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ABSTRACT
A numerical.éolﬁtion for a rather general seéond order partial
differential equation in two variables subject to_géneral boundary
conditions on a rectangle is obtained by use of cubig splines. The
eventual biéubié spiine approximation obtained is vefy amenable to

interpolation.
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INTRODUCTION

We consider the differential equation

Caug, + buy& +cuy + duy +eu = ‘ (1)

where a, b, ¢, d, e and r are known functions and u is an unknown

function of x and y on a rectangle
| "R = [x, x] X [y, ¥]
We make the usuairassumptions of continuity for the "coefficient"
functions and second order continuity for the.solution. It is further
assumed that a and b do notlﬁanish siﬁultﬁhequsiy at any point of R.
. We require that the soiution satisfy the following conditions on

the boundary of R:

5ﬁ +quy = for x =x, yely, 7l v l (2)
Bu +qQu, =& for x =X, ye x, ¥ - (3)
fu+pu =¥ for y=y, xelx, X NG
FasBuy=F for y=F xely ¥ ENCE

It is assumed that the "coefficient" functions are continuous for the
appropriate (single) variable and domain thereof. The functions, r,'QJ”
o, Y and ¥ cannot all be identically zero.. (Otherwise a trivial

solution results).

DISCRETIZATION

We partitioh the interval; [3, %) into m-1 subintervals of equal

length,

% - x)/(m-1)

o
i

obtaining

]
L
bl

[

cey Xy =X
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and partition [y,y] into n-1 subintervals of length
A= (y~-y)(a-1)
obtaining

l=yl_a s 9yn=;’

. _ 4
We propose to appiy Equations (1); (2), (3), (h)‘and (5) at the_

pertinent points, (xi, yj), from the abovg and to obtain,thereby 8

linear algebraic system with mn + 2m + 2n equations in a like number of

unknowns consisting of approximétions for u at all poihﬁs, (xi, yj).and for

its normal derivatives at pertinent boundary grid-ﬁoints using a bicubic

spline approximation for u.

BASIC CUBIC SPLINES

Since the solution,vu, is to be approximated by a bicubic spline,
v(x,y), defined on R with knots at the points, (xi, &J)’ for i = 1 to ﬁ
and J =.1 to n, for any fixed yJ, v must be a cubic spline Sj(x) with
knots at the Xy Likewise for any fixed X;5 V must be a cubic gpline
Ti(y) with knots at the ¥y | |

The space of all cubiec splines in x with knots at the xi is lingar
with dimension n + 2. (See reference 1). A convenieht‘basis for'fhis
space consists of the cubic splines, s |

, for 2=0 to u, with u =m + 1,

defined by

i
-t

1
(@)

1 - 1 1
s (xl) so(xi) 0 for all i s (xu)

|
o

' = ' =
Sl(xl) sz(xi) 612 sz(xu) 0 for £ =1 tom

1i "(x.
x,) =0 ‘su(xi) 0 alli su(xu)

(

S'
o
Now, any spline in the space is a linear combination of the above,

and in particular, for any j, 8 (x) is such a linear combination.

J .
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Similarly we défipé a basis for the cubic splines in y with knots

at the y; be |
to(yy) =1 .-to(yj) -0 a1l t5(vy) = o
ta(yy) =0 ' tk(yj) - gjk.‘ ‘ | ﬁi(yv)=;9 for k=1 ton
(1) =0 ty(yz) =0 el g tifyy) =1

where Y=n + 1. For any i, the cubic spline, Ts () is a linear combin-
ation of the above. 4
Values for s) (x4), sE(xi).and ti(yj)’ tﬂ(yj) for pertinent values

of the‘indiées are readily computed from the definitionms.

APPROXIMATIO_N OF u IN TERMS | :
" OF THE sﬂ_and ty |
We.now need to find the appropriate éoefficients for the linear
combinations mentioned in the previous section so that fhe bicubic
spline defined thereby will satisfy the Equétions (1), (2), (3), (&)
and (5)‘at pertinent grid-points. '

~We have for fixedlyj 

N
M v :
V(Xi, yJ) = Sj(xi) = % Q'EJ Sﬁ(xi), (6)
. v ! 1 H |A .
x(xi’_yj) = Sj(xi) = 3 o, 8 (x.) for i = 1 to m, derivatives
o k3 4 1 with respect to x.
' -b .n Ly 1Y
Vxx(xi_, .YJ) =8 (xi) = § %3 8 (Xi)
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and for fixed X3

o Y N |
v (x5, YJ) = Ti(Yj) = E;-Bki tk(Y5) | (7
v Y ' . . |
'Vy(xi, yj) = Ti(yj) = 3 Pyxi tk(Yj) - for § =1 to n, derivatives
: °© with respect to y.
oY,

v _ mtt - : "

y'y(xi’ YJ) = Ti(yj) = g: ﬁki tk(yj)

The 2mn + 2n + 2m coefficientSCﬁj -and Bki are to be determined,
yet we have only mn + 2n + 2m conditions to be met. In the next section
we discovér that mn of the pki are in fact equal to mn of'the-azj

relieving this situation.

REDEFINITION AND REDUCTION OF THE COEFFICIENTS
In this section we not only reduce the number of coefficients to
mn + 2n + 2m as required, but we redefine them in a way more_meaningful'v
to our original problem. | |
From our definition of the basis, Sgs £ =0 to p we recall that
sz(xi) =1 for f =1 ané is zero otherwise
consequently | |

V(Xi, yj)-= “ij for 1 =1tom j=1t%on.

and, similarly, from the definition of the by

v(xq, yj) = P53 for j=1ton,i=1tom.

Hence we define

v, =@a =8, fori=1tom, j=1ton.
iJ ij Jji

(Note that we have reduced the number of unknowns by the number mn).
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Fufthervwe recali
sé(xl) =1 for g =0 and is zero otherwise
consequently

to n

i}
—

VA(Xl’yj)-g,“ .  for
and, similarly

for j=1 to n

Vy(xi,yl)'n 'ﬁbl for i =1 ﬁo m
'Vy_(xi)y-y) =- B-y'i‘ for i =1 to m

For convenience in indexing we define

SVoy Fgy = Vi(xl,yj)  for j =1 to n
V3 % o = v#(xm,yj) for j=1 to n
Vio =B85 = vy(xi5yl) for i =1 to m.

‘Vi);= By; = vy(#i,yn) ' 'fof ii= 1 to m.

 :It shouid be notéd_tﬁat these quantities are not values fér vV, but
rather for normal derivatives.

| Howevef, we see that values for vzk g = Ollto L and k =0 tb:'
Y (exCept_for double indiceé, 00, 07 10, and K7Y which do not |
'appear).are preciSely those desired to.approximaﬁe the solg£ion,.u .

; Suﬁstitutiné these new coefficients in Eqﬁations (6)vandv(7) wé

obtain for i =1 to m and j =1 to n:
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V(Xi,yJ-) = V'ij

’ m
. ' . . '
vx(xi’yj) = So(xi)voj + ZXL sz(xl) VﬂJ + sp_(xi)vpj

‘ m } |
Vix(Xis¥3) = SSL(xi)Voj + f sp(x )V + s (kv (8)

n
'Vy(xi’yj) = t::)(yj)vio + f'tii(yj)vik + t:y(yj)viy

n
13 "t . " L
Vyy(EYg) = b glVig + 2 b (i + by Ve

Note that the derivative valuesvfor the right hand side are known
quantities, previously computed. We can now substitute the above
(right-hand side) expressions in Equations (1) thru (5) and obtain
mn + 2n + 2m equations in mn + 2n + 2m unknowns.

In solving the linear algebraic system above, we find it is
more convenient to have a simply-indexed unknown rather than a doubly
indexed one and further, to include formally defined quantities, » |,

00

Voy’vpo and VPY in the lot.

We define a single index X for 1 to (mn +2n + 2m + 4) by
A=14+4 +k(m2) for 4 =0touandk =0 toy

and define

Wy T Vyk where defined
wy = O otherwise (dummy unknown).
We now seek values for w, for A=1 to mn+2n +2m + 4 (fourvv

of the values are arbitrarily zero from the above).
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For convenience we let p¥* = p+ 1 =m+2 and Y¥=Y+1l=n+2
and write'Equatidns (8) in terms of the w,, obtaining for i =1 to m,
and ='1: to n:

V(Xi,yj) = wl+i+ju*_ N

. " | |
: . 1
vx(xi)YJ) = SO(Xi)wl+ju* + f Sé(xi)wl+£+.]u* + sp,(xl)w,l'ﬂl+ju*
» Y ' " . ' "-
Vi Xio¥s) =80 (g ooy 4 isg (xi)W1+z+ju% 8 (x4 g

1
tv(yj)wl+i+Yu*

. ' 1y '
yxa¥s) = by T

. N :
’ " 1" 1"
V&y(xi,yj) =% (yj)wl+i * i by (yj)v1+i+ku* * tv'(yj)wl+i+Yu*
In particular, for the normal derivatives on the boundaries:
wl+ju*'

Vx(xl’yj) =
Vk(xm,yj) = Wl+g+ju*
Vo(x5y) =y

Replacing u and its derivatives in Equations (1) to (5) by v

© and its derivatives .as expressed above in terms of.’ w and including_

the dummy variables as defined we obtain a linear system consisting of

hn'+52n + 2m. + n equations in a like number of unkndwns, LI Detailé'

‘are shown in Appendix T .
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It should be noted that either inconsistencyvdr redundancy in
the above system occurs if the.two boundary conditions applied at a
vertex of R do not involve normal derivatives. For'example,‘at'
(xl’yl)’ if

p(xq) = 0 and . g(yl) =0
then | v
L0 v (xp59)) = %(xp) and g(y))Vix,y,) = ¢(y,)

and, if ‘

() /2(x;) # 8(v,) /a(vy)

then two distinct values for v(xl,yl) ‘are prescribed and the syétem

is inconsistent. On the other hand if .
f(xl)/f(xl) = Q(yl)/g(yl)

the two equétions reéulting.from the bdundary cqnditiogs afe'lineérlyf
dependent.

Nothing caﬁ be done about_inconsisteﬁcy, thé probleﬁ_ié not
- solvablé. ‘The second situation_(redundancy) can Be relieved by retainipg
one of fhe boundéry condition equations and replacing the other by ah
equation ﬁppfoximating u, by the assumptioh thaﬁ~ u_'is”very‘hearly -

-cubic in x for any fixed 'y . .(Seé Appendix II for details.)

A similar situation occurringvat any or all of the other three

vertices may be treated in an analogous manner. .

RECOVERY AND REFINEMENT OF APPROXIMATE SOLUTION
After the linear system has been solved for

Wy for A=1 to mn +2n +2m + 4



-9- , ‘LBL-100k4

we obtain V- and its normal derivatives:by:

v(xi,yj) = V) i agu for i =1 to m and j =1 to n.

Vx(xl,yj) =Wy 5x for j =1 to n

vx(xm,yj) = Y aju for j=1 to n
vy(xi,yl) = Wy for i =1 to m
Vy(xi’yn) = wl+i+Yu* for i =1 to m

Observing that we know nothing about v other than as indiéated
.above, and noting use of large m and/or n is precluded by the size
of the resulting linear system, it seems desirablg to réplace our
approximétion v by a function z(x,y) which is‘defined for any point
(x,y) in R.Y'We do this by constructing. z as the optimal bicubic
spline2 on R with knots at the (xi,yj) and assuming for 2z the prescribed
yalues of v and its normal derivatives.

Now approximate valués for u on a much finer mesh over R can

be obtained by computing the values of 2z at the desired poihts.

NUMERICAL EXAMPLES

We consider a few simple examples to illustrate the method.

EXAMPLE 1-

U * ﬁy& =6x +6y . .on [O,l] X [O,l]
u(O,y) +;ux(0,y) = l‘+ y3 along X = Ov
u(i,y? + i, (l,y) =5 + 3 along x =1
u(x,0) + uy(x,o) =1 +x3 along y =0
u(x,l) + uy(x,;) =5 + x3 along y =1
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in terms of the notation of Equations (1) to (5) -

a(x,y) =1 b(x,y) =1
gly) =1 aly) =1
g(y) =1 ay) =1
I(x) =1 p(x) =1
T(x) = 1 B(x) =1

Analytic solution.

u = x3 +

c(x,y)
®(y)
&(¥)
$(x)

- ()

satisfies all the conditions.

Approximate solution.

0 .d(x,y) =0

1+ y3

3

5+ y

1 + x3
3

5 + x

It may feadily be shown that

y3‘4 1

LBL-1004

@

(X’Y)I =0
r(x,y)=6x+6y

Using m =6 and n =6 we obtain for

V(X,Y)
j y 10 0.2 0.4 0.6 0.8 1.0
| 1.0 | 2.000 | 2.008 | 2.064 | 2.216 | 2.512 | 3.000
| 0.8 1.512 1.520 1.576.1 1.728 | .2.024 | 2.512
| 0.6 1.216 1.224 1.280 1.432 1.728 2.216
J O.b | 1.064k | 1.072 | 1.128 | 1.280 | 1.576 | 2.06k4
| 0.2 1.008 1.016 | 1.072 1.224 1.520 2.008
i ‘ 0.0 | 1.000 1.008 1.064 1.216 1.512 2.000
and for normal derivatives
'Vy ‘ and 'fﬁ_ .
\ X : r 7 'T:_‘\“"""' B
! y X{o. | o. 0.4 = 0.6 0.8 1.0 y %X | 0.0 1.0
| ~J | % -
1 N
1.0 3.0 | 3.0 3.0 3.0 3.0 3.0 | 1.0 | 0.0 | 3.0
0.0 0.0 | Q.0 0.0 0.0 0.0 o.o_i | 0.8 0.0 3.0
= 2. | 0.6 | 0.0 | 3.0
0.k { 0.0 | 3.0 |
0.2 | 0.0 | 3.0"
0.0 | 0.0 | 3.0.

Comparison of values

of u and its normal derivatives computed

from the anélytic solution reveals exact agreement with the values for Vv

given above. This is to be expected since u is cubic in x ahd Y.

Construction of the optimal cubic spline 2, to fit Vv and computation
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of its values in a finer mesh, likewise reveals full agreement with wu.

EXAMPLE 2 '
| ux# t o +u = x3y3 + 63y + 6#y3 +X +y on tb,l] x [0,1]
u(0,u) + u (0,y) =1 +y
u(1,y) - ux(l,Y) -2 vy
u(#,O).+ u&(x,O) =14+ x
u(x,1) - uy(x,i) =28 4 x

Analytic Solution. Tt may be readily verified that

u =*i3y3 +X +Yy

satisfiesvall thé conditions.

Approximate Solution.  Withm =6 and n =6 we obtain
V(X,Y)
*1 0.0 0.2 0.4 0.6 0.8 1.0
1.0 | 1.000 | 1.208 | 1.u64 | 1.816 | 2.312 | 3.000
0.8 | 0.800 | 1.00k4 1.233 | 1.511 1.862 2.312
0.6 1 0.600 | 0.802" | 1.01k 1.2k47 1.511 1.816
Oo.4- | 0.bo0" | 0.600 | 0.804 | 1.014 | 1.233 | 1.k6L
0.2 .| 0.200 | 0.400 | 0.601 | 0.802 1.004 | 1.208
0.0 | 0.000 | 0.200 | 0.400 | 0.600 |.0.800 1.000
and normal derivativeé
v and
X
0.0 | 1.0 §\\\f\ 0.0 o2 | okl 06| 0.8 1.0
1.000 | 4.000 1.0 {1,000 {1.02k |1.192| 1.648| 2.536 | 4.000
1.000 | 2.536 0.0 }1.000 {1.000 |1.000| 1.000} 1.000 } 1.000
1.000 | 1.648 | S
1.000 | 1.192
1.000 | 1.024
1.000 1.000
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'_The values for v are seen to agree with those for'_u.

Further values for W -on-a finerﬁmeshvdiSplay the-same'agreement.

This is to be expected since  u 'is_d-bicubic in - 'x and y .

EXAMPLE.3
xx
u(0,y) = 1.
u(l,y) =
u(x,0) =
u(x,1) =

1. + sin{x)

1. + sin(1)cos(y)

1.+ sin(x)cos(1)

)

W 4u +u, +u +2u=2.+ cos(x+y) on 0,1 x [o0,1]
vy X v | (x+y) . [ ’ ] )

Analytic Solution. The above conditions are satisfied by

u ; 1 + sin(x)cos(y)

Approximate Solution. With m = 6 and n =6 we obtain

Y(X’Y>
,\\\ X ' o .
¥ O 0.0 0.2 0.h 0.6 0.8 1.0
1.0 1.000 1.107 | 1.210 | 1.305 1.388 | - 1.455
0.8 1.000 1.138 1.271 1.393 1.500 1.586.
0.6 1.000 1.164 | 1.321 1.466 | 1.592 1.69k4.
0.k 1.000 1.183 .| 1.358 1.520 1.661 1.775
0.2 1.000 1.195 1.381 1.553 1.703 1.825
0.0 1.000 1.199 1.389 1.565 * 1.717 1.841
v;x- . 'Yy
X . ‘ X . ) :
y | 0.0 1.0 Yy 0.0 | 0.2 0.4 .06 1'0.8 1.0
1.0 -0.5402 '0.2923' 1.0 | -.0001 |-.1668 {-.3270 |-. b7kl —.6027,-;7086
0.8 0.6083 0.3777 0.0 | 0.0005 {-.0002 {~.0036 {0.0079 {-.0359 |{0.1292
0.6 0.80hy 0. hihg ' ‘ '
0.4 0.9203 0.5072
0.2 0.9798 0.4998
0.0 0.9991 0.6557

v
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For the analytic solution we have: _
: : ’ u( X, Y)
i X ) ! ;
yoO 0.0 | .0.2 | 0.k 0.6 0.8 1.0
1.0 | 1.000 | 1.107 | L1.210 | 1.305 | 1.388 | 1.ks5|
0.8 1.000 1.138 | " 1.271 1.393 1.500 1.586
0.6 1.000 1.164 1.321 | 1.466 | 1.592 | 1.694
o.k 1.000 1.183 1 1.359 1.520 1.661 1.775
0.2 .| 1.000 | 1.195 1.381 | 1.553 1.703 1.825
0.0 1.000. | 1.199 | 1.389 1.565 1.717 | .1.841,
ux ‘ uy .
w100 1.0 | |y 0.0 0.2 0.4 0.6 0.8 1.0
1.6~Tb.5uo3 0.2919 1.0{0.0000 |-.1672 |-.3277 -.47511-.6037 |-.7081
0.8 .10.6967 ;0.376u 0.00.0000 {0.0000 {0.0000 {0.0000 {0.0000 |0.0000 |
0.6 :0.8253 :0.4459 : '
0.4 10.9211 !0.4977"
0.2.10.9801 0.5295
0.0 |1.0000 !0.5403

As seen from the tables above, values forl v are in agreement with
those for u to three decimal piaces, however values for thevnormal
ideriVétives, particularly,along X % 1 and y = O. deparf considérably_
"from those of u . We should anticipate that intefpolation on V to
dbtain w Values would not give very good agreement with u . in fact |

" we find near (1,0) we have:

X Ty Tz S
0.92 0.00 1.792 1,796
1.00 0.12 1.839 1.835

In general we have only two decimal plaéé'agreement in values for gz - and ﬁ .
Repeating the problem with m = 11 and n = 11 and interpolating

we obtain
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1

2(0.92,0.00) = 1.795

It

1.835 : - -

Y,

" 2(1.00,0.12)

I

and, eésentially, three decimal place agreement between interpolated

values‘of 2z and actual values.of u .
COMPUTER CODES

Two cdmputer subroutinesvhave been written in FORTRAN fof the
CDC 6600. The firsﬁ of thése,.PDYBCS, éomputes.values for the
approximaté solution, v, at gria—points'and for its normal derivatives
at boundary grid—points. The user must supply a "main" program to
specify m, n, X, 2, X.and } and provide for oufput_Of results. Suitable
dimension for various arrays must also be set in the main (célling)
program. The user must also supply_subrouﬁines which define the
differential equation and boundﬁry coﬁditions.

The séqond subroutine uses the results obtained above*to cqnstruct
the optimél bicubic spline, z,Jand to interpolate for Qalues of z on
a'finer meéh. The user mdst éupply a main program to read.in thev
values 6f Vs, Vy and vy gs appfopfiate. | |

Listings'and fuller description of the use of.these'subfoutihes

may be obtainced from the author. v - _— o ’
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CONCLUS ION

Wé.haye confirmgd'that a bicubic spline.approximatioh can be 
madg to a wide vériety‘of.boundary-conditioned partiél differential
equations in two variables on a réctaqgulér domain. In the example$
given and in mahy otheré‘tried, a reasonable apéroximation was |
attailned to a knoﬁnvsolﬁtién. In.all cases the approximaﬁion (if not
already exact as in Examplés 1 and 2) was significantly improved by
increasing the number of grid-points. The size of lineaf5<system-to:
be solved blaCes a practical limit on this increase;.
In actual practice, there would be no point'to approximating
“the solution if it could be obtainéd analytically. In any case, the
bicubic spline approximation.doéé satisfy the”aifferential equation
‘at'all gridfpoints and‘the boundary cohditioné atvboundary grid—péints.
The acCuraCy of the approximation (irrespecti?e of Whether‘the solution
u.is known or not) is certainly indicated by.how well the approximétién,
W, satisfies the boundary conditions and différéntial equation at
points (other than grid-points) in R. In particular one might'computé
z% Zy OT Zy as,appropriaté at mid-points of subihtefvals, [xi, Xi+i] for
y=y and y=§ or [yj’ yj+l] for i=§_and x=x and compgpé errors'in meeting
boundary conditions. Then at ‘each midpoipt of a subrectangle compute
By B Ba 2

x;'z and compute the errors in satisfying the'differential

equation at these points.
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APPENDTX T

DISCRETIZATION OF DIFFERENTTAL EQUATIONS
~ AND BOUNDARY CONDITIONS

Applying Equation (1) at any grid-point, (xi,yj) fori =1 tom

and j = 1 to n we obtain
a(xi’YJ)uxx(x13Yj) + b(xi:YJ)uyy(xi;YJ) + C(xi,yj)ux(xi,yj) +
+ d(xi:yj)uy(xiaYJ) + e(xi:YJ)u(xi’YJ) = r(xi,yj)

Replacing u by v with appropriate subscripts as obtained from

Equaﬁion (8), we have

u Y :
1" 1" +
835 ;Sﬂ(xi)vgj + bij§tk(yj )vik
" ' y
1 1 —
+ Cijzo:sz(xi)vzj + dij;tk(yj)vik_+ ®i3Vi5 = Ty

“or in terms of w

m Y .
1" ) " ’ 1
;g;[aijsz(xi)+cljsﬂ(xi)]w1+z+jg* + Eég[bijtk(y3)+di3tk(yj)]wl+i+kp*

+ e..w =r for i=1tomand j =1 to n. (1"
Mg = Ty Tor A and J (1)
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‘Similarly, applying Equations (2) to (“) at

grid—points we have.

g.

+ . W s = &b
§ Mopgur T A3 Mlagex T @

o

By Viamegux T3 Viemegux T 9J

Wi

f3 Yl4ianpe PV Y

L+i+Tu* i

for

for

for

for

appropriéte boundary

1 to n (i=1) (2'5

j =
j =1ton (i=m) (3')
i;= 1 tom (j=1) (&')
i=1tom (j=n) (5')
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APPENDIX II

SPECIAL CORNER CASES

At (Xl, yl)_if_p(xl) and q(yl)'both are zero, from Appendix I, we
retain Equation (4% as |

L) Vopr T Y

but we replace Equation (2) by expressing Vx(xl’-yl) in terms of a

cubic approximation of v(x,yl):
_1 _3 3 ol v ) L
v (eyy) = g vixyy) = 5 vlxgsyy) + 55 vixg.yg) 55 vixeyy)

and using’

W I . + §.W _3 v P S =
1+u* 65 o+pu¥* 8§ "3+u¥ - 28 “L+u* 3§ "S+p¥
By a similar procedure at (xm,yl) if R(xm) and a(yl) are both zero

we obtain

Redundancy at (xl,yn)'or (xm,yn) is treated in an analogous manner.
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