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Two aspects of slurry reactors for Fischer-Tropsch synthesis make them 

different from fixed bed reactors. 

1. Carbon formation and resulting deactivation do not occur as readily 

in slurry reactors, even at ,loWH
2

/CO ratios (!). Two explanations 

have been put forth for this: 

a) Better heat transfer in a slurry eliminates hot spots, which 

have been shown to increase the rate of carbon formation. This 

was investigated in the first phase of this project. 

b) The diffusivity of H2 in paraffinic oils is about 20 times that 

of CO; therefore, mass transfer limitations in a slurry act to 

reduce the CO/H2 ratio at the catalyst surface. Calculations 

based on McKee's fixed bed kinetic data (l) and Calderbank's 

correlations for mass transfer coefficients (l) seem to show 

7 

that typical F-T reactors operate in a reaction limited regime. 

However, work by Storch, et al (i) with a t~c~le bed reactor 

indicates that mass transf~r resistances may be significant. At 

high temperature, conversion doesn't vary much with temperature; 

this could result from mass transfer limitations. 

2. Product distributions in slurry reactors are different from those in 

fixed beds: slurries yield more high molecular weight products (2). 

This may be a mixing effect. Hall, et al (~), and more recently, 

Kellar and Bell (2) and Somorjai (~) have shown that ethylene will 

recombine with reactants to form heavier products. Increased mixing 
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acts to increase the average concentration of products throughout 

the reactor, so the rate of recombination increases. 

The objective of the present phase of the investigation, then, is to see 

if mass transfer limitations exist to an extent that cataly~t deactivation 
• • 

is reduced to determine the extent to which recombination occurs in the 

slurry, and to assess, through modeling, whether the well-mixed slurry could 

result in product distributions that differ significantly from those 

observed with fixed bed reactors. 

To answer these questions, 3 sets of experiments are being undertaken. In 

the first, the r~te of reaction will be measured at varying amounts of 

catalyst per reactor volume, with constant gas flow rate and concentration. 

For a first-order reaction, we can write: 

- c ) = Wk a (C - c ) = W k C 
L s s L s s 

R rate per unit reactor volume; kLa = mass transfer coefficient x interfacial 

area per reactor volume. 

k a 
s s 

= area per mass of catalyst x mass transfer coefficient to catalyst 

surface 

W mass of catalyst per reactor volume; k = rate constant per mass of catalyst 

C = reactant concentration; subscripts: s - catalyst surface; L - bulk liquid; 

* - Gas-liquid interface 

* Solving for C
s 

and C
L 

in terms of C , we get: 

* (C /R) 

* 
A plot of ~ 

1 1 I I· 
k a + W (~+ k)' 

L s s 

I 
vs W Yields a straight liner For non linear kinetics, such 

a plot will not be a straight line, but the intercept will still be 

indicative of mass transfer from gas-liquid interface to bulk liquid, and 

the scope will be related to intrinsic kinetics and bulk liquid-to-solid 

surface mass transfer. 
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The second set of experiments is aimed at examining the role of recombination 

of products to shift product distributions; it involves the addition of 

ethylene to reactant gases. If recombination occurs, increas~damounts 
• • 

of heavier hydrocarbons will be seen in the reaction products. Runs at 

higher conversion will also be made; if recombination occurs, .the product 

distribution at higher conversion will be slanted towards heavier products. 

In the third set of experiments, a series of runs at conditio~s known to be 

reaction limited will be done to examine intrinsic kinetics and look at 

the effect of H2/C.O ratio on deactivation. 

These experiments will be carried out on equipment used by McKee (2) and 

modified in the following way: 

I. The reactor shown in Figure 1 is used in place of the fixed 

bed reactor. The condenser on top reduces oil loss through 

evaporation. 

2. Two traps, one cooled by water, the other by ice, are used after 

the reactor. 

3. A heated line before the traps allows analysis of the gas with 

a gas chromatograph. 

4. Rotameters and metering valves have been rep~~ced by Matheson 

flow controllers. 

A number of runs have been complet~d, but results are too preliminary 

to permit meaningful disucssion at this time •. 

A sketch of the equipment being used, which has been newly built, is 

attached as Fig. 1. 

This work was supported by the u.s. Department of Energy under 

Contract W-7405-ENG-48. 
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