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Introduction

In this note a kinetic equation approach to longitudinal stochastic
cooling is presented. Equations for one and two particle distrioution
functions are derived from the principle of the conservation of the numper ot
ensemble systems. The Violation of Liouville's theorem is expressed by
certain self-interaction terms. In addition, the two parfiole'dlstrlbution
describes correlation or feedback effects and can be analyzed by techniques of
the Lenard-Balescu equation for plasmas. The resulting equation is similar to
the Fok?ir-Planck equation that has been used to describe experimental resuits
at ICE.



I. Kinetic Equations for a Non-Liouvillian System

Consider the N-dimensional phase space distribution function

D(gy,Py,:-+GysP,), normalized so that

. /J7/ JPn D'(qu”‘).P") =/ o - (r.1)
Conservation of.the number of ensemblé'éystemé~is‘expressed Dy ,
g—f + V- l&D) =0 2

where u = (él,bl,...;én,bn). If the system dynamics are described by

Hamiltonian equations, then (1.2) reduces to the condition of incompressivle

fluid flow?’,
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that is, Liouville's Theorem. _
A Hamiltonian description is not applicable’to longitudinal cooiing.
Instead, the dynamics are of the form ’ '

o= S 6 8ntn) g QB ()
Equation (1.2) may still be integrated over -2(N-1) or 2(N-2) variables to
yield equationS’fqr one and two particle distribution functions.

Define the one particle distribution by N
£ (90,p,t) =/d72...Jp,, DUG,pyes9n Pat) (1.5)
and similarly | '
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From equation (1.2) we have
2 (g . 2 'D/ (1.7)
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with dynamics of the form (1l.4), this reduces under the usual syminetry
assumption for D to |

?‘f + 9, f’—j’f <~f) f c’w& 6lan9um K (%I’u?z'l’u*)
99,
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The bracketed term is the addition to the usual'kinetic_equation without
self-interaction and expresses the violation of Liouville's Theorem. It is of
the form of the coherent part of a_?okker-Planek equation and induces ’
compression of phase space. 'Thé integral in (1.8) descrioes interaction wicn
other beam particles and includes the usual Vlasov average field erfects ana
also correlation effects that tend to increase the phase space volume ana
suppress copling throuqh beam feedback. The corresponaing equation for fz is

o M. |
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where again it is the'bracketed term that is addea.



. As is the’case_with»the'usual kinetic equatibn Ofgplasma‘physics, an
infinite hierarchy of relations betweer{thefn is developing. Wwe write.

7(2 = 7,(:.(77_»7").;15')" 7[,[7»?2)'” "‘ 67(7:,1’1,‘7:,/%,‘“ | '[{/.£04:)  o
| ,63 F (q,,?,,'t) £ (7,,P,;t) f(q,,g,,t) + ;f(q,n t) g(yzmuy,,&,t)
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and now assume that correlatlon affects are'small and in partlcular”nzzo o
wWith this assumptlon (l 8) and (l 9) yleld (with the . dlstlnctlon Ny, N- l N-2,
dropped) o
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and
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The terms labeled (3) are the addition from tfie violation of Liouvilie's
Theorem and are of the same order as terms (2). At this'level of
approximation, terms (2) are normally dropped as second order relative to
(1)3), and we likewise drop (3) from the analysis. Tne 1ntegrals in tnis
equation are multiplied by the particle number N and in general cannot oe
considered neq11q1ble. With these approximations (1.12) is formally 1denticas
to the usual Liouvillian equations for two point correlations. The cooling of
phase space appears only in the last term of the one-particle distrivutiun
equation (1.11). Equation (1.12), except for the explicit form of
interaction, is identical with that of the Lendrd Balescu analysls OT pidsia’

phyelcSB)



. This approach leads to a COlllSlOﬂ term wthh 1ncluoes shlelalng etTBCts {or
for 1onq1tud1nal cooling, feedback effects) and leads naturally to d
;Fokker-Planck equatlon of the curious form that has been SUCLeSSTUl in -
describing stochastic cooling ~In its usual context, the Lenaru—oaiebou.
analysis leads to growth of the phase space volume. For étocnastiu COOLing,
1nstead, it leads to suppre551on of the perfect coollng rate oescrloeu uy the
“1last term of equatlon (l ll)

2. Momentum cooling

v We take as. our varlables the azmuthal angle 9, ano €=

‘(E -E ), where. we assume small ‘energy changes relatlve to to For _ o
51mp1101ty, consider the 31tuat10n of nonoverlapplng bChOEtKy Dands. - Then e
p equation (1.4) is of the form o o

. Cin(8,-6)) o
€. = jj 2 Gl e Y ¢¥))
L .
j _

wherp G is the system transfer functlon and (é) =0. We also assume that
.fl is independent of @ and g is a functlon.of 6% : oniy, that 1>

. . " | lQLS\"Sz) .

_ 9(9”63161 » €, t) = 2 32(6')é=»t) c o (2.2)

.wlth these 51mp11fy1ng assumptlons, (l ll) reduces to

Dhen - - 2 ( S Gale) £ (e t))
| :;E - JE 'ti - o o :

/Je 2,6 (e)g (ee t)

(23)



and (1.12) reduces to -
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This equation may be solved by standard Laplace transform tecnnigues deveiuvped
in the Lenard-Balescu -analysis under the assumption that the relaxation tiine
for g is fast on the scale of variations of f(é,t). That is, we soive (2.4)

with f(€,t) assumed constant in time.. This leads to the expression 4’5)
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with.
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If this relation is 1nserted into (2 3), after some cancelldtlons pecween

+f, we have

95"(6,“' - ..Z, 2 -'.G}.'(e)fl(%t)
26 | L e (w)y

e ) -
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v This result is of the form of a Fokker—PlanCK equatlon witn one Gcr1vac1ve
acting on f alonP6). The first term on the right hand side is the conerent
cooling of a particle's energy error; the € Factof‘déscrlbes the feeupack of
the coherent signal‘through'the'beam.i The second term contains the efrects of .
the beam signal, -including again feedback. 'The form of interaction iZ.l) is |
directly applicéble to the Palmer method of momentum‘cooling, wnere . tne
‘weighting function G_(€) derives from position measurements 1n & Lransverse
leCkUD and the electronlc galn is essentially constant over a schottky Dand.
For the filter method, in whlch energy - information is obtained tnrougn

- variation of the electronlc gain w1th frequency,'UMeg factors are nouifiey,
with the corresponding Gn(e) outside the integration 1n:(2.6). ir dmp+;f1ex
noise is included there will be an_additional term on the right nanu side:

| 9 (. [ew} PlLe) 2081
22‘ 9’; [7<21 ) 12 [w)/ Qé ] . (2#9)

where P is the noise voltage‘powér.density; with normalization

/Jw'P(w) - < Vi > o ‘(2.9)



The condition Ea =0 corresponds to the.onset of coherent motion and is
the analog of the dispersion relations for space charge and walli impedence
instabilities. In this kinetic equation approach, these adagitional forces can
be included in equations (2L3) and (2.4) and will lead, for exampie, to ..
modification of the € factors and cooling rates. This effect may oe of '
importance in the latter stages of momentum cooling. ' '
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