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TASK 3. BARRIER OPTIONS 

Permeability Measurements on Candidate Grouts 

Data analysis has been completed for permeability measurements on 

two specimens of q-o grout (2/3 Lurgi spent shale, 1/3 sand, and water) 

and one of q-l grout (same with 2~% portland cement). The results of 

these tests are shown in Figure 1. The permeability of these grouts, 

like that of a soil, depends upon the state of stress (confining pressure). 

The actual permeability that will exist in a field application depends 

upon the stress that will be seen by a grouted retort; structural cal­

cUlations are needed to determine this. 

A minor effect also shown in Figure 1 is that permeability is lower 

when measured at a higher hydraulic gradient. This was not expected. 

The explanation may be that after each stepwise increase in the hydraulic 

gradient, more rapid flow through the specimen dislodges some particles 

and results in a denser, more stable packing which is less permeable. 

This effect was more pronounced for Q-O, which contains no cement, than 

for Q-l, which contains 2~% portland cement; this would support this 

hypothesis. 

Rheological Properties of spent Shale Grouts 

Data were analyzed from rheological measurements on grouts R-4 and 

R .. 5. These are Lurgi spent shale grouts with lignosulfonate fluidizer 

and fly ash. The grouts conform to the Casson Model (see Figure 2) with 

the constants shown in Table 1. Although the flow cone times for both 

grouts were nearly identical, R-4 had a higher intercept (yield value) and 

lower slope. The uncertainty shown in Table 1 is the standard deviation 
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of multiple determinations, and is apparently due to thixotropy, that 

is, change of properties with shearing history. 

Table 1. Casson model flow constants for Lurgi spent shale grouts 

R-4 R-5 

yield stress 6z.4±6.4 54.4±7.0 
(dyne/cm2) 

slope of line l.45±0.22 2.33±0.14 
(g/cm-sec)~ 

flow cone time 22.2 22.4 
(sec) 

water-solids 0.691 0.635 
ratio 

TASK 5. LEACHING OPTIONS 

Leaching of Organics from Spent Shale 

At the beginning of the month, 28 small column runs had 

been completed. During November, the data for all runs were reviewed and 

the construction of a data base for the final analyses was begun. Data 

from the last fourteen runs are being smoothed statistically for use in 

the verification of the leaching and transport model. The first 14 runs 

were conducted with leachate flowing upward in the column. Data from 

these runs are useful in understanding the mechanisms involved in leaching 

but are not suitable for model verification because of the adverse effects 

of density currents in the pores of the bed. In addition, all leachate 

samples from runs 24 through 28 are being remeasured for TOC to minimize 

the chance of analytical errors. These five runs were conducted under 

similar experimental conditions; only the pore velocities and the types 

of spent shale were varied. These latter runs are expected to be the 

principal source for the data base. 

A simple mathematical model for the movement of TOC within the bound­

aries of the solid particles was developed and tested with data from runs 

26 and 27. The agreement between experimental and predicted results is 

quite good. A slightly more complex model is now being developed and 

tested. 
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TASK 6. GEOHYDROLOGIC MODIFICATION 

Dewatering and Reinvasion Calculations 

Long-term simulations of dewatering were carried out for tracts 

C-a and C-b using saturated hydraulic properties reported in the liter­

ature (see Table 2). Twenty percent residual saturation was assumed 

and unsaturated properties were calculated using the Millington-Quirk 

formula as described last month. 

Inflow rates (dewatering flows) for the two tracts are shown in 

Figures 3 and 4. The gradual increase in the dewatering flow rate is 

due to expansion of the retorted area with time. In Figure 3, two ex­

treme reported values of permeability for the lower aquifer were used 

to calculate the inflow rate; this shows the importance of knowing this 

value accurately. 

Drawdowns of the phreatic surface under the Piceance Creek (3500 m 

from the center of tract C-b) and Yellow Creek (5000 m from the center 

of tract C-a) are shown in Figures 5 and 6. In the latter case, the 

initial rise in the water table is due to recharge before the effect of 

mine dewatering is felt. 

Table 2. Properties used for long-term dewatering simulations. 

Property Upper Aquifer Confining Lower Aquifer 
Layer 

Saturated 7.64xlO 
-14 2.00xlO-15 2.45xlO-14 

Per.meability 
(rn2 ) 

Storage lxlO-4 

Coefficient 

Porosity 0.15 0.01 0.01 

Residual 0.20 0.20 
Saturation 
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Figure 1. Variation of permeability with confining pressure and hydraulic 
gradient during test for grouts Q-O (no cement) and Q-l (2~% port­
land cement). 
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Figure 2. Schematic rheogram for Casson fluids. 
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Figure 3. 60-year simulation of dewatering for 
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Figure 4. 30-year simulation of dewatering for 
tract C-a, for two extreme reported 
values of permeability for the lower 
aquifer. 
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Figure 5. Drawdown of the phreatic surface 3.5 km from 
the center of tract C-b. 
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Figure 6. Drawdown of the phreatic surface 5 km from 
the center of the tract C-a. 
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