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ABSTRACT 

A numerical solution for a rather general second order partial 

differential equation in two variables subject to general boundary 

conditions on a rectangle is obtained by use of cubic splines. The 

eventual bicubic spline approximation obtained is very amenable to 

interpolation. 
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INTRODUCTION 

We consider the differential equation 

auxx + buyy + cUx + duy + eu ; r (1) 

where a, b, c, d, e and r are known functions and u is an unknown 

function of x and y on a rectangle 

We make the usual assumptions of continuity for the "coefficient" 

functions and second order continuity for the solution. It is further 

assumed that a and b do not vanish simultaneously at any point of R. 

We require that the solution satisfy the following conditions on 

the boundary of R: 

~u + .9Yx = <I> for X= ~, yf. [x:, y] (2) 

gu + <lUx ; (j) for x ::: x, yf. [1:, y] ( 3) 

fu + :EUy = ± for y = x:' X f. [~, x] (4 ) 

-
fu + pUy = ljJ for y = y, X f. [~, x] ( 5) 

It is assumed that the "coefficient" functions are continuous for the 

appropriate (single) variable and domain thereof. The functions, r ,t, 

;j;, ± and ~ cannot all be identically zero. (Otherwis.e a trivial 

solution results). 

DISCRETIZATION 

We partition the interval, [~, x] into m-l subintervals of equal 

length, 

6= (x -~)/(m-l) 

obtaining 

x = Xl' ..• , ~ = x 
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and partition [Z,y] inton-l subintervals of length 

~ = (y -~)/(n - 1) 

obtaining 

-:l. = Yl , ••• , Yn = Y 

We propose to apply Equations (1), (2), (3), (4) and (5) at the 

pertinent points, (Xi' Yj ), from the above and to obtain thereby a 

linear algebraic system with mn + 2m + 2n equations in a like number of 

unknowns consisting of approximations for u at all points, (Xi' Yj ) and for 

its normal derivatives at pertinent boundary grid-points using a bicubic 

spline approximation for u. 

BASIC CUBIC SPLINES 

Since the solution, u, is to be approximated by a bicubic spline, 

v(x,y), defined on R with knots at the points, (Xi' yj ), for i = 1 to m 

and j = 1 to n, for any fixed Yj , v must be a cubic spline Sj(x) with 

knots at the xi. Likewise for any fixed xi' v must be a cubic spline 

Ti(y) with knots at the Y
j

. 

The space of all cubic splines in x with knots at the x. is linear 
~ 

with dimension m + 2. (See reference 1). A convenient basis for this 

space consists of the cubic splines, St for t = 0 to ~, with ~ = m + 1, 

defined by 

s' (xl) = 1 s (x.) = 0 for all i s' (x ) = 0 o ~ 1.1 

sQ,(xl ) = 0 St(xi ) = °it s~ (xl.1 ) = 0 for t = 1 to m 

s~(xl) = 0 s (x.) = 0 all i s' (x" ) = 1 
II ~ ~' ,ll 

Now, any spline in the space is a linear combination of the above, 

and in particular, for any j, Sj(x) is such a linear combination. 

'. 
'. 
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Similarly we define a basis for the cubic splines in Y with knots 

at the Yj be 

t~(Yl) = 1 to(Yj) = 0 all j t~(Yy) = 0 

tk(Yl) = 0 tk(Yj) = b"k J . tk(yy) = 0 for k = 1 to n 

t,,(Yl) = 0 ty(Yj) = 0 all j ty(Yy) = 1 

where y = n + 1. For any i, the cubic spline, Ti(Y) is a linear combin-

ation of the above. 

Values for sl (xi)' s:g(xi) and tk(Yj)' tk(Yj) for pertinent values 

of the indices are readily computed from the definitions. 

APPROXIMATION OF u IN TERMS 

We now need to find the appropriate coefficients for the linear 

combinations mentioned in the previous section so that the bicubic 

spline defined thereby will satisfy the Equations (1), (2), (3), (4) 

and (5) at pertinent grid-points. 

We have for fixed y. . J 

v(xi , Y) Sj(xi ) 
I.l. 

s,t(x) = = ~ a,tj 
0 

f.l 

(6) 

Vx(xi , Yj) S'.(x. ) = = J 1. ~ a,t. o J 
s' (x ) 
,t i for i = 1 to m, derivatives 

with respect to x. 

f.l 
= ~ an .S"(X.) 

o A'lJ 1. 



and for fixed xi 

v (xi' Yj) Ti(Yj) = 

v y(Xi' Yj) = Ti(Yj) = 

v 
yy(xi' y) = Ti'(Yj) = 

-4-

'( 
L: ~. tk(y·) 
0 . 1. J 

'( 

f3ki t~(Yj) L: 
0 

Y ) "l}' ~ki tk(Yj 
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for j = 1 to n, derivatives 
with respect to y. 

The 2mn + 2n + 2m coefficients ']j and f3ki are to be determined, 

yet we have only mn + 2n + 2m conditions to be met. In the next section 

we discover that mn of the f3ki are in fact equal to mn of the Qtj 

relieving this situation. 

REDEFINITION AND REDUCTION OF THE COEFFICIENTS 

In this section we not only reduce the number of coefficients to 

mn + 2n + 2m as required, but we redefine them in a way more meaningful 

to our original problem. 

From our definition of the basis, St' t = 0 to J.L we recall that 

St(xi) = 1 for t = i and is zero otherwise 

consequently 

v(Xi' Yj) = Qij for i = 1 to m, j = 1 to n. 

and, similarly, from the definition of the tk 

v(Xi' Yj) = f3ji for j = 1 to n, i = 1 to m. 

Hence we define 

v - 0' - f3 for i = 1 to m, j = 1 to n. ij - ij - ji 

(Note that we have reduced the number of unknowns by the number mn). 

• 



'v 
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Further we recall 

s~(xl) = 1 for 1, = 0 and is zero otherwise 

consequently 

Vjxl'Yj) =Ct oj for j = 1 to n 

and, similarly 

Vx(xm'Yj ) = Ct fJ.j for j 1 to n 

v (x. 'Yl) c: . i30 i for i = 1 to m Y l 

vy(xi'Y'Y) =. l3'Yi for i = 1 to m 

For convenience in indexing we define 

. v . 
oJ :::; Ctoj - Vx(xl'Yj) for j = 1 to n 

Yllj =:(l 
fJ.j 

=:v(x ,yJ for j = 1 to n 
x m J 

vio =: 13 . = vy(xi 'Yl) for 
Ol 

i = 1 to m. 

vi'Y = l3'Yi = v(x.,y) for i = 1 to m. Y l n 

It should be noted that these quantities are not values for v, but 

rather for normal derivatives. 

However, we see that values for v.£k'£:::; Oto IJ. and k =0 to 

'Y (except for double indices, 00, O'Y, jJ(), and fJ.'Y which.do not 

appear) are precisely those desired to approximate the solution, u. 

Substituting these new coefficients in Equations (6) and (7) we 

obtain for i:::; 1 to m and j:::; 1 to n: 
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v(x.,y.) =V· •• 
l J lJ 

m 
vx(xi'y) = S~(Xi)vOj + i Si(Xi) v.£j + s~(xi)vf.Lj 

v (x.,y.) Y l J 

vyy(x.,y.) 
l J 

m 
= S~' (xi)v oJ' + ! s,£(x.)v n. + s~l.(x.)v . 

,. 1 l XlJ l fiJ 

n 
= t~(YJ.)vio + ! t~(y.)v·k + t"(YJ')v iy 1 J l 

Note that the derivative values for the right hand side are known 

quantities, previously computed. We can now substitute the above 

(right-hand side) expressions in Equations (1) thru (5) and obtain 

mn + 2n + 2m equations in mn + 2n + 2m unknowns. 

In solving the linear algebraic system above, we find it is 

( 8) 

more convenient to have a simply-indexed unknown rather than a doubly 

indexed one and further, to include formally defined quantities, v
oo

' 

v v and oy' f.LO v f.LY in the lot. 

We define a single index A for 1 to (mn + 2n + 2m + 4) by 

x = 1 + .£ + k(m+2) for £ = 0 to f.L and k = 0 to Y 

and define 

w X = v£k where defined 

Wx = 0 otherwise (dummy unknown). 

We now seek values for for A = 1 to . mn + 2n + 2m + 4 (four 

of the values are arbitrarily zero from the above). 

• 

'Ii 
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For convenience we .let f.L * = f.L + 1 = m + 2 and y* = Y + 1 = n + 2 

and write Equations (8) in terms of the w~, obtaining for i = 1 to m, 

and j = 1 to n: 

v (x.,y.) 
yy 1. J 

M 

+ i si(xi)wl+t+j~* + S~(Xi)~l~+j~* 

N 

M 

+ !s£ (xi)wl+.e+j~* + s: (xi)wl+~+j~* 
1 

+ ~t~(Yj )wl+i+k~* + t~(Yj )wl+i+'Yi.l* 

N 
+ I tk" (yJ.)wl . k * + til (y.)wl . Y 
1· +1.+ .~ v J +1.+ ~* 

In particular, for the normal der:lvativeson the boundaries: 

'V (xl,y.) = w x . J l+j~* 

v(x.,y)= 
Y 1. n wI . 

+1.+'Y~* 

Replacing u and its derivatives in Equations (1) to (5) by v 

and its derivatives as expressed above in terms of wand including 

the dummy variables as defined we obtain a linear systemconslsting of 

mn + 2n + 2m + 4 equations in a like number of unknowns, w~. Details 

are shown in Appendix I • 
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It should be noted that either inconsistency or redundancy in 

the above system occurs if the two boundary conditions applied at a 

vertex of R do not involve normal derivatives. For example, at 

(xl'Yl)' if 

then 

and, if 

then two distinct values for V(xl'Yl) are prescribed and the system 

is inconsistent. On the other hand if 

the two equations resulting from the boundary conditions are linearly 

dependent. 

Nothing can be done about inconsistency, the problem is not 

solvable. The second situation (redundancy) can be relieved by retaining 

one of the boundary condition equations and replacing the other by an 

equation approximating llx by the assumption that· uis very nearly 

cubic in x for any fixedy. (See Appendix II for details.) 

A similar situation occurring at any or all of the other three 

vertices may be treated in an anal.ogous manner. 

RECOVERY AND REFINEMENT OF APPROXIMATE SOLUTION 

After the linear system has been solved for 

wA for A = 1 to mn + 2n + 2m + 4 

,. 

• 
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we obtain v and its normal derivatives by: 

v(x.,y.) = w . for i :::: 1 to m and j = 1 to n. 
1 J l+l.+jlJ.* 

v (Xl'y.) - w for j 1 to n = x J - l+jlJ.* 

vx(xm,y) = w for j = 1 to n 
l+IJ.+ju* 

vy(Xi'Yl) = wl+i for i = 1 to m 

v y( xi'Yn) - w - l+i+ylJ.* for i :::: 1 to m 

Observing that we know nothing about v other than as indicated 

above, and noting use of large m and/or n is precluded by the size 

of the resulting linear system, it seems desirable to replace our 

approximation v by a function z(x,y) which is defined for any point 

(x,y) in R. We do this by constructing z as the optimal bicubic 

spline2 on R with knots at the ( X y) and assuming for z the prescribed 
. i' j 

values of v and its normal derivatives. 

NoW approximate values for u on a much finer mesh over R can 

be obtained by computing the values of z at the desired points. 

NUMERICAL EXAMPLES 

We consider a few simple examples to illustrate the method. 

EXAMPLE 1 

u + u = 6x + 6y on [0,1] X [0,1] xx yy 

u(O,y) + u (O,y) = 1 + y3 along x = 0 
x 

u(l,y) + ~(l,y) :::: 5 + y3 along x :::: 1 

u(x,O) + ~(x,o) c: 1 + x3 along y :::: 0 

u(x,l) + lly(x,l) = 5 + x3 along y :::: 1 
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in terms Of the notation of Equations (1) to (5) 

a(x,y) = 1 b(x,y) = 1 c{x;y) = 0 d(x,y) = 0 e(x,y) = 0 

ff( y) = 1 3,(y) = 1 !(y) = 1 +y3 r{x,y}=6x-+6y 

g(y} = 1 q(y) = 1 ~(y) = 5 + y3 

!(x) = 1 ,;e(x) = 1 ~(x) = 1 + x3 

rex) = 1 p(x) = 1 :j;(x) = 5 + x3 

Analytic solution. It may readily be shown that 

u = x3 + y3 + 1 

satisfies all the conditions. 

Approximate solution. Using m = 6 and n= 6 we obtain for 

v(x,y) 

I '''-,. 
, y ..... -.-. 0 . 0 . 2 0 . 4 

I--·----~~o ~I-;-~~~ --;~;8 - 2.064 

J 0.8 I 1.512 1.520 1.576 
I 0.6" 1.216 1.224 1.280 
I 0.4 1.064 1.072 1.128 
! 0.2! 1.008 1.016 1.072 
I 0.0 I 1.000 1.008 1.064 I _._. ________________ ',.L _____________ .l. ____ , ______ . 

and for normal derivatives 
v 

y 

0.6 o. 8 I--~-~~---I 
----+--~---~--~----

2.216 2.51~ I 3.000 
1. 728 2.024 2.512 
1.432 1.728 2.216 
1.280 1.576 2.064 
1.224 1.520 2.008 
1.216 1.512 2.000 _______ ._L __________ . __ ..1. 

and v 
x 

~--------------- .. ---. -------- .. -.---.. " 

"'--'" x 0 0 I 1 0 I 
y "" • • 1 

------- --- ... _---j-----
I 1.0 0.0 3.0 

0.8 0.0 3.0 
0.6 0.0 3.0 
0.4 0.0 3.0 
0.2 0.0 3.0 
0.0 l 0.0 3.0, 

----.--. --------

Comparison of values of u and its normal derivatives computed 

from the analyti.c solution reveals exact agreement with the values for v 

given above. This is to be expected since u is cubic in x and y. 

construction of the optimal cubic spline z, to fit v and computation 

I,j 

• 

i, 
,-
i: 
lJ 
jl 
11 

" i! 
Ii 

! ~ 
i: 
" 

" 

~ 
,) 

Ii 

I: 
ii 
I: 

I: , 
Ii 

11 

II ! 
I; 
It 
II 
Ii 
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of its values in a finer mesh, likewise reveals full agreement with u. 

EXAMPLE ·2 

uxx + u + U = x3y3 + 6x3y + 6xY3 + x + y on [0,1 J X [0,1] yy 

u(O,u) + ~(O,y) = 1 + y 

u(l,y) - u (l,y) x 
= _2y3 + y 

u(x,O) + uy(x,O) = 1 + x 

u(x,l) - u (x,l) 
Y 

3 = -2x + x 

Analytic Solution. It may be readily verified that 

u = x3y3 + x + y 

satisfies all the conditions. 

Approximate Solution. With m = 6 and n = 6 we obtain 

v(x,y) 

~ 0.0 0.2 

1.0 1.000 1.208 
0.8 0.800 1.004 
0.6 0.600 0.802 
0.4 0.400 0.600 
0.2 0.200 

! 
0.,400 

0.0 0.000 0.200 

and normal derivatives 

"'" x 
y""-,"-..... 

1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

v 
x 

0.0 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

and 

1.0 

4.000 
2 .536 
1.648 

. 1.192 
1.024 
1.000 

0.4 

1.464 
1.233 . 
1.014 
0.804 
0.601 
0.400 

y~1 

v y 

0.0 

0.6 

1.816 
1.511 
1.247 
1.014 
0.802 
0.600 

0.2 

1.0 1.000 1.024 
0.0 1.000 1.000 

0.8 1.0 

2.312 3.000 
1.862 2.312 
1·511 1.816 
1.233 1.464 
1.004 1.208 
0.800 1.000 

I 0.4 I 0.6 
1" 

1.192\1. 648 
1.000 1.000 

j 

0.8 

2.536 
1.000 

I 1.0 I , 
4.000 
1.000 
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The values for v are seen to agree with those foru. 

Further values for w on a finer mesh display the same agreement. 

This is to be expected since u is a bicubic in x and y . 

EXAMPLE 3 

u + u + ux + u + 2u = 2. + cos(x+y) on [0,1] X [0,1] 
xx yy y 

u(O,y) = l. 

u(l,y) = 1- + sin(l)cos(y) 

u(x,O) = 1. + sin(x) 

u(x,l) = l. + sin(x)cos(l) 

Analytic Solution. The above conditions are satisfied by 

u = 1 + sin(x)cos(y) 

Approximate Solution. With m = 6 and n = 6 we obtain 

v (x,y) 

"'''-'",-x I 
Y '~I 0.0 0.2 0.4 0.6 0.8 1.0 

1.0 1.000 1.107 '1.210 1.305 1.388 1.455 
0.8 1.000 1.138 1.271 1.393 1.500 1.586 
0.6 1.000 I 1.164 1.321 1.466 1.592 1.694 
0.4 1.000 1.183 1.358 1.520 1.661 1.775 
0.2 1.000 i 1.195 1.381 1.553 1.703 1.825 i 
0.0 1.000 I 1.199 1.389 1.565 1.717 1.841 

! 

v x Vy 

Ki 0.0 1.0 ~. 0.0 0.2 I I 0.4 .. 06 

l.0 0.5402 0.2923 1.0 -~0001 -.1668 - .3270 -.4744 
0.8 o .f)()n~ 0·377'7 0.0 0.0005 -.0002 -.0036 0.0079 
() . (; n .B;)Il'( n .1+1,1,1) 
0. 11 o .9;~n~ 0.5072 
0.2 0.9798 0.4998 
0.0 0·9991 0.6557 

0.8 
I 
11.0 

-.60271-.7086 
- .0359 0.1292 

• 
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For the analytic solution we have: 
u(x,y) 

f~1 0.0 I 

! 
1.0 I 1.000 
0.8 I 1.000 
0.6 

I 
1.000 

0.4 1.000 
0.2 

! 
1.000 

I 0.0 1.000 
-

r xi 
'y , J 0.0 1. 0 ' 

1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

0.2919 
0.3764 
0.4459 
0.4977 
0.5295 
0.5403 

0.2 

1.107 
1.138 
1.164 
1.183 
1.195 
1.199 

I', x' 

~~ 
1.0 
0.0 

0.4 0.6 I 
1.210 

I 
1.305 

1.271 1.393 
1.321 1.466 
1.359 1.520 
1.381 1.553 
1.389 1.565 I 

0.0 0.2 0.4 

0.0000 - .1672 - .3277 
0.0000 0.0000 0.0000 

LBL-lo04 

0.8 
I 

1.0 
I 

1.388 1.455 
1.500 1.586 
1.592 1.694 
1.661 1.775 
1.703 1.825 
1.717 1.841, 

I 0.6 0.8 1.0 , 

-.4751 -.6037 -.7081 
0.0000 0.0000 0.0000 

As seen from the tables above, values for V are in agreement with 

those for u to three decimal places, however values for the normal 

derivatives, particularly along x = 1 and y = 0 depart considerably 

from those of u. We should anticipate that interpolation on v to 

obtain w values would not give very good agreement with u. In fact 

we find near (1,0) we have: 

I x i Y I z u ! ! i 
I 

I 
i 

1.796 I 0.92 0.00 I 1.792 
I :L.OO I 0.12 J 1.839 1.835 I 

In general we have only two decimal place agreement in values for z·· and u. 

Repeating the problem with m = 11 and n =11 and interpolating 

we obtain 
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z(0.92 ,0.00) 1.795 

z(1.00,0.12) = 1.835 

and, e~sentia11y, three decimal place agreement between interpolated 

values of z and actual values·of u . 

COMPUTER CODES 

Two computer subroutines have been written in FORTRAN for the 

CDC 6600. The first of these, PDYBCS, computes values for the 

approximate solution, v, at grid-points and for its normal derivatives 

at boundary grid-points. The user must supply a "main" program to 

specify m, n, ~, x, ;[ and y and provide for output of results. Suitable 

dimension for various arrays must also be set in the main (calling) 

program. The user must also supply subroutines which define the 

differential equation and boundary conditions. 

'l'he second subroutine uses the results obtained above to construct 

the optimal bicubic spline, z, and to interpolate for values of z on 

a finer mesh. The user must supply a main program ~o read in the 

values of v, v and v as appropriate. x y 

Listings and fuller description of the use of these subroutines 

lIIay be obta:l ned f:t'om the author. 

~I 
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CONCLUSION 

We. have confirmed that a bicubic spline approximation can be 

made to a wide variety of boundary-conditioned partial differential 

equations in two variables 0'0. a rectangular domain. In the examples 

given and in mahy others tried, a reasonable approximation was 

attained to a known solution. In all cases the approximation (if not 

already exact as in Examples 1 and 2) was significantly improved by 

increasing the number of grid-points. The size of linear i; system to 

be solved places a practical limit on this increase. 

In actual practice, there would be no point to approximating 

the solution if it could be obtained analytically. In any case, the 

bicubic spline approximation does satisfy the differential equation 

at all grid-points and the boundary conditions at boundary grid-points. 

The accuracy of the approximation (irrespective of whether the solution 

u is known or not) is certainly indicated by how well the approximation, 

w, satisfies the boundary conditions and differential equation at 

points (other than grid-points) in R. In particular one might compute 

z, zx or Zy as appropriate at mid-points of subintervals, [Xi' xi+lJ for 

y=y.. and y=y or [Y.
j

, Y j+ 1 J for x=x and x=x and compute errors in meeting 

boundary conditions. 'l'hen at . each midpoint of a subrectangle compute 

z, z ,z ,z, z and compute the errors in satisfying the differential 
xx yy x Y 

equation at these points. 
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APPENDIX I 

DISCRETIZATION OF DIFFERENTIAL EQUATIONS 

AND BOUNDARY CONDITIONS 

Applying Equation (1) a.,t any grid-point, (xi'Yj) for i = 1 to m 

and j = 1 to n we obtain 

+ d(x. ,y.)uy(x. ,y.) + e(x).. 'YJ·)u(x. 'YJ') ). J ). J ). 

Replacing u by v with appropriate subscripts as obtained from 

Equation (8), we have 

JI. 

a .. L:s£(x)v n' 
).J 0 XlJ 

y 

+ bij~t~(Yj)Vik + 

~ y 

+ c .. L:s'n(x.)v n . + diJ.L:tk(y.)V' k + e .. v .. = r ).J 0 XI ). XlJ 0 J)' ).J).J ij 

or in terms of W 

IJ. y 

L[a'J.s'~(Xi)+CiJ·S:(x')]Wl . * + L:[b .. tk"(y·)+d.J.tk'(Y.)]w ." " 
£=0). XI XI). +£+J~ k=O).J J). J l+).+klJ.* 

+ e.·w r 
lJl+i+jlJ.* ij 

for i = 1 to m and j = 1 to n. (1') 
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Similarly, applying Equations (2) to (4) at appropriate boundary 

grid-points we have. 

v 

~~ w + gJ' wl+J'~* = ~J' 
J 2+jfJ.*. 

for j, = 1 to n (i=l) (2') 

for j = 1 to n (i=m) (3') 

for i = 1 to rn (j=l) (4') 

f w +p w =4-'. 
i l+i+nfJ.* i l+i+TfJ.* 1 

for i = 1 to rn (j=n) (5') 

.) 



, 
• 
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APPENDIX II 

SPECIAL CORNER CASES 

At (Xl' Y 1) if~(xl) and ~(Yl) both are zero, from Appendix I, we 

retain Equation (4, as 

f w = ,', 
-1 2+jl* .Ll 

but we replace Equation (2) by expressing vx(xl,Yl ) in terms of a 

cubic approximation ,of v(x,Yl ): 

and using 

= 0 

we obtain 

= 0 . 

Redundancy at (xl,Y) or (x ,Y ) is treated in an analogous manner. . n m n 



.) -.' -) 

r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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