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Introduction 

In this note a· kinetic equation approach to longitudinal stocnas~ic 
cooling is presented. Equations for one and two particle distrioution 
functions are derived from the principle of the conservation of the numoer or 
ensemble systems. The violation of Liouville's theorem is expressed by 
certain self-interaction terms. In addition, the two particle d1str10ution 
describes correlation or feedback effects and can be analyzed by techniques of 

the Lenard-Balescu equation for plasmas. The resulting equat1on is s1m11ar to 
the Fokker-Planck equation that has been used to describe experimental resu1~s 
at ICE.l) 



I. Kinetic Equations for a Non-Liouvillian System 

Consider the N-dimensional phase space distribution function 

D(q1,p1, ... qn,pn), normalized so that 

Conservation of the number of ensemble systems is expressed oy 

)!J .... ... D) - + v. l u. _:: 0 
Jt 
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where u = (q1,p1, .•. ~qn,pn). If the system dynamics are described oy 
Hamiltonian equations, then ( 1.2)- reduces to the condition of incompressible 
fluid flow2), 

- + 
~ 
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that is, Liouville's Theorem. 
A Hamiltonian description is not applicable to longitudinal cooll.niJ. 

Instead, the dynamics are of the form 

Equation (1.2) may still be integrated over 2(N-l) or 2(N-2) variables to 

yield equations for one and two particle distribution functions. 
,~: . . 

Define the one particle distr~bution by 

and similarly 
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From equation ( 1. 2) we have 

;){, ( /.?) -

With dynamics of the form ( 1. 4), this reduces under tne usual symlfletry 

assumption for D t9 

+ (t. e) 

The bracketed term is the addition to the usual kinetic equation witnout 

self-interaction. and expresses the violation of Liouville's Theorem. 1t is of 

the form of the coherent part of a Fokker-Planc~ equation and inauces 

compression of phase space. The integral in (1.8) descrioes interactlon w.1c.r1 

other beam particles and includes the usual Vlasov average fielo effects dno 

also correlation effects that tend to increase the phase space vulU111e anu 

suppress cooling through be:~m feedback. . The corresponaing equation fur f'L 1s 

(!,?) 

where again it is the bracketed term that is addea. 
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As is the case with the usual kinetic equation of plasma.physics, ar! 
infinite hierarchy of relations between the fn is developing. We wr1te 

f3 = 

+ .f, ( 9J )f3J t) j l 1/JP,, lf~JPa.)t) + {, (f!:aJP:a,t) J { fs,(J3' ~'J P,, t) _, h { ,,.··flJ t)(f,IOA) 
.. 

and now assume that correlation affects are small, and in particular n ~ 0. 
With this assumption (1.8) and (1.9} yield (with the distinction N, N-1, i-..J-2,. 

" ~ ·. 

dropped) 
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and 
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The terms labeled (3) are the addition from tfie violation of Lio~vllld 1 S 

Theorem and are of the same order as terms (2). At this· level of 

approximation, terms (2) are normally dropped as second ord~r rela~ive to 

( 1) 3 )' and we likewise drop· ( 3) ·from the analysis. The .integ:rals in trus 

equation are multiplied by the particle number N and in general cannot oe 

considered negligible. With these approximations (1.12) i~ foDnally 1uen~1ca~ 

to the usual Liouvillian equations for two point correlations. Tne coo.un<J ur 
phase space appears only in the last term of the one-part1cl~ d1str1uut1un 

equation ( 1.11). Equation 0 .12), except for the explicit form 'ot' 

interaction, is identical with that of the Lenard-8alescu ana1ys1s uf ~1a~na 
physics3). 
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This approach leads to a collision term which includes Shieioing effects tor . 
for longitudinal cooling, feedback effects) and leads naturally to a 

Fokker-Planck equation cif the curious form that has been successfui .in 

describing stochastic cooling. In its usual context, the Lenard~Palescu 

analysis leads to growth of the phase space volume. For stocnastic coo1iny, 

instead, it leads to suppression of the· perfect cooling rate .oescrioea ny c.ne 

last term of equation (1.11). 

2. Momentum cooling 

We take as our v.ariables the azimuthal angle S, and E. = 
(E-E

0
), where we assume small energy. changes relative to E

0
• ·for 

simplicity, ·consider the situation of nonbverlapping Schott·Ky oanas .. fhen ;cr.le . 
p equation (1.4} is of the form 

.. 
('-···') f.. 

c. 

where G is the system transfer function and G (E )=0. .we also assuine tnac. ' 0 

f 1 is independent of 9 and g is a function Gf 9, ... 62 only, that is 

· \. ·g, te, -·,e.~.> 
Z ~t (e..,,~:l .. t) e (2.2) 
R . 

With these simplifying assumptions, ( 1.11) reduces to 

df, {E,!) -;)t 

- N 2_ !··· J G1 _i . J·~ . . , 
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and (1.12) reduces to 

- ~ (, G~le2.) {JG,t) {,ft,;t>L ~[~11 l~,){,f~,t>f.U,;I:J] 
~~ . J J~ J 

- N -~ f- -d ~3 _ G2 r~3> :J-1. c ~~, '3) 
;)E.., 

(2 .1/-) 

Thisequation inay be solved by standard Laplace transform techniques oevewt-Jcu 
in the Lenard-Balescu . analysis under the assumption that the relaxation Uitli:~ 

for g is fast on the scale of variations of f(€,t). That is, we so.tve ~2.4J 

with f(', t) assumed constant in time •. This leads to the expression 4' 5J 

I 

7 ± i lt.l),-w') 

(2.5) 
with. 

~ JJe' dh G (t;'J 
E. :tiO.l (w) - + ;)€' :; IQI ( 2 ,fp) - Hl \ . · - ?± i. tw-w') 

1 .... o"" 

(.;) ::. l.V l~) 
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If this relation is inserted into (2.3), after some cancellations oecwee11 

.::R, we have 

-- -
Jt 

- G~ (f) .r,c~)tJ} 

£-a. t w) 

(:J.?) 

This result is of the form of a Fokker-Planck equation with one deuvauve 
acting on f alone6). The first term on the right hand side is the conerent 

cooling of a particle's energy error; the Esa. factor describes the feeuoacK ur· 

the coherent signal through the beam. The second term contains tne efr'ects of 

the beam signal, including again feedback. ·rne form of interacc..ion ~L.lJ i5 

directly applicable to the Palmer method of momentum cooling, wr1ere tal~ 

weighting function Gn(~) derives from position measurements in a transverse 
pickup and the electroni~ gain is essentially constant over a .:>cnonKy oano. · 

For the filter metho.d, in which energy. information is ootained tnrougn 

variation of the electronic gain with frequency, the e.l. faCtors are HlOOi f.LeU, 

with the corresponding G (~)outside the integration in (2.6}. If ampl.tfJ.e:c n . . 
noise is included. there will be an additional term on the right nana SJ.Oe: 

'*?( £w) 

J ~p. ((A)) J :L 
(2. e) 

ll 

where P is the noi~e voltage power density, with normalization 

eb j dw 7(w) (2.9) 

-tD 
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The condition €g. =0 corresponds to the onset of coherent motion and is 
the analog of the dispersion relations for space charge and wall irnpeaence 
instabilities. In this kinetic equation approach, these adaitional forces can 
be included in equations (2~3) and (2.4) and will lead, for example, to 
modification of the £.t factors and cooling rates. This effect may be of 
importance in the latter stages of momentum cooling. 
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