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Abstract

We analyze data from 36 commercial and government buildings that participated
in a Demand Response (DR) program in California, to investigate the extent to
which DR load shed in each building depends on outdoor air temperature, and
whether the load shed varies systematically from year to year. Our baseline model
has substantially lower error than other standard models but uncertainty in the load
shed is still an impediment to addressing these questions. The model is accurate
enough in 29 buildings to be used to investigate the relationship between outdoor
temperature and the DR load shed, and data availability and accuracy are sufficient
to investigate year-to-year persistence of load shed in 19 buildings. We find that for
buildings in this dataset, most buildings shed several percent of their load during
DR events. In about two thirds of buildings, higher outdoor air temperature lead to
slightly reduced load shed. Year-to-year changes in load shed were generally small,
except that in several buildings the load shed was small or nonexistent in the first
year of participation in the program and increased subsequently.

1 Introduction

“Demand Response” (DR) means a temporary change in building electric power usage,
called “load,” in response to a signal from an electric utility or aggregator. There are
several types of DR programs, most of which involve the utility or aggregator declaring
a ”DR event” for a period of a few hours, a few times per year, during which program
participants are required or expected to reduce their electric load compared to normal
operations. In this paper we report results from one specific program and consider only
the energy used during the DR event, making no distinction between cases in which load
was shifted to other times outside the DR period and cases in which load was eliminated
altogether. The amount by which the load is reduced during the DR period, compared
to what the load would have been under normal building operations, is called the “load
shed”.

We analyze data from 36 buildings that participated in a specific Demand Response
(DR) program in California at some time from 2006–2009 inclusive. All of the buildings



responded automatically to the DR signal, using a building-specific pre-programmed
response that did not require human intervention.

Most of these are office buildings, or combine office space with manufacturing or
laboratory space, although there are also a few retail stores and a bakery. We have data
from at least two years for 25 of the buildings, although, as we discuss below, only 19
of these are useful for investigating year-to-year changes in load shed. In this “critical
peak pricing” program up to 12 DR events were called each calendar year, each event
including two time periods: (1) a period from 12–3 PM during which the electricity
price was three times the normal price, and (2) a period from 3–6 PM during which the
electricity price was five times the normal price.

The DR strategy in all but one of the buildings included either a “global temperature
adjustment” — setting the thermostats to allow the indoor temperature to rise to a
higher level than normal throughout the building — or some other manipulation of the
cooling and ventilating system. Some of the buildings also shut off some lighting or took
other actions. The only building that did not manipulate indoor temperatures or cooling
equipment operation as part of the DR response was the bakery, whose response was to
shut off the “pan washer” (essentially a large dishwasher).

We investigate the following questions for buildings that participated in this DR
program:

1. To what extent, if at all, can the DR load shed be predicted from outdoor temper-
ature?

2. Does the DR load shed in a building tend to change systematically with time; more
specifically, does the load shed tend to decrease, increase, or stay about the same
from year to year?

3. Does the relationship between outdoor air temperature and building electric load
tend to change systematically with time?

The latter two of these questions are motivated by the possibility that DR methods may
eventually be adopted as part of normal building operations. This would likely be a
benefit to both the utility and the customer: the building’s peak load will be reduced, as
desired by the utility, and the customer will likely save money through reduced energy
costs during normal operations. However, such a migration of DR responses into normal
building operation will generate smaller load sheds than if the same actions were taken
only during DR events. For example, most of the buildings shed load largely by increasing
the thermostat set point so that less air conditioning is provided. If building operators
discover that occupants are tolerant of the resulting indoor temperature, which is higher
than had previously been normal in the building, they may permanently increase the
thermostat set point. In this case, the building will use less energy on hot days because
the relationship between load and outdoor temperature will become weaker, but the
DR load shed will also decrease because (1) the reduced indoor-outdoor temperature
difference will reduce the impact of a given change in thermostat setpoint, and (2) the
setpoint of normal operation is now closer to a temperature that occupants are unwilling
to tolerate, so the magnitude of the setpoint change during a DR event will have to be
reduced.



2 Data

2.1 Full Data Set

We acquired load data for each of the 36 building from Pacific Gas and Electric (PG&E).
The data are a from a convenience sample of large commercial customers who partici-
pated in at least one year of an automated DR program from 2006–2009 inclusive. The
dataset comprises 12 office buildings; 8 buildings that combine office and manufacturing
space; 6 that combine office and medical laboratory space; 2 that combine offices and
other uses; 5 large retail stores; and a museum, a jail, and an industrial bakery.

We obtained hourly outdoor air temperatures for the ZIP code for each building’s
location from the company Weather Underground.

2.2 Reduced Data Sets

As we discuss in the Results section, we find that the baseline uncertainty in some
buildings is large, which leads to large uncertainties in the load sheds for the individual
DR events. Data from those buildings are not useful for quantifying load shed, or
for quantifying the relationship between load shed and temperature, so most of our
analyses will exclude the seven buildings for which the standard error of the baseline
predictions exceeds 8% of the baseline. The remaining 29 buildings are used to examine
the relationship between load shed and temperature, but ten of them include data for
only a single year and are therefore not useful for investigating year-to-year changes.

3 Methods

A statistical model was used to estimate the load shed for each DR event in each building.
Results were used to quantify the extent to which the load shed can be predicted from
outdoor air temperature. Finally, we investigated whether the load shed tends to decrease
from year to year.

3.1 Baseline statistical model

The load shed is the difference between how much energy the building would have used if
not for the DR event and the energy the building actually used. The energy the building
would have used in the absence of the event must be predicted from a statistical model.
See Coughlin et al. (2008) for an overview and discussion of statistical models used for
baseline calculations.

We fit a statistical model to data from non-holiday weekdays that are not DR event
days, and then applied the model to predict the load during the DR periods. A separate
model was fit for each building and for each year, using only data from May-September
(inclusive). We refer to non-holiday weekdays as “eligible days,” and exclude ineligible
days from the model.

The model is fit in four steps, which we summarize here briefly and then explain in
detail below. Parameters were estimated separately for the 12 - 3 PM and 3 - 6 PM time
periods, using the following algorithm.



1. Using only the eligible days that are not DR days, fit a model to predict the load
as a function of the outdoor air temperature and the time of week. By “time of
the week” we mean a cyclical index that counts the interval of the week, analogous
to “hour of the day.” Every Monday at 3 PM is the same time of the week.

2. The difference between the actual load and the predicted load is called the residual.
Empirically, if yesterday’s he prediction was too low (i.e. the residual was positive),
today’s prediction is also likely to be too low. Determine the relationship, on
average, between the residual at a given day and time and the residual for the
previous eligible non-DR day. Do this separately for days that follow an eligible
non-DR day by one or two days, and those that follow such a day by three days (e.g.
every Monday is at least three days removed from the previous eligible non-DR
day).

3. Similarly, determine the relationship between the residual on a given day and the
residual for the subsequent eligible day that was not a DR day: if tomorrow’s
predicted load is too high, then the prediction for today is also probably too high.

4. Use the relationships determined in steps (2) and (3) to predict the residual for each
day from the residual for the previous eligible non-DR day, and from the residual on
the subsequent eligible non-DR day. Add the average of these predicted residuals
to the predicted load from step (1) to determine the final prediction. Once the
statistical models have been determined by fitting to data for eligible non-DR
days, the same models (and parameters) can be applied to DR days in order to
predict the baseline for those days.

The model outlined above is described in detail below. We first introduce some
notation. We first describe the model for predicting average load from 12 - 3 PM; the
same model is used for 3 - 6 PM. The index d counts the number of days since the start
of the dataset. Additionally, we need notation to refer to the day of the week: DOW (d)
is 1 if day d is a Monday, 2 if it’s a Tuesday, and so on. For each building, y(d) is the
mean load from 12 - 3 PM on that day, and T (d) is the mean temperature from 12 - 3
PM.

1. Using only data that are from eligible days that are not DR days, fit a model to
calculate a load prediction ẑ(d). The prediction is

ẑ(t) = αDOW (d) + βLT (d) + βM (T (d) − T0) + βH(T (d) − T1) (1)

Here αDOW (d) is the “day of week effect”, an upward or downward shift that allows
the prediction on one day of the week to differ from another day of the week even if
the temperature is the same. T0 and T1 are temperature “change points”: electric
load is assumed to be linear above, below, and between the change points, but the
form of the model allows the slope to change at each change point: βL is the change
in load per unit change in outdoor temperature for “low” temperatures (below T0);
βM is an additional slope that is added to βL for temperatures above T0; and βH
is an additional slope that is added to βL + βM for “high” temperatures above T1.
The errors, also called residuals, are

ε(d) = y(d) − ẑ(d) (2)



and all parameters are chosen to minimize the sum of squared errors subject to the
constraints that the change point temperatures Ti are at least 2.2 C (4 F) apart,
and that at least 10% of the temperature measurements exceed T1 and at least
10% are below T0.

2. The predictions ẑ(d) take weekly patterns of energy use into account, as well as
the effect of outdoor air temperature. But there is autocorrelation of the residuals:
if the prediction for yesterday afternoon was too high, then the prediction for this
afternoon is also likely to be too high. We remove this effect, on average, by adding
an adjustment to the model. For each day d, let d− identify the previous eligible
non-DR day, and k− be the integer number of days since that day. (In all of the
following notation, the subscript ‘−’ indicates that we are looking back in time; a
+ will indicate that we are looking ahead). So, for instance, if d = 15 (the 15th
day of the dataset), which happens to be a Monday, then d = 15, d− = 12 (that
is the previous Friday), and k− = 3. Perform separate linear regressions, with
no intercept term, for days with k− ≤ 2 and days with k = 3, to determine the
average relationship between the past residual and the current residual. (So, for
instance, if yesterday’s load prediction was 22 kW too high, what is the expected
error in today’s load prediction?). This amounts to determining value of γ−s in
the equation

ε̂− = γ−sε(d−) (3)

where s = 1 if k− ≤ 2, and s = 2 if k− = 3. The k− = 3 case occurs almost
every Monday, and k− = 1 occurs almost every other day of the week. The k− = 2
case occurs following a mid-week holiday or DR day. We do not use data from
k− ≥ 4 since (1) there are very few such days so regression coefficients would be
very uncertain, and (2) we expect the predictive value to be small at such a large
temporal separation; for these days we let ε̂− = 0 (and similarly for those with
k+ ≥ 4).

3. Similar to the above, but looking into the future instead of the past: For each day,
let k+ be the number of days until the next eligible non-DR day. Define s = 1 if
k+ ≤ 2 and s = 2 if k+ = 3. Perform no-intercept regressions for days with s = 1
and s = 2 to predict the residual on day d from the residual on the next eligible
non-DR day:

ε̂+(d) = γ+sε(d+) (4)

4. Calculate the final estimate for the load: start with the prediction from the change-
point model, then adjust upward or downward based on the mean of the predicted
residuals based on preceding and subsequent days.

ŷ(d) = ẑ(d) +
1

2
(ε̂−(d) + ε̂+(d)) (5)

The procedure above is fit to data from all of the eligible non-DR days, and then
used to predict the baseline load on the DR days. The estimated load shed on day d is
then

S(d) = d̂(t) − y(d) (6)



which is defined such that a positive value means the building successfully shed load.
The same procedure is used to estimate the load shed from 3 - 6 PM, and the results are
summed to estimate the load shed for the entire DR period.

There is no direct way to measure the errors in the predictions on DR days since
the baseline load cannot be known for those days: the whole point of DR is that the
load differs from the baseline. Instead, to quantify the statistical distribution of errors
we use cross-validation. For each building we use the model to predict the baseline
load for non-DR days, and then calculate the error in the prediction by comparing the
prediction to the actual load, which is the baseline load by definition. This procedure
is applied separately for each of the 20 eligible non-DR days with highest peak outdoor
air temperature and the standard deviation of the errors is determined, yielding 20 error
terms ei. Hot days are used for cross-validation because DR days usually have high
outdoor temperature, so the hot non-DR days are expected to be the days with loads
most similar to those on DR days. The errors on hot days may differ systematically
from the errors on cooler days: specifically, the errors on hot days are probably larger in
magnitude, on average, because the small number of hot days may lead to poor estimate
of the β parameters in Equation 1.

The first stage of the statistical model described above is a variant of a simple regres-
sion model that has been used previously and is described in Mathieu et al. (2011). The
current model differs from that model in three ways, not counting changes in notation:

1. The current model estimates a different relationship between load and outdoor
temperature for the two time periods of the day. The temperature relationship
varies with time of day because the internal heat load in the building differs with
occupancy and other time-dependent variables, and because insolation also varies
with time and is not perfectly correlated with outdoor temperature.

2. The current model uses two temperature change points, rather than a larger num-
ber of fixed “knots,” in the relationship between outdoor air temperature and
building load. For the present paper we are fitting only summer afternoon data
so there is no need to span a large range of temperatures, and thus no need or
justification for a large number of segments in the relationship.

3. The final step of adjusting for the residual from nearby days helps reduce common
problems of the previous models, such as the effect of a trend or a persistent shift
in load during the summer. This could also be achieved with a time-series model
in which the regression parameters and autoregression parameters are estimated
together, but the present model is more stable — more robust to outliers, for
example — and is immune to numerical problems with parameter estimation that
could be a problem for a model that combines multiple temperature change points
with an autoregressive model.

The present model adjusts the initial baseline prediction upward or downward based
only on residuals from earlier and subsequent days. In contrast, some previous baseline
DR predictions have used a “morning adjustment”, in which an initial prediction for the
load during the afternoon is increased or decreased on the basis of the residual earlier on
the same day. We considered that approach but rejected it because (1) some buildings



deliberately change their energy use before the DR period, usually through “pre-cooling”
to reduce indoor temperatures so that the building will remain more comfortable during
the DR period when less cooling is provided, and (2) in many buildings the load during
the morning is very different from one day to the next, so a morning adjustment can
yield poor results in some buildings even though it helps on average.

4 Results

4.1 Error in Baseline Estimates and Load Sheds

We compared our model (described above) to two other models that have been used to
estimate load shed: (1) a “10/10” model in which the baseline load during the DR period
is estimated to be the mean load during that time of day over the past ten eligible non-
DR days, and (2) a regression model, described in Mathieu et al. (2011) and applied
to DR load shed estimation in Kiliccote et al. (2010), that includes “time of week”
effects as well as a piecewise-linear temperature relationship. The latter model is similar
to the first stage of our model, although it assumes that the relationship between load
and temperature is the same throughout the workday whereas ours estimates a different
relationship for each of the two DR periods.

To quantify the statistical distribution of baseline errors we used cross-validation.
For each building, load predictions were made for the period from 12–6 PM for each of
the 20 hottest eligible non-DR days of each summer (that is, the days with the highest
peak temperature). The primary parameter of interest is the “baseline percent error”,
defined as the the difference between the predicted average load and the actual average
load during the time period, divided by the actual average load during the period, times
100. An error of 2% means the prediction was 2% too high; -2% means the prediction
was 2% too low. When we discuss “baseline error” in the rest of this report we are
referring to the percent error unless we explicitly say otherwise.

The present model outperformed both of the other models. For instance, the median
error (for all of the hot days in all of the buildings and all of the years) is less than
4%, compared to 6% for the 10/10 model and 5% for the regression model of Mathieu
et al. Considering each prediction individually, the absolute baseline error is lower with
the present model for 65%–70% of the cases. The situation is even more extreme when
considering the predicted load summed over all 20 hot days of each year, which is the
error in the total energy used in the afternoons of those days: the present model had a
lower error than the 10/10 model in almost 95% of the building-years, and the error is
lower by a factor of two in about a third of the building-years.

Figure 1 shows the baseline error for each of the 20 hottest days each summer, for each
building and each year for which we have data in the building. Buildings are numbered
according to an arbitrary scheme, and are ordered in the plot so that the buildings with
largest error are at the top. As can be seen in buildings near the top of the figure,
buildings that have large errors in one year also have large errors in other years.



Baseline Error As a Fraction of the Load
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Figure 1: Error in the baseline estimate for each of the 20 hottest days of the year in
each building. Building types, shown along the y axis, are: O = office, OM = office +
manufacturing, OL = office + labs (medical), OX = office + other, R = retail, Rs =
retail with solar panels, bkry = bakery, mus = museum, and jail = county jail. Each
year’s results are plotted with a different vertical offset, so a building with data from four
years (2006–2009) will have four rows of points, with the lowest representing 2006. Also
shown for each building is a thick line spanning ±1 root-mean-squared error (RMSE)
for that building, and a thin line spanning ±2 RMSE.



The baseline percent error tends to be larger for buildings with low baseline load.
Figure 2 plots the root-mean-squared percent error in the baseline versus the mean load
during the afternoons of the hot days. Buildings with low load tend to be less predictable.
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Figure 2: Normalized RMSE of baseline prediction

In addition to the RMSE in the baseline predictions, a summary statistic that is
relevant is the ‘bias’: over all of the hot days experienced by a building in a given year,
how well does the baseline model predict the average energy used? Figure 3 shows the
fractional error in the baseline prediction as a function of outdoor air temperature, for
each of the buildings for which the RMSE is less than 8%. (8% was chosen because larger
errors make it impossible to draw firm conclusions about year-to-year variability and
temperature dependence). Bias would show up in the figure as an upward or downward
shift of the points away from a horizontal line.

Finally, we consider the relationship between baseline error and outdoor temperature,
as shown in Figure 3 for each of the buildings with baseline RMSE < 8%. The axis
scales are the same as in Figure 6, which shows estimated load shed as a function of
temperature, to facilitate comparison. If the error in the baseline estimate depends
systematically on temperature then the error in the estimated load shed will also depend
on temperature, which will either mask or amplify the actual relationship between load
shed and temperature and could even lead to an error in the sign of the relationship.
The piecewise-continuous temperature dependence of the model, and the adjustment for
residual error, should help eliminate any systematic effects, but it is still possible for
systematic errors to creep in. For example, the temperature dependence could change
during the summer in such a way that the functional dependence estimated by the model,
which averages over the entire modeled period, is wrong during the hottest or coolest
days.
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Figure 3: Percent Error in the Predicted Baseline vs Outdoor Temperature for each
building for which the uncertainty in the individual load sheds is less than 8 with a
regression line for each year. A representative error bar is shown for each year and each
building (one standard error). Different colors are used for different years (see key at
bottom right).



As Figure 3 shows, in almost all of the buildings there is no evidence for a substantial
systematic relationship between baseline error and temperature. The slopes of some of
the linear regression lines differ noticeably from 0, but only to an extent that is consistent
with stochastic variability. For example, out of the 58 building-years of data shown in
the plot the slope is “statistically significant” at the 5 percent level in only three cases,
all from the year 2009: Building 5 (left side of third row), Building 27 (second from left
in fourth row), and Building 9 (second from right in the fifth row). Given 58 building-
years of data, a statistically significant slope is expected in three of them even if the true
slopes are all zero, simply due to stochastic variability, so this result is consistent with
chance.

4.2 Uncertainty in Load Shed

The load shed is the difference between how much energy the building would have used
under normal operation and the actual energy used by the building. The energy that
would have been used under normal operation is given by the baseline, which is not
known precisely but which can be estimated, as discussed above; the actual energy used
is known exactly. The error in the load shed is therefore equal to the error in the baseline
estimate.

In a previous section we discussed the errors in the baseline estimates on hot summer
non-holiday non-DR days. Those errors are known because the buildings were operating
under baseline conditions by definition. When the same model is applied to the DR days,
the statistical distribution of possible errors represents the uncertainty in the baseline
prediction. We use the statistical distribution of known errors for the 20 hot days in
a given building-year to estimate the statistical distribution of possible errors on DR
days in the same building. We summarize the distribution by assuming it is “normal”
(“Gaussian”) with mean 0 and a standard deviation given by the RMSE of the load shed
predictions for the 20 cross-validation days in that building year. The resulting standard
deviation is graphically illustrated in Figure 1, which displays a horizontal black bar
extending 1 standard deviation on each side of 0. A thinner line extends to ±2 standard
deviations, which would encompass 95% of the data — or all but one data point per
building-year on average — if the assumption of normality were perfectly true. In fact
the number of points outside ±2 standard deviations is about what is expected from
the assumption of normality, but there is a slight excess of outliers that are more than
3 standard deviations from zero. In short, the standard error is a useful statistic, but
it is not a “sufficient statistic” to characterize the statistical distribution of errors, as it
would be if the errors were normally distributed.

4.3 Load Shed in Early and Late Afternoon

Figure 4 shows the estimated load shed in the 3-6 PM DR period versus the estimated
load shed in the 12-3 PM period. It appears that in almost all of the buildings the
buildings responded nearly identically in both periods. The exception is Building 15
(third row, second column), which shed load only during the 3-6 PM period. In the rest
of this paper we ignore the distinction between the two periods and focus on the total
load shed during the entire 12 - 6 PM DR event.
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Figure 4: Estimated load shed from 3-6 PM vs estimated load shed from 12-3 PM, for
each DR event, for each building for which the uncertainty in the individual load sheds
is less than 8%. Representative error bars shown for one point in each year.



4.4 Variation of load shed by calendar year

As discussed above, the load shed in a building usually varies with outdoor air temper-
ature and is also subject to variability that is not temperature-related; additionally, the
load shed estimates are uncertain.

One possible approach to comparing load shed across buildings and years would be
to calculate the average load shed for each building over each year. But DR events took
place at different average temperatures in different years, and different buildings experi-
ence different temperatures even in the same year. A building that implements the same
DR measures in different years will attain different average load sheds, because the years
have different temperatures during the DR events. A simple comparison of load sheds
will therefore not suffice to determine whether the effectiveness of a building’s DR has
changed from year to year. Instead, Figure 5 shows the load shed at an outdoor temper-
ature of 80 F for each building in each year, predicted from the regression relationship
between load shed and temperature. The uncertainty in the estimate is also shown.

Some buildings display upward or downward shifts in load shed from one year to the
next. Given the fairly small number of buildings with multiple years of data, and the
fairly large uncertainties in the load shed at 80F in most buildings, we think a formal
analysis is not merited. Instead, we note a few facts related to the variation of load shed
with time in this dataset.

1. In several of the buildings with multiple years of data, load shed was small or
nonexistent in the first year but was larger in later years. These are (from left to
right) Buildings 19, 5, 8, 9 and 4.

2. Only two buildings definitely experienced a substantial decrease in load shed at
80F from one year to the next: Buildings 2 and 24.

3. In two buildings with data only from 2009, load sheds were small or nonexistent.
These buildings, like those mentioned in the previous items, may have attained
load sheds in later years, for which we do not have data. These are Building 31
and 36.

4. Several buildings with multiple years of data provided little or no estimated load
shed (or, indeed, negative estimated load shed) at 80F in any year. These are
Buildings 26, 17, 21, and 20. We do not know why these buildings failed to pro-
vide load shed; perhaps they failed to configure their control systems to respond
correctly to the DR signal, whether unintentionally or intentionally (for example,
they may have decided not to participate because occupants objected to elevated
indoor temperatures on DR days).

5. Two buildings are predicted to shed load at 80F in every year for which we have
data, but did not always shed load at the higher temperatures that they actually
experienced; these are Buildings 1 and 5. These buildings appear in Figures 6 and 8
in the second row, fourth column; and third row, first column. As shown in the
figures, these buildings experienced temperatures substantially higher than 80F in
most DR periods, and in these buildings the load shed decreases with temperature.



Building Number

E
st

im
at

ed
 P

er
ce

nt
 L

oa
d 

S
he

d 
at

 8
0F

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

35

40

45

50

30 26 33 35 31 34 19 36 1 29 5 15 7 32 2 18 27 17 12 11 21 20 8 9 24 25 28 4 22

●

●

●

●

2006
2007
2008
2009

Figure 5: Estimated percent load shed at 80F, for each building for which the uncertainty
in the individual load sheds is less than 8%, with bars indicating ±1 standard error. An
orange horizontal line shows the median, which is about 5%.

4.5 Relationship between Load Shed and Temperature

All buildings use more electricity on hot days than on cool ones; that is the reason for
the temperature-dependent terms in the baseline model. But is the magnitude of the
load shed dependent on temperature?

Figure 6 shows the estimated load shed versus temperature for each DR event in each
of the buildings with RMSE < 8%. The temperature is the average outdoor temperature
during the DR period. A representative error bar is shown on one point for each building-
year. Different colors indicate different years, and regression lines are superimposed.
Buildings with the lowest uncertainty in the load sheds are shown at the top, with
uncertainly increasing toward the bottom right, and all plots use the same scales on
both axes.
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Figure 6: Percent Load Shed vs Outdoor Temperature for each building for which the
uncertainty in the individual load sheds is less than 8%. A representative error bar is
shown for each year (one standard error); for buildings near the top of the figure the
plotting symbol is larger than the error bar. Different colors are used for different years.



The uncertainty in the regression slope varies substantially from building-year to
building-year, so some of the steep lines have low uncertainty while others have high
uncertainty. Figure 7 shows the slope and the uncertainty for each year, for each building
whose baseline nRMSE is less than 0.08. The median slope over all of the building-years
is shown with an orange horizontal line. Overall, in this dataset the estimated load shed
as a percent of the baseline load decreases with temperature in more buildings than it
increases.

In addition to the systematic relationship between load shed and outdoor air tem-
perature, there are clearly other factors that affect load shed. Returning to Figure 6, it
appears that some buildings may have participated in some DR events in some years,
but failed to participate in others, or may even have taken actions that increased their
load (thereby leading to negative load shed). As discussed earlier, the baseline model
adjusts for outdoor air temperature, and cross-validation confirms there is no systematic
error in the baseline predictions as a function temperature, so the negative load shed
estimates are not an artifact of systematic baseline errors. However, each baseline pre-
diction is subject to some uncertainty and it’s likely that in some of the cases in which
the estimated load shed is slightly negative the actual load shed was zero but the baseline
prediction was slightly too high; this would lead to an estimated negative load shed. In
other cases, though, the building might actually have increased rather than decreased
its load in response to the DR signal. For example, Building 35 (top row of the figure,
near the right side) provided substantial load shed for most DR events but shows a
temperature-dependent negative load shed for four events. There are various ways such
behavior can occur, including incorrect programming of the building’s DR strategy, or a
person overriding the DR in a way that is less efficient than simply returning the building
to normal (non-DR) operation.

Some buildings appear not to have taken action during DR events in some entire
years, in spite of participating in the program (and therefore paying higher electricity
prices during DR events). Out of the total of 59 building-years shown in the figure, it
appears that 11 may not have involved any load shed:

1. In 2006, Building 5 (third row, first column) may not have taken effective action
in any DR event.

2. In 2008, Building 19 (second row, second column) may not have taken action in
any DR event.

3. In 2008 and 2009, Building 26 (first row, second column) may not have taken action
in any DR event. The same may be true of Building 17 (fourth row, third column).

4. In 2009, Building 31 (first row, fifth column) may not have taken any action during
any of the DR events. The same may be true of Buildings 36 (second row, third
column), 1 (second row, fourth column), 32 (third row, fourth column), and 2
(third row, fifth column).

Additionally, two buildings may not have taken action during some DR events in
some years: In 2009, Building 30 (first row, first column) may not have taken action
during two of the DR events; and In 2009, Building 35 (first row, fourth column) may



not have taken action, or may have taken counterproductive action, during four DR
events.

Building Number

C
ha

ng
e 

in
 P

er
ce

nt
 L

oa
d 

S
he

d 
pe

r 
D

eg
re

e 
F

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

30 26 33 35 31 34 19 36 1 29 5 15 7 32 2 18 27 17 12 11 21 20 8 9 24 25 28 4 22

●

●

●

●

2006
2007
2008
2009

Figure 7: Estimated change in percent load shed per degree F, for each building for
which the uncertainty in the individual load sheds is less than 8%, with bars indicating
±1 standard error. An orange horizontal line shows the median, which is about −1
percent per degree F.

All of the previous discussion of load sheds expresses the load shed as a percentage
of the building’s estimated baseline load, which seems natural: “During this DR event,
this building used 4% less energy than if there had been no DR event.” One effect of
expressing the shed in this way is that shedding a given amount of load — a certain
number of kW — will yield a different percentage depending on the temperature and
on the day of week of the event. The estimated baseline load in all of the buildings
increases with temperature, so a given number of kW will represent a larger percentage
of the baseline on a cool day than on a hot day. Also, in some buildings the baseline
load depends on the day of the week, so shedding a given number of kW will result in
a different percent decrease on Monday than on Tuesday. This behavior of the “percent
load shed” metric may be desirable or undesirable depending on one’s research interest,



although, as we see below, the effect is small and can probably be ignored in most cases.
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Figure 8: Load Shed as a Percent of the Mean Baseline Load during DR periods vs
Outdoor Temperature, for each building for which the uncertainty in the individual load
sheds is less than 8%. Different colors are used for different years.



An alternative approach would be to look at the absolute rather than relative load
shed — that is, to work with the number of kW shed — but this would make it hard to
compare the DR performance of buildings that vary greatly in baseline energy consump-
tion. Instead, we define a normalized percent load shed by dividing the estimated load
shed during an event (the mean kW over the course of the event) by the mean baseline
load during all of the DR events experienced by that building in that year. Thus the
same denominator is used for all of the events in a building during a given year, no
matter what the outdoor temperature or the day of the week. The result is shown in
Figure 8. Differences between Figure 8 and 6 are inconsequential in most buildings. The
plots are not identical, however: compare Building 24 on both figures (fifth row, last
column).

5 Summary and Conclusions

We have used a new baseline model to estimate the load shed in 36 commercial and
government buildings, focusing on the 29 buildings for which the baseline predictions are
most accurate. The model accounts for outdoor air temperature and for the day of the
week, allows a different relationship between temperature and load for the early and late
afternoon, and adjusts for temporal autocorrelation of errors.

In this dataset there is no evidence that DR effectiveness tends to decline from
year to year as some have speculated: for most buildings with more than one year of
participation, the load shed at 80 F is as high or higher in later years as in the earliest
year of participation.

About two thirds of the buildings in this dataset have a slightly negative relationship
between load shed and outdoor air temperature; that is, higher outdoor temperature
leads to slightly lower load shed. This is true both absolutely and relative to the baseline
load for the event.
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