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INCORPORATION OF A CIRCULAR BOUNDARY CONDITION INTO THE PROGRAM POISSON*

S. Caspi, M. Helm, L.J. Laslett

Introduction

Two-dimensional problems in electrostatics or magnetostatics frequently
are solved numerically by means of relaxation techniques -- employing, for
example, the Programs TRIM or POISSON (see, for example, J. Colonias,
"Particle Accelerator Design: Computer Programs,” Academic Press, New York,
1974, or the original paper A.M. Winslow, "Numerical Solution of the Quasi-
linear Poisson Equation in a Non-Uniform Triangular Mesh," J. Comput. Phys.
1, 149-172 (1966)). Lfn‘many such ﬁrdb]ems the "sources" (charges or cur-
rents, and.regions of permeable material) lie exclusively within a finite
closed boundary. curve and the relaxation process in .principle then could be
confined to ‘the region interior to such a boundary -- provided a suitable
boundary condition is imposed onto the solution at that boundary. The pres-
ent notes discuss and -illustrate the use of a boundary condition of such a

nature as to imply the absence of external sources, in order thereby to avoid

the inaccuracies and more extensive meshes present when alternatively a sim-
ple Dirichlet or Neumann boundary condition is specified on a somewhat more
remote outer boundary. The boundary condition to be discussed was proposed

by one of us, and some illustrative material presented in collaboration with

*This work was supported by the Director, Office of Energy Research, Office
of High Energy and Nuclear Physics, High Energy Physics Division, U. S. Dept.
of Energy, under Contract No. DE-AC03-76SF00098.



v.0. Brady, in early unpublished Lawrence Berké]ey Reports (see L. Jackson
Laslett, ESCAR-28, "On a Boundary Condition Applicable to Magnetostatic
Relaxation Computations," (November 5, 1975) and Victor Brady and L. Jackson
Laslett, LBID-172, “Incorporatidn of a bircular Boundary Condition for a
Magnet with Quadrant Symmetry into the P}ogram TRIM,* (January, 1980)).

The proposed boundary condition can be introduced in a general manner
by reference to one form of Green's theorem fdr harmonic functions (see
ESCAR-28), but may be more simply illustrated by specific use of plane-polar
coordinates. Thus, with a circular boundary so located that no external
soufces are present, the potential function external to that boundary is

expressible in the form

-m . '
Co +_£§i r (Cm cos me + Sm sin me) s

in which no positive powers of r occur, and such a relation will permit one
to extend the potential to a surrounding concentric circle of somewhat larger
radius. If, in practice, values of potential are known at only a finite num-
ber of points in the inner circle, then of course only a finite number of
harmonic coefficients (Cm,Sm) could be evaluated for such trigonometric
representation of the potential function -- such a trigonbmetric-series may,
howevér, be adopted to provide adequate estimates of the corresponding values
of potential at various points on a near-by surrounding "outer-boundary
curve" (Fig. 1).

In performing a relaxation computation on a mesh bounded by such a pair
of curves (external to all “sources"), any full re]axafion pass through the

mesh may be followed by a step wherein the values of potential at points on



the outer boundary are revised (up=dated). on the basis-of a harmonic descrip-
tion of the potential function on.the inner-curve. Such revised values would
then be employed, as boundary values, in proceeding with:the:next ré]axation
pass through the mesh. [An analogous procedure of course would be followed
if one were to adopt an elliptical coordinate system. (u,v), for which har-

monic terms would be of: the form. e~Mu

times circular functions of ~argu-
ment mv - (see ESCAR-28).] ' . |

In the work summarized in the present note, we have made a practical
application of the techniques just described, with particular application to
the use of the relaxation program POISSON as applied to the design of super-
conducting magnets for advanced particle accelerators. It is evident that
in such work one.takesMadvantagefofAsuth intrinsic symmetries as may be pres-
ent in the Qeométficai“cohfiQUFaéfoﬁ'aﬁd current distribution for the:pro-
blem of jntéreét. T[Thus, in some cases, only terms. involving the cosine of

arguments- (Zk;l)é‘ may be requifed for harmonic development.] One realizes

also’that, in practice, there méy be a large number of mesh points along the
inner'(ciftu1éF5 Cﬂfﬁe.@héreon oﬁé construct a harmonic representation of the
potentiai and (especia]]y‘for circular boundaries) :such points may have a
quite uﬁeQua] sﬁaciné. ﬂﬁderusuch circumstances:it may well-be expedient,
as we fndiCate, to base the analysis on a restricted.number of trigonometric
coefficients and to compute these coefficients by a weighted least-squares
evaluation of the data.

The following note includes a -description  of the equations introduced
into our operating POISSON program, and -this-material is followed by some
illustrative examples that include a test run for which results could be

compared with exact results obtained directly from Ampere's law. Additional

material includes somé early working notes,* that have been attached for



convenient reference. It has seemed desirable that we summarize this work
informally qt this time in order that work now in progress (here and
elsewhere) relating to magnet design may benefit from consideratidn of the
concepts and techniques illustrated by this note.

The analysis part, following the introduction, deals with two methods,
one is a direct approach and the-other is a least squares approacﬁ. -Part . two
is a Test Example that compares analytical and computed results. Finallyin

Part three we explain how.to use the "Poisson" group -on the HP 1000. -

Analysis

Consider the case where a cir- . - e unisere
cular arc of radius r=R-H di- .
vides space into two regions (Fig. 1),
an inner one which: includes all cur-
rent sources and magnetic iron, and

an outer one which is in free space

(hereafter referred to as the
"universe"). Since the free space -

region is infinite we shall arbitrar-

ily limit it by a secondary circular
aré of radius r = R.- Both circular : : .- Fig. 1

arcs are an assembly of connecting '

mesh points such as the one generated by the program LATTICE. If we know

the vector potential for each mesh point on r =R - H (e.g. calculated by

*In some of the early work, fattor$~such as (E%F)-n have been replaced by
some equivalent small-h approximation.



POISSON), we would like to find out the vector potential at each mesh point
on r =R, so that such values may be employed as provisional boundary
values in a subsequent relaxation pass through the entire mesh. This is

expressed as:

N .
outer inner
A = n¥1 Een P (1)

A is the vector potential and E is a working matrix, and the summa-

tion is over the entire mesh points of the inner arc.

In the free space region the vector potential for the symmetries con-

sidered here can be expressed as a sum of harmonic terms, each employing

powers of 1/r.

m - m . _
A; = 3 C, r = COS(apey) = > Fag * G T (2)

The vector potential A of mesh point i .on the circular arc r is defined
according to the problem symmetry o (the equal sign in Eg. (2) is left
for the infinite series). (See table on pagé 11.)

In order to find the Ck's in Eq. (2), a direct approach and a least
squares approach are both examined. The direct apprbach fixes the total num-
ber of harmonics employed, m, to be the same as the number of node points
N, which result in N equations with N unknoWné. Theréfdre‘ih a‘prob]em
where the number of mesh points is large, the number of harmonic terms will
be as large. Employing a large number of high_harmonics of a vanishing mag-

nitude using a digital computer may result in erro if the mesh points are



not equally spaced (as will be discussed later). To overturn this limitation
the second approach has been developed which is more general and suitable for
problems where the number of mesh points is larger than the number of harmon-

ics (N >>m) and the pdints are not necessary reqularly spaced.’

Direct Approach (N = m)

The total number of harmonic terms, m, employed is the same as the
number of mesh points N on the inner circular arc r =R - H. From Eq. (2)
golving for Ck we get

m

C. = F- ; v (3
k ggi ( )k1 | X

On the inner circular arc r =R - H we have
m a '
= 2 (RH) Ko (F71),, alnner (4)
i=1 1

Substituting Eq. (4) into expression (2) for the outer circular arc r =R
we get
a

m m k . _
outer R- -1 inner ,
A= 2 BR) " FalF i 4] (5)

Expression (5) is rewritten with the following working matrix.

m %k
R-H -1
Esi = kz=:1 (’R_) COS(ey@5) (F )y



so finally we arrive at

outer
A’
J

Relation (6) sets the vector

potential of point j on the outer

arc r =R as a linear combination
of the potential on the inner arc
r=R-H through the working
matrix E. For the case where the
mesh points on the inner arc are
“regularly" spaced, in the sense
shown in Fig. 2 the inversion of
" F is direct and the working matrix

reduces to:

m a
2 R-H
=2 % (3
Ji N o | R

Least Squares Approach (N >> m)

This method employs a 1list squares method to calculate the

From Eq. (2)

1 N
minimize: > Z W,

or

- 3 g almer

i=1 J1 1

Bqually spaced poinis with first and last off asis
and en engle distribution such as @=(2k ~1)n/2N

Fig. 2

k
COS(akej) . COS(akei)



1 N m "uk 2 ’
5 }: W, 3 Fig G * s - Al s Fikv= €0S (e, 0;)

wi = weight associated with each point (e.g. the relative ratio of the

points spacing).

Following the minimization process with respect to the Ck we geti

m —aj
M.. C. = V. 8
ééi i3 CJ r i (8)
where
N
Mij = éé% wn COS(a19n) COS(ajen)

i, = 1,2,000,m

-
I
M=
=
o
O
&
—
[~
[
x>

Solving for Cj on the inner arc r =R - H we get

m .
}: (ReH) 3 (M )J1 v, ner (9)

Using Eq. (2) on the outer arc r =R

outer gﬁ J

and substituting the relations for ij, Cj and V;nner we arrive at



(1

m m .
pouter Z (—*i) C0S (a ;8 ) Z Z W C0S(aze ) ANTET
= R J k j=1 n=1 n
(10)
Employing the working matrix Ekn’ relation (10) is rewritten as:
outer ﬁ% 1nner (11)
nol kn n
where
m m %5 -1
_ 2: 2: (3%5) wn(M )ji COS(ajek) COS(aien) (12)
i=1 j=1
In the case where the points on the ,
1/2 weight
inner arc r =R - H are "regularly"
spaced (Fig. 2) then COS(aien)
are orthogonal with respect to summa-
tion over o, and the M matrix
reduces to:
1/2 weight

Equal space and squal weight poinls excepl
Jirst and last which are on the azis with half weight

Fig. 3



NGll a = 0

M.. = S for regularly spaced points
1 ]J N
7 Gij a * O
(N-l) 511 _ 0
(N-1) &, o @ :
= ’ first and last point are on the axes
M.. = ’
1 N-1 with 1/2 weight; Fig. 3

where & 1is the Kronecker delta.

Substituting the inversion of M into the working matrix, we get

m .
R-H
% 2 (—-— COS(aiek) C0S (a8,

This expression is identical to the one derived by the direct method for

"regularly” spaced points.

10



Listed is a table for the ) expression used in several geometries.

Type p @
regular dipole 1 2k-1
regular quadrupole 2 4k-2
regular sextupole 3 : | 6k-3
e%c. 5 2pk-p

2 in 1 dipole ++
with current
2 in 1 quadrupole symmetry 2k-0

etc.

2 in 1 dipole ¢
with current

2 in 1 quadrupole antisymmetry 2k-1
eic.
midplane k-1

11



Test Example

In order to compare the results using our proposed method and the one
calculated analytically, we solved a number of simple cases (no iron), In
the first example we provide the solution for the vector potential in a
2-in-1.dipole arrangement employing current sheets. In the other teﬁt cases
we solve a regular single; dipole, quadrupole and sextupole; all employing

single current lines per pole.

2-in-1 Dipole Employing Current Sheet

Sketched below is the geometry used, followed by the solution.

Employing current sheets (infinite length, infinitessimal thickness)

Zn Out Qut 7,
i wf

12



If linear dimensions in cm,
J in amps/cm
B in gauss

A_ in gauss.cm

z
- we employ
_4nx
Yo =10
If linear dimensions in meter,
J in amps/m
B in Tesla
AZ in Tesla.m
we employ
u=41r
° 107

For

For a single wire pair (long wires),

13



I N

2
uo p.‘. A
= I;'] E: I ez
as is shown by D. Corson and P. Lorrain, "Intro. Electromag. Fields and
Waves," W.H. Freeman and Co., S.F., Eqn. (5-70), p. 189.
For the configuration shown, we perform the integration over y (from

~h to +h)
h
A1 = 19 _[
~h
_ Y
T 4q

+

+

o ALX=(xp) J + (Y- h)z} {[x+(s-p)1 + (Y= h)

dy In [X- (S+P)]2 + (y-Y) £X+(s+p)] + (y—Y)

[X(&ﬁ)] +(yY) [*W$$)] +(M4)

-

(Y-h) 1

{[x- (s+p)] + (Y- h) b {[X+(s+p)]

+ (Y- h) }

(v+h)?)

(ven) 1n ADXelep)I* (Y)Y ([xr(sp) ¢

{[X-(x*p)1° + (Y+h)}°

2 [X—(s+p )]
2 [x-(s-p)]
2 [x+(s%p)]

2 [x+(s-p)]

tan

-

F
tan

F

tan

tan'

14

{[x+(s*p)1° + (v+h)2}

-1 Y+h an'l Y-h
is+p§ X=(s+p)

Y+h tan~ Y-h
X=(s—p) X-(s—p)

-1 _Y+th tan'l Y-h
X+(s*p) X+(s+p)

Y+h n—l Y-h

+<s j X+<S_p§ .




With uo/4ﬂ = 0.1 this is programmed as AZUJ1 in Program FORPP.

For p and h small, the configuration might be approximated as two
parallel 2-D strips of magnetic moment. We note that for an individual mag-
: . > - R 3
netic dipole of moment |m| =1 * Area, A = n/4(mxR/RY).  Here, for
one pair of current strips, we have a magnetic moment per unit length of 4Jph

-- to be integrated over z from - to « to obtain:

For one pair of current strips,

n ¢ 2u
AJd = —Q-ph J~ (x=s) ___o ph x-S
4 m J_ [(X—S)2+y2+22]3/2 w (X"S)2+y2
and for the two pair
ALY = - 2ug X=S __ _ __x*s
2z’ T 2.2 2,21 ¢
(x-s) "ty (x+s)“+y

With 2u0/ﬂ = 8(u0/4ﬂ) = 0.8, this 1is programmed (as a check) as AzZ(1)2
in Program FORPP.
To solve the same problem on "POISSON" we take into account the finite

nature of the mesh density, especially along the current sheets.

h = current sheet height.

N = No. of nodes on the sheet.
I0 = current at each node.

8§ = nodal spacing.

J = current density.

15



h +g% ) 1
Ip=4d & N =6=>h—6(N--2-
If we take: B ' I, =.5;
| = 30;
J=N-1=29
we get h =432 x5 = 5.0862
_ 5
$=79

The analytical method solves for'the vector potential A/Jo, and the
relaxation method solves for Are’ If. both cases use the same geometry

their vector potentials are related:

| A) _ (A)
(j;. analytical 3;. relaxation

: Are]ax

J. -
Trelax. (A/Jo)analy.
J. . .
or: relax. _ Arelax. _ (1)
' Jo (A/Jo)analy. Jo
If the two solutions are the same," Ji /J0 =1
relax.

The relaxation method however is-affected by the boundary conditions

which, if incorrect, introduces a certain error measured as the depature

16



of J /d. from unity in Eq. (1). Table 1l 1lists results for sev-

i relax’ o
eral different x,y locations, and boundary conditions. Figure 4 is a plot
of these results. Figure 5 shows the flux lines along the boundary for the
3 types of b.c. used. In each case the use of the procedure suggested here

appears to give results that distinctly are to be preferred.

17



8l

Analytical Solution Our B.C. Dirichlet B.C. Neumann B.C.
X(cm)  Y(cm) A/‘]o A__A'('S'LQ)_ Are]ax - Ar('gig?( _Ji/‘]o Are]ax - Aigigi .Ji/‘]o Are]ax - A\Sgigl J..i/‘]o
0 0 2.431588 0 0 - 0 - 0 -
1.0 0 | 2.455497  .023909 ~0.74 1.068 ~0.80 1.15 -0.6 0.864
4.0 0 | 2.828064  .396476 ~12.55 1.092 -14.4 1.25 ~10.8 0.939
8.0 0 1928842 -2.238744|  +65.85 1.014 +58.1 0.894 +72.8 112
12.8 0 |-1.074990 -3.506578|  +104.45 1.028 +82.65 0.812 +123.4 121
13.8 0 | -.9190218 -3.350610 +99.55 1.024 +74.46 0.766 +122.6 1.26.
0.213 13.998 | .6383113 -1.793277 +54,75 1.052 +72.9 1.40 +34.3 0.659
4,894 12.198| .6432313 -1.788357|  +54.25 1.046 +68.27 1.316 +38.3 0.738
4.601 10.110 | .8142468 -1.617341 +48.85 1.042 +58.3 1.242 +37.9 0.808
9.007 9.701| .2662448 -2.165343 +64.95 1.034 +70.1 1.11 +57.66 0.918

Table 1
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J/Jo

1.5
1.4

oo N o

effect of boundary conditions

. Dirichlet ¢

Ao ..., .':. \ ,/, -
g \ o )
o \ e i
\\ /A —
Neuma,n'r/ 7
| 1 1 | 1 | | l L
1 2 3 4 5 6 7 8 9
LOCATION

Fig. 4



1 b.c test

PROB. NRME = 2 in

7/ S.CASPl sep:

7 S.CRSP! sep.

1 b.c test

PROB. NRME = 2 in

S.CASPI sep.

PROB. NRHE = 2 in 1 .b.c test 7

Flux lines using the three different types of boundary conditions.

Fig. 5.
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Single Dipole Quadrupole and Sextupole Using Line Current

The analytical solution of the vector potential for these types of pro-
blems is outlined in LBID-847 (program "POTEN" on the HP 1000). The flux
lines of the three problems solved by POISSON using our method is shown in

Fig. 6. Table 2 compares the POISSON values with those solved analytically

at some arbitrary locations.

Dipole

Quadrupole

Sextupole

21



- B wmee- |
Di~0LE

' SEXTUPOLE ’ |

| |

| |
“e e imteeemes e omo oo e | === = mmm e o m e oo e oo f === s |
Asl poisson}n/l thaory | Error % JA/] poisson|i’/l theory| Error X |A/] poissonjh/l theory | Error % | .
----------------------- Rl e B B e el R
0.4689177 : 0.45¢9803 | 0.004 | 0.161 } 0.1613¢8 ) < 0,18 | 0.00821 j 0.0079282 | 3.4 :
0.3386 4 0.38 | V.096 | 6.0228 | 6.02436 .| 6.7 | 0.0865 | 0.08592. | v.e6? |
0. 0107 | 0.407084 4 X 0.1 | | | | ! | |
0,326 | 6.32589 j ¢ 0.3 | | | | ] | |
----------- R E e B e i e httel Bt bt RESEEEEaY

Table 2

Erroneous Results

In the course of studying a 2 in 1 magnet for the SSC we came across a
case which clearly shows the improvement of using the new boundary method.
In this case the two iron clampet dipoles of which only one is energized have
been placed inside a thin iron cryostat. An imaginary circular boundary out-
side the cryostat confines the mesh size of the brob]em. When a Dirichlet
boundary condition is ihposed the solution result with flux lines circulating
the iron cryostat as if a final net current flows through the dipole,
Fig. 7a. In the case when the boundary condition has been replaced with a
Neumann type, premature return of.flux Tines occur, Fig. 7b. Our results are

shown in Fig. 7c.

22
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IRON RING

(a)

DIRICHLET

AIR

PROB. NAME = 2 {n { dipole / S.CASPI nov. 13 CYCLE « 9283

(c)

Fig. 7.

PROB. NAME = 2 in } dipole / & CASPI nov, 22 CYQLE = 245}

PROB. NAME = 2 in 1 dipole / S.CASPI nov.18 CYQLE = 1498

A non-physical boundary condition can result in a non-physical
solution. On top (case a) a Dirichlet condition results in flux
lines circling the iron ring as if a net current flows through the
dipole. In the center (case b) a Neumann condition results in flux
lines which are prematurely returned to the iron ring. The correct
flux lines are shown in the bottom (case c) using our method. It
is however possible that when the boundary-is farther removed from
the iron ring, increasing the air and overall problem mesh size,
both cases a and b can end up with reasonable flux lines.

23



How to Use the New Boundary Condition

This section describes how' the user incorporate§:the'hniversé"boundary
condition intd a POISSON-type problem. (The method used is described in the

analysis section under the Least Square Method.)' The POISSbN group priginat~

ing from the VAX has been nndified‘fo ouf.HP'lQOO;computer speéff%cations.
Experience has shown that any problem which converges using the standard
boundary conditions (Dirichlet or Neumann) will converge when the universe
boundary condition is used. vaob]ems thétfconverge with difficulty, or not
at all may experience gimilar difficulties usindfﬁhe newiboundaryvcondition.

We follow a:étandard,sequgnce;

AUTOMESH --->|  LATTICE _—> TEKPEOTf N ——
mesh ‘ "~ mesh : : graphical
description generation " display
C—— POISSON . | ———> FORCE
“solution |

AUTOMESH |

The user'must add anfadﬁitional region to fhe,AUTOMESH input daia. The
new region may only be placed on the problem boundéry; This region has the
same general fbrm as other regions inlAUTOMESH input'data: a 'REG' region
description card, and a set of 'PO' geometry cards following. A descriptiqn
of thesevéards follows. o
| The region Card,muSt set the méteria] code to 513. The Cgr?ent and cur-
a rent dgqsity.variableS'must be sgt to?0.0.': »

The geometry must conform to the following specifications:

24



- The 'universe' is a shell consisting of two circular concentric

arcs centered on the origin of the problem's coordinate system.

- The arcs must be far enough apart for at least one mesh triangle

to fit between them.

- The shell is closed by any lines of symmetry in the problem (it

is a ring if none exist).
- The shell must be placed outside all ‘source’ and ‘iron' regions.

- The nodal spacing is not required to be equal.

Figure (1) demonstrates this geometryi No error -checking of any kind
is done for . these specifications! (AUTOMESH may pass faulty "universe"
regions without reporting any errors, but the problem will not make physical
sense.) There is no restriction on how distant the shell may be from
'source' and 'iron' regions; the shell may also be thicker than one triangle.
However, additional points increase the size (and execution time) of the

relaxation process in POISSON.

25



The following example of AUTOMESH input may help to clarify these

points.
test b.c with new poisson 22 nov. 1983. | ! Title card

JREG NREG=3 MAT=1 XMAX=5.0 YMAX=5.ONPOINT=4 - ! First REG card
$REG XMIN=-3.0E-6 YMIN=-3.0e-6. '

$REG dx = 0.160 xregl=0.5 yregl=2. . © . Y'Multiple zoning
SREG yreg2=3.0 xreg2=2.5 § .

30 X=0.0 ¥=0.086 i Problem geometry
3P0 nt=1 x0=0.0 y0=0.0 r=5.0 theta=0.0 § - . - o

$P0 nt=2 x0=0.0 y0=0.0 r=5.0 thet§=90. 3 :

#po x=0.0 y=0.0 § , - L e S :’ '£'*~¢= U

JREG MAT = 1 cur=-1000. NPOINT=5 $- -~ ..7.° ! Conductor region
‘%po x=1,0 y=0.0 8. - S ’ ‘

$po x=2.0 y=0.0§ - TP S SN S A

3po x=2.0.y=1.08 -~ . . o

$po x=1.0y=1.09- . ... - oo Lo

$po x=1.0 y=0.0 § . . -

Jreg mat=513 cur = 0.0 den = 0.0 npoint=5 § : Universe region
$po nt=1 x0=0 y0=0.0 r=4.60 theta=0.0 § .

$po nt=1 x0=0 y0=0.0 r=5.0 theta=0.0 § . !

3po nt=2 x0=0.0 y0=0.0 r=5.0 theta 90.0 $ H

3po nt=1 x0=0.0 y0=0.0 r=4.60 theta=90.0 $

$po nt=2 x0=0.0 y0=0.0 r=4.60 theta=0.0 § :
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LATTICE AND TEKPLOT

The "universe" region is just another air region to LATTICE and TEKPLOT.
No special user intervention is required. TEKPLOT cannot di;tingush the
"universe" region from adjacent air regions. They will appear. to be one and

the same,

POISSON

Five new problem constants (thex so-called CONs) have been added to
POISSON.

CON(126) is the key to the use of the “universe" boundary condition in
POISSON. This CON determines the symmetry type of the "universe" region (it
is the basis for the a's used in the_Analysis section). It is unrelated
to the prob]eh symmetry type CONs (CON(46)'and CON(19)). If CON(126) is less
than or equal to zero, the universe boundary condition is not used, coeffi-
cients aré not‘calculafed, and_no adjustmenf of the outer arc potentials will
take place. | This means that a prbbiém ‘may be run with ‘tﬁe gtandard
(birich]et or Neumann) boﬁndary conditions inifia]ly. (Thése are determined
by CONs 21-25). Once CON(126) is set and the E matrix is calculated, it is
not possfble to return the oufer boundary of the shell to standard boundary
conditions. If CON(126) is reset to zero the potehtia]s on the outer arc of
the shell are frozen. | | |

Default is CON(126) = 0.
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Supported Symmetry Types

CON(126) o .. Type T
42 : ‘regular quadrupole . 4k -2
21 regular dipole 2k - 1
21 +4 2-in-1 dipole
quadrupole
sextupole Fig. 8b 2k -1
' Cetc.
20 ¥4 2-in-1 dipole
' .quadrupole { e o
'sextupole' Fig. 8a 2k - 0
_ "etc; o
) 411_ : _.: - ”‘ m1dp1ane - h. 4  k ;:1

CON(129) determ1nes how often to adJust the potent1a]s on the outer arc.
The adJustment is done every (CON(129)) relaxat1on sweeps (cyc]es) If

CON(129) is less than or equa] to zero, the potent1a]s on the outer arc are

FE - Y
-

frozen —_— no‘adJustment takes p]ace. Defau]t is CON(129) 0

Exper1ence has shown that potent1als on the outer arc stab111ze qu1ckly,
wh11e the rest of the problem may have many more cyc]es to go before sat1sfy—
ing the convergence cr1ter1a Execut1on time of a 1arge prob]em may be
reduced by performing the adjustment less often.

The following example of POISSON input may help to clarify these points.
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0 DUMP ! Start from LATTICE run-

%6 0 1 Real iron

*75 1.89 -~ ! Don't optimize relaxation factor...

! ...this is sometimes helpful

*46 2 “ ! ProbIem syhmetry (midp]ane) -

*126 110v ! Universe symmetry (m1dp1ane)
%129 10.’ | -1 ‘Adjust every 10 cycles

LD ¢ End

CON(127) and CON(128) contain the dimensions of the fworking matrix' E.
This matrix is calculated, then saVed at the end of that dump. A problem
requiring mu1t1p1e POISSON runs w1l] not need to reca]cu]ate the ‘'working
matrix'. These CONs - should not be altered by the user.-
CON(130) is reserved for future use.’
)
FORCE

Like LATTICE and TEKPLOT, FORCE cannot d1st1ngu1sh the "un1verse" region

from an air region. No user adjustments are necessary.

Other POISSON Programs

These features have not been 1ncorporated 1nto any other programs in the

POISSON group. :
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Fig. 8 Two in one, dipole, quadrupole and sextupole, emphasizing
the type of boundary conditions.
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