo coefficient (dimensionless); RL↓ is the 

incident longwave radiation (W/m2); RL↑ is the emitted outgoing longwave radiation (W/m2); and 

ε0 is the thermal emissivity of the surface (dimensionless). (1 – ε0) RL↓ represents the reflected 

fraction of incoming longwave radiation. ReSET builds upon the original energy balance 

algorithms established by SEBAL (Surface Energy Balance Algorithm for Land). Both ReSET 

and SEBAL rely on the surface energy balance equation to calculate evapotranspiration estimates 

(Bastiaanssen et al., 1998 a,b; Tasumi et al., 2004): Rn = H + λE + G; where Rn is the energy flux 

density of net incoming radiation (W/m2); H is the flux density of sensible heat into the air 
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(W/m2); λE is the flux density of latent heat into the air (W/m2); and G is the heat flux density 

into the ground surface (W/m2).                                                                                         

 

This method of estimating evapotranspiration based on the energy balance relies on the fact that 

evaporation and transpiration consume energy. Net radiation is then partitioned to sensible heat 

flux (H), emitted by atmospheric transport; latent heat flux (λE), emitted by evaporation or 

transpiration; and ground heat flux (G), absorbed by convection through porous media (Allen et 

al., 2007; Allen et al., 2010). Evapotranspiration is transformed from the original latent heat flux 

estimate (λE) by expressing the water loss as depth of water lost per unit time. The instantaneous 

evaporative rate is calculated as: ETinst = 3600 LE / λ; where ETinst is the rate of instantaneous ET 

(mm/hr); 3600 is the conversion factor from seconds to hours; and λ is the latent heat of 

vaporization, estimated as: λ = (2.501 – 0.00236 (Ts – 273)) ∙ 106; where Ts is the surface 

temperature (°C). 

 

Ground heat flux is estimated from the sum of net radiation as the ratio between net radiation and 

heat convection into the soil after Bastiaanssen (1995), as: G / Rn = Ts (0.0038 + 0.0074α) ∙ (1 – 

0.98NDVI4); where Ts is the surface temperature (°C); α is the surface albedo coefficient 

(dimensionless); and NDVI is the Normalized Difference Vegetation Index (dimensionless). 

Sensible heat flux is estimated using a one-dimensional, aerodynamic, temperature gradient-

based equation for heat transport, as: H = (ρ ∙ cp ∙dT) / rah; where ρ is the air density (kg/m3); cp is 

the specific heat of air (1004 J/kg/K); dT is the temperature difference between two heights (°K); 

and rah is the aerodynamic resistance to heat transport (s/m). Air density is calculated using mean 

atmospheric pressure and universal gas law, simplified for the effect of vapor pressure, after 

Allen et al. (1998), as: ρ = 1000 P / (1.01(Ts – dT)R); where P is the mean atmospheric pressure; 

R is the specific gas constant (287 J/kg/K); Ts is the pixel surface temperature value (°K); and dT 

is the near-surface air temperature gradient. Because this formulation of sensible heat flux 

requires the simultaneous solution of two unknowns (temperature gradient and aerodynamic 

resistance), two anchor pixels per image are used to solve for the temperature gradient that 

satisfies the equation given set values of aerodynamic resistance (internally calculated by model) 

and wind speed (field-based data).  
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These pixels were chosen by querying the elevation-adjusted ground temperature image for 

representative maximum and minimum values. The hot pixel represents an area where no 

evapotranspiration is occurring (and consequently, no or minimal energy is lost to sensible heat 

flux associated with the change of state of water during evapotranspiration). The cold pixel 

represents an area of high ET and, depending on site conditions, may either fall in open water 

(water surface evaporation exceeding  evapotranspiration) or in heavily transpiring vegetation 

patches (ET exceeding water surface evaporation). A linear relationship between surface 

temperature and dT is based on the two discrete known surface temperature points and 

temperature gradients. The temperature gradient satisfying the sensible heat flux equations is 

calculated as: dT = a∙Ts + b; where Ts is the pixel surface temperature (°K); a = (dThot – dTcold) / 

(Ts,hot – Ts,cold); and b = dThot – a∙Ts,hot.  

 

Aerodynamic resistance is estimated assuming neutral atmospheric stability, as: rah = loge (z2 / z1) 

/ (u* ∙ k); where z1 and z2 are the heights above the zero plane displacement of vegetation (m); u* 

is the frictional velocity due to turbulence fluctuations in the air (m/s); and k is von Karman’s 

constant (0.41). The frictional velocity is calculated using the logarithmic wind law for neutral 

atmospheric conditions, as: u* = (k ∙ ux) / (loge (zx /zom)); where k is von Karman’s constant; ux is 

the wind speed at height zx (m/s); and zom is the momentum roughness length (m). This iterative 

approach using anchor pixels calibrates the sensible heat flux calculations. 

 

Surface temperature was derived in ReSET as a function of NDVI (Normalized Difference 

Vegetation Index), surface albedo, topography, and the Landsat thermal band as shown in the 

ReSET ground (surface) temperature workflow (Figure 2). NDVI is used to estimate thermal 

emissivity by mapping the distribution and density of green vegetation per image pixel, and is 

calculated as: NDVI = (ρt,4 – ρt,3) / (ρt,4 + ρt,3); where ρt,4 and ρt,3  are the at-satellite reflectance 

value of bands 4 and 3, respectively. Surface albedo is calculated as the ratio of reflected 

radiation (from the surface) to the incident (i.e., incoming) shortwave radiation (at the surface). 

Albedo is a single value which combines the reflectance values of bands 1-5 and 7. Surface 

temperature is calculated using a modified Plank equation, as: Ts = K2 / (loge((εNB ∙ K1 / Rc) + 

1)); where Ts is the pixel surface temperature (°K); εNB is the “narrow band” surface emissivity 

of Landsat band 6 (dimensionless); Rc is the adjusted thermal radiance from the surface 
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(W/m2/sr/μm); and K1/K2 are thermal band constants used to calibrate the conversion of spectral 

radiance to temperature, parameterized for Landsat ETM+ imagery after Chandler et al., 2009 

(W/m2/sr/μm). 

 

 

 
Figure 2: ReSET conceptual model, showing work-flow for the calculation of a spatially-
distributed grid of surface temperature from the raw Landsat ETM+ image. The DEM and 
Landsat image are inputs into the ReSET model; initial outputs (i.e. top of atmosphere albedo, 
NDVI) become inputs at subsequent steps. The ground surface temperature image is processed 
further (see Figure 3) to delineate the wetland footprint by classifying wetland areas into zones 
of flooded and dry emergent vegetation. 
 

2.3. Classification and Signal Processing 

 

Once a grid of surface temperature is derived, it must be post-processed and classified in order to 

draw meaningful conclusions about changes in the wetland “footprint.”  A multispectral band 

combination was created from the raw Landsat image to convert the continuous float data into a 

thematic raster. A band ratio of bands 5 (mid-infrared, 1.55 – 1.75 µm) and 2 (green, 0.52 – 0.60 

µm) was found to provide adequate classification of the study area into the three principal 

categories of interest: open water, wetland and upland. Following preliminary classification into 

a 3-class processed band ratio (Figure 5) - the wetland class was further subdivided into flooded 

and terrestrial vegetation classes. The classification of vegetation based on standing water 

presence (flooded), or its absence (terrestrial), was accomplished by testing the validity of the 
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proposed hypothesis that presupposed discernible surface temperature differences could be 

distinguished despite the presence of vegetation.  

 

Figure 3: Initial classification workflow, represented using structure and syntax analogous to 
that used by ERDAS Imagine model builder. First, the Landsat image is converted into a 
thematic grid via a band ratio transformation. Thresholds (see Table 2) are applied to extract 
pixels which correspond to open water, wetland, and upland land cover types. These images are 
used to “mask” the ground temperature image (imported from ReSET – see Figure 2), and are 
used as inputs for the next classification workflow (Figure 4). 
 

Unsupervised classification clusters pixels into a predetermined number of classes based on 

image statistics and operator-defined threshold parameters. The method is less susceptible to 

operator bias, but can generate classes that are difficult to interpret. Supervised classification can 

provide the operator with the ability to distinguish between categories that do not have clearly 

differentiable spectral signals, but may create classes which are forced or artificial. Unsupervised 

classification assigned pixels to a set number of classes by iteratively changing the mean and 

standard deviation of each class, as newly assigned pixels changed the statistical makeup of the 

group – forcing  previously assigned pixels to become reassigned. Fewer classes inherently 

produce larger standard deviations within each class, and subsequently, the potential for greater 

numbers of pixels to be incorrectly categorized by the operator. Furthermore, unsupervised 

classification produces groups based on a statistical relationship to the input; clusters represent 

groups of largely self-similar pixels, but do not necessarily translate to the expected classification 



 

18 
 

scheme. While this may be problematic in terms of classifying a certain set of groups, it serves as 

a highly useful and unbiased litmus test for whether thermal properties produce a discernible 

signal to map the wetland footprint (as proposed). Running unsupervised classification for a 

larger number of classes produced classes with smaller deviations, increasing the likelihood of 

self-similarity and decreasing the likelihood of misclassification. However an increased number 

of classes did not directly translate into a proportional increase in the number of expected 

categories. Subsequently the final unsupervised classification of surface temperature was limited 

to two classes.  

 
The ReSET ground temperature image was masked to include only the wetland pixels - 

effectively removing all open water and upland cells. The wetland-bounded ground temperature 

pixels within the Area of Interest were classified using unsupervised classification and the  

 

 

Figure 4: Secondary classification workflow, showing the procedure for classifying the wetland 
into inundated (Class 1) and dry (Class 2) zones based on the thermal signal (imported ground 
temperature image – see Figure 3). Together with pixels classified as inundated wetland, open 
water pixels form an aggregated estimate of total flooded area. Upland pixels (see Figure 4) are 
assumed to contain no standing water and are excluded from the wetland footprint.  
 

Iterative Self-Organizing Data Analysis technique (ISODATA). Classification was carried out 

for two classes (categories of interest: Wetland Class 1 – flooded, and Wetland Class 2 – 
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terrestrial) with the following settings: 50 maximum iterations; 0.999 convergence threshold; and 

the classification initialized from statistics. In this study, the term ‘categories of interest’ is used 

to distinguish between the raw results of the classification and the categories into which the 

operator assigns the output.  

 

GIS-based wetland pond stage-surface area and stage-volume relationships have been previously 

developed for twelve instrumented ponds within the wetland complex. The ponds formed part of 

a four year (2006-2009) experiment to investigate the effects of modified drawdown regimes on 

SJR wetland ecosystem services and habitat quality. Ponds were chosen to cover the majority of 

wetland types within the study area; representing a range of vegetation and soil types, average 

salinity, pond depth, and inflow and outflow sources. Each was instrumented with flow and 

water quality sensors logging continuous 15-minute resolution data exported by way of a 

radio/remote telemetry platform (Quinn et al., 2010; Rahilly et al., 2010). A 2007 GPS survey of 

the ponds produced bathymetry maps from which stage-surface area and stage-volume 

relationships were calculated.  The GPS data were logged using ATV-mounted Trimble GPS 

surveyor-grade units which provided a vertical accuracy to within 0.1 feet (0.03 meters). 

Presently, only four of the original twelve ponds remain in the monitoring program. ESRI 

ArcGIS Spatial Analyst software was used to develop a three-dimensional model of each 

surveyed wetland pond. The three-dimensional rendering was divided at 0.1-foot (0.03-meter) 

vertical intervals to derive pond-specific relationships between pond surface area and depth, and 

pond volume and depth (Quinn et al., 2010). Depth sensors at these four ponds track pond stage 

throughout the year. Utilizing continuous stage and flow data - the previously established 

relationships between (a) pond depth and surface area and (b) between pond depth and volume - 

produced an adequately robust estimate of daily pond surface area. Classification results were 

curated and validated against corresponding depth-surface area data sets at two control ponds 

within the study area – Ducky Strike Club north field, and Mud Slough Unit field 3b, and 

statistically analyzed to estimate variance and test for group independence. 

 

The two control ponds at the Ducky Strike Duck Club and Mud Slough Wildlife Management 

Area provided benchmark surface areas (converted to a pixel count - where 1 Landsat pixel = 

900 m2) estimates against which post-classification sums of open water and flooded vegetation 
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results could be compared. While this approach could determine error margins and the under or 

overestimation of total flooded area, it was not spatially distributed. In other words, it provided 

no information on the accuracy of individual pixel assignment to a given classification class.  

 

3. Results and Discussion 

A series of 15 Landsat ETM+ images was analyzed using ERDAS Imagine and ReSET. For the 

purposes of water resource management, a water year begins on September 1st of one calendar 

year, and ends on August 31st of the following calendar year. A longer timeframe, spanning April 

12th, 2011 – June 17th, 2012, was analyzed in this study (see Table 1). This decision was made 

with the intent to provide the foundation for subsequent inter-annual comparison, as well as to 

generate a denser data-set.  The complete 15-image dataset is included in the discussion of field-

based validation results (Figures 8-9). However, to most intuitively communicate the seasonality 

of the GEA wetland system, a subset of 9 of the 15 images is presented in Figure 5. Pixels 

corresponding to area classified as open water are shown in blue. Pixels mapping to terrestrial 

and emergent vegetation patches are shown in shades of light and dark green, respectively. The 

classified results of the bands 5 and 2 transformation show the cyclical nature of seasonal 

wetland management beginning with the August 2nd, 2011 image (Figure 5a). Subsequent images 

capture the progression of fall flood-up, then the winter period at maximum pond “shooting” 

depth, followed by spring pond draw-down. 

 

The ponds start to fill during late August 2011 (captured in the satellite’s overpass on August 

18th) and continue during September 2011. The open water area increases significantly between 

the September 3rd, 2011 and September 19th, 2011 satellite overpass. By October 21st, 2011 

flood-up is largely complete. The flooded surface area remains static throughout the months of 

December, January, and February to provide wintering habitat for wildfowl. Pond drawdown is 

first captured in the February 26th, 2012 image. At this point, the effects of initial wetland 

releases on the wetland footprint first become discernible (Figure 5h). Drawdown continues 

through the spring, approaching completion by April 30th, 2012. Few ponds remain flooded and 

wetland grasses appear in some of the drained areas (Figure 5i). Depending on water availability 

from the Central Valley Project, one or more irrigations during the summer are used to sustain 

soil moisture and maximize vegetation biomass and seed production. Most of the irrigation water  
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Figure 5: Classified output from multispectral band combination, showing thresholds (see Table 
2) applied to the output of the Band 5 to Band 2 ratio. Open water is shown in blue, wetlands in 
dark green, and uplands in light green. The full Landsat ETM+ image is shown clipped to the 
south Grasslands Ecological Area.  
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deep percolates. Any remainder is discharged to Mud or Salt Slough through the same network 
of drainage canals that conveyed the primary pond drawdown volume. 
 
 
3.1. Procedure for Delineating Flooded Area 

The band ratio-based classification shown in Figure 5 captured not only the progression of flood-

up and the consequent change in open water surface area, but also seasonal fluctuations in moist 

soil vegetation (shown in dark green) relative to the combined terrestrial vegetation and bare 

ground surface area classified as upland (light green). This band ratio is similar to one 

formulation of the Normalized Difference Water Index, in that both use the signal from mid-IR 

and visible green wavelengths (NDWI = (ρt,5 – ρt,2) / (ρt,5 + ρt,2); where ρt,5 and ρt,2  are the at-

satellite reflectance value of bands 5 and 2 (Allen et al., 2010)). Bands 5 and 2 are sensitive to 

water absorption (moisture content) and green vegetation reflectance, respectively. By contract, 

NDVI uses a ratio of bands 3 and 4 (visible red / near IR), which are sensitive to chlorophyll 

concentrations and plant tissue structure, respectively. The availability of sufficient field-derived 

spatial data can make delineating the boundaries between wetland and upland vegetation easier 

to accomplish by establishing some initial spatial constraints on the wetland pond area. The mid-

IR to green (5:2) band ratio circumvents the need to define the spectral signatures of emergent 

wetland vegetation. The combination of visible green and mid-infrared wavelengths made for an 

efficient preliminary classification tool which effectively combined the ability to map both the 

presence of vegetation (measured by NDVI) and the water content (measured by NDWI).  

 

Vegetation indices, such as NDVI, are sensitive to climatic (Roerink et al., 2003; Pettorelli et al., 

2005; Mänd et al., 2010) and plant physiologic controls; particularly those corresponding to 

plant health (Thelen et al., 2004, Ortiz et al., 2011). Atmospheric conditions, such as the 

concentration of aerosol particles emitted from anthropogenic sources or as a result of wildfires, 

also influence NDVI (Holben, 1986; Gao,1996; Xiao et al., 2003). Unlike the near-instantaneous 

change in temperature corresponding to the phase transformation of water to vapor, NDVI 

displays a delayed response to water availability. The time lag between increased moisture (via 

any combination of precipitation, irrigation, or exfiltration fluxes) and plant response has been 

shown to range from two months (Richard and Poccard, 1998) to fewer than five days (Wang et 
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al., 2007). Eklundh (1998) found statistically significant time lag periods difficult to establish, 

concluding that consistency may be region-dependent. Others found seasonality to play a 

governing role (Ji and Peters, 2003; Piao et al., 2006). In short, factors other than standing water 

availability are capable of affecting the NDVI thresholds between wetland and terrestrial 

vegetation. This sensitivity to non-control (presence standing water) variables would have 

required adjustment for long-term analysis and delineation from Landsat images acquired over 

multiple months, seasons or water years. Conversely, the 5:2 band ratio thresholds were kept 

constant for all 15 images and the accuracy of this static classification scheme showed no bias 

toward certain images or seasons. While this ratio provides less detailed information about plant 

health, and may not be adequate for finer-resolution classification of plant communities, it is 

well-suited to the objectives of this study with their primarily hydrologic, rather than ecological, 

focus. 

 

3.2. Multiband Transformation for Water, Wetland, and Upland Delineation 

 

Band ratio classification approaches were used to manipulate multispectral images and reduce 

the variability of a single-band signal, such as those caused by variations in atmospheric or 

topographic conditions (Xu, 2006). Typically, the pixel’s digital number (DN) in one spectral 

band is divided by the analogous DN in another spectral band. Although this procedure degrades 

the overall signal by stripping a pixel of the DNs of the remaining bands, it tends to accentuate 

more faint spectral variations, and attenuate much of the background noise associated with 

different wavelength regions (Li et al., 2009).  

 

The Landsat ETM+ 5:2 multiband transformation calculates the ratio of mid-infrared (mid-IR) to 

visible green wavelengths and multiplies the output by 100 to convert the continuous (float) 

output to integer values: Thematic output = (Band 5 / Band 2) x 100; where Band 5 is the at-

satellite reflectance value of the mid-infrared wavelength (1.55 – 1.75 μm, 30-m precision), and 

Band 2 is the at-satellite reflectance value of the visible green wavelength (0.552 – 0.605 μm, 30-

m precision). This transformation converts the image into a thematic grid of 256 brightness 

values (integer pixel values: center panel, Figure 6) in the range of 0 to 255. The ratio is 

generally greater than one (thematic output values > 100) for terrestrial (“upland”) pixels, since 
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there is greater absorption of the visible green wavelength (band 2) in soils and greater 

reflectance of mid-IR (band 5). Conversely, the ratio is less than one (thematic output values < 

100) for water bodies. While water reflects light in the visible spectrum (bands 1-3), in the near- 

and mid-IR range, more is absorbed. Low vegetation density in open water results in a 

corresponding decrease in the absorption of the visible green wavelength.  

 

Despite the suitability of the 5:2 band ratio for delineating the land-water interface, the less than 

100 versus greater than 100 threshold requires adjustment for coastal delineation in study areas 

with vegetated banks or inundated vegetation (Alesheikh et al., 2007). In wetlands, or any other 

system where the area of interest spans a terrestrial-aquatic gradient, there is rarely a sharp 

demarcation between “no vegetation” and “no water.” Inundated emergent vegetation effectively 

represents a third class, straddling the 100 threshold. Classification thresholds were set after 

Dobson (2011). Threshold parameters for the classification are listed in Table 1. A graphic 

representation of the Landsat image post-classification is shown in the right panel (Figure 6). 

 

Table 2:  Classification of mid-IR / visible green band ratio output into three preliminary classes.  
 

 
 
 
 
 
 

The classified image was compared visually against the original Landsat image. The 7,5,3 (RGB) 

band composite was selected for its effective atmospheric penetration and surface water 

delineation. This band combination produces a “natural color” image. Vegetation appears in 

shades of green; urban areas in white or gray; water is dark blue to black depending on depth; 

and soils are assigned various combination of remaining colors. The images in Figure 6 were 

clipped from the original Landsat image (170 km north-south by 183 km east-west (106 mi by 

114 mi)). Processing was carried out for the entire area encompassing both North and South 

Grassland Water District (GWD) areas. However the analysis focused on the South Grasslands 

area (shown in Figures 5-7) for two reasons: 1) the two monitored ponds (discussed later in the 

results section) are both located in the South Grasslands, and 2) to highlight smaller-scale  

Classification Category Threshold 
Open Water 1 - 51 
Wetland 52 - 126 
Upland 127 - 254 
No Data 0, 255 
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Figure 6: From top to bottom: multiband transformation for South Grassland WD showing 
seasonal flood-up captured on October 21st, 2011; draw-down captured on April 30th, 2011; and 
drained ponds at end of flooded season in a scene from June 17th, 2011.  From left to right: 
column (a) Landsat ETM+ image spectral band combination 7,5,3 (R,G,B); column (b) initial 
output of Band 5/Band 2 ratio; column (c) classification of Band 5/ Band 2 ratio into open water 
(blue), wetland (dark green), and upland (light green).  
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features which would have been difficult to distinguish at a coarser resolution. Additionally, the 

image was intentionally left unclipped to the GWD pond perimeters to illustrate the behavior of 

wetland and upland mid-IR to green band ratio thresholds when applied without spatially 

constraining the classification. 

 

The 5:2 band ratio thresholds performed well when tasked with open water delineation. This was 

evident from comparisons of the original 7,5,3 RGB composite Landsat images (Figure 6, left 

panel) with the classification results (Figure 6, right panel). Thresholds were set to favor a 

classification of “wetland” rather than “open water” in cases of ambiguity. This was done 

deliberately because of the potential impact on the final thermal classification. Introduction of a 

small number of transitional cells could skew the sample mean towards cooler temperatures and 

introduce more wetland cells to the class during the unsupervised classification – thereby 

separating them from upland cells or those with higher proportions of bare soil cover. The 

wetland/upland transition was more difficult to qualify without empirical data. Upland 

classification successfully recognized all areas of bare soil as well as drier vegetation patches. 

 

3.3. Comparison with Monitored Control Ponds 

 

Thematic conversion and classification into open water, wetland and upland classes helped to 

quantify the relative area of open water to the total flooded area. Uplands were ignored during 

subsequent classification as having insufficient water content to be considered inundated areas 

and contributing to the total flooded area estimate. The remaining wetland class comprised 

emergent moist-soil wetland vegetation - which may be flooded and grow in standing water or, 

depending on vegetation type and time of year, may remain dry land. The results of the 

classification were compared to two controls.  These were (a) a preliminary visual inspection of 

the 7,5,3 Landsat image (Figure 7: a-b,e); and (b) comparison with existing elevation-surface 

area bathymetry relationships for two ponds (Ducky Strike Club North Field - Figure 7: b-d) and 

Mud Slough Unit Field 3b - Figure 7: e-g) that were continuously monitored, using YSI 650XL 

sondes, for stage, flow and electrical conductivity. The colder ground temperature class (Figure 

7: d,g) was assigned to flooded vegetation and the warmer ground temperature class to terrestrial  
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Figure 7 (a-g): Central image (a) showing the multispectral band combination of the original 
Landsat image, clipped to the south Grassland Ecological Area. Insets (b) and (e) show the two 
validation sites – the Ducky Strike Club north and Mud Slough 3b wetland units, respectively. 
The initial Band 5/Band 2 ratio classification – shown in (c) and (f), partition the image into open 
water, wetland, and upland categories. The results of unsupervised classification of surface 
temperature – shown in (d) and (g), delineate the boundary between flooded and dry wetland 
vegetation. The extent of the “wetland footprint” is captured by open water and flooded wetland 
area.  
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vegetation, based on the expected temperature response to the presence of water and the effect of 

evaporative cooling. 

 

A comparison of open water surface area (Figures 8-9: blue) to the total flooded area (Figures 8-

9: green) calculated for the two continuously monitored control ponds (DSN and MS3b) showed 

the contribution of flooded wetland vegetation to the total flooded area. This additional flooded 

area, covered by wetland vegetation, was underestimated by analysis limited to open water 

classification. At the Ducky Strike Club (Figure 8), the attempt at wetland open water delineation 

for the north field underestimated the full extent of flooded surface area by as much as 38% 

during flood up, whereas underestimation was reduced to 8% using the combined open water and 

flooded wetland classification. During the entire duration of flood-up captured in Landsat images 

(October 21st, 2001 through February 26th, 2012), open water delineation at DSN underestimated 

311 pixels of total flooded area (equivalent to a surface area of 279,900 m2). In contrast, 40 

pixels (36,000 m2) were overestimated using the proposed combination of classified flooded 

wetland and open water. At Mud Slough Unit field 3b (Figure 9), the open water analysis 

resulted in flooded area underestimates of up to 63% relative to monitored - however with the 

addition of thermal wetland classification to the total flooded area estimation - this error was 

reduced to 13%.  
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Figure 8: Results of field-based validation at the Ducky Strike Club north pond. The monitored 
total flooded area (solid black) is plotted against the area of the “wetland footprint,” as derived 
using the proposed classification scheme, where Thermal Classified = Open Water + Wetland 
Class 1. This estimate is compared to the extent of open water – illustrating the underestimation 
of total inundated area. Surface area is shown in units of pixels: one Landsat ETM+ pixel is 
equivalent to 900 m2.  
 

While the thermal classification performed similarly during the flood-up period, the accuracy of 

the wetland land use delineation differed between the two control ponds during both wetland 

flood-up and spring drawdown. In MS3b (Figure 9) a largely bimodal pattern was evident over 

the course of the year – the pond filled rapidly to the maximum flooded area. Drainage was also 

rapid – the drawdown period was captured during the time interval of a single satellite image. 

This pattern was replicated for the changing open water surface area. Estimates from the 

preliminary band ratio classification, which assigned open water a mid-IR/green visible 

wavelength ratio value of 1-51 (Table 1), remained near zero during periods of drawdown.  
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Figure 9: Results of field-based validation at the Mud Slough 3b pond. The monitored total 
flooded area (solid black) is plotted against the area of the “wetland footprint,” as derived using 
the proposed classification scheme, where Thermal Classified = Open Water + Wetland Class 1. 
This estimate is compared to the extent of open water – illustrating the underestimation of total 
inundated area. Surface area is shown in units of pixels: one Landsat ETM+ pixel is equivalent to 
900 m2. 
 
While the rate of change in open water during wetland flood-up (September 19th – October 21st) 

and wetland drawdown (April 30th – June 1st) mirrored similar changes in monitored total 

flooded area – reliance on open water surface areal delineation underestimated the total extent of 

flood-up (black– Figure 9). This was obtained by unsupervised classification of wetland surface 

temperature. At DSN (Figure 8), open water surface area began to decrease half-way through the 

flood-up period (obtained by classification and validated by monitoring data), and drawdown 

rate was shown to be more gradual. Open water delineation replicated the slope of monitored 

total flooded area on both the rising (flood-up) and falling (draw-down) limbs. The time lapse 

between combined flooded vegetation and open water estimates and the monitored dataset (peaks 

on January 9th versus December 24th, respectively) and overestimation by thermal classification 

at DSN during wetland drawdown can be attributed to a lagging vegetation response to changing 

water availability. This pattern was not replicated at MS3b due to the significantly more rapid 

wetland drawdown. The results of thermal classification at DSN also significantly overestimated 

flooded area during summer months, when the addition of cooler (class 1) wetland area increased 
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total flooded surface area estimates - and the magnitude of error relative to monitored data, to 

nearly 50% of area at max flood-up. For applications in managed wetlands, this overestimate can 

be avoided by limiting the addition of cooler wetland area to the open water total only during the 

flood-up period.   

 

Total flooded area was better approximated using a combination of open water delineation and 

surface temperature classification of the wetland class, with significant improvement in flooded 

surface area estimates relative to previous open water delineation at two control ponds during the 

seasonal flood-up period. Additional refinement – through a combination of finer resolution 

imagery, subpixel classification techniques, or by increasing the number of initial unsupervised 

classes followed by post-classification merging of self-similar polygons, was expected to further 

reduce both under and overestimates during flood-up. In seasonally managed wetlands, a priori 

knowledge of the system can be used to constrain the flood-up period. Such temporal constraints 

would be used to limit the flooded wetland classification to periods of pond flooding and 

eliminate the significant overestimation caused by the erroneous addition of wetland area at DSN 

(Figure 8).  

 
3.4. Effect of Standing Water Availability on Mean Surface Temperature and Variance 

 

Within the available dataset, differences in surface temperature variance correspond to larger 

extent to changes in sample size rather than represent inherent physical differences between open 

water, flooded and terrestrial wetland vegetation, or uplands. Open water would be expected to 

show the smallest variance, as it represents the single most homogenous class and the 

classification is spatially constrained to a single pond to control for the effects of topography and 

dissimilar management. Conversely, the variance of open water surface temperature was 

significantly higher during full flood-up – an order of magnitude greater than the variance of all 

other classes (October 21st – January 9th, Table 2) when the wetland footprint was approaching or 

at its maximum and open water population exceeded all other classes. During spring drawdown 

(April 12th – Table 2), as managed drainage began to transition the pond area from fully flooded 

to dry, the difference between open water and other classes’ variances narrowed, reflecting 

changing standing water availability and a greater number of dry pixels.  
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During the process of flood-up in the fall (21 Oct 11, Figure 11a) and the progression of draw-

down in the spring (12 Apr 11, Figure 11b), mean open water surface temperature noticeably 

exceeded the means of wetland and upland temperatures. Net radiation (  partitioned to heat 

flux into the water (  during warmer months created a thermal sink. Once decreased air 

temperatures in the fall and winter reversed the potential drop, water was transformed into a 

thermal source. In winter, late fall, and early spring this energy, stored as heat, was lost to 

sensible heat flux (Allen and Tasumi 2005).  

 

Overall, the Open Water class had the least variance across spatial and seasonal . The 

comparatively lower Open Water surface temperature mean was attributed to the effect of heat 

flux  into the water. The difference in air and water surface temperature created a thermal 

potential drop during summer months that was directed into the water column - which acted as a 

thermal sink, rather than into the atmosphere (thermal source). While the presence of vegetation 

damped the potential to partition  to  (less water per unit area), the addition of transpiration 

to evaporative potential most likely contributed the additional cooling, and accounts for 

differences between Open Water and Wetland Class 1 mean surface temperature for the three 

summer Landsat images in Figure 10.  
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Figure 10 (a-c): In July and August, the mean open water surface temperature was substantially 
lower than that of upland areas, and marginally but consistently lower than the Wetland Class 1 
temperature. Within the wetland category, Wetland Class 1 had a mean temperature similar to 
the mean open water surface temperature - despite the greater variance within the Class 1 
wetland category, due to a larger wetland population during summer months when ponds 
experience draw-down.  
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Figure 11 (a-d): Surface temperature plots for four months capturing the fall flood-up and spring 
draw-down periods. Mean surface temperature was highest for the open water class across all 
four groups.  
 
 
Table 3: Ducky Strike Club north pond - surface temperature variance (ºK) across four Landsat 
satellite image acquisition dates capturing full flood-up (Oct 21st, 2011 – January 9th, 2012) and 
the transitional draw-down period (April 12th, 2011) – table corresponds to images in Figures 11 
a-d.  
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(d) 09 Jan 12 Ducky Strike North

Class 12 Apr 11 21 Oct 11 24 Dec 11 09 Jan 12 
Open Water 4.719 ºK 8.841 ºK 7.581 ºK 5.040 ºK 
Wetland Class 1 (flooded) 1.004 ºK 0.188 ºK 0.184 ºK 0.169 ºK 
Wetland Class 2 (dry) 0.594 ºK 0.313 ºK 0.356 ºK 0.216 ºK 
Upland 1.946 ºK 0.440 ºK 0.587 ºK 0.408 ºK 
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When flooded surface area was at its annual minimum during summer drawdown (Figures 

10,13), open water surface temperature variance was lowest relative to the variance of each other 

class.  

 

The surface temperature in December and February remained higher for upland areas relative to 

all other classes. However, the relationship between open water and wetland temperatures was 

reversed from summer (Figure 10) images. While wetland class 1 mean surface temperature was 

consistently lower than the corresponding wetland class 2 mean across all 15 Landsat images, on 

February 26th (Figure 12b) the mean surface temperature of wetland class 1 was marginally 

higher than the class 2 mean. In cold winter months the sensible heat flux from the surface into 

the atmosphere can warm the boundary layer and increase the surface temperature. As a result, 

flooded vegetation (wetland class 1) would be expected to have a higher mean surface 

temperature.  

 

 
Figure 12: Surface temperature variance for “wetland footprint” 
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Figure 13: Surface temperature variance for “no wetland footprint” 

 

 

Figure 14: DSN footprint temperature (blue) vs. no footprint temperature (red). A total of N = 

2,062 surface temperature values for pixels classified as wetland footprint (blue), and N = 3,920 

non-wetland footprint (red) pixels have been plotted. Due to the large sample size and extent of 

overlap, both sets of data points are plotted with 99% transparency.  
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Figure 15: DSN Open water variance 

 

 

Figure 16: DSN flooded wetland variance, 

 

 

Figure 17: DSN dry wetland 
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Figure 18: Upland variance 
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Table 4: statistics for open water at Ducky Strike North Field 

 

Table 5: statistics for flooded wetland (wetland class 1) at Ducky Strike North Field 

 
 

 

 

 

12 Apr 11 15Jun11 1Jul11 17Jul11 2Aug11 18Aug11 3Sep11 19Sep11 21Oct11 24Dec11 9Jan12 26Feb12 30Apr12 1Jun12 17Jun12 

Count 49 23 4 9 12 1 0 0 202 200 196 200 0 0 0 

Mean 298.35 296.26 304.94 302.53 305.57 306.39 - - 298.33 283.58 287.61 287.06 - - - 

SD 3.47 3.91 0.71 1.12 0.42 - - - 0.98 1.33 2.17 3.47 - - - 

Min 290.52 290.52 304.22 300.72 304.79 306.39 - - 296.06 277.53 281.07 281.07 - - - 

Q1 298.27 290.52 304.63 302.08 305.32 306.39 - - 297.65 282.51 286.96 282.23 - - - 

Median 299.29 298.27 304.81 302.83 305.56 306.39 - - 298.14 283.62 288.57 289.10 - - - 

Q3 298.27 298.82 305.12 303.26 305.85 306.39 - - 298.89 284.94 289.13 289.76 - - - 

Max 302.04 299.90 305.91 303.98 306.24 306.39 - - 300.98 285.55 289.76 290.93 - - - 

12 Apr 11 15Jun11 1Jul11 17Jul11 2Aug11 18Aug11 3Sep11 19Sep11 21Oct11 24Dec11 9Jan12 26Feb12 30Apr12 1Jun12 17Jun12 

Count 60 131 94 105 65 93 106 12 76 96 119 60 0 0 0 

Mean 296.70 305.16 305.19 302.57 305.65 306.52 306.58 301.71 295.33 280.31 284.68 286.44 - - - 

SD 0.88 0.96 1.22 1.47 0.84 1.30 1.87 0.25 0.47 0.38 0.41 0.31 - - - 

Min 295.06 302.70 302.88 300.34 303.88 303.87 303.12 301.43 294.22 279.16 283.44 285.54 - - - 

Q1 296.03 304.47 304.35 301.47 305.04 305.50 305.38 301.54 294.97 280.07 284.52 286.19 - - - 

Median 296.61 305.16 305.09 302.31 305.66 306.41 306.10 301.63 295.34 280.37 284.73 286.53 - - - 

Q3 296.03 305.94 306.06 303.44 306.31 307.35 307.81 301.80 295.70 280.60 285.00 286.72 - - - 

Max 298.30 306.82 308.06 306.63 307.50 309.66 311.45 302.22 296.10 280.88 285.31 286.86 - - - 
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Table 6: statistics for dry wetland (wetland class 2) at Ducky Strike North Field 

 
 

Table 7: statistics for upland at Ducky Strike North Field 

 

12 Apr 11 15Jun11 1Jul11 17Jul11 2Aug11 18Aug11 3Sep11 19Sep11 21Oct11 24Dec11 9Jan12 26Feb12 30Apr12 1Jun12 17Jun12 

Count 198 17 8 1 27 8 1 7 81 77 60 69 32 11 0 

Mean 299.73 307.99 309.09 307.84 309.12 311.01 313.55 302.99 296.92 281.63 285.95 287.47 304.19 312.90 - 

SD 0.63 0.95 1.06 0.00 1.73 1.37 - 0.53 0.54 0.59 0.49 0.48 0.89 1.30 - 

Min 298.40 307.05 308.33 307.84 307.63 309.91 313.55 302.38 296.15 280.96 285.37 286.88 303.31 311.57 - 

Q1 299.27 307.27 308.37 307.84 307.84 310.12 313.55 302.61 296.46 281.20 285.57 287.09 303.48 312.06 - 

Median 299.75 307.61 308.73 307.84 308.57 310.37 313.55 302.90 296.95 281.46 285.83 287.35 303.98 312.38 - 

Q3 299.27 308.48 309.22 307.84 309.71 311.57 313.55 303.25 297.22 281.98 286.22 287.73 304.61 313.35 - 

Max 301.40 310.36 311.41 307.84 315.69 313.98 313.55 303.90 298.79 283.47 287.43 289.27 307.23 315.99 - 

12 Apr 11 15Jun11 1Jul11 17Jul11 2Aug11 18Aug11 3Sep11 19Sep11 21Oct11 24Dec11 9Jan12 26Feb12 30Apr12 1Jun12 17Jun12 

Count 89 228 292 284 295 297 292 380 40 23 24 70 287 344 378 

Mean 297.98 307.43 309.43 308.26 315.54 316.86 316.25 309.64 296.70 280.71 285.56 287.60 304.76 310.45 313.08 

SD 1.54 1.81 2.32 2.55 3.39 3.50 3.43 4.28 0.57 0.74 0.71 1.04 2.01 1.38 2.52 

Min 294.01 304.53 305.06 302.41 304.69 306.12 305.61 300.75 295.44 279.88 284.31 285.96 300.26 306.35 308.57 

Q1 297.25 305.98 307.58 306.57 313.81 314.95 314.61 305.82 296.32 280.15 285.06 286.88 303.27 309.48 311.37 

Median 298.09 306.80 309.07 308.26 315.97 317.63 317.23 311.48 296.80 280.59 285.36 287.44 304.47 310.28 312.53 

Q3 297.25 308.77 310.85 310.06 318.08 319.38 318.57 313.02 297.00 280.85 286.19 288.17 306.15 311.41 313.94 

Max 300.73 312.01 315.56 313.23 322.24 324.49 323.23 316.75 297.92 282.56 286.77 290.37 309.54 314.11 321.02 
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This could be attributed in part to the effect of disparate sample size on variance and significance 

analysis of sample means.  

 

Finally, the pattern of increasing surface temperature means and associated group variances in 

Figure 13 reinforced the limitations of assigning wetland classes to inundated or flooded 

categories year-round: despite the variations in the previous two figures (11-12) and their 

individual sub-plots, Figure 12 is the only one in which the surface temperature followed a 

consistently increasing pattern from open water to upland. The surface temperature mean of 

wetland class 1 – presumed to represent the flooded (evaporatively-cooled) wetland subclass, 

shared greater similarity with the temperature ranges of the two classes making up the non-

flooded category (wetland class 2 and upland) that it did with the open water temperatures. In 

June, during draw-down, standing water may be effectively reduced to only open water portions. 

Draw-down would have caused recession of the wetland footprint, and formally inundated 

vegetated areas would no longer be flooded. This could be further validated by field-testing these 

hypotheses.  

 
While four classes were ultimately classified, the flooded area delineation is effectively a 2-class 

categorization separating flooded area (encompassing both open water and inundated wetland 

vegetation sub-classes) from non-flooded (uplands and terrestrial wetland vegetation). 

Consequently, cases of ambiguity between wetland class 1 and open water, or between wetland 

class 2 and upland, where variance may have contributed to difference in sample means and not 

represented statistically robust independence would have affected neither the spatial distribution 

of flooded cells nor the total surface area.  

 

4. Limitations 

 

Wetland and upland classification was less effective in the presence of cropland – misclassifying 

irrigated or flooded fields as wetland areas and limiting the generalizability of this method for 

fully automated wetland classification. The Landsat ETM+ band 5 to band 2 ratio should be 
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combined with field-based ground truth data which can be used to constrain the potential wetland 

area and mask out extraneous pixels. LULC (Land Use Land Cover) maps, geo-referenced 

property boundaries, or manual delineation from aerial imagery may provide a sufficient spatial 

constraint.  

 

5. Conclusions 

 

In this study we developed a method to delineate the wetland footprint for seasonally-managed 

wetlands using Landsat ETM+ satellite imagery. The wetlands were delineated over the course 

of pond flood-up and drawdown cycles. We found that for preliminary image classification of 

open water, wetland and upland categories, a Landsat ETM+ band 5 to band 2 ratio was more 

efficient than similar classification using vegetation and water indices such as NDVI and NDWI. 

Unsupervised classification of surface temperature could be reduced to two classes, provided the 

input was clipped to wetland area only, and the classification was constrained to a single wetland 

pond at a time. Comparisons with field-derived surface area estimates show significant 

improvement over previous delineations which mapped open surface area only and did not 

account for flooded emergent vegetation. We expect that at large spatial scales and across greater 

topographic and ecologic variability the results of a two-class classification system may become 

biased by local effects. Improved performance is expected to come from refining the 

classification scheme by initializing unsupervised classification of surface temperature for a 

greater number of preliminary wetland classes and merging self-similar classes post-

classification based on statistical analysis of the temperature means and variance. Since choice of 

imagery determines image resolution and subsequent precision, the described classification 

procedures using finer resolution imagery may narrow the error margin and improve flooded 

area estimates relative to those monitored at the two control ponds. In situations where adequate 

knowledge of the system exists to help validate the results, the approach presented in this study 

may be highly appropriate for seasonally-managed wetlands. The methods presented in this 

study are expected to be applicable in permanent wetlands as well. Despite potential minor 

seasonal fluctuation, permanent wetlands remain flooded throughout the year – similarly to 

seasonal wetlands during flood-up. While the methodology can be further refined to narrow the 

error gap between monitored flooded area and the results of surface temperature classification, 
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the relatively low computational cost, utility, and ready availability of required Landsat data 

result in a very pragmatic resource for improving wetland delineation. 
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