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Abstract 

 

Understanding the relationship between occupant behaviors and building energy consumption is 

one of the most effective ways to bridge the gap between predicted and actual energy consumption 

in buildings. However effective methodologies to remove the impact of other variables on building 

energy consumption and isolate the leverage of the human factor precisely are still poorly 

investigated. Moreover, the effectiveness of statistical and data mining approaches in finding 

meaningful correlations in data is largely undiscussed in literature. This study develops a 

framework combining statistical analysis with two data-mining techniques, cluster analysis and 

association rules mining, to identify valid window operational patterns in measured data. Analyses 

are performed on a data set with measured indoor and outdoor physical parameters and human 

interaction with operable windows in 16 offices. Logistic regression was first used to identify 

factors influencing window opening and closing behavior. Clustering procedures were employed to 

obtain distinct behavioral patterns, including motivational, opening duration, interactivity and 

window position patterns. Finally the clustered patterns constituted a base for association rules 

segmenting the window opening behaviors into two archetypal office user profiles for which 

different natural ventilation strategies as well as robust building design recommendations that may 

be appropriate. Moreover, discerned working user profiles represent more accurate input to building 

energy modeling programs, to investigate the impacts of typical window opening behavior 

scenarios on energy use, thermal comfort and productivity in office buildings. 

 

Keywords 

Data Mining, Behavioral Pattern, Occupant Behavior, Office Buildings, Window Closing, Window 

Opening. 

1 
 

mailto:simona.doca@polito.it
mailto:thong@lbl.gov


1. Introduction 

To secure sustainable energy development in the building sector, occupant behavior needs to be 

modified towards a more efficient and conscious energy usage. The development of energy-

conserving technologies is a necessary but incomplete step toward reduced energy consumption in 

buildings. Achieving energy conservation becomes a double challenge, partly technical and partly 

human, since energy consumption may vary largely due to how occupants interact with system 

controls and the building envelope. Currently, building simulation tools can only imitate some 

typical occupant activities in a rigid and pre-defined way (occupancy, use of windows, thermostat, 

shadings, and lighting). Nevertheless, occupant behavior and comfort is stochastic, complex, and 

multi-disciplinary therefore more realistic behavioral patterns need to be developed. 

As a matter of fact, a deeper understanding of the relationship between occupant behavior and 

building energy consumption can be seen as one of the most effective ways to bridge the gap 

between predicted and actual energy consumption in buildings Several studies underlined that huge 

variability exists in terms of default settings and day-to-day use of control systems and appliances 

in buildings, where ‘behavior’ is central to consumption levels [1, 2, 3]. In this context, the ‘dark 

side of occupant behavior on building energy use’ was demonstrated by Masoso et al. in 2000 [4]. 

The work showed that more energy was used during non-working hours (56%) than during working 

hours (44%) in one office building. This arises largely from occupants’ behavior of leaving lights 

and equipment on at the end of the day, and partly due to poor zoning and controls. In 2004 Bordass 

et al. [5] referred to this occurrence as the ‘credibility gap’, alluding to the loss of credibility when 

design expectations of energy efficiency and actual building consumption outcomes differ 

substantially. They suggest that credibility gaps arise not so much because occupants preform 

‘wrong’, but because the assumptions often used are not well enough informed by what really 

happens in practice. In the last decades, a number of studies focused on overcoming this barrier, 

testing valid, applicable and robust methodologies and analysis techniques to predict building 

occupant behavior seriously [6-16]. Describing, predicting or influencing energy related individual 

behavior are challenging tasks that must start with the non-trivial understanding of the stochastic 

nature of human beings.  In this view, the scientific community is addressing rising interest around 

the issue of energy efficient buildings and specifically toward the need of a more robust description 

of the motivations driving humans to interact with building envelope and control systems (fans, 

windows, thermostats, lights, etc.) in order to bring about desired comfort conditions [21].  

The most important issue in between perceived indoor environmental quality and outdoors, in the 

built environment, is the building envelope [17]. As a consequence, window operation is one of the 

most relevant tools that allow occupants to bring about desired indoor thermal and air quality 
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conditions, by moving air through the building. Further, since the building envelope is getting 

always more thermally efficient, ventilation and air infiltrations due to window opening are 

increasing their influence with respect to energy use, becoming the most dominant source of 

thermal loss of the heat balance mechanism. Fitting the Humphrey’s adaptive principle that if a 

change occurs such as to produce discomfort, people react in a way which tend to restore their 

comfort [18] to the findings in literature [19-20], it is demonstrated that occupants in naturally 

ventilated buildings accepted and actually preferred a significant wider range of temperatures 

compared to users of mechanically ventilated buildings. As a matter of fact, naturally ventilated 

buildings allow occupants’ a greater degree of control over indoor hydro-thermal conditions than air 

conditioned buildings that strongly influence their satisfaction with working spaces [19]. In 2004 de 

Dear and Brager [20] highlighted that the variation of indoor environmental conditions caused from 

a human operable control source such as windows lead occupants to a relaxation in expectations 

and higher tolerance of temperature excursions.  

1.1 Statistical analysis of factors influencing occupant behavior in buildings 

Statistical analysis techniques are extensively applied to discover associations and relationships 

among the various factors influencing building energy performance and occupant behavior in 

buildings. Different suitable user behavioral models were defined by means of statistical analysis 

(Markov Chain, Generalized Linear Models, etc…) [7-16, 23-32]. An extensive review of these 

studies has been conducted in the context of Annex 53 – Total Energy Use in Buildings, under the 

International Energy Agency Energy in Buildings and Communities Program [21], in order to 

understand the correlation between window opening and the parameters, also called drivers, 

influencing users’ interaction in buildings with natural ventilation. The parameters are divided into 

five categories of influencing factors: 

• Physical (indoor and outdoor environment); 

• Psychological (preferences, attitudes); 

• Physiological (age, sex); 

• Contextual (type of environment where the occupants are located); 

• Social (income, lifestyle). 

Specifically for window opening in office buildings, a literature review was carried out in 2012 by 

Fabi et al. [22] of more than 70 scientific papers, indicating that window operation was not only 

influenced by perceived thermal condition, but it was also seen as a response of sensed indoor air 

quality, external (outdoor temperature, solar radiation, wind speed, rain) and internal (indoor 
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temperature) environmental conditions as well as contextual factors (window type, time of the day, 

season of the year) and personal and cultural preferences. In these studies, statistical analysis 

techniques were applied to identify the influential variables on user behavior in buildings. The 

strength of this methodology was the simplicity and widespread familiarity.  

• Indoor and outdoor temperatures were found as paramount factors influencing window 

opening and closing by several studies [23-27]. For instance, Fabi et al. suggested that rising 

indoor temperatures might drive the opening of windows, but how long the window stayed 

open might depend more on outdoor temperature. More specifically, Andersen et al. [28] 

found that the CO2 concentration was the most important driver for opening the windows, 

while the outdoor temperature was the most dominant driver for closing the windows. 

• Solar radiation was found by Herkel et al. [29] to have little correlation with window 

openings. Solar radiation was a relatively small factor when compared with the correlation 

of indoor and outdoor temperatures 

• Wind speed was reported by Roetzel et al. [30] as a driver for closing the windows when the 

sensation of draft was producing a predominant discomfort. 

• Time of arrival and departure as well as the time of the day had been found having a strong 

correlation between window adjustments by several researches. [28, 29, 31] 

• The season of the year was found by Herkel et al. [29] to have a strong correlation with 

window opening [6]. Usually, the interactivity with openings was higher in summer and 

during the midseason (autumn and spring) and lower in winter. 

• The current state of the window was also underlined by several studies [30, 32] as a key 

aspect to take into account when concerning user’s willingness to open and close windows.  

1.2 A data mining framework for behavioral pattern discovery 

Currently, there is no comprehensive consensus about the way people interact with building 

controls or the motivating factors that influence their decisions. However, there is a substantial 

body of research that offers guidance on patterns of behaviors. Patterns are expressions describing 

typical behaviors or models applicable to a subset of the data to anticipate and replicate common 

actions. Moreover, patterns correlate repetitive behaviors and actions to user profiles. Guerra Santin 

[33] statistically determined behavioral patterns of HVAC system interactions and associated 

energy spent on heating. From this, household and building characteristics that could contribute to 

the development of energy-user profiles, were identified [33]. A study conducted by Van Den 

Wymelenberg [34] reviewed data from more than 50 buildings and identified patterns of occupant 
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interaction with window blind controls. Moreover, Yun and Steemers [35-36] provided evidence of 

a statistically significant relationship between window-opening behavior patterns and clusters of 

indoor stimuli. In 1983 Van Raaij and Verhallen [37] carried out a study in 145 Dutch dwellings 

and defined five patterns of energy behavior (conservers, spenders, cool, warm and average) in 

relation to the use of heating systems and ventilation habits. Findings of this research showed that 

the energy uses of these five pattern groups differed considerably, up to 31% [37]. 

Data mining techniques to discover patterns of data are largely applied to research fields such as 

marketing, medicine, biology, engineering, medicine, and social sciences [38]. Even so, the 

application of data mining framework to building energy consumption and operational data is still 

under investigation and nevertheless could be potentially highly effective. 

Data mining was defined in 2001 by Hand et. Al [39] as: “The analysis of large observation 

datasets to find unsuspected relationships and to summarize the data in novel ways so that owners 

can fully understand and make use of the data”. Another definition was given in 1998 by Cabena 

et. Al [40] as: “An interdisciplinary field bringing together techniques from machine learning, 

pattern recognition, statistics, databases and visualization to address the issue of information 

extraction from large databases”.  

Applying data mining techniques, with the scope to discern behavioral patterns, were tested by 

several studies both in residential and office buildings. Between 2011 and 2012 Yu et al. [41-43] 

tested several systematic data mining methodologies for identifying and improving occupant 

behavior in buildings. The results showed that this analysis methodology proved powerful in 

providing insights into energy pattern related to the occupant behavior, facilitating evaluations of 

building saving potential by improving users’ energy profiles as well as driving building energy 

policy formulation. 

2. Methodology 

In this study, a methodology was proposed in order to identify valid, novel, potential useful and 

understandable patterns of window opening and closing behavior in offices.  

Statistical analysis and data-mining techniques were applied to measured building energy and 

environmental data. Statistical analysis provided leverage in identifying the influencing factors on 

occupant energy-related behavior and removed the effects of other insignificant variables on 

building energy performance. In the literature, examples could be found of logistic regression 

analyses to discover the variables influencing energy-related behavior [21]. This technique was 

borrowed from the natural sciences literature, where several investigations focused on the relations 

between energy-related behavior and (mainly physical) drivers of this behavior [44, 45]. According 
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to Nicol [46], energy-related behavior was clearly affected by physical parameters, but the 

relationship tended to be stochastic. For example, there was no exact temperature at which every 

occupant would open a window, but for increasing temperatures, the probability of the occupant 

opening the window, increased. 

However, associations among variables found to have little statistical correlation on isolated 

occupant behaviors or small data set may lead to the understanding of more general patterns of 

behavior in a large data set, helping direct future research. In this context, data mining techniques 

such as cluster analysis and association rules algorithms were applied in the proposed framework 

with the scope to discern typical office user profiles which may allow for more accurate 

assumptions on group behaviors, overcoming the lack of personalization of statistical patterns. 

The proposed framework suggests an improvement of the notion of behavioral patterns not only as 

merely statistical relevant clusters, but also incorporating the driver-response conditioning 

dimension with typical window opening habits.  

Figure 1 shows the proposed framework in this study: 

 
Figure. 1 Proposed framework of the research 

 

• In step 1, a statistical analysis technique (logistic regression) was applied to the given data 

set. The goal was to discover the factors (variables and coefficients) influencing window 

opening and closing behavior.  

A two steps cluster-then-association rules mining approach was applied to the given data set.  

• In step 2, clustering procedures were employed in order to obtain distinct behavioral 

patterns. The goal was to estimate the motivational, opening duration, interactivity, degree 

of opening and behavioral patterns. In this aim, the research was estimating why 

(motivational pattern), for how long (opening duration pattern), how often (interactivity 

pattern) and how much (position pattern) working users open and close windows in offices 

of the same building. 

• In step 3, the clustered patterns constitute a base for association rules segmenting the building 

occupants into typical office user profiles.  

2.1 Statistical Analysis technique 

Generalized linear models (GLMs) [47] are a class of statistical models for describing linear 

combination of predictor and dependent variables. The GLM allows the statistical model to be 

related to a dependent variable via a link function of its predicted values. In the specific case, 
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logistic regression is a sigmoidal classification GLM able to predict the probability of an event 

having binary outcome (0-1) occurrences based upon predictor variables and coefficients. Logistic 

regression also allows to express the magnitude of the coefficients of each dependent variables as a 

function of the binary outcome.  

Formula 1 describes the relationship: 

Log (  𝑃𝑃
1−𝑃𝑃

 ) = a + b1 · x1 + … + bn· xn + …   (1) 
Where: 

• P is the probability 

• a is the intercept 

• b1-n are coefficients 

• x1-n are variables 

2.2 Data mining techniques 

Two descriptive data mining approaches: 1) cluster analysis (k-means algorithm) and 2) association 

rules mining (Frequent Pattern FP-Growth Algorithm) were employed to discover patterns of 

windows opening and closing [38] 

Cluster analysis is the process of merging data into different clusters, so that instances in the same 

cluster have high similarity and instances in different clusters have low similarity. The similarity 

between clusters was computed based on the distance between the clusters. The distance measure 

was described using the Euclidian distance formula (2) where: 

𝑑𝑑(a, b) = 𝑑𝑑(b, a) = �(𝑏𝑏1 − 𝑎𝑎1)2 +  (𝑏𝑏2 − 𝑎𝑎2)2 + ⋯+  (𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛)2   (2)  

Where: 

• a = (a1, a2,..., an) and b = (b1, b2,..., bn) are two points in an Euclidean n-space 

The k-means algorithm is a method of vector quantization for cluster analysis in data mining. Given 

the simple nature of the algorithm, it is one of the widely used classification technique. Assumed a 

data set D, containing a number n of records (instances), the number of clusters K must be 

specified.  

The performance of the cluster models was evaluated by means a Cluster Distance Performance 

operator. In this study, the Davies–Bouldin index was used for performance evaluation. The k=n 

algorithm that produces clusters with low intra-cluster distances (high intra-cluster similarity) and 

high inter-cluster distances (low inter-cluster similarity) will have a low Davies–Bouldin index, and 

will be considered the k=nopt cluster algorithm for the specific data set. Each cluster was associated 

with a centroid (center point), the mean of the points in the cluster and each point was assigned to 
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the cluster with the closest centroid. 

 

Association rule mining (ARM) is a classification technique used to identify associations and 

correlations between parameters (attributes). Main objective was to extract frequent correlations or 

patterns (association rules) from a database. Given a data set D, containing a number n of non-

ordered records, the association rule was used and described by the formula (3):  

A, B ⇒ C   (3)  

Where: 

• A, B = items in the rule body 

• C = item in the rule head 

The validity of the association rules was indicated by support, confidence and lift.  

Support, represents the fraction of transactions (T) containing both A and B, shown in formula (4).  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  #(𝐴𝐴,𝐵𝐵)
|𝑇𝑇|    (4)  

Confidence (5) represents the conditional probability of finding B having found A, and gives 

strength to the “if, then” statement of the association rules. Mathematically, confidence can be 

calculated as the frequency of B in transactions containing A. 

𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  sup (𝐴𝐴,𝐵𝐵)
sup(𝐴𝐴)

  (5)  

To discover reliable and valid rules in data set, minimum value for confidence and support must be 

pre-defined. Accordingly, in this study association rules that satisfy the minimum support of 0.3 and 

minimum confidence of 0.8 in the given data set, were used. 

Lift (6) represents the ratio of the observed support to that expected, if A and B were independent. 

The Lift value must be different to 1, to avoid the occurrence of A being independent of the 

occurrence of B. The higher the lift value, the more likely that a correlation between A and B exists. 

𝐿𝐿𝐶𝐶𝐶𝐶𝑆𝑆 =  
sup (𝐴𝐴,𝐵𝐵)

sup(𝐴𝐴) ∗ sup (𝐵𝐵)
 

The frequent pattern growth algorithm (FP growth), the most commonly used algorithm to discover 

patterns into a given data set, generated a classification tree (FP-tree) that exploited a memory 

compressed representation of the database. This dense data distribution was used to mine frequent 

patterns of the smaller subsets. 

2.3 The data set 

An office building based in Frankfurt am Main, Germany, was used as case study (Table 1). 

Frankfurt am Main has generally a temperate-oceanic climate, with relatively cold winters and 
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warm summers. The building was naturally ventilated and cooled in summer and every office was 

equipped with an operable window that may be opened and shut to accommodate the occupant’s 

ventilation needs. Moreover, the building showed very strict design criteria in terms of energy 

efficiency and energy optimization for heating, cooling, ventilation and lighting, having an average 

transparent and opaque envelope U-value of 0.54 W/m²K.   

 
Table 1 Building Characteristics 
 
In this study, the following dataset [21] (Figure 2, 3) was used and includes:  

a) 16 private offices with single or dual occupancy (Table 2). E01 to E11 are eleven offices 

facing the east while W01 to W05 are five offices facing the west.  

b) 10-minute interval data over two complete years (Table 3) 

c) measured indoor and outdoor physical parameters (Table 4) 

d) measured behavior and energy use (Table 4) 

  
Figure 2. Two-part sun protection enables glare-free 
use of daylight 

Figure 3. Offices with operable windows and sun 
protection, allowing natural ventilation and natural 
lighting 

 
Table 2 Database Characteristics 
Table 3 Data Characteristics 
Table 4 Monitored Parameters Characteristics 

 

3.1 Statistical analysis and data normalization  

In this study, logistic regression analysis was performed to compare the leverage (b1-n coefficient’s 

impact factors) of the x1-n variables influencing the window opening and closing probability. 

Accordingly, the literature findings [22] suggested that the probability of opening and closing a 

window was calculated as function of 15 non-numerical and numerical variables for the 16 offices. 

Non-numerical variables: 

1. Season (Summer, Spring, Autumn, Spring) 

2. Day of the week (Monday to Sunday) 

3. Time of the day (Early Morning 6-9 am, Morning 9 am-12 pm, Noon 12-3 pm, Afternoon 3-6 

pm, Evening 6-9 pm, Night 9 pm-6 am) 

4. Window State (0=close, 1=open) 

5. Occupancy State (0=vacant, 1=present) 

6. Window Change (if occupancy state tn-1 = tn then = no change, otherwise = change) 
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7. Occupancy Change (if occupancy state tn-1 < tn then = arriving time, if occupancy state tn-1 > tn 

then = leaving time, otherwise = no change) 

8. Precipitation (event 0-1) 

Numerical variables: 

9. Indoor air temperature 

10. Outdoor air temperature 

11. Outdoor relative humidity 

12. Solar radiation horizontal 

13. Illuminance level 

14. Wind velocity 

15. Wind direction.  

In logistic regression modelling, it is normal practice in to undertake a process of parameter 

selection to identify the minimum number of variables required to predict observed behavior, based 

on their significance and usefulness. Nonetheless, cluster analysis was used in this study to group of 

variables influencing the window opening and closing behavior in the 16 offices. In this view, all 

the selected variables are potentially assumed equally significant and useful motivational stimuli 

driving occupants to satisfy their needs with respect to the natural ventilation of their offices.  

Data normalization was applied to numerical variables in order to scale each coefficient within a 

comparable range and to normalize east-west office orientation. In order to determine the 

coefficient’s impact factors, xmax and xmin were assumed as the original maximum and minimum 

coefficient values of the numerical variables selected for the statistical analysis. By rank 

normalization, a value x of the coefficient was transformed into x’ in the new specific coefficient 

range for each of the numerical variables in the east and west orientations (Table 5).  

𝑥𝑥′ =
(x − xmin)

(xmax − xmin) 

Logistic regression analysis was performed along the open source statistical analysis program R 

[48]. The east-west normalized coefficients’ impact factor of every variable on the window opening 

(Table 6) and closing (Table 7) probability, was then calculated for the 16 offices. 

 
Table 5 Coefficient range of the numerical variables for the East and West facing offices 
Table 6 Calculated variables and coefficients’ impact factors for window opening probability 
Table 7 Calculated variables and coefficients’ impact factors for window closing probability 

 

The following key points could be observed from the statistical analysis results: 

• Indoor air temperature, arrival time, occupant presence, time of the day (early morning) and 
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outdoor temperature were the main factors influencing window opening behavior. 

• Indoor air temperature, leaving time, occupant presence and time of the day (evening) were 

the main factors influencing window closing behavior. 

• Window opening and closing occupant behavior was equally affected by common physical 

and non-physical drivers. 

• Occupants in the building interact with windows principally driven by thermal discomfort 

(indoor air temperature) but also behave according to a daily routine (time of the day) and/or 

habits (arriving and leaving time). 

3.2 Cluster analysis of behavioral patterns  

The clusters in the present study disaggregate occupant behavior into patterns. Specifically, four 

patterns of behavior were mined in the given data set: motivational, energy intensity, activity and 

position.  

• Motivational patterns clustered the factors which drive the users to open or close windows. 

Clusters were labelled according to the impact (b1-n coefficient’s impact factors) the x1-n 

influencing variables had on the window opening and closing actions.  

• Opening duration patterns cluster occupant behavior based on the number of hours the 

window state was recorded open every day. 

• Interactivity patterns cluster occupant behavior based on the number of window position 

changes recorded every day. 

• Position patterns cluster occupant behavior according to the most frequent window degree of 

opening every day. 

Four distinct data sets, based on different parameters, were used to mine window opening drivers, 

state, change and position (Table 8). 

 
Table 8 Discerned behavioral patterns 

 

The k-means algorithm was employed along with the open source data mining program Rapid 

Miner 6.0 [48] to perform cluster analysis.  

The value 2>k<10 was adjusted in this study in order to find the kopt by using Cluster Distance 

Performance operator. In this study, the Davies–Bouldin index was used for performance 

evaluation. The k=n algorithm that produced clusters with low intra-cluster distances (high intra-

cluster similarity) and high inter-cluster distances (low inter-cluster similarity) had a low Davies–

Bouldin index, and were considered at the k=nopt cluster algorithm, for the specific data set. 
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3.2.1 Motivational behavioral patterns 

Patterns of window opening and closing drivers in offices were clustered based on the impact that 

the influencing variables played on these actions. The optimal k-means algorithm, validated by 

means the Davies–Bouldin index, grouped kopt=3 clusters for factors influencing window opening 

and kopt=2 clusters for factors influencing window closing.  

Each office was assigned to a cluster both considering window opening and closing actions. 

• Opening Cluster 1: 31% offices assigned (E01, E03, E04, E11, W02) 

• Opening Cluster 2: 31% offices assigned (E02, E05, E09, W04, W05)  

• Opening Cluster 3: 38% offices assigned (E06, E07, E08, E10, W01, W03) 

• Closing Cluster 1: 44% offices assigned (E01, E02, E03, E04, E09, E11, W02) 

• Closing Cluster 2  56% offices assigned (E05, E06, E07, E08, E10, W01, W03, W04, W05) 

The cluster centroids of the k=opt means algorithms were plotted to provide a visualization of the 

emerged occupancy patterns. Among the 15 numerical and non-numerical variables, Table 9 and 10 

highlight the top five influencing variables and coefficients for window opening and window 

closing, respectively. The results from Table 9 suggest the top five drivers for window opening 

were indoor air temperature, outdoor air temperature, time of the day (office arriving time and early 

morning) and occupancy presence. From Table 10, the top five drivers for window closing were 

indoor air temperature, time of the day (office leaving time and evening), occupancy presence and 

outdoor air temperature. 

 
Table 9 Clustered top five influencing variables and coefficients for window opening probability 
Table 10 Clustered top five influencing variables and coefficients for window closing probability 

 

Figure 4 shows the impacts (absolute value) that the driving forces have on the window opening 

and closing, towards the pursuit of occupant comfort. The key findings are as follows: 
 

Figure 4. Top 5 influencing factors for window opening and closing 
 

• Opening Cluster 1 appeared to be significantly more influenced by physical parameters such 

as indoor (6.49) and outdoor (2.25) air temperature than the other two clusters. Hence, 

offices assigned to this cluster were associated to a thermal-driven window opening 

behavior. 

• Opening Cluster 3 appeared to be more influenced by time-dependent parameters such as 

office arrival time (2.65) and time of the day (2.1) than physical parameters. This cluster of 

behavior tend to open windows as a response to preference and attitudes which were 
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psychological (preference and attitudes) and contextual more than physical drivers. Offices 

assigned to this cluster were therefore associated to a time-driven window opening behavior.  

• Opening Cluster 2 was mainly driven by a combination of a physical parameter such as indoor 

air temperature (3.51) and psychological and contextual factors such as office arriving time 

(2.53). Offices assigned to this cluster were therefore associated to a thermal-time driven 

window opening behavior. 

• Closing Cluster 1 was mainly influenced by indoor air temperature (4.93) and outdoor air 

temperature (3.87) when closing windows and time-dependent parameters were significant 

but secondary driving forces. Hence, offices assigned to this cluster were associated to a 

thermal-driven window closing behavior. 

• Closing Cluster 2 was mainly influenced by time-dependent parameters such as time of the 

day (3.34) and office leaving time (3.23) than physical parameters. Offices assigned to this 

cluster were therefore associated to a time-driven window closing behavior. 

Occupancy presence clearly emerged as one of the top five influencing factors for both window 

opening and closing actions. 

3.2.2 Window opening duration behavioral patterns 

The two-year data set was organized based on the number of hours the window state was recorded 

to be open in one day in each of the 16 monitored offices. The optimal k-means algorithm, validated 

by means the Davies–Bouldin index, grouped kopt=4 clusters of window opening duration during 

the four seasons of the year. Hence, three window opening duration patterns were clustered in the 

data set (Figure 5): 

• Long Openings: 19% offices assigned (E10, E04, W05) 

• Medium Openings: 31% offices assigned (E07, W01, E08, E05, E09) 

• Short Openings: 50% offices assigned (W04, E02, W03, E06, E01, E11, W02, E03) 

Generally, window were kept open for longer periods during summer months and for shorter 

periods during winter months. Even following this tendency, office E10 was labeled as isolated 

cluster with respect to the average window opening duration in the data set records. Office E10 

presented extreme window opening duration patterns where the window position was recorded (i) 

open almost all day long during summer months, (ii) around 16 hours per day during autumn and 

spring and, (iii) around 12 hours per day during the winter season. For simplicity to further 

consideration, this cluster was incorporated to the closest cluster and associated to the long 

openings behavioral pattern.  
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Figure 5. Window opening duration behavioral patterns in 16 offices 

 

The variation of the average duration for which the window was kept open in every office ranged 

from 0.04  h/day (office E04) to 6 hour/day (office E03) and not considering the extreme case 

(office E10, in which window state is recorded open on average for more than 17.2 h/day). 

• Long Openings: windows stay open for an average of 6 to 17.2 hours per day 

• Medium Openings: windows stay open for an average of 1 to 2.2 hours per day 

• Short Openings: windows stay open for an average of less than 0.7 hours per day 

3.2.3 Window interactivity behavioral patterns 

The same two-year data was reorganized based upon the average number of window state changes 

in one day, for each of the 16 offices. The optimal k-means algorithm, validated by means the 

Davies–Bouldin index, grouped kopt=3 clusters of window interactivity behavioral patterns during 

the four seasons of the year. Great variation among the number of daily window interaction was 

found among seasons of the year even in a same office. For these reasons, the number of daily 

window position changes during winter, summer, spring and autumn was used as indicators of the 

office user interactivity with the natural ventilation system.  

Three interactivity behavioral patterns were clustered in the data set (Figure 6): 

• Active Operation: 31% offices assigned (E02, E04, E07, E08, W01) 

• Neutral Operation: 25% offices assigned (E05, E06, E09, W05) 

• Passive Operation: 44% offices assigned (E01, E03, E10, E11, W02, W03, W04) 

 
Figure 6. Window interactivity behavioral patterns in 16 offices 

 

The average number of changes varies from 0.04 to 3.8 changes per day.  

• Active Operation: window position changes on the average from 2.1 to 3.8 times per day 

• Neutral Operation: window position changes on the average from 1 to 1.7 times per day 

• Passive Operation: window position changes on the average from 0 to 0.7 times per day 

3.2.4 Window position behavioral patterns 

The sole parameter of the number of window changes or the duration of the window state, was not 

indicative of the user preference regarding natural ventilation in indoor environment. Accordingly, 

the same two-year data was organized based on the most frequent window tilting angle position 
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(where 0 indicates window totally closed and 1 window totally opened) recorded for each of the 16 

offices. Hence, the most frequent window tilting angles were clustered into three window position 

behavioral patterns, named as small, intermediate and big opening (Figure 7). Outlier behavioral 

patterns (uncommon window opening position) were isolated and associated to the most extreme 

behavioral pattern for further considerations (big openings). 

• Small Openings: 50% offices assigned (E01, E02, E03, E06, E09, E11, W02, W03) 

• Intermediate Openings: 25% offices assigned (E05, E07, E08, W01, W04) 

• Big Openings: 25% offices assigned (E04, E10, W05) 

The average recorded window tilting angle varied based upon the hour of the day. 

• Big Openings: window tilting angle position varied on the average from 0.8 degrees around 

noon to 0.1 during night time. 

• Intermediate Openings: window tilting angle position varied on the average from 0.6 degrees 

around noon to a total close position during night time. 

• Small Openings: window tilting angle position varied on the average from 0.3 degrees around 

noon to a total close position during night time. 

 
Figure 7. Window position behavioral patterns in 16 monitored offices 

 

Interestingly, the typical window tilting angle of single offices varied broadly, when the data set 

was broken down into seasons. For these reasons, the window tilting angle recorded during winter, 

summer, spring and autumn was used to draw schedules of the window opening positions (values 

from 0=totally closed to 1=totally open) over the 24 hours of the day, for the four season of the year 

(Figure 8). 

 
Figure 8. Behavioral pattern schedules for window tilting angle 

 

 The findings presented in Figure 7 allow for the patterns of window tilting angle preferences on 

energy use and design of natural ventilation in office buildings, to be considered in future building 

energy modeling programs. The discerned schedules, sorted by season, day of the week and time of 

the day, represent more robust inputs for building energy modelling programs, like EnergyPlus [50] 

or IDA-ICE [51].   

3.3 Association rules mining among behavioral patterns  

Based on the information gained from the cluster analysis conducted in this study, each office was 
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associated to a motivational, duration, interactivity and position behavioral pattern concerning 

window use (Table 11).  

 
Table 11 Clustered behavioral patterns in 16 offices 

 

Association rules were mined with the objective to extract frequent and meaningful correlations 

among the four window behavioral patterns. The frequent pattern growth algorithm (FP growth) 

was the most commonly used algorithm to discover patterns into a given data set. The FP-growth 

algorithm was employed along with the open source data mining program Rapid Miner to mine the 

association rule mining (ARM) analysis.  

In order to obtain significant results from the ARM analysis, support of 30%, confidence of 80% 

and a lift of 1, were set as the minimum thresholds. Such criteria indicated that for each association 

rule mined, at least 30% of all the data records in the given data set contained both premise and 

conclusion, with the probability that a specific premise lead to a specific conclusion was more than 

80%. Moreover, all of the rules mined had positive correlations (lift>1). Such mining generated 12 

rules which provided useful information for the demonstration purposes in this study (Table 12). 

 
Table 12. Association rules mining of behavioral patterns 

 

From the information gained by the 12 rules mined, two typical working user profiles can be drawn: 

• User α was a working user type (rules 1, 2, 3, 4, 5, 6, 10, 11) which tended to open the 

window for short periods of time (0.04 – 0.7 hours/day), interacting on the average in 

between 0.7 and 0.04 times per day (passive operation) and usually preferred small openings 

(< 0.3 degree of tilting angle). Moreover, users α was mainly influenced by thermal 

parameters both when opening and closing windows (rule 9). 

• User β was a working user type (rule 8, 12) whom tended to open the window on the 

average from 1 to 2.2 hours per day (medium openings), interacting on the average in 

between 1.0 and 1.7 times per day (neutral operation) and usually preferred intermediate 

openings (< 0.6 degree of tilting angle). Moreover, user β was mainly influenced by time-

dependent parameters both when opening and closing window (rule 7). 

4. Discussion  

In a view of the complexity of human behavior, distinguishing singular diversity in big office 

building becomes a challenging task. Parameter selection methods such as regression and 
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correlation analysis are commonly utilized to identify the factors influencing occupant behavior in 

buildings and to cluster driver-response conditioning behavioral patterns. The strength of these 

statistical analysis techniques is their widespread familiarity among researcher and data analysts. 

Nonetheless, their outcomes are usually complex equations which may not be easily understandable 

and interpreted especially for non-expert users without advanced statistical knowledge (i.e. building 

operators and managers, building designers, energy modelers). Statistical analysis helps to identity 

repetitive behaviors, which may or may not be significant in terms of schedules of operation 

incorporated into energy models. Moreover, “standard” behavior does not exist in the real world, 

and the concept of pattern encompass much more than what is normally defined as expressions 

describing the most frequent behaviors in a building.  

In a view of these facts, our data mining framework suggests an improvement of the notion of 

behavioral patterns not only as statistical relevant driver-response conditioning clusters, but also 

incorporating the motivational dimension with typical window opening habits. In this context, 

cluster analysis gain information from key determinants for individual behavior by revealing a set 

of rules which may allow more accurate assumption on group behaviors overcoming the lack of 

personalization of statistical methods.  In a view of these facts, nevertheless the mined patterns of 

ventilation behavior are circumstantial to the given data set, the proposed framework was conceived 

generic enough to provide solutions to represent the diversity of typical office user profiles in real 

buildings. The further implementation of the discerned user profiles into building energy simulation 

tools provides an opportunity to establish an experience base for the assessment of real obtainable 

energy savings in buildings, equally in the design, retrofit and operation and maintenance contexts 

as well as for driving future energy policies (Figure 9).  

 
Figure 9. Schema explaining actual and further steps of the proposed methodology 

4.1 From driving factors to motivational patterns of behavior. 

Factors influencing window opening and closing, which could be named under the general term 

“drivers”, are the stimuli leading to a reaction in the building occupants in ways to restore their 

comfort with respect to natural ventilation.  

Window operation is not only influenced by perceived thermal condition, but it is also seen as a 

response of sensed indoor air quality, external (outdoor temperature, solar radiation, wind speed, 

rain) and internal (indoor temperature) environmental conditions as well as contextual factors 

(window type, time of the day, season of the year) and personal and cultural preferences. 

Different time scales of time dependent parameters such as 1) season of the year time 2) day of the 
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week and 3) time of the day, were included in the statistical analysis as predictor of the window 

opening and closing probability. Moreover, window and occupancy were expressed in terms of 4) 

window state (open/closed) 5) occupancy state (present/vacant) and 6) window and 7) occupancy 

change of state. These predictors, even if closely related to the same parameters, were not 

surrogates of the others and were not duplicative of the same action. Instead, they were indicators of 

time dependence, occupant presence and movement respectively. Altogether they describe the 

intricate dynamics of different occupant behaviors in buildings. In our view, this overlap provides 

clarity in describing the complexity of occupant behavior and addresses the inadequacy of current 

practices based upon simplistic standardized schedules and input.   

From the analysis it emerged that top drivers for window opening and closing were physical 

thermal (indoor air temperature, outdoor air temperature) and time-dependent contextual (time of 

arriving and leaving the office) parameters, apart from occupancy presence. These results 

strengthen the belief that not only physical factors, such as indoor and outdoor environmental 

parameters, influence human energy behavior, but also non-physical drivers, such as personal 

preference, habit, context and attitude, play an important role in understanding occupant behavior.   

The results demonstrated that, in the specific office buildings, three motivational patterns of 

window opening (thermal-driven, time-driven, thermal-time driven) and two motivational patterns 

of window closing (thermal-driven, time-driven) stimulated an occupant to open a window.  

4.2 From occupant behavior to user profiles 

Clustering procedures were employed in order to analyze different aspects of the window opening 

and closing behavior. The goal was to estimate why, for how long, how often and how much similar 

patterns of occupant open and close windows in offices of the same building. In this aim, the 

research was clustering 1) motivational, 2) opening duration, 3) interactivity and 4) degree of 

opening position behavioral patterns which would further constitute a base for association rules 

segmenting the building occupants into attitudinal typical working user profiles. From the 

information gained by the 12 rules mined, two typical working user profiles were drawn. User α 

was a mainly physical environmental driven working user type which tends to open the window for 

short periods of time (0.04 - 0.7 hours/day), interacting infrequently (on the average in between 0.7 

and 0.04 times per day and usually preferred small openings (< 0.3 degree of tilting angle). On the 

other side, user β was mainly contextual driven working user type which tended to open the 

window for longer periods (on the average from 1.0 to 2.2 hours per day), interacting more 

frequently (on the average in between 1 and 1.7 times per day) and usually preferred intermediate 

openings (< 0.6 degree of tilting angle).  
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5. Conclusions 

A framework combining statistical analysis with two data-mining techniques, clustering and 

association rules, was employed to identify occupant behavior patterns of window opening and 

closing in a natural ventilated office building in Germany, using detailed time-interval measured 

building data.  

Goal of the research was to identify 1) motivational, 2) opening duration, 3) interactivity and 4) 

degree of opening position behavioral patterns. In this aim, four aspects of window operations were 

clustered:  

1. three (thermal-driven, thermal/time-driven, time-driven) motivational patterns clustering the 

factors driving window opening and closing behavior according to the impact that the 

factors play on the two actions  

2. three (long, medium, short) opening duration patterns clustering occupant behavior based on 

the number of hours the window state was recorded open every day 

3. three (active, neutral, passive) interactivity patterns clustering occupant behavior based on the 

number of window position changes recorded every day 

4. three (small, intermediate, big) opening position patterns clustering occupant behavior 

according to the most frequent window degree of opening every day.  

Analysis of the results indicated indoor air temperature, outdoor air temperature, time of the day 

(office arriving time and early morning) and occupancy presence are the top drivers for window 

opening. On the other hand, indoor air temperature, time of the day (office leaving time and 

evening), occupancy presence and outdoor air temperature emerged as top drivers for window 

closing.  

The four behavioral patterns were further mined using association rules to produce two typical 

window opening office user profiles, one mainly physical environmental driven and one mainly 

contextual driven. The results indicated that office users interact with windows principally driven 

by thermal discomfort (indoor air temperature) but also behave accordingly to daily routine (time of 

the day) and habits (arriving and leaving time).  The implications of these findings suggest that 

occupant behavior was somewhat predictive and subject to the constraints or motivating factors of 

thermal comfort and time management.  

From the association rule, it emerged that when interacting with windows to restore the indoor 

environmental quality, users mainly driven by physical environmental parameters had less impact 

on natural ventilation than users driven by contextual factors and habits, opening windows for 

shorter periods of time, interacting less frequently and usually preferring smaller openings. 

In the bigger picture this implies that behavioral patterns are not only statistical relevant driver-
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response conditioning clusters, but also incorporate the motivational dimension with typical 

window opening habits. In a view of these facts, any improvement of the notion of behavioral 

patterns associating the driver-response conditioning motivational dimension with typical window 

opening habits data mining, overcoming the lack of personalization of statistical methods, is 

strongly required in order to bridge the gap between predicted and actual building energy 

performance.  

Occupants in naturally ventilated buildings are demonstrated to accept and actually prefer a 

significant wider range of temperatures compared to users of mechanically ventilated buildings, 

positively influencing their satisfaction with working spaces and leading them to higher 

productivity. However, while providing manual ventilation opportunities seems to be beneficial, in 

doing so the behavior of the occupants gained a larger degree of influence on the indoor 

environment and energy performance, especially when a robust variation of motivations leading to 

window opening and closing, duration and number of opening and typical degree of opening was 

demonstrated. In this view, the persistent patterns of operation and non-homogeneous working user 

profiles drawn by this study could be broadly applied in further studies to: 

1) provide more accurate assumption of actual natural ventilation scenarios in big office buildings 

that may allow building designers and operating manager to tailor more efficient and robust control 

strategies and system and envelope design; 

2) quantify the energy and economic impacts of diverse ventilation office user profiles in a block of 

buildings, as well as the sensitivity of physical-environment and contextual time-dependent 

influencing factors on occupancy, space optimization, thermal comfort and productivity in offices; 

3) deliver a set of behavioral rules at the office level to direct specific operation and maintenance 

and ventilation energy saving strategies with a high replication potential and low capital investment, 

as well as future energy saving policy in the commercial building sector.  
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Table 1 Building Characteristics 
  
Type of building Multi-story office building 
Dimension 17402 m2 (8585 m2 heated) 
No. of Employee ~350 employees 
Location Frankfurt, Germany 
Thermal characteristics  Low energy standard of building envelope  

(U-values walls 0.24 to 0.5 W/m2K, windows 1.5 W/ m2K) 
Annual primary energy consumption Less than 100 kWh/m2 
Type of observed spaces  Office rooms 
Year of construction  2002 
No. of floors  2-level underground car park + 4 office floors + 1 floor apartments on top 
Windows, orientation  Mostly E and W 
Window opening Tilt-and turn (automatic BMS + occupant driven mode) 
Shading devices  External sun protection (automatic BMS + occupant driven mode) 

 
Table 2 Database Characteristics 
 
Number of offices 16 

Period of measurement 2006 and 2007 
Type of observed spaces with sensors standard offices  
Dimension of observed spaces 20 m2 
Occupancy level of observed spaces 1 or 2 persons 
Number of observed spaces with indoor CO2-concentration 3 
Orientation East and West 

 
Table 3 Data Characteristics 
 Items Interval 
Climate Outdoor air temperature, outdoor humidity, wind speed, solar 

radiance 10 min 

Building envelope Not in database  
Building service & Systems  10 min 
Operation & Maintenance Monitoring of heating, cooling, lighting and ventilation system, 

and related energy flows 
10 min 

Indoor environmental quality Indoor (operative) temperature, humidity, (CO2) 10 min 
Occupants’ activities and behavior Window state (open/closed) 

Presence 
State of sun protection (open/closed) 
Usage of lighting equipment 

Event 

Social and economical aspects None  
 
 
 
 
 
 
 
 
 
 
 



Table 4 Monitored Parameters Characteristics 

Outdoor  Indoor  Behavior 

Solar radiation [W/m2] 
Rain – amount [l/m2] 
Rain – event [yes/no] 
Light intensity– horizontal [lx] 
Light intensity - South [lx] 
Light intensity - East [lx] 
Light intensity - North [lx] 
Light intensity - West [lx] 
Outdoor temperature [°C] 
Wind – velocity [m/s] 
Wind – direction [°] 
CO2 content in air [ppm] 
Outdoor humidity [%rh] 

Room air temperature [°C] 
 Surface temperature [°C] 
Ceiling slab temperature [°C] 
CO2 concentration [ppm] 

 
 

 

Occupancy [0/1]* 
Window contact [0/1 ; Reed 
contacts]* 
Top light control [0/1 ; Reed 
contacts]* 
Sun protection [% of closure: 0% 
= open to 100% = closed] 
Electricity consumption [kWh] 
 

 
Table 5 Coefficient range of the numerical variables for the East and West facing offices 

Numerical Variables East Offices West Offices 
Indoor air temperature (C°) 23 18 
Solar radiation horizontal 1092 1092 

Illuminance level 98824 97646 
Outdoor temperature 44 44 

Wind velocity 13 13 
Wind direction 360 360 

Outdoor relative humidity 73 73 

 
Table 6 Calculated variables and coefficients’ impact factors for window opening probability 
  E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 W01 W02 W03 W04 W05 
(Intercept) -2.86 -0.44 0.24 1.59 3.33 -10.77 -2.38 1.04 1.81 -22.97 -19.97 2.97 1.99 7.49 -0.62 2.51 
Occupancy presence -1.13 -0.65 -1.7 -1.79 -1.66 -0.12 -1.24 -1.45 -2.78 16.67 14.85 -1.84 -1.61 -1.29 -1.15 -1.80 
Air temperature -2.92 0.40 -9.08 -7.49 -4.47 4.66 1.37 -5.31 -4.32 -0.58 -2.35 -6.81 -21.35 -8.16 -0.20 -5.04 
Arriving time -1.10 -1.69 -14.23 -2.25 -2.13 -2.61 -3.15 -2.53 -3.35 -0.83 -0.22 -2.47 0.34 -14.92 -19.18 -2.67 
Season spring 0.74 -1.38 -1.80 0.17 0.15 -0.35 -0.68 -0.49 -0.59 1.32 -0.09 -0.69 -0.50 2.54 0.37 -0.03 
Season summer 0.55 -1.54 0.05 -0.81 0.52 0.15 -0.73 -0.72 -0.32 -14.86 -1.91 -0.70 -14.20 1.08 -15.42 -0.20 
Early morning -2.76 -2.46 0.47 -0.88 -16.34 -0.22 -0.03 0.01 -1.91 -17.10 -1.46 -1.87 0.98 -2.73 -1.07 -0.98 
Outdoor temperature 1.77 -0.17 3.99 2.99 -0.95 2.94 1.66 1.11 0.98 5.00 1.33 2.46 13.61 2.07 1.02 2.46 
Outdoor RH -0.80 -2.17 -4.54 -0.59 -1.65 1.06 -1.60 -0.34 -1.02 -0.31 -2.41 -0.60 -0.31 -2.15 -3.12 -0.32 
Noon -0.69 -0.11 1.06 0.00 -0.47 0.30 -0.31 0.30 -0.55 -17.48 0.57 -0.20 17.06 -0.28 -0.28 0.44 
Solar radiation horizon -2.03 -0.79 -2.64 -0.81 -0.29 0.06 -1.55 0.27 -1.44 -2.40 -1.56 -0.56 -3.31 -0.57 0.44 -2.03 
Season winter 0.41 -0.28 0.05 0.09 -0.10 -0.38 -1.24 0.12 0.33 0.42 -0.52 -0.21 1.48 2.88 0.47 -0.05 
Morning -0.27 0.13 2.78 0.07 -1.08 -0.26 0.00 0.00 0.74 -16.95 -0.50 0.04 19.03 0.45 0.54 0.35 
Illuminance level 1.01 0.24 -0.29 0.24 -1.56 1.50 0.74 0.21 0.43 -2.55 1.29 0.36 -4.77 -0.38 0.17 -1.04 
Wind velocity 2.14 0.97 1.54 0.58 -0.08 0.42 0.34 1.52 1.43 2.97 -0.40 0.16 -1.20 -2.44 -0.30 -0.28 
Wind direction -0.38 -0.60 0.82 0.02 0.07 -0.19 -0.29 -0.50 -0.05 1.86 0.37 0.05 0.40 -0.11 0.61 0.36 
 

 

 

 

 

 



Table 7 Calculated variables and coefficients’ impact factors for window closing probability 

 
E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 W01 W02 W03 W04 W05 

(Intercept) -15.9 -4.52 -12.55 -4.74 -3.93 -11.52 -5.69 -4.60 -4.54 -23.80 -7.71 -5.47 -11.48 1.34 -1.70 -5.53 
Occupancy presence -1.74 -1.52 -2.28 -2.31 -2.19 -1.98 -2.99 -2.05 -1.83 -3.23 -1.78 -2.40 -1.33 -2.91 -3.18 -2.41 
Leaving time -2.05 -2.68 -19.01 -5.13 -4.12 -3.17 -3.04 -3.35 -2.24 -20.52 -1.76 -3.46 -18.35 -16.08 -4.53 -4.68 
Evening -3.62 -3.57 -15.25 -2.72 -3.16 -4.96 -2.47 -5.03 -2.79 -1.94 -1.39 -17.20 1.24 -2.54 -3.00 -17.19 
Season spring 0.72 -1.53 -2.25 -0.34 -0.33 -0.45 -0.79 -0.65 -1.25 16.90 -1.21 -0.71 -1.03 2.46 0.24 -0.38 
Early Morning 0.04 -1.61 0.06 0.84 -1.95 0.30 0.88 0.69 0.77 1.10 0.42 0.45 4.09 1.00 1.16 1.34 
Illuminance. level 0.36 0.70 0.09 1.12 1.57 1.07 1.54 0.20 1.53 -0.02 2.77 -1.29 5.14 -0.01 0.30 0.69 
Season winter 0.31 -1.69 -0.02 -1.18 0.26 0.12 -1.00 -0.97 -0.59 -0.63 -2.31 -0.96 -14.60 0.92 -15.39 -0.84 
Season summer 0.17 -0.32 -0.68 -0.56 -0.49 -0.52 -1.30 -0.21 -0.37 17.78 -1.43 -0.55 1.01 2.73 0.22 -0.50 
Noon  0.21 0.15 0.77 0.41 0.28 0.42 0.18 0.52 -0.72 -0.50 1.41 0.64 3.70 0.28 0.62 0.94 
Air temperature 8.65 2.78 1.54 0.77 1.41 5.78 3.20 0.76 1.24 0.99 2.72 2.75 -8.56 -1.31 2.33 2.42 
Morning 0.12 0.03 1.80 -0.09 0.27 -0.43 0.18 0.32 -0.26 -0.03 1.26 0.83 4.38 1.48 1.43 0.93 
Outdoor temperature -0.37 -1.01 1.74 -0.38 -1.85 3.12 0.53 -0.24 -1.16 -2.84 -0.78 -1.12 11.02 -0.86 0.39 -1.11 
Solar radiation horizon 0.00 1.05 3.43 -0.04 -0.41 0.73 0.12 0.69 0.17 1.48 -1.00 0.82 -1.51 -0.21 0.45 -0.20 
Wind velocity 0.63 0.21 3.07 1.55 0.63 -0.09 -0.06 0.80 1.29 0.89 -1.90 -0.98 0.70 -2.04 -1.18 0.17 
Outdoor RH 0.19 -0.47 1.42 0.23 0.19 1.37 0.67 0.01 0.12 -2.20 -2.23 0.36 -1.21 -2.21 -2.66 0.33 
Wind direction -0.15 -0.34 0.35 -0.15 0.17 -0.46 0.11 -0.23 0.07 0.01 1.47 -0.10 1.55 -0.66 0.25 -0.17 

 
Table 8 Discerned behavioral patterns 

PATTERNS OF BEHAVIOR DATA MINING PARAMETERS  
Motivational  Window opening/closing drivers coefficients and variables (statistical analysis) 

Opening duration Window state h window open or close/day 

Interactivity Window changes n changes/day 

Position Window degree of opening tilting angle (from 0 to 1) 

 
Table 9 Clustered top five influencing variables and coefficients for window opening probability 
Opening Cluster_1 Opening Cluster_2 Opening Cluster_3 
Variables Coeff. Variables Coeff. Variables Coeff. 
Indoor air temperature -6.49 Indoor air temperature -3.51 Arriving time -2.65 
Outdoor air temperature -2.25 Arriving time -2.53 Early morning -2.1 
Arriving time -2.01 Early morning -2.21 Air temperature -1.64 
Occupancy presence -1.6 Occupancy presence -1.82 Outdoor air temperature 1.57 
Early morning -1.09 Evening -1.41 Occupancy presence -1.48 
  

Table 10 Clustered top five influencing variables and coefficients for window closing probability 

Closing Cluster_1 Closing Cluster_2 
Variables           Coeff. Variables               Coeff. 
Air temperature -4.93 Evening -3.34 
Outdoor air temperature -3.87 Occupancy leaving -3.23 
Evening -2.81 Occupancy presence -2.31 
Occupancy presence -1.93 Indoor air temperature 1.19 
Occupancy leaving 1.45 Outdoor air temperature 0.75 

  



 

Table 11 Clustered behavioral patterns in 16 offices 

 

  Motivational Duration Interactivity Position 

office window opening window closing window state window change window tilting angle 

E01 thermal driven thermal driven short openings passive operation small openings 
E02 thermal/time driven thermal driven short openings active operation small openings 
E03 thermal driven thermal driven short openings passive operation small openings 
E04 thermal driven thermal driven long openings active operation big openings 
E05 thermal/time driven time driven medium openings neutral operation intermediate openings 
E06 time driven time driven short openings neutral operation small openings 
E07 time driven time driven medium openings active operation intermediate openings 
E08 time driven time driven medium openings active operation intermediate openings 
E09 thermal/time driven thermal driven medium openings neutral operation small openings 
E10 time driven time driven long openings* passive operation big openings* 
E11 thermal driven thermal driven short openings passive operation small openings 
W01 time driven time driven medium openings active operation intermediate openings 
W02 thermal driven thermal driven short openings passive operation small openings 
W03 time driven time driven short openings passive operation small openings 
W04 thermal/time driven time driven short openings passive operation intermediate openings 
W05 thermal/time driven time driven long openings neutral operation big openings 

*outlier 
 
Table 12. Association rules mining of behavioral patterns 

rules premise conclusion support confidence lift 

1 
window tilting angle_small openings,  

window closing_thermal driven window state_short openings 0.31 0.83 1.67 

2 window state_short openings,  
window change_passive operation 

window tilting angle_small openings 0.31 0.83 1.67 

3 window closing_thermal driven window tilting angle_small openings 0.38 0.86 1.71 

4 window change_passive operation window state_short openings 0.38 0.86 1.71 

5 window tilting angle_small openings window state_short openings 0.44 0.88 1.75 

6 window state_short openings window tilting angle_small openings 0.44 0.88 1.75 

7 window opening_time driven window closing_time driven 0.38 1 1.78 

8 window tilting angle_ intermediate 
openings 

window closing_time driven 0.31 1 1.78 

9 window opening_thermal driven window closing_thermal driven 0.31 1 2.29 

10 
window state_short openings,  

window closing_thermal driven 
window tilting angle_small openings 0.31 1 2 

11 window tilting angle_small openings,  
window change_passive operation 

window state_short openings 0.31 1 2 

 



 
Figure. 1 Proposed framework of the research 

 

 
Figure 2. Two-part sun protection enables glare-free use of daylight 

 

 
Figure 3. Offices with operable windows and sun protection, allowing natural ventilation and natural lighting 

 

 



 
Figure 4. Top 5 influencing factors for window opening and closing 

 



 
Figure 5. Window opening duration behavioral patterns in 16 offices 

 

 
Figure 6. Window interactivity behavioral patterns in 16 offices 



 
Figure 7. Window position behavioral patterns in 16 monitored offices 

 

 
Figure 8. Behavioral pattern schedules for window tilting angle 

 

 
Figure 9. Schema explaining actual and further steps of the proposed methodology 
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