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- ABSTRACT
Inélusive reactions are examined in the context of the Mueller
formalism, which exploits the connection of the inclusive cross section
with the six-point amplitude and Regge behaviof. Some previous results
of the model are reviewed. Internal symmetries together with the
Mueller picture.are used to produce a large number of testeble predic-
tions. The fundamental symmetries of the strong interactions yield
predictions which test the validity of the basic assugptions of the
;@del; SU(3) gives predictions which are expected to be violated, and
gﬁus furnisﬁ extensive information about symmetry breeking. Angular
distributions yield informetion about behavior in the central rapidity
region, if the transverse momentum distribution is known. The dual~
resonance model provides predictions for fragmentation end pionization,
but the results are based on a naive model and do not agree with the
data. Inclusive photon distributions are examined in detail. They
providé information mainly about the inclusive no distribution. In
the low-transverse momentum region, bremsstrahlung is significant and
~can provide a measure of the charged multiplicity. The photon distri;
bution arising from xo decays in the central region obeys an equality

relating the spectrum at zero transverse momentum to the integral of

-2-

the spectrum over all transverse momenta. A variety of experimental
date are reviewed and compared with the predictions and prescriptions

of the preceeding chapters.
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‘ INTRODUCTION

This is not intended as a review of inciusive processes. Such

an effoft would be nearly futile in a field which is expanding as
quickly as is this one. Fortunately, a few brave persons have under-
taken such a task and the uninitiated reader is referred to their
works for an introduétion to the subject (Frazer et al., 1972;
Berger, 1971la, 1971b; Quigg, 1971la, 1971lb; Bjorken, 1971; Young, 1971;
Arnold, 1971; Horn, 1971; Gasiorowicz, 1971). Among the original
papers, those of DeTar (DeTar 1971) and Mueller (Mueller, 1970)
provide an excellent starting point.

The title "Phenomenology of Inclusive Reactions™ is meant to
suggest that we shall focﬁs on‘questions which are immediate to the
interpretation of data. Consequently, we do- not consider to any great
extent a number of important topics such as the helicity structure of
the six-point amplitude (Goddard and White, 1970, 1971, 1971a, 1972;
DeTar et al., 1971a; Weis, 1971, 1972; Jones, Low, and Young, 1971).:
In addition, a number of important phenomenological topics are not
discussed. 6ne of these is the question of "exoticity." For this
continuing controversy, the reader is referred to the original litera-
ture (Chan et al., 1971; Ellis et al., 1971; Chan and Hoyer, 197la;
Einhorn, Green, and Virasoro, 1972). An equally important topic is
the analogue.of finite energy sum rules for iﬁclusive reactions
(Dias De Deué,>and Lam, 1972; Kwiecinski, 1972; Sanda, 1972; Einhorn,
Ellis, and Finkelstein, 1972). ‘

Phenomenologicel theories not based on the Mueller approach
have been de&eloped by several authors (Grote et al., 1971; G. Ranft,
1971; J. Ranft, 1971; Hwa end Lam, 1971, 1972; Jacob and Slansky, 1971,

1972; Jacob, Slansky, and Wu, 1972).l

6~

There has been no attempt to review all the experimental data;
only a portion ofvthe_data bearing on the theoretical developments of
the text is discussed. The reader is referred to the review articles

cited above for further experimental references.
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CHAPTER ONE
PRELIMINARIES
A. Kin;matics » Notation, and Definitions

An inclusive reaction or process is one in which not all the

out~ning particles are specified. Thus the total cross section for -

a 7 oy ca.b(s)’ where s 1is the center-of-mass energy squared, might
be called an inclusive measurement. The primary focus of this work is
single particle inclusive processes, the archetype of which is
a + b —c + anything. We shall develop notation and investigate the '_
kinemaﬁics first for single I'Ja.rticle inclusive processes and then
consider generalizations to n-particle inclusive processes of the
form a +b =Cy e, e e, + anything.

To begin, consider & + b —c + anything in a freme in which
the momenta pa and pb- are colinear.. We can pa.ré.meterize the »

momentsa as

' p, = (ma cosh ¢, 0, 0, m_ sinh ;a)

P, = (m.b cosh ¢, 05 0, m sinh t,) r - {1.1)

p, = (w cosh §, ps P, w, sinh §)

where
w2 _ p24p 2,5 2
e ¢ Pye Pye
(1.2)
2 2
= me + p_L .

Three frames have special significance: the rest fr'a.mes. of particles
a and b, and the center of mass frame. Explicitly, in the rest

frame of particle b (the "ab frame" if b is the target) we have:

-8-

P, = (ma cosh ¥, 0, 0, m, sinh Y)
p, = (m,0,0,0) (1.3)
p, = (w, cosh ¥, Dyos Pyes W SR Y.)

On the other hand, in the center of mass frame, we have

P, = (ma cosh 2., 0, 0, m, sinh za) |
p‘b = (m, cosh 2, 0, 0, m, sinh z,) (1.4)
P, = (uo<= cosh z, P s Pugs Yo cosh z) .

The varisbles {, y, and z are called rapidities. Their

‘utility derives from their intimate connection with the Lorentz group.

The rapidities of particles measured relative to two different frames

moving colinearly with the momenta Py and Py, are related by a

" constant which reflects the boost necessary to bring one frame into

equivalence with the other. 1In particular, Y = Za. - Z.b Furthermore,
the Lorentz invariant phase space factor, dBp/E, is given by

2
d .

P _Ldy

We can relate the rapidities defined above to the center of
' 2

mass energy squared, s = (Pa + pb) . Directly from (1.3) and (1.4)

we find



-

2
s = m +mb2+'2ma.m'b cosh Y
2
s+m° -m
m cosh Z = 2 < 1
a 8 2(s)-z— ( 5)
) s + mb2 - m8.2
cos = —,
For large s, Egqs. (1.5) yield immediately
Y ~ chm 5
2™
) .
Z, ~ 4nl(s) /ma] _ (1.6)

2, ~ -ml(e)/m] .

B. The Phase Space Boundary
The phase space boundary for & + b —c + anything can be

determined by calculating the missing mass, M¥*:

» 2
M (p, +7, - P,)

. . (1.7)
- < 0g2
s + m, 2s Wy cosh z
There is & minimum value of M* determinéd by the quantum numbers of
&, b, and c¢. For example, for p + K —9A+ + anything, M* >nm
-

+
while for p + p —»x + anything, M#* > mass of the deuteron.. Let

a = 0 ) -n?. - (1.8)

<10-

Then from (1.4) we find that

wlp>

1
= 1-2s 2 w, cosh z (1.9)

is the equation of the phase space boundary. For large s, to lowest
order in 4/s, the curve has a universal shape in the center of mass,

independent of particles & and b:
1
cosh z = _sz/(2wc) . (1.10)

For fixed w, ~and for large s, the extreme values of 2z permitted

. .
2

ot = tm(f)—) . v (r.11)
Cc

Using Eq. (1.6) we can find equivalent forms in the rest frame of‘

particle b N

m
x> Y+zn(§)
c
.I&n<i> .
m.b

C. Fragmentation and Pionization

are

>
Q

(1.12)

Ie

We define three important domains for single particle inclusive

processes:
1. P.L fixed, za - z fixed, 8 increasing ,
20 IP_.L fixed, z - Zb fixed, s increa.sing_i,
3. E.L fixed, z fixed, s increas'ing.



-11-

The first and second we call fragmentation of a and b respectively.
The third we call pionization. We denote these three symbolically by
(v|c:a), (b:c|a), and (bcla). A colon indicates & fixed rapidity
difference and a vertical slash a growing one. With b at rest in
thé “=boratory, the process (b:cla.)_ is a function of the lab -
rapirurty, Y, of particle a, the lab rapidity, ¥y, of particle c,
and p_L, its transverse momentum. The hypothesis of limiting fragmen-
tation (Benecke et al., 1969; Chou and Yang, 1970; Feynman, 1969)
suggests that as Y - o, dc/dzlldy (v, P Y) approaches a limit.
vwhich is in&ependent of Y and which we shall indicate by f£(y, p_L).
Similarly, (b|cla) is a function of Zy - %, =Y, 2, and p. As

¥ 5w, with z and p, fixed, it is expected that do/dzlldz

L

The generalization of these concepts is straightforward.

(z, p,, Y) approaches a limit which is a function of Py only.

’

Consider (b:91|°2’°5|°hl°5:a’)' Here we are interested in the five-
partlcl? inclusive cross section with Zo " 210 By T z5, and z5 -7
Z

increasing while 2, - Z - 2 and Za. - z_ are held fixed.

b’ 73 5
It is understood that all the transverse momente are fixed as well.

We expect that at high values of s, dO/'rr(d dzi) becomes &
i

2
1y
function of the transverse momenta and the fixed, finite, rapidity

differences only.

D. Kinematic Relations
While rapidities are generally the most useful longitudinal
variables, in some applications, FeM's variable (Feynman, 1969)
X = pzc/[(s)%/z] (z 1is the beam direction) has advantages. .In this

language, X = 0 corresponds to the pionization limit defined above.

-12-

As s - w, with p-L fixed, the phase space boundary is given simply

by |x%| = 1. The relation between x end 2z is easily determined:

x = w, sinh z/(2s%) . (1-13)

If we consider x £ 0, as s - w, we have

w, izl
Y-
x = &gty
aeav
(l.lh)
) tfg-ehl
o
If z>0
w -(z_-z)
X =—c-e a
m
a
(1.15)
w -t
= ;Eey
a

where y' 1s the rapidity of c¢ in the rest freame of a. If, on the

other hand, 2z < O; then

x = - m_:e-y (1.16)

where y is the rapidity of ¢ 4in the rest frame of b.

For x > 0, from (1.4) and (1.19), as &8 ==

1
2

® 2 » l““’cz
< 1l-{x +
s 8

(1.17)
1- x| . »

fe
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It is also convenient to be able to express the standard
invariants s, t, and u in terms of the rapidities or x. Of course

one has the usual relation between the Mandelstam invariants:

2 2 2 *
s+t+u = o +m"rm T+ (1.18)
Using rapidities in the rest frame of a,
» _
t = (p, -p,)
(1.19)
2 2 '
= _ma,+mc -2mawc cosh y' .
Using (1.15) we find
m x w
t:m2+m2-mawc ;9—+—9i-
a | c e m, .
(1.20)
2 2, 2
~ -p_L/x_‘+ m, (1 - x) +m, 1 - l/x) .
The analogous calculation for u ylelds:
‘u o~ -xs . (1.21)

In deriving (1.19) and (1.20), we have assumed X >0 a8 s = w, For
x > 0, the roles of t+ and u would be interchanged. An interesting

combination of Mandelstam invariants is given by tu/s. For fixed y'

and Y = oo, we see that s
tu = (m2+m2-2mw cosh y')( 2.pn2. w_cosh(Y - y*])
a ¢ ac ) c 2m’b ¢
2 2 2 2.2,
~ rs(mc - [ma. +m, Ix + ). (1.22)

-14-

Thus in the pionization domain,

~ow?, . (1.23)
- c - //

“lg

For convenience we record here the phase-space volume in a variety of
variables (the approximate relations are true asymptotically at high

s):

3
&e _ d2p dz

E )
= -ad;f dz
~ nd;f & (1.24)
~ ndx(-dt)
~on dM”Q at .

e e e e
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'CHAPTER TWO
MODEL INDEPENDENT RELATIONS
Certain relations involving inclusive reactions may be derived
without the introduction of models or assumptions such a.s Feynman
sraling. These fundamental relations rely on kinematics and conserva-
rt.‘..,n laws, and their usefulness comes from the tests they provide on

the consistency of both data and theories.

Let us abbreviate dp, = dipi/Ei. Then

do “
fapc - ) oy (2.1)

The factor (n c) is the mean multiplicity of particle type c.
It arises because by integrating over dpc we count up each part}icle
of type c¢ which occurs. We could define (nc) independently of
(2.1) by |

(nc) %ot = z m o . (2.2)

m=1

where dm is the cross section for producing precisely m particles
of type c.

If ¢ and d are distinct particle types, then

do
f v 43 Tp_ dp; - (nng) %oy - (2.3)
. If e =d, then
do 2
jdpc dpg dp_ dp; (ng” - Be) %ot ‘ (2.4)

=16-

since each n-particle production event will be counted n(n - 1) times.
Equations (2.3) and (2.4) can of course be generalized further. .
Consider a conserved, additive quantity & (such as chargg).f

It is clear that

1 do ) i
Q +Q = f w®. Q% (77— & ) - ' (2.5)
a S ; ¢ e Gtot dp 7

Four momentum conservation yields (DeTar, Freedman, and Veneziano,

1971; Predazzi and Veneziano, 1971)

" w1 do : :
(p, + 7)) = Z jdpc P, ("tot dpc) . (2.6)
e

The extension to double inclusive cross sections issimmediate:

po 1l do ' w1l do
dp, p." == s—=— = (p, *+ P, - D) = . (2.7
S f 4 *d Utot dpc dp.d a b [ otot dpc
We define
1 dc
N(p, ) = T
¢ ’ Otot d‘pc
(2.9)
1 do
N(p_,p;y) = e
c’*d Utot dpc dpc
g(p,,pq) = N(p,,py) - N(p,) N(py) (2.9)

where g 1is called the correlation function. Then from (2.6) and

(2.7)
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Z f dpy pg" elpg,p,) = -pt N(p,) . | (2.10)
-1

The case p =0 shows that g cannot vanish identically.
Constraints are placed on inclusive reactions by the symmetries
of the strong interactions. Certain of these are quite obvious. For

example : -
(bicla) = (b:c|a) . (2.11)

vhere & is the conjugate, Ca, of particle a. Similarly, if Ii

are the generators of isospin 8U(2), and if
a' = exp(-inlg)a (2.12)

then
’

(b:cla) = (b':c'|a') . ’ (2.13)
This analysis has been extended by Lipkin and Peshkin (1972) to cover
combinations of inclusive reactions involving various members of the

same isomultiplets.
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CHAPTER THREE
THE MUELLER FORMALISM
A. Mueller Diagram Rules

While the hypothesis of limiting fragmentation, Feynman scaling
has‘an extensive history, its plausibility and attractiveneés were
enormously increased by the seminal work of Mueller (1970) and its
elaboration by Abarbanel (197la, 1971b). The key insight of Mueller
was to recognize that inclusive cross sections are related to discon-
tinuities of three-to-three amplitudes. While Mueller did not sﬁecify
precisely the discontinuity required, that point has been investigated
subsequently (Stapp, 1971; Tan, 1971; Polkinghorne, 1971). 1In most
applications, the specification is inessential. We shall return to
this point in Chapter Six.

The importance of this insight was enhanced by the introduction
of Regge concepts to the analysis of the three-to-three amplitude. -
This was achieved through group theoretic analysis & la Tpller. Just
as two-body reggeology can be phrased in terms of 0(1,2) expansions,
so can inclusive reaction phenomenology. Since the inclusive cross
section is related to a discontinuity of the forward three-to-three
amplitude, in fact 0(1,3) can be used, just as it can for forward
two-to-two amplitudes.

In spite of much elegant phraseology concerning Plancherel
measures and the like, at heart the basic Regge aésumptions are still
required--almost nothing can really be proved mathematically. Indeed,
nearly all the content of these analyses can be summarized in terms

of "Mueller diagrams" and some rules for the amplitudes they represent.
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Consider (B:cla) in the rest frame of particle b. Let ¥y
and }.).L be fixed while Y -»w. Our rulés for evaluating the cross
section corresponding to the diagram in Fig. 3.1 are:

1. For each growing rapidity difference, insert & sum of
-ﬁegste poleé, each with a factor exp(ai 4y) where o,
int._cept at t = 0 and Ay 1is the growing rapidity difference_.

is the Regge

2. Each Regge vertex has a residue which is a function of
the rapidity difference of the partic_les attached to the vertex and
the perpendicular momenta of those particles. Forv convenience we
shall call the vertéx with b entering and c¢ exiting, and a
reggeon 1 at t =0 fibz(y,li) exp(y).

3. The invariant differeﬁtia.l cross section is exp(-Y) times
the amplitude obtained from 1. and 2.

Thus for (b:cla) in Fig. 3.1, we have

= Z Bia exp(-a, (Y - Y])fibz(y,pj_) - (3.1)
5 |

-

vhere Ao, = 1 - o, and Bia' is the two-body Regge vertex. If the

i i
leading pole is a8 Pomeron with . OLP 1, then we find

do

t'lpc

By fpbz(y,p_L) + Z exp( -0, [¥ - y1)p,* 'fibz(y,pl) .
| e | | (3.2)

This shows how Feynman scaling is related to the constancy of total -
cross sections at high energy.
"As a second example consider (b|c|a) as shown in Fig. 3.2.

By our rules, using center of mass rapldities, we obtain:

-20-

g—;— = e-(Za-Zb) Z expla, (2, - z) +aJ(z - Zb)]fidc(P_L)BiaB v

c
(3.3)
_a_ b,
= Bp Bp Tpp (p ) + Z By BP 3 (pj_) exp(-004(2, --z])
-3 b8y exp(aaylz, - z]) £5,°(p))
I#P
Y B0 1,5 (6) explcoyz, ¢ dom v oy agdad - (34)
i#p '
P

Even if the rapidity separation between ‘b and ‘¢ is not growing,

"as long as it is large we might anticipate thet an expansion like that

in (3.4) would be appropriate. Clearly this requires

vy ,be | y'“” c s B
e 2, (y,p Z B, £,5(p ) e S 3)
or -
ve yoo b, oc 0y :
£,"%(5p)) —>§ AENCHTIEE (3.6)

With our conventions, the value of O (s = o) is BP BP “Thus B

c

1
has the dimensions of (mb)2 while £ 3 has the dimensions of

Gev 2,
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The Mueller expansion for (b:cl,cela) can be derived

similarly:

02( ) e-m‘j(Y - Y2)
yl’yQ’Rj_l’ RJ_2 4

(3.7)

ZBJ

dpl dp2

B. The Triple Regge Expansion

In a particular kinematic region, we can say something explicit

about the residue fjbc. Consider t = (p - pc)2 fixed, and |x|
near 1. Any particle c¢' other than c¢ must have |[x'| <1 - |x|
by energy conservation. In terms of rapidity
W' D
L ey
m y
w'
<
y' > log zb (3.8)
1--SeV
m
We Yo -y
y' > log— -log(l-—c¢e .
&, m,
_ o, ~
A fortiori, with y(w) = m(—)
. ™y
m
y' > log £ . log(l - e'[Y‘Y(“’)])
. )
. m,
v % loagt-log G - vw) (3.9)

, where 8, ~1 I}e‘l2 and thus. sets the scale.

PP

Thus by choosing y sufficiently near y(w), we can insure that there
must be a large rapidity separation between ¢ and the nearest out-
going particle. This justifies inserting Regge pole in the bec

channel. See Fig. 3.3a. If we now require Mm2 to be large and

consider the sum over final states we see that we should have a
reggeized ea channel as well (Abarbanel et al., 197la, 1971b;
DeTar et al., 1971a).

See Fig. 3.3b. What is the contribution of this

so-called triple-Regge term to the invariant cross section? At fixed
20, (t)-1
M* it should behave as s i if ai is the Regge trajectory in
a, (t)

the bc channel. This comes from s for the reggeon in

Fig. 3.3a, squared, times s'l for a flux factor. On the other
hand, from the general principles of fragmentation outlined above,

. a.(0)-1
we know that for fixed t and fixed x or y, it must go like s J

where OLJ is the trajectory in the as channel. Thus the s and
M* dependence must be
2o (t)-a (o) (o) -1

If the two-body residues
are B, and By and if the triple-Regge coupling is.. gii;j(t) we

have, using a standard normalization,

(.11

4 o, (0)-1

| :2 | a,(0)-2x, (%)
iZJ'ﬁi(t)' BJ(O)giiJ(t)(ﬁl '- x) 3 J i (-z;
’ (3.12)

s

o _ 1 2 | %;(t)faj(o) 24(0)-1
| . .
BT izj Ipy (8317 £,(0) Sm(t)(;«a) (;5)



=25~ ' -2l

. @, (0)-1 integrate the contridbution of the triple pomeron to find its contribu-
o, (0)-2a, (t) 3
Z Iﬂi(t)l Bj (0)5113 (t)c _ y(w)> 3 (So tion to the total cross section

(3.13) | 1 2 v(uhs 2
°ppP ~ 161 jd _P_L/ ay B ()| 8p(0) €ppp(t)
(

wher- in (3.13) we have expanded as in (3.9). We have defined the y w)'l-l(/(s/so)

trip.c-Regge domain by

1-2:1P(t)
X @ -yw) : (3.15)
t fixed
Let a.P(t) =1+ al;t and approximate all the couplings by their
s -
. ® t =0 values. Then we have
M*Q large .
1 2 2
%pp = 15 |Bp(0)1° 8p(0) gPPP(O)jdpJ_ =

8 1 -2alt

—E = la.rge P

1l -x

' 1
- 1
In terms of rapidity the last %fwo conditiors mean y - y(w) is small }( 204t K 20t L o
_ & - . (3.16)
and s@ - y(w)) is large. Let us thereTre say that the triple-Regge ' : » 5 J

region is given by N

In this region ¢ ~ -p .L2’ 8o that we can write

8 > y -y > _ISS_)_ : (3.14) 0 r
s _ ' at
(so Oppp = ISP(O)l BI,.(O) GPPP(O)[ E= YXP(-BOLI'} log &)
. -0
vhere & is small and X 1is large. We now investigate the contribu-

tion of the triple-Regge region to the distribution in x end in y

and its contribution'to the multiplicity. In fact, its contribution

- exp -ao.;,t log

to . multiplicity times the cross section is the same as its . %

(3.17)

contribution to the cross section since no event can have two
particles in the triple-Regge region as we showed above.

~ |sp(o)|2ep(o) Bppp(©) 1in o B, (g Log §)

The most important result (Abarbanel et al., 197la, 1971b)-is

that if ap(o) =1, then gPPP(t =0) = 0. To prove this, we » _ E1<2eal', log E) (3.18)
. K
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s

5)

=]

1 2 1 1log =

9ppp = 17 Bp(0)|° Bp(0) 5pp(0) 5o | Log (3.19)

ZGP log L
5

Thus this partial contribution to the cross section grows like
log(log s) while the cross section itself is constant by assumption.
~ This contradiction shows that we must have gPPP(t =0)=0 1if the
pomeron is a pole with unit intercept.

If we start with the ansatz
n .

we have

%ppp = T2185(0) 1% py(0) rl‘,m;[ g;r_!(_t)n-l

s

' X exp(-2ai,t log 8) - exp -2apt log (I: )> (3.21)
, 0

-
= 32 185017 8,(0) Tppp T(n) 5%.; éa}', log %)

L / |
- %195(:—‘))) (3.22)

so that the triple pomeron contribution is a + b(log s)'n, vhich is

consistent with a pomeron with unit intercept, provided n > 0.
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We turn now to the contribution of the triple-Regge region to
2
the inclusive cross section integrated over ;uL. In this region,
2
t o~ = and we have
..P__L

-2, (t)4:,(0)
2 L L [al, 07y gy -0 L

Qa

j(O)-l
X (§;> . (3.23)

The integral is Qominated by the region near the largest t value,

tmax' We have roughly,

. aj(o)-l
x L~ Lp, (6,017 8,(0) sﬁ;,(tm)(-gg
. o, (0)-20r, (£ )
x = ! 1= (3.24)
a0y l°g(1 x)

We can check that for aj(o)'= 1 +this gives & finite contribution to
the cross section if 1 - 2ai(tmax) > -1, i.e., if 1 #£P.

’ n
1f, on the other hand, i =P, and &ppp= Tppp(-t)

) ° -l-ZO%t
x 8 o Le (001 Bp(0)rppp | @t(-0)" (1 - %) (3.25)
It .
(o}

i

; -n-1
%glﬁsp(O)I2 Bp(0) Tppp(l - x) r(n +1) [205', log 7 * x] :

(3.26)
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Thus with a linear zero in Eppp’ the triple pomeron contribution goes

like (1 - x)-l<}log(l - xi)-e, while a reggeon-reggeon-pomeron

contribution with o = 1/2 goes like (Elog(l - xi)-l. See Fig. 3.2.

C. Mean Multiplicity at High Energies
Let us see what Muellerism tells us about the averaege multi-
plicity of some species. For simplicity, we will consider the

symmetric case a = b. Then

| /2
(o) = 2'[ dy dpJ_ g—;(y,p_L,s)- (3.27)
ymin tot _
Let us define
a 1 2 do,. -
) = d by ) ) .28
Zyv»s) " f P gplsp)8) (3.28)
so that
Y/2 : _
n) = 2 J/— dy %%(y,s) ) : (3.29)
Lo ymin .

aN B aN - an
= ¥ Do) -2 fo [ay W) -@(y,«»)]

+ 2 [ dy [dy(w ”) et dy()', )] [ dy(y’“) - -—-(y,s)]
/Y/2
0
ymin

. | |
+ 2 =) -2 [ ay[%(y,w) - %(y,s)] (3.30)
ymin
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If we make the definitions:

c 2 c / .3
g = [ 0w (3.31)
now - [ 0¥ (5:32)
we can express the rapidity distributions as
dN a c .
Twe) = By Fp ) (3.34)
k ve ‘
Dvie) =y 8,* em(ooy (¥ - yDF() (3.35)
Then.for large y, we have by virtue of (3.1) and (3.6)
=00y
b
D) = By ) 8 Fpte I (3.36)
J
‘ /
%yN-(y,s) = Z siaﬁjb FiJC(Y) exp(-c0y (Y - y) - 2oyy] .(3.57)
i,d
Using (3.33) and (3.36) we find that
f w(%(«»,w) - Bye) < = (3.38)
0
For large Y we have
v
-& 5
(3.39)

J

@ J
dn dN a b c e
f (B - §om) =0y ;f‘a ™ o
é JFP
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/2 | | /2 b _a b 00y z
. aN ' - -0, (Y- -2 (B, 28." -B.%B.)F, e o
/ ‘“’(ﬁ‘”"”’ ‘%‘Y9 WA f ay 25 & 9T dgp PR3N TR !
° # Jo |
(3.40) .

Now.as Y =« the integral (3.40) over Y up to some fixed Yo

gives a result of order exp(-miY). Now consider the contribution
from large y > Yo ’

Y/2 . a Y/2
- / . @_ [a'y-(y’w) = %(Y’S)] = Z Bia Bdbf dy Fijc
yo . . i:;]éP yo
| X ey (Y - 3) - myy) (3.41)
. ' oy [ 2 % 20,y
= ZBJQBPbFPce J ed -eJo
-y
DI A EE SR
J#P
Y
oo, =0 )s -
+ Z Ba bF c e( 1 3)2 e(m'j Aad)yo :
P By Py e T T m— o . (3.42)
i#P . i J i J
J#p
14

Combining the third and fourth terms of (3.30) yields,

Y -, Y ' 4
o+ gp B8, Pt e T e L u4E) . (303)
. J .

The last term in (3.30) is evaluated in the s —w 1limit:

0 0
' vy -t0, (Y-y)
[ & [%(v,w) - %(V,S)] - ) 8t [ & F() e
ymin J#P ymin
(3.14)
which is of order exp(-szY)e |
Combining these results, we have for & = b,
4 .
-0 Y oY, T
(nc) =AY+B+CYemR +@r@m3) : . (3.45)

where. o 1is the leading non-pomeron pole and log = b aR: (so that

Loy ~ 1/2). The coefficients A, B, and C are given by

A = '31’&‘31’131'1’1*9 ,
c b
B = aj' dy Bpa FPbc(y) - FPPCBP>
Jo _ |
0 T ¢ 2T
)
+2 [ & By Fp  (¥)
ymin _
a b c -
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Even if a # b, the term proportional to exp(-AaRY/Q) in qu. (3.42)
vanishes when the distribution for y > Y/2 is added in.l

The most relevant case is & = b = p. We can re-express
(3.45) as
“R log s + T (s AoLR)‘- (3.47)

.

(ne) = A'logs +B' +C' s

At first sight, the expansion for the average multiplicity
seems to contradict the results for the triple-Regge region. There
we found that the triple pomeron domain could contribute an amount
a + b(log s)-n, whiie no such term turned up in the multiplicity
expansion. A careful examination of our procedures reveals the cause
of this discrepancy. In the triple pomeron case, we required M*2
to be large in order to insure that the aa channel had reggeized.
This gave rise to the céndition Q - y(w)) > K/(s/so). On the other
hand, in the multiplicity expansion, we assumed that for all values
of y the aa channel had reggeized. This is equivalent to
essuming in the tripie-Regge estimate the integration continues right
up to the phase-space boundary (K —0). This would have the effect
of eliminating the (log s)™™ term. Of course this may not be
Jjustified. The presence or absence of logarithmic terms causes
difficulties as well for the sum rules discussed in Chapter 2. Most
simply put, the problem is that in a pure pole model for two-body

cr sectiong, the total cross section has terms of the form s’m,

N

while the diffractive contributions (triple pomeron say) appear to
give logarithmic contributions. Of course, these logarithmic contri-
butions may be ca;lcelled by other logarithmic contributions. On the
other hand, this quandry may be an indication that puré pole models

are inconsistent--that "dynamical" cuts are a necessity.
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D. Sum Rule Constraints on Fragmentation Distributions
The energy-momentum conservation sum rule, (2.6), places
constraints for the residues fjbc. (Caneschi, 1971.) Let us work

in the rest frame of a, and consider the Y - limit. From (2.6),
2 1l do
PPy tm° = Z jdpc P 5 H (3.18)
_ c

Considering only a pomeron with aP =1, and an effective non-pomeron

with intercept OLR <1, -

-mRy

do

a ., bc &, be
Ef,'c' = 6P fP (¥ -y p_l_)+BR fR Y-y p.L)e (3-"‘9)

vhen y is large. This is the dominant region for (3..48), since
'4 . o )
Pg'P, = MW, coshy . (3.50)

Thus &8 Y - (3.48) yields

a.mb!' Zfdp "2 chﬁpa.

Ve

oo 5 - vz e'&") (3.51)

beC(Y - y’p-]-))

Now in analogy with (3.L49)

i o I 4
Gols) = Bt el e (3.52)

" Inserting this in (3.51) and expanding, we have
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a_b
oY B -LopY
Y e Br Pr
nm e = E fdpcmawc T 1- = ©
‘ 3 fp Bp Pp Bp

-, y ’
X (BP %y - V,P)+BR f (Y'Y’IiL emﬁ> . (3.53)

Let y' =Y -y, so that (3.53) becomes

¥Y-~ymin © a_b
= . 2 Y -y Bp By ~fopY
1-}[ d‘vfdllmbe 1-"as e
c JY

Pp Pp

» tp (' *y1p ) -caRw-y) 5.5
e BP Pp |

Taking Y - o, we obtain the fragmentation sum rules:

(W]
it

and

o
It

- 6, 0y 50" p)
Z[ o [ B o
¢ Jy'min _ Pp

Superficially, the sum rule (2.8) is a cause for concern. To see why,

begin with (2.10) in the form

%ab Z fdpd P3P, 8(pgsP,) = -mfg;%c . (3.57)
_ d . _

w o f5 o (y',p)
Z[ dy'f o a e 2 2L G
¢ Jy'min 61? .

-3)4.. )

Now
Pg'P, = Wg¥, cosh(yy - Vo) - RigBle - (3.58)

The right-hand side of (3.57) is bounded, so the in_tegral on the_ left-
hand side must converge. But for yd large,

Py'P, wdwc[cosh(yd - yc)]/2e Thus we must have some cancellation
near the upper limit of the y integration. To see how this comes
about, let us evaluate g(pd,pc) for ¥4 ‘la.rge and y, fixed. See

Fig. 3.3. By our Mueller rules,

do bd
'&-p';—ﬁl;c; = £, (Y - yd,PJ_d) fP (Y ’IiLc) + f (Y - yd’p_g_d)
ac 'MR(yd-yc)
X 2y (v ) e . (3.59)

4

From (2.10), (3.49), (3.52), and (3.59), we obtain

bd . ac v , a5 R0V
.p(8) &(pgsp,) = fp fp tfp Ly e

5 -
. a1b 1 - Rf’R ) BRaemR“d

o ez b ez b “oplYy)
X fPaCBPb + fRachRb e AxR c (3-60)

= \'r a P

) a
, va RV BR b TR ( S PR L ac
Pp

+ higher order in Y and ¥y, (3.61)
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vhere the arguments are the seme as those in (3.59). The terms shown
explicitly in (5.61) are the ones which appeared to cause trouble on
account of the exp(yd) in the integrand. However, by virtue of the
sum rules (3.55) and (3.56), the displayed terms in (3.61) cancel,
1 .ng the high-order term; which permit the saturation of this sum

rule (Ellis, Finkelstein, and Peccei, 1972; Cahn and Koplik, 1972).

E. Behavior in the Central Region
One of the most interesting consequences of Mueller analysis
concerns the behavior at high energies of the inclusive differential
cross section near z = 0. (Abarbanel, 1971, 1971a). From (3.4) we

have for (b|cla)

MJ (Zb'Z)

do a_b _ ¢ . ¢ a_ b
d—p-c- = BP ﬁP fPP (p.L) + ;P ij (P..L){BP 33 e
J

-00, (2, -2) 0,72 o
+ Bjaﬁpb e J'a } + J;P Biaﬁjb e 1%, e sz
ifp
2(oy0y) o o ' '
X e ,fi;) (p_L) . (3.62)

For simplicity consider only two Regge poles, P and R, with ap = 1,

and ag <1 and suppose & = b. Then the inclusive cross section is

~L0pZ,

g:;—c = apa fPPc(p_L) + 2By cosh sopz e

2 e"emRza.

fpr (7))

+ By £ (0)) - (5.63)
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Since s a exp(aza) s the crc;ss section at 2 = O approaches its
- 2)

1
asymptotic value as s (typically s *). For fixed large s,

the 2z dependence for small z is

do

o,

A +B cosh zZ . ' 64
(p)) +B(p)) oo (3.64)
It is clear that the sign of B 1is related to the rising or falling
of dcr/d.pc at z =0 as s increases. A cross section increasing

with 8 requires B to be negative and vice versa.
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CHAPTER FOUR
CONSEQUENCES OF INTERNAL SYMMETRIES IN A MUELLER MODELl
A. Quantum Numbers of the J-plane Singularities

In its simplest form the Mueller model assumes that (a:c|b)
is dominated by poles in the bfl channel of the corresponding six-
point function. The spirit of the model is more general though, and
the existence of cuts as well as poles is expected. In & pure model
with oLP(O) = 1, scaling obtains [Eq. (3.2)]. In a pure pole model
with aP(O) <1, scaling holds for —(-7 (s) By the factoriz-

ability of poles y

—(j- a— [(a:ze]v),s]

is independent of b &as s - ®, ‘It is ‘probably too much to ask that

all the important J-plane singularities be poles and so factoriz-
ability may indeed be broken. This alone would not invalidate the
Mueller approach any xﬁore than the existence of cuts in two-body
reactions vitiates Regge phenomenology in tha.t. domain.

Whatever the nature of the j-plane singularities, they must
have well-defined quantum numbers for certain symmetries of the strong
interactions, including charge conjugation, C, and isospin. Thus

we can decompose the cross section quite generally as
do a:clb ‘
) (aze|p) = Z f( | )(y,_L,Y) (4.1)
J

vhere the sum is over j-plane singularities in the bb channel. 1In

& pure pole model, we have explicitly
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f§a':°lb) fjaz(y’p.l-) Bdb exp(-AaJ[Y -yl) (4.2)

If the charge conjugation eigenvalue of the singularity J§ is C '

then

=y - (azc|v) k.

dp(a..cl‘n) = g: Cy 3 (V;IiL,Y) o (4.3)
If G= exp(-ixIa)x ¢ 1is the G-pa.rity operator and Gj the eigen-

- value of the singularity J, '

do, . . ~ (azc|b)

ai—(Ga.Gch) = Z Gy £ (Y:IlL:Y) (k.4)
and

do ¢ (azc|b)

— a:Gc = ¢ ) . l*o

dp(G_a..Gc]b) Z G, C; f (y,p;LY) _ (4.5)

In a model in which cuts are generated by double pole excha.nge,_ _ it is
easy to see how the cuts remain pure C and G objects while losing

their féctorizability. We might schematically represent the amplitude

for Fig. 4.1 as

i

-QPb.q

[ exmiey et - 31 + 0y 00x - ¥1) 8% 8,°5)

(u.é)

X M (p,sp,9)

with t = -g°, and where 9M, 1is a forward four-particle, two-reggeon

amplitude. Although factorizability is clearly lost, this contribution

to the amplitude for (a:c|b) = (a:c|®) is C,C; times the amplitude

J
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for the i  j contribution to (a.:c]b). 0f course the existence of
well-defined 'CJ.'s and Gj's does not depend on such an explicit
model, but is a consequence of the symmetries themselves.

By taking combinations of reactions, we can isolate certain
:  alarities. For examplé (x i1 |b) - (x :x'|b) is pure G = +1,
C = -1 in the bb channel--what we would ordinarily call "p", but
including singularities like the p @ P cut as we:l_l..2 Similerly
(K :x"|b) - (K :n*|b) is pure C = -1 with p-, w-, and @-like
contributions.

The significance of this ciecomposition into ‘a.mplitudes with
well -defined quantum numbers in-the bb channel is that it enables
us to see whether or not the singularities correspond to those in
two-body scattering. Does the G = +1, C = +1 amplitude dominate at

s-m[R wi

MR ~ 1/2? These are the fundamental points to be verified in

high energies? Do the other amplitudes vanish as th

establishing the correctness of the Miueller approach.

B. Isospin Equalities »
Let us proceed under the assumption that the leading singular-

ity--the pomeron--has C = +1 and I = O. Then we may analyze the

(IR

(o]

isospin. structure of fPa' . We turn again to the six-point function

and see that, in effect, fPac is & vertex which we may represent
-}

fa.c

p = (ac|p|ac) . (&.7)

Because P is an I = 0 operator the Wigner-Eckart theorem gives us

an especlally simple decomposition:

(ac|P|aT) = z (a%|T,T, T, R, TpT" Ty a0
I,
1
IZ’IZ
- 2
= Z (ac|I,1,) P_I
Z AC
I ’IZ :
vhere P I represents the reduced matrix element for isomultiplets
AC

A and C of which a and ¢ are members. Now the range of I is.
. : . wil
from |I, - ICI to I, + I, i.e. & vangeof 2L + 1, where

I

= mi . £ fragmentations (a:c) is
min = mln(IA,IC) The number o am (azc)

'(2I " 1)x (2‘1C +1) so there are 2T in * 1 independent emplitudes

and 2T (21 +1) linear relations. Thus for example as

min
P 4
s »w (so that the I =0 bb amplitude dominates)

(pin”) = (nix") | (4.9a)
(") = (az) - ()
(p::to) = (n::ro) | (4.9c)

= Y= + (u)] (h.92)

where we have dropped b since it remains unchanged throughout._ of
course these relations hold read either as fragmentation of nucleons
into plons or vice vefsa: the isospin structure is the same in both
instances.

Many of the isospin relations follow just from C and G.

Of the relations (4.9), only (k.9d) requires I =0 in the Db
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channel; the other follow from C = G = 1. The following asymptotic

equalities follow just from C = G = 1:

(x":0) = (k%)
(x":8) = (a"2p)
‘ (x":27) = («7:2%) (4.10)
(«":2%) = («7:x)
() - (%) .

C. SU(3) Equalities

In analogy to (4.7), we can find the relations which would
follow from exact SU(3) and the assumption tﬁat the pomeron is a
unitary singlet. The Wigner-Eckart theorem becomes slightly trickier
to apply because the Clebsch Gordan series for SU(3) is more complex.
For example we have the famous decomposition:
8R8 = 27PLOPL*PEDB8P L. Two 8's occur, while in
the Clebsch Gordan series for .SU(2) no irreducible representation
occurs more thean once. With this caveat we continue as in (%4.8). For

3

a and c members of octets A and C,

L 8 8 Ky 78 8 u;
(ac|p|ac) = Z -
| Hyr V Vg Vo V Vo Ve v

HY:V’ )

X { P_|uly . - ’ (k.a1)
Hyov] AcIu.,.v _

Jo-

In general we have seven reduced matrix elements; P27’27, PlO,lO,

8,8 8 ,8 8 ,8
Plo*lo*, P2 a, P s, Pe s, and Pl’l. By time reversal
8&’8s 83’8a
invariance for the six-point function, P =P . Let us con~-

sider first the case in which a is a pseudoscalar meson, and c 1is

an octet baryon: (P:B). There are 64 reactions of this sort. By the

isospin analysis above there are 2lmin + 1 independent reactions for
each isoﬁultiplet fragmentation. Thus the number 6f independent

reactions remeining after isospin equalities is

(n:g) = 3 (K:z) = 2 (K:z) = 2 (n:2) =1
(n:N) = 2 (K:N) = 2 (K:N) = 2 (n:N) = 1
(g:z) - 2 (K:Z) = 2 (X:z) = 2 (:=) = 1
(n:h) = 1 (KsA) = 1 (K:A) -1 (n:A) = 1
(4.12)

e total of 26. Since there are seven SU(3) invariant amplitudes,
there are nineteen lineer relations. These are determined from (L.12).

The explicif decomposition into SU(3) invariant amplitudes is given

in Teble 4.1. One ghoice fbr the 19 independent relations is

(x"p) = (K7:2") = (k":=
(«"p) = (k=) = (')
(«":2) = (K7p). = (K":=0)
(x":2") = (k=) = (Kp)
(x7:=7) = (K:z) = (K'm)
(n*:27) = (x":u) = (x":z0)

Equation (4.13) continued next page
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Equation (4.13) continued
2(x":p) + 2(K*:n) + b(x*:0)

(" :p) + (K :n) + 6(K+:l;)

2(x":p) + 2(K ) + h(n+=20) (x":p) + (K :n) + 6(K":n)

it

(r*:p) + (x":p) + (K :n) + (k" :n) (1{+220) + 3(x":A)

(n:zh) (x*:A)

(n+:z°) + (n:A) (2% + (x*:z7)

2(k ) + 2(K :n) + h(x+§z°)

6(nzp) + (x :p) + (x":p)

2(x":p) + 2(xtp) + (xt:0) .
(4.13)

We turn now to the case (P:P). Since the pomeron is C even,

~

6(n:=") + (K":p) + (K*in)

8&’85 10%,10%

P =0, and P 10,10

=P Consequently, there are only

five 8U(3) invariant emplitudes for (P:P) and (4.12) simplifies to

2
8 8
- — T B, oH .
(a3|plaz) - Z < pTT (4.14)
' BV Vg Vo Y _
Since

8 8 8 8w ‘ '
] = + ’ (h'15)
] Va Vo V Vo Vg V¥ .
we have

(ac|Pjac) - {ca|P|ca) _ (k.16)

where & and c are members of the same SU(3) multiplet. Thus

asymptotically, where P dominates in the bb channel, (a:c) = (cza). .

e

We have as an example of the power of this 8U(3) relation, the
predictions for s —w, (x :K') = (K tx') = (x k") = (K*:x") using
the charge conjugate variants of (a:c) = (c:a). Using C and

isospin, the 64 reactions (P:P) can be reduced to 12:

(nK) = 2 (K:K) -¢ 2 (n:n) = 1
() = 3 (K:K) - .2
(rzn) = 1

(X:m) = 1 . ' (k.17)

Among the twelve independent amplitudes there must be seven more
SU(3) relations beyond those of the form (a:c) = (c:a). We may

choose them to be

(x":x") = (K7

&) = (Kt

(K":K) = (n'zn')~

(€)= @2 sy
3(K :n) .= 2(x*1°) + (K+'?n°) ’

37 = M) - (cta®)

() = )+ ) - e0)

The last relation is written for completeness only. The others are
experimentally accessible. Notice that it 1is unnecessary to observe

(K':xo) since by isospin and C,

®=0) = (Km) = Z(E =) + (K= .
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By similar manipulations, tﬁese relations can be ﬁritten in a variety
of other forms.

A multitude of SU(3) relations can be derived for (B:B),

(B:P), (P:B), etc. from (4.13) and (4.14) mutatis mutandis. Fragmenta-

tion into vector mesons can also be treated. If we consider the
vector mesons as a degenerate nonet, designating the isosinglets by

wy and wp  We find for the number of independent reactions after

invoking C- and isospin invariance in the case (P:V)

(n:Kk*) = 2 (K:K*) = 2 (n:K*) - 1
(x2p) - 3 (KK*) - 2 (n:ml) -1
(rx: l) -1 (K:wl) - 1 (n:.we) - 1

(ns 8)’ -1 (x: g) "-». 1 (np) - 1

(ko) - 2 . ' (¥.19) -

With seven SU(3) invariant amplitudes, there are twelve linear

relations. It 1s possible to choose eight which do not involve wy

or'," wa, thus obviating the problem of the mixing angle. The relations -

involving the mixing angle are more complex and not accessible to

tests. One choice of relations not involving .w, and wg is

1
&%) = (™)
7)) = (&)
(x k™) = (& :pH ' . C
€ &) = (x720)

Equation (%.20) continued next page
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Equation (%.20) continued

Kp7) = KK

®E") = ()

3™y = 2(xt10) + (&%)

s(npt) = (K %) - («*30) . . | (4.20)

Using isospin inveriance in conjunction with these relations, one can

generate other experimentally testable predictions, such as
- - = S )
2K 50) = (KTEO) + (KK ) .

D. Symmetries in Pionization
From Fig. 3.2 and Eq. (3.7), we see that (alc|v) 4= controlled
by double'pomeron exchange, The residue fPPc corresponds to a
four-point amplitude' for two pomerons at t =0 and particle c¢

coming in and going out. Thus the SU(3) content might be summarized

. as

fn,c < (c|PPle) . (4.21)

‘

If P is.a. unitary singlet, then fn,c is the same for every e in
the SU(3) multiplet. For members of the same isomultiplet, this
relation should be exact (up to electromagnetic effects), as it
should be for particles related by C.

A primitive model for SU(}I) . breaking in the pionization
region can be obtained by assuming the pomeron has a small octet

contrihution:
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P = P, +ePy . (4.22)
Then, to first order, (4.21) becomes

£ c

Of course (4.23) is analogous to the Gell-Mann-Okubo prescription

for mass splittings. We can 'immedia.tely conclude that (4.24) implies

AN + (201 = F(zh) + 3(1a])]

(4.24)

(kD) = 3Clel) + 50003

where N denotes any one member of the N isomultiplet, etc.

. (élPoPolc)+2e(c|poP8|c) . (4.23)

1,2"{ 527 1,10*,10')" ‘ P10,10 PBS, 8s Psa’ 8 Psa’as ,i
ep 15 1/6 1/6 3/10 1/6 2\/5/10 o0
n =P 1/2 1/2 ) 0 0 -0 )
K" op /%0 1/12 112 1/5 1/3 0 1/8
k" sn 155 1/6 1/6 3/10 1/6 -2s5/10 o
K -p 1 0 0 0 0 o 0
K -n 1/2 0 1/2 o 0 ) 0
N -p 9/20 0 1/ 1/20 1/4 -Vs5/10 o
O sE 1 0 ) o 0 0 0
x o 1/2 1/12 1/12 0 1/3 0 0
« -zt /b0 1/12 112 1/5 | 1/3 0 1/8
KFozt 15 1/6 1/6 3510 1/6 2\5/10 o
K'=g"  1/2 0 1/2 0 0 0 0
K ozt 1/ 1/2 0 0 0 0 0
K -2 15 1/6 1/6 3/10 1/6 -2/5/10 o
1 -3 3/10 1/ 1/h 1/5 0 0 0
S on 310 1/b /% 1/5 0 0 0
k"->A  9/20 1/ 0 1/20  1/h4 V510 o
K -A 9/20 0 1/h 1/20 1/ V5/10 o

Table 4.1 continued next page
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p2T,2T  G10%10% 110,10 Pss’ss P8a'8 Pae.’as Lol
1 -A 27/b0 0 0 1/5 0 0 0
xf ez 12 0 1/2 0 0 0 0
= 1/5 1/6 1/6 3/10 1/6  -2Y5/10 o
Kf =z~ 1 0 0 0 0 0 0
k" 2= 1/2 1/2 0 0 0 0 o
K == 7/40 1/12 1/12 1/5 | 1/3 0 1/8
K -0 i/s 1/6 1/6 ; 3/10 1/6 2v5/10 o
7 == 9/20 1/4 6 - 1/20  1/4 V5/10 o

oy
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CHAPTER FIVE
ANGULAR DISTRTBUTIONS IN THE CENTRAL REGION'
A. General Relations between Rapidity and Angular Distributions
In the previous chaptérs we have seen how the rapidity is a
natural veriable for the study of inclusive reactions. Some experimen-
tal data, however, cannot be treated in rapidity or Feynman's x
variable because only the production angle is measured. This is

frequently true for cosmic ray data, and is so for some accelerator

data. In this chapter we shall investigate how distributions for which

' the rapidity is the natural variable appear when viewed only as angular

distributions. Of course nothing precise can be said without specifying
the actual distribution which is to be viewed as a function of produc-
tion angle. Nevertheless, from the general behavior of the particle

spectra as & function of transverse momentum we can form an adequate

~estimate of the modification of the spectra which occurs when the total

particle momentum is averaged over.
The first step is to choose an angular variable which resembles

the rapidity variable. The center of mass rapldity defined by Eq.

(1.1) can be expressed as

(5.1)

E+p
z = 2| —db)
2 E_-p“

where E is the center of mass energy of the particle and p" is

the momentum parallél to the beam direction. With p” =p cos O,
this becomes
- 1 1+ % cos © .
z = -2-3!1 P . (5.2)
l-=cos ©
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For p >> m., 2z is evidently determined by the production angle and

approximates the angular variable
1 1l + cos ©
N = 5 Zn(i——_—co—se—> (5.3)

= zn<cot -g-) . | (5.4)

Fixed angle behavior corresponds to (b|c|a) since for fixed
total momentum, it corresponds to fixed momentum parallel to the beam
direction. Thus we: begin with Eq. (3.64), which assumes two effective
Reége poles--one pomeron with aP = 1, and one non-pomeron (which we
call the reggeon here) .with G.R = 1/2. For simplicity we shall assume
a = b, although this is certainly not necessary. Absorbing some

kinematical factors, we can write

do _ ;) s~k z -3

a5 = Tep(®) * fpg(p)) o7 cosh(F) + O (5.5)
. .

In Chapter 3 we pointed out that this form indicates & correlation
between the cross section at z = 0 as a function of s and the
variation with z near z =0 at fixed s: rising cross sections

must have a local maximum at the center while falling cross sections

must develop a local minimum there. Clearly the same holds true for

To investigate the nature of angular distributions we require some -

kinematical identities:

N‘H

-

-52-
sech 1 = sino©
tanh 1 = cos e
Ijl. = p sech 1
P“ = D tanh
& _ 2
3 = da p_L dz
= dp-Lz dz
2
2 m
) ﬂdp-L o 1+Pecosh2 ﬂ)
L
Equation ( 5.7g) follows from
1
(p_L2 cosh 1 + m2)2 + p-Lsinh n
z = £n o g
A
2 2 2
where m_‘L = P.L +m .
A
ao 2 e 2 a0
— == a D 1l + —
an L pf cosh2 n) dp
We dgﬁ.ne
do do do
EZ_=d—Z(P-P)+ a-E(P-R)
a9 do do
= (P -P) + T (P - R)

b4

(5.70)

(5-7b)‘

’(5-7c)

(5.74)

(5.7¢)

(5.72)

(5.72)

(5.8)

Thus the cross section analogous to (5.6) is

(5.9) |

(5.10a)

(5.10b)



with
&9 (p-p) - fdp_l_ | w(®)) (5-m)
(e - R) - ot cosh(Z) fdlf fpr(p)) (5.11b)
g_% (P-P) =.x fdlf. fpp(P_L)G+ ;fiiﬁ)é (5.11¢)
LE-r =« ek fdlf fpp(p)) G'+ ﬁg})é

nj-

hvI 1 g

1
2 2 2
4 p; sinh™ 7 A
X [ +%€+;L_;.§_.__>] . (5.110)

Equation (5.11d) can be expanded 'for small 1 as

%%(P—R)’=ns*fdpl (liL)G )

i p.L2 bm® '
[l + g\ 2 + =5 -t el(n ) . (5'12)

Thus we can make the comparisons,’

do P‘- P | 2 4 : 3
%LL.‘._) = <Q +-—2L-2—-) > o - (5.13a)
iz (P-F) P cosh™ 1 .

5l -
(P - R) <[1 ) 36 } > ik
(P -.R) 1+T +6(z
(5.13b)
From (5.13a) we see that
w@E-n < FeE-n | (5.1%)

for all 7 and %—% (P - P) sapproaches %zg (P - P) monotonically as

N =w. From (5.13b)

do
== (P - R)] <
dan n=0

2=0

S (e - R)] : | (5.15)

From -(5.11c) and (5.11d), for 1 =. Z 2w ’
-n/a g._ - : .‘ _%_ . :
e- > g:ﬂ -8 = z‘!’ . .. (5.16)
-2/ = (P - R) v/ 4

Using (5.13b) and (5.16), for 1 =z

0l Dao dl} k= (5.27)
LTe-n,, Ze-n,, e
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B. Expansions about the Center

Asymptotically, the rapidity distribution becomes flat near

0. 1Its

‘curveture comes from the pomeron-reggeon term what has

behavior. We can expand the rapidity distribution (5.10a) as

do
dz

B, /B,

The

2
= ﬂjdp-l—ngP(pJ_) +:rs-'& 1+g—+...>deszPR(IiL)
' (5.18)

1
Ay + s-“(B0 + ZQBl + ees) (5.19)

[}

1/8.

angular distribution on the other hand does not become

flat asymptotically, but develops a local minimum at the center. We

can write an analogous expansion for small 13

where

do
an

= (A(')fA]'_Tl2+ eee) +s"}(35+nin2+---) ' (5.20)
Yy . :
2 . m2 \Z t .
= x 'fd;j__ fPP(p-L) 1 +;?' S (5.21a)
4
P ' :
- _Ao<¢> (5.21b)
2 p :
= A l2 =L.> (5.21¢)
o\ 2 m
CEt
5
1 .
= B°<E (5.22a)
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2\ P
v oooB ({148 -$>/8 . (5.22b)
Bl 0 << m_L2>m-L

Thus the center of the 1 distribution is depressed by a factor

Al P
= = <,—;¥> : | (5.23)
Y R
The a.symptotié curvature is given by
~ i‘;>
s 2
Al 2m, " m
__} - 4 L . (5.24)

0 P
(&)
mn
1
The curvature of the nonasymptotic reggeon-pomeron term is
. 2\ p
1
_ % e W ¢
T =
° 2L
"L

As m, -0, 1N and 2z become equivalent. It 1s easy to verify that

2

(5.25)

(=)

in this limit, all the primed coefficients tend to the unprimed
coefficients .

Because the asymptotic pomeron-pomeron term in the rapidity
distribution is flat, tﬁe curvature of the distribution at finite
8 can be aﬁtributed to the nonasymptotic terms. For the angular
distributions, the situation is not so simple. At finite s, the

curvature depends on both the asymptotic and nonasymptotic terms.

From (5.24) and (5.25) we see
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Then .
A
A 2 X
— = .268
0 < 7% < 3 ' (5 ) *pp
0 . do(p.p) -
dz ama
Bl
215 < i'J‘.' < % (5.26b)
o ¢ -&
" d s OpR Z
a‘zq (p-R) = ﬂ(?) —2 cosh(-z-)
If at finite s we have
do _ ¢ 4 qin? (5.27) d 70pp 2 "agl? 2 =
T < G thh v : Q9 (p-p) = — —n
an ° t dn (P-8) = n° dp‘L © B P 2 cosh® "l>
i § ' »
with ci < 0, then we can conclude B(') < 0, since , (5.30¢c)
. 1 AY
-1 7B _ =3 : -8
C! = Al +s¥ B'(—.) . - (5.28) . do(p.g) - 5 %R 2 L
1 1 O\ B , ' ) an (P-R) = =« = > dgl. e »
It Ci >0, B(') may be either positive or negative. No matter what . ,
-1 : 2 2 I\ 4 :
[} 1) . 2 2 P -sinh fl Z\2 o
the sign of B), eventually c is simply determined by A), which | X G +— m — é_'_% 14 L . . (5.300)
is positive. ' P_L cosh™ 1 . m n :
C. Numerical Examples The eMuation of (5.30c) is straightforward and yields
To clarify these ideas, consider a hypothetical distribution do 7opp x R
T (P -P) = —=xe(K(x) - K,(x)] (5.31)
with | an am” i = %o |
-8 ' : 5 2 }
fpp(P_L) _‘_’gr; e P (5.29) dth x = (e.m sech” 1)/2 and vhere K, end K, are the usual
i n rodified Bessel functions. From (5.31) we find easily the expressions
‘ . for A'! and A!
G eB) T (5aem) > :
() = Spze ~ S -
v P Fric. -
8 = =B x I () - k()

(5.32a)
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A - R ) - () - K0]) (5-32)
vhere x = a.m2/2. "In a similar fashion we find
B, - ;-'ig o x Ky () - Ky()] (5.330)
B - B () - Kyle) +6[iy00) - 2y () - Ry
am . .
(5.330)

The ratios Ai/Aé and Bi/Bé are shown in Figs. 5.1 and 5.2 as &
function of the parameter a. A full evaluation of the angular
distributions arising from the pomeron-pomeron and pomeron-reggeon
terms is shown in Figs. 5.3-6. The full expressions (5.11) have been
evaluated numerically for transverse momentum distributions of the
form exp(-a?l?) and exp(-bgl?. Clearly the general feéatures are
quite similar. At the center of the distributions, the angular
éistribution, %%, is about 70 to 90% as great as the rapidity

distribution, %zg .
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CHAPTER SIX
INCLUSIVE REACTIONS IN A DUAL RESONANCE MODEL
A. Introduction

One of the most exciting and remarkable developments in
particle physics has been the dual resonance model.l Not only has’
this model had success in representing theoretical concepts such as
Regge behavior, factorization, crossing, and duality, but it has even
had s&mé success as a phenomenological tool. It was natural that it
be applied té the problem of inclusive reactions.

Since the dual resonance model prﬁvides an ‘explicit six-point
amplitude, the inclusive cross sections can be deduced by examining
the appropriate discontinuity. This suggests a lack of ambiguity_which
is unfortunately not real. In the Mueller framework, we lknow that
scaling arises from a pomeron with intercept oy = 1. However, a
trajectory with intercept av =1 in the simplest dual model is not
believed to be the way to represent the pomeron. This belief relies
on duality: the pomeron is supposed to the dual to nonresonant

production in the crossed channel, while the "bare" Regge poles in the

simple dual models are all dual to resonances. A more popular

representation of the pomeron is the "twisted loop" which is, in fact
dual to nonresonant production. Unfortunately, it is not yet possible
to do calculations with the twisted loop pomeron--nor is it even clear
that this is the proﬁer representation for the pomeron. ' We are left
with a choice: we can take @y = 1. 50 as to obtain scaling and
ignore the complications‘mehtioned above, or we can take av <1 and
sacrifice scaling. Since both procedures have serious drawbacks,

it is worthwhile to see what conclusions follow from one or the other,

or perhaps both of the assumptions.



-61-

This chapter relies heavily on the work of Virasoro (1971) and
of DeTar et al. (1971b). Independent, but similar work to that
presented here has been performed by Thomas (1972). Virasoro and
DeTar et al. give detailed explanations of the identification of the
inclusive cross section with the appropriate six-point amplitude. The
work of Thomas contains extensive numerical calculations. We shall
pursue a middle course, half pedagogical, half phenomenological.

At this point it becomes necessary to delve slightly more
seriously into the question of precisely which discontinuity of the
six-point amplitude is connegted with the inclusive cross section.

" (stapp, 19713 Tan, 1971; Polkinghorne, 1971). We follow Tan, but
pre;ent only the simplest heuristic arguments.

The optical theorem for two-body scattering relates the
discontinuity of the forward ampiitude to the total cross section.

See Fig. 6.la. The required inclusive cross section is represented
in Fig. 6.1b. A discontinuity formula fbr three-to-three amplitudeg_
can be written down (if not Justified) by inspection. See Fig. 6.lc.
In a region in which all channels except abc are below threshold,
"extended" unitarity would give the relation shown in Fig. 6.1d, where
the ab and a'db' channels have no + or - labels since they are
below threshold.

To achieve the arrangement of Fig. 6.1b, we have to set Bap

above its cut and 8g1pt below its cut as we raise S0 from below

threshold to above threshold. Thus we have the equality in Fig. 6.le:'

as our discontinuity relation for inclusive cross sections. The

reader is referred to Stapp and Tan for further discussion.
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The dual resonance model provides a prescription for evaluating
the six-point amplitudes occurring in Fig. 6.le. Even in the simple
approach in which only tree diagrams are used, there are numerous
contributions arising from the various permutations of the particles.
As DeTar et al. show, the contributions of the various diagrams can be
calculated in terms of a single configuration, say that given in
Fig. 6.2a. If we consider (a:x|b), it turns out that the contributing
diagrams are those shown in Fig. 6.2¢c. This }s, as DeTar et al. note,

precisely what we expect from Mueller-like considerations. On the

other hand, for (a|x|b) we have contributions only from the diagram

in Fig. 6.24.

B. Explicit Calculations

For simplicity, we shall consider only the last diagram, 6.éa,
both for (alx]ﬁ) and for (a:x|b). This diagram alone possesses most
of the properties we wish to discuss. In'the small x region it
ghould givevan adequate representation of fragmentation since the other
contributing diagrams vanish as x - 0. Evaluation of the other .
fragmentation diagrams has been performed by Thomas.

We begin withoutvassuming that the vacuum trajectory, av,

necessarily has ihtercept unity. Accordingly, we define, as 8 -,

F(x,p,) = lim -2 E %(x,p,,s) . 6.1
L s> o %b d;p( gt . (6.1)

If a =0 _(t) 1is the value of the Regge trajectory in the ax
ax .

channel, then Eq. (3.3) of DeTar et al. may be written
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: rl 1z 4
Fap) - (-0 [ az f ay Gz) ¥
0 (o}

)([6+§)€+E)rth Q*Y"‘z)-aav (1-3'.-2)(1V (6.2)

where T =x/(1 - X). We assume that both the aa and bb channels

have the same vacuum trajectory. 'ﬂie outgoing particle, x 1is assumed .

to be spinless and to lie on the -trajectory of the aax {or aﬁ)
channel. We shall further assume. that @, = -1+t so that particles
a and b are spinless, with unit mass. -

Next we transform variables until one integration in (6.2) can

be done conveniently. Let

8 = y + 2
(6.3a)
t = yz o
Caléulating the Jacobian, we find
2 e 3 _
dy dz = (s° - Wt) 2 as at . (6.3b)

) . 1 8‘2/h . (%rl
Hxp) = 201~ x"v[ ds[ at (s° OER
0 0

O 40y A _
X 1+{—'1+%2-) (1r+s)amv(l-3)c'v . (6-1*)_

-6l

Letting t = t's>/h, we can do the t' integration to get

, - ) - -

'f(x,EL) = 2(1 - x)av hﬂvw ds saxv l(r+s) ™
r(op +3) Jo

2(a -OOLV) )

e e b o G YY)

(6.5)

‘where F(a,b,c; z) is the usual hypergeometric function. Egquation
(6.5) is a convenient form for numerical integration since the argument
of the hypergeometric function has a modulus less than unity and thus
the power series for F converges.

Typical results are shown in Fig. 6.3. In these calculations, :
the vacuum trajectory was taken to have an intercept of 0.5 (the o
choice of DeTar et al.). Each fixed P Me rises from gero at
the kinematical boundary, attains a maximum value and then falls to

its asymptotic value which is only a fraction of the maximum. The

. agymptotic value is, of course, the x = 0 result. In particular,

this naive model predicts that the central value is a local minimum.

-

_ C. Limiting Cases
From Eq. (6.5) we can evaluate certain limiting cases. First.
consider l.’.L>> 1 (Our units are always determined by the slope of
the trajectories, which we assume to be about 1 GeV‘a). From (1.29) "
for fixed X, a8 p —o we find that t — -». This can be exploited-

by using the properties of the hypergeometric function:



(6.6)

Now the hypergeometric function on the right hand side goes to unity

as to-wo ( a, - o) (Erdelyi et al., 1953, p. 76) if ¥ > 0.

Thus we have

I‘(-a + -)

T(x,p > 1) ~ 201 - x)av 'l r(3) r(-a) f " saoiv-l
0

| | 2(a, 4) 3
- 1%
x(Y+s)mv(1-savG+-§1> (%I-o-l-"g?-) G+2_.T
8
' (6.7)
Sincé -at >> 1, the integral is dominated by s near 1, so:-tha.t‘wei

may write

av -av .I.‘.(_?_)__(__E_). (uy)'ﬁ (1 + Y)-%-aav‘

I‘(-a + 2)

1 ’ 2(a, 40, )42 "
X [ das' (s’)OLv Cl +1—%Ls-r ' (6.8)
o 7 .

?(x,ng>> 1) ~ 2(1 -

where we have put s = 1 -~ s'. The integral now is dominated by s'

near zero and we find

D)
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dv -OLV P(z) ( t) ’é‘mv

T(s,p, > 1) =~ 2(1 - x)

(L ) (L+7
..L I‘(-Cl +§)

)( (1+ 2r)2(at)‘av)+l (l T 2Y> (2(01 + av) -1 )-orv-l

X Tloy +1) (6.9)

With

-(1 + at)x.

o)
[}

_ Y ‘
I:.La - mazx(l -x) -m S (x - 1), . {6.10)
2
we have, for Q >>1

4 -Lo -2 -3/2 -
Fxp >>1) = () Iy +1) 2 @@

‘ ' ) 2 - “,.., .
X e a0 ()T e (6w

. , ,
Thus the p_L behavior is essentially exp(-b;:L) times a power of p 0,

with

2 l+x
P = ; log(m) . (6-12)
From (6.5) we can also derive an expression for pionization

(x=0). As v -0, w-lth_p_L,fixed,
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-1
hy b
efog o1 L at,»%;-éx*..s_gé))_q
1
oyt 3 5 ‘
- (%) w(%*%:%”; ”‘%) (6.23)

where {(a,c; z) is the usual confluent hypergeometric function whose

integral representation is (Erdelyi, 1953)
o
) - - c-a-1
Ha,c; z) = -f%z)-f at et 271 4+ )t
0

In this limit, -0 —»Qa/r and we have

T(x =0, ?.L) = 2n% (Q2)o‘v f ds s-av l(l - s)clV
0

i

X e-lle/s i + %’ oy 1; hQva/s) (6:11‘&)

1 ® ' 2
= 2g2 (q2)a" [ ds sav(l+s)-1 e 17 (148)
0

X g@v +-21:, oy +1; hQ?(l + s)) . . . (6.14p)

Numerical evaluation of the pionization distribution is shown
in Fig. 6.4 for two values of the vacuum intercept: av = 0.5 &and

ay = 0.9. Both give rather steep behavior which is compared with
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experimental data in the final chapter (see Fig. 8.8a). The asymptotic
form of the pionization can be found easily from (6.11):
hav-a o -av-5/2 <lm f

(@) e

(x = O,pJ- »>1) ~ r(%) ray +1) 2

| (6.15)

For small values of the transverse momentum, the distribution is much

.steeper, and in fact diverges for m, = O.

L



-69-

CHAPTER SEVEN
INCLUSIVE PHOTON DISTRIBUTIONSl
A. Introduction

The most extensively studied inclusive processes are the single-
particle inclusive reactions of the form (azc|b). If particle ¢
is not a hadron, but rather the decay product of a hadron, d, the
observed spectrum is an indirect image of the original inclusive
process (a{d|b). In particular, the observation of (a:r|p) yields
information primarily about (a:nolb). Of course the information is
not as precise as would be a direct measurement of (a:nolb) in a
coincidenée experiment.

There are fﬁrther complications in interpreting the photon
spectrum. Some photons arise frém the decays of hadrons other than
no's, most notably from the decays of 7n's. The 7 —>3n0 mode is an
especially copious source of photons. BEach 10 ylelds an average of’
3,2 photons. Because of the much greaterproduction of no's and
because the éhotons from the 1 ->3no mode are essentially indistin-
guishable from "true" no photons we shall generally ignore the
complication introducedby 1n decays.

A second complication is the production of photons by charged
particle bremsstrahlung. For soft photons bremsstrahlung must be
taken into account. We shall do this in Sec. F in the context of
a model. | .

The basic assumption of the paper is that at high energies
hadronic processes exhibit Feynman scaling.

Beyond this, we shall

need little more than kinematics. Since these kinematics are
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essential and somewhat unfamiliar, we present them in some

. detail in Sec. B.. These results are combined with Feynman scaling

in Sec..C. - A numerical examplé is presented in Sec.D to clarify the
preceding sections. The prescription of Sternheimer (1955) for |
extracting the ﬂo spectrum from the observed photon spectrum is
examined in Sec. E, . The bremsstrahlung contribution to the photon
distribution is analyzed in Seé. F. PFinally, the principles derived are
applied to an enalysis of the CERN ISR data on (p:7|p) in Chapter 8.

The principal results are

1. 1f (a:nolb)‘ scales, so that the inclusive uo differen~

tial cross section gives

lim i E_dg
s o inel d3p

(x,ple,s )

1 2
s f 4(x,p,)
%inel ﬂo L

?no(x,lf) ,

where gi is the component of the no momentum perpendicular to tﬁe

. ’ L
beam direction and x = p“/[(s)2/2], then the photon spectrum resulting

from the no decays also scalesﬁ

k do 2 1 2
1im = (x,k,",s) = £ (x,k,°
s Onel Ok L’ %ner T )

= 2

where kj_ is the component of photon momentum perpendicular to the beam
1 .
direction and x = k"/[(s)z/zl.
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2. fr(x’kj_) is continuousias X -0 except for %l? = 0,
where we have

|
|
!

lim lim f(x,_L) = %nm lim £ (x,k ).
%-0 k)~ 0 k|0 x50 Y

3. For the photon spectrum arising from no decays,

lim  £_(x = 0,k7) =2 £ (x = 0,k
kJ-—)OY J" ?[ .-L (x )

on the assumption that the n distribution has scaled.
k. TFor the photon spectrum arising from bremsstrahlung, we.

derive the result for large s, small k,and x =0,

kdo a '
(k,,s) .~ (n_ )
Ud5k i K4 hﬂz 2 Ve

Ky

where a 1is the fine structure constant, and (hc) is the mean

charged multiplicity.
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B. DECAY KINEMATICS

The calculation of the photon distribution from a known “0

distribution is straight-forward. If a single ﬂO with four-momentum

p and mass m decays into two photons, the distribution of photons

is given, in invariant form, by

2 .
-8 - Le(px-2)

Consequently, the Lorentz invariant cross section for photon

3 , 2 v
&’p do G 1 n
[ 3 G—dip (p,5> = 5(p-k - 5—) (7.2)

do
E - (ps8) ,
d’p .

production is

where

?15 the lnvariant differentlal cross section for the production of

no's at a center-of-mass energy équared equal to 8. For definiteqess
we shall assume that the °'s result from P-p collisions, and the
center of mass is that of the p-p system. It will be apparent that
all the results apply equally to (a:nolb) with only trivial
modifications;if any.

The no's which contribute to the photon spectrum at a given

momentum, k, are constrained by Eq. (7.1) to satisfy

2
m

E-py = 3 (7.3)
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where p;l is the component of _no momentum parallel to the photon

momentum. From (7.3) we find

- , kK ‘2 '
P, = Py t+-p (7.4)

vwhere gL is ;omponent of no momentum perpendicular to the photon
momentum and where
2 )
Py = k-p - : (7.5)

See Fig. 7.1. In momentum space,. the no's contributing at a given
photon momentum are confined to a paraboloid whose axis is along the
direction of tpe photon, and whése apex is at pi| = Pye For lérge
k/m the paraboloid becomes very narrow. The limit k-0 1is
degenerate and must be handled with care. .

' The delta function in (7.2) can be eliminated by integrating

over 8, the angle between the nO and the photon, with the result

-] 21( X
k3= - l—kf cmf 4 & 35 (v,5) (7.6)
a’k a’p '
_ By 40

where ‘# 1is the azimuthal angle in the plane perpendicular to the

photon, and where

1
2

2 2
E = (po +m)

2 : - : s
n ; S .
=k+m- . (7'7)
In (7.6) we have taken the upper in the. E integration to be infinite
and assumed the kinematical limits are incorporated into the no

differential cross section. The < three momentum in (7.6) is -given,
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in co-ordinates relative to the photon, by

1

- H 2
R = Pi‘ ,P;c = cos ¢[r (Pl" - Po) :P}', = Sin_¢[i— (Pi‘ - PJ‘ .
J .
(7.8)

The no inclusive cross section is a function of s; . P,
the component of momentum pérallel to the beam direction, and gl: the
component perpendicular to it. If the azimuthal angle g is

measured away from the plane containing the photon and the beam
direction, and if the photon has components of momentum parallel

and perpendicular to the beam di?ection klﬁ and kj_ respectively,
then

1

12
2 2 x 2\ k
p.L2= [i (E'Eo)] kc-os¢+<-2k)k

m2 2
+5 (E - Ey) sin” ¢ (7.9)

where E 1is the r° energy. See Fig. 7.2. Thus we have explicitly

® 2x
do 1 do 2
k ;3—1; (k,8) = = dE g E ?p E:P_L
EO 0] :
2 % k 2 k 2
m m A
BT NSy
m2 2
+ (E - Eo) sin @,s . (7.10)

J
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For k/m >> 1, the paraboloid over which the integration takes

—place becomes narrow. If it is approximated by one of vanishing

width, Eq. (7.10) becomes

(k S) 5

f i \™

d3 dE E ;3—' (p,s) (7.11)
Ey
¢

where E lies irn the same direction as k. In this limit we can
also approximate Eo
of Sternheimer (1955):

by k. Then we have the approximation

T [k2 do (k, s)] = -2E -(;3— (p = k,s) . (7.12)

We postpone until Sec. E an evaluation of the reliability of

Sternheimer's approximation.
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C. SCALING
The sgaliné hypothesis is that as 8 —» o, the invariant
dif‘fer;entia.l production cross-sectior} becomes a function of p -L2 and
= p)| /[(s)%/E] only. (See Sec. A) To see how this scaling manifests
itself in the photon spectrum arising from 1(0 decay, we being with

Eq. (7.10) and introduce new co-ordinates:

2
& - L (&-£) .
Q = Qcos » ' (7'i3)
L Qy = Qsing .

Then we have

2
do 2 2 _ do xQ

x 3T (k,5) = QE E =5 +E,
&k = Op n 0

N (7.14)

11
ey
w|=”
M‘O
+
D
48,
+
&
Ny 4
' h_W
—
+
£,
-
]

‘If we take 8 —»w with X, # 0, in the notation of Sec. A we have

£(xp ﬁz )

2
2 2 Q
—_— Q£ [ x =x é+ )
ﬂm2[ w\ x T ;é ’

2 2\®
- Q +k_LQ +§§) +Qy . (7.15)

Equetion (7.15) makes manifest the scaling of the photon distribution for

x £ 0.
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The “0 spectrum is expected to become & function of Py
alone as s e with p_L and i)" " fixed. This carries §ver to the
photon spectrum as we show below. From (7.14), we have in the X, = 0

limit (with kJ_ and k” fixed),

2
. - k 2 k
oy - % [Fasonl-([Ba (F )R]

+ de :) . (7.16)

Only 's with x =0 contribute, since from (7.14), O's with

x # 0 would have p f oc s, and we assume the cross section falls

off in pJ_a. We can change variables in (7.16) to
2 k
t m i
Q = &t EEl'TEL
' (7.17)
Q'y = Qy - ' . _.
to get | _ ‘ _ : : ‘
' B2 e\
f(O ‘= dQ, f O,EL po( )+-—— ] +Qy
(7.18)
where
P ( ) = Kk, - 2 .
o 4 EEJ'_ .

From (7.18), we see that the photon spectrum in the central region is
indeed independent of k“
If _Lyé 0, then f. (x ’k..l.) (Eq. (7. 15)] ,joins smoothly to

fr(o,k-L) [Eq. (7.18)]. To prove this, let |

2
, m
% = &t
(7.29)
Y <Y
in Eq. (7.15) and let %, =0, Then ve find
2 2 2 | K 2
- 2 ' _ ot WP
J]c'iio fT(xT’_L) = nm2 IdQ fﬂG’p‘L = [Po(k_L) +m2 Q }
+Q;21>
J (7.20)

L 2
fr(o’k_L) o

.On the other hand, if k..L= 0, ti;xe transformation given by (7.19) cannot

be used, Instead, we have from (7.15),

_f,r(xr,o) =-——[ (_x G.+—2->,p-L_Q>
(7.21)

Evaluation of the k, -0 limit of fT(O,k f ) requires some care.

2
Because po(k_L) ~ - %E, p_f is large unless [see Eq. (7.18)]

.EL'2 e ‘
- = 0, .22
W o (-2
With
" m2
L N
(7-23)
Q; - ",

we have from (7.18),
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", . 2
2 "y " Q2 o Q2
Py = Q" +2Q°0 k {1+ J+k“(1+ . (7.24
L _L.< mz) | i ( " )

Hence there are two identical contributions to the photon spectrum. We

can write (7.18) as

2 L "2 "
£.(0,k = — " "
7l ) 2 [ a7 m2 £ O,pl +2Q Kk
: ’ 2kl

"2 "2 '
X 1*—2—) _j_(l+ ) (7.25)

For k_L/m << 1, we separate out an integral over the entire Q" plane

Sl <)
"2 ‘
+k )) (7.26)

where we anticipate that E will die exponentia.lly in m/k ‘L In

f(O )

particular,
lin f(oiz) - d2Q"f(0p2=0."2) (7.27)
k_L—bO .

B rom (7.21)

2 2 2 2 o
1im f(x 0) = =% aqQ £ (o = .
o0 3] grme n( :P_L Q) ] (7.28)
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2 .
Thus f,r(x,k_L) is not continuous et the point x =0, k;=0. To

understand how this comes about, examine Eq. (7.1‘5). Contributions to

the integral come from small values of p —f . For Qy = 0,

% :
pf - Qx+k_Ll+T> (7.29)

while the integral in Eq. (7.15) extends to x = 1, or

2
’ z"g- - % -1, (7-30)
.
The condition If = 0 yields, for (k_L/m) << 1,
k n’
Q‘x ~ k) or --El o

Thus the:ma.ll lif regions are nea; (Q,x = 11, Q'y = 0) ‘a.nd
(@, = -°/k), @ =0). If x> (121_/m)2, then by (7.30), the second

i region falls outside the integration domain determined by the kine-

" matical limits. 'fhus as X decreases to values less than about
‘ (l_s-L/m)a, the second region is introduced into the integrations, giving
rise to the factor of two between (7.27) and (7.28)
We can reformulate (7.27) in an interesting fashion. To do this
, we Pirst note that

a)° £ (0,2 =-§ e (oxf) . (7.31)

0

This relation can be proved directly from (7.1). It reflects
" the fact that the central rapidity region for the photons must be

twice as heavily populated as the central region for pionms.
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As a consequence, we have a theorem for the photon spectrum

arising from the decays of a scaled no spectrums

lim £ (0,k )= 2,
k-0 mefo ax® £, (0,k%) . (7.32)

Equation (7.32) is a striking consequence of scaling in hadro_nic
collisions, relating the photon spectrum in the central region >at

zero transverse momentum, to the spectrum in the central region
;ntegrated over transverse momentum. Since the equation is linear ih
the photon cross section, it is unaffected by uncertainties in overall

normalization.

The integral in Eq. (7.26) can.be expanded. in powers of /m.

£0K7) - dQ " £,0,8%) + {22 cos § k <1+-2)

. N 2\]? |
N G + !%5) £(0,8%) + 3| 20 cos ¢ k-l-€+ i‘é’) f§(°’Q2)
+0zk_|f/mh) o €7:33)

“ o

BNIJ-"

0

_ : N
2 2 2 Q v rn A2
daQ~ . fﬂ(o,q ) + k_L <1 +;2->fn(0,Q )

2 e o2 b, e .
+ Q%) (1 + %) £1(0,6%) + Ok, '/n") | (7:34)
where primes denote differentiation with respect to Qe-._,_ Assuming

Q?fﬂ(O,Qa) and sz;t(o,Qa) vanish for Q2 = 0, we integrate by parts
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to get .
_ o L
® k 2 k
2 L 2 2 L o sq~ & 1 1
fY(O,l:L) = ;5 . aQ fﬂ(O,Q Y41+ = + =2 + ;R"
- (7.35)
As k 'y increases, the E term in Eq. (7.26) must be considered

as well, From Eq. (7.35), though, we expect & rise in the photon
spectrum for transverse momenta increasing from zero to smell values.

For larger values of k_L’ the E term reduces the value of the right-

' hand side of (7.26). We expect E to become significant when

(m' /2 ) ~ (p,), vhere (p_L) is the average transverse pion momentum.
The general principles outlined here are displayed explicitly

in the next section.
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“D. A SIMPLE EXAMPLE
An appreciation for the results of the preceding sections can
be gained by considering an especially simple example.. Suppose that

o .
the scaled x  distribution is independent of x and given by

2
fﬂo(x,pf) - e + 0< x| <1. (7.36)
From (7.15) we find
n’(2-1) 2
2 2 aQ? do
TR -
nm 0 0
: 2 QP off &Y
X exp( -ajq +2liLQcosQ 1+m7. +k_L 1+-:?) (7.37)
) n°(x-1) »
2
. = & 4e® exp :aQ2+k_L2 1+9§)
m 0 m
&2
X I 2a.1§LQ 1 *;E (7.38)

where I, is the usual modified Bessel function. 'Similarly, from (7.18)

we find

' ® 2k, z 2 -
fY(O’k_-f) = -ﬁg-ll; dz exp(a ;m% + po(kl)} )e-z Io(z) .

(7-39)

We can find the k_L->o limit of the two expressions. From (7.38),

)
fr(x:lff =0) = ;%5 1l - exp -aun2 [-,1? - 1] ’ (7.40)
while from (7.39)
lim £ (‘O,kf) = -’ié- ) (7.41)
k-0 Y am

4
This shows explicitly the factor of two associated with interchenging
the order of the limits x - O and k_L—» 0, which we proved generally A
in Egs. (7.27) and (7.28).

The numerical evaluation of Eq. (7.39) with am® = 0.3 1is shown
in Pigs. (7.‘3) and (7.4). In Fig. (7.3) we see that the fall-off in
k an is much steeper than that of the generating 1'(0 spectrum, _For '

R kL/m >1, (7.39) becomes

"a.kf am2/2
£.(0,k,2 >> n?) =~ & e . (7.42)
r -L : akf

'In Fig. 7.4, the quadratic rise away from k | =0 1s clearly
. visible in confirmation of Eq. (7.35). Also shown is the x =0

spectrum arising from a ﬂO distribution

-bp '
fo(o,pf) -e + (7.43)
,t . :

with the value of b chosen to give the same (pf) as (7.36)
(b2m2 = 1.8 corresponds to an® = 0.3).
Figure (7.4) shows that two rather different 2 spectra cangive
rise to quite similar photon spectra, provided the {p f ) va.lues'are

roughly the same. It also shows the turn-over as the E term in

Eq. (7.26) becomes significant, around (ma/alil.)z = (pf). Numerical
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calculations reveal that fY(O,k f ) 1is not terribly sensitive to the
parameter a in Eq. (7.36), if the results are normalized to the same

value at k _L= O. For example, with am2 = 0.2 the curve differs

from that with a.m2 = 0.3 by no more than 15% in the range
0<k,/m<1,
<x/n < 2
The evaluation of fT(x,k_L) [Eq. (7.38)] is shown in Fig. 7.5.
For small . k-L/m and ‘x not too small, Eq. (7.40) is a good representa-
tion of the photon spectrum. For very small x, the distribution rises

towards the value dictated by Eq. (7.39). The transition takes place

in the region x =~ mz/kf.
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E. STERNHEIMER'S PRESCRIPTION

At any finite energy, Sternheimer's prescription, Eq. (7.12),

may be used to derive the ﬂo

spectrum from a known photon spectrum

if k/m >> 1. A scaled form of Sternheimer's prescription is also

easily obtained. From Eq. (7.12),

= €.+x%§+:§a£l> fT(x’k_L=8x) .

Thus we can write (7.46) as

do y__ta [2d0
228 n 0) - gi[k - (5»)} (7.10)
k=
In terms of k.L and k" we have
’ ao ~ d d dg -
2E5(p=k8) =-(1l+k) 5 +k 53— k—(ks)} .
&S LTS [ P
, (7.45)
Passing to the scaling limit,
2f ol = ks8) = G +X%;+k.La§]_> £ (xky) o0 (7.46)
'If kj =px end if |
CF(x,p) = .fY(x,k ) ~(7.57)
' then
d ' 3
= [xvr(x,s)] = 5 [xfr(x,k__l_ = ax)]
(7.48)
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N b}
er o(x,k_L) = -g; [xFY(x,B)! . (7.49)

In effect, k has been replaced by x, and tan 0 = Fl/k|| by

B = %l/x. From (7.46) the x = 0 analogue is

| |
2f (0,k,) =-~-> |k 0, . .
o0k aki[ 1 5] (150)

We can test this prescription with the model of the previous

secti§n. From (7.42)

5 2, -ak
313(— [kl fr(o"kl)] ~ -2 &1 /2 e afL . (7.51)

Thus the value of the pion distribution we would infer from

Sternheimer's prescription differs from the true expression by a

constant. It is easy to see how this has happened. The approximation

Py ~ k is inadequate since exp(-apoe) differs by a constant factor
from exp(-ak®). For less rapidly varying =° distributions this

problem would not arise.
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F. BREMSSTRAHLUNG

While ﬂO decays are the primary source of photons in hadronic
collisions, in a restricted kinematic region bremsstrahlung is an
important source also. The bremsstrahlung arises primarily from Fhe
sudden creation of charged particles, i.e., inner bremsstrahlung
analogous to radiative beta-decay. The general features of the
bremsstrahlung contribution can be anticipated by considering the
classical formula for the intensity of inner bremsstrahlung from a

2
particle created suddenly with a velocity ps

o .2 sin2 2]

pe —E—— (7.52)

k= _
dadk hn® (1L - p cos 8)

vwhere k 1is the photon energy and © is the angle between the photon
direction and the direction of g. For the Lorentz invariant form we

have

2

an o 2 sin© @
K =. B . (7.53)
&k bk (L -B cos 9)2

Consider the speciel case of photons emitted at 90 degrees to
the beam direction. As the value of s (thé center of mass energy
square) increases, more and more charged particles are produced in the
forward and ﬁackward'directions. While the bremsstrahlung from these
particles peaks also in the forward and backward directiods, a
contributioﬁ at 90 degrees persists. Indeed, it can be seen from (7.53)

that, with the assumption of incoherence, each particle gives a contri-

_bution:td the soft photon spectrum at 90° of (a/hnzke). Thus at 90°

the bremsstrahlung contributioﬂ»is

kd.U ~ - (n ) . N
0@k U2 © : (7-54)
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where (nc) is the mean multiplicity of charged particles. Since
(nc) is believed to grow like log s, this contribution, unlike that
from ﬂO decay dogs not scale, but increases with increasing s.

We shall now treat the bremsstrahlung in a more complete

fashion. Our model will be based on a number of assumptions. Firstly,
we shall assume that the photons are emitted incoherently from the’
charged particles. Secondly, we shall assume that all the created
charged particles are pions. Thirdly, we shall neglect bremsstrahlung
from the incident particles. Finally, we shall assume thaf the

relevant diagrams are like that in Fig. 7.6. We shall restrict our;ei&es

to low photon momenta and assume that the extrapolation of the hadronic

matrix element is negligible. Thus a typical matrix element squared is

2 2 1
—lM(pa.’pb’ql - k:Qg:"'an)l € l(ql ) k)2 ; m2|2
‘ | X }: (29, - x)egy|? (7.55)

i

vwhere M(pa’pb’ql;""qn) is the matrix element for the nonradiative
process. The sum is over the photon polarizations. Because we have
assumed incoherent production of the photons, and negligible extrapola-
tion of the matrix element, after summing over exclusive processes, we
get a form which factorizes between the hadronic production and thé

emission of bremsstrahlung:

. -
2 lg x x|

2(2 )3] kg, w0 = 2(2x)° q & o = . (7:56)
[ A B " °&d¢ T+ (ak)
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Making manifest the correspondence with the classical result, we

have
xq, o @ sme 8 (7.57)
0 Bradq | k2 (L-pcos 0')° 0 a’qg

where B = |g|/qo and@ ©' is the angle between q and k. The

bremsstrahlung spectrum them is

.

| > d 2 sin2 o'
et g [ S (o5 )(%) x
Sk bk % a’q 0 (1_g_cosg,>
%
| (7-58)

Specializing to the case of photons at 90° to the beam direction, we
can re-express the result in terms of angles relative to the beanm

direction rather than the photon direction. Thus we have

4a..dq 2 A 2n 1- 4%= cos” @
kdo _ _a 4%y (% ao ) ag q -
TPk k) 2%\ &q 5, d
' 0 O Leos g
/ q Q

Equation (7.59) continued next page
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Equation (7.59) continued.

kdo - _ Qa dqll_“dq.L qO da
O Bk bkt
1+2|{1-F -4%--1%) -1 (7.59)
L % 24 J
- (n) (1 +R}. (7.60)
hnzkg ¢ ' : -

As we shall see, R 1is a small correction. The basic result
is simply that at GO degrees, each charged particle contributes to the
bremsstrahlung according to the classical 90° result for relativistic

particles:

X 9;; —Z= - . (7.61)
a

We can derive an estimate for R by considering a model in which
(qo/o) (do/dz’q) is a function of ?_Lonly, except that it venishes

for |q | > P, vith s = 4%, with (qo/0)(d0/a’q) = g(q_L), we have

.k > 3 '
f f dq"<[qo "1.L 2 -qo'l-gitqoa-qf] 2>s(qf)

jdq_l_f dq" s(q_L )qo

(7.62)
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0.2
2 [dqf g(qf)éog:jé'— -1

- n
Idfﬂ_e s'(tﬂ_a) logig- log —é—'—)

<<103 —_ > )/log(s/m (7-63)

e

e

‘vwhere m_L = q_L + m and where we have assumed s >> m2. In

'addition to the lqg(s/mz) suppression, R 1is reduced by cancellation

'between the two terms in the numerator. For example, if

8(g,") = exp(-aa,”),

5 .
n : 2
log —-2'L— > = & El(ame) . (7.64)
m N
where El is the usual exponentiel integra.l function. For a reason-

able value of a.ma, say am2 = 0.3, <log =k > = 1. 2 so that

=~ O. h/log(s/m .
For photons with fixed center of mass momentum, 'but not

necessarily perpendicular to the beam direction, we have similarly, .

k
G 4

ln-
AN

ﬂak Juerl | (7.65)

where R' 1is given by the previous expression for R except that the
argument of the plon inclusive differential cross section is shifted by

‘the -amount necessery to bring the.photon to a 90° orientation.



-93-
CHAPTER EIGHT
COMPARISON OF THEORY AND EXPERIMENT

A. The Nature of Inclusive Data

An extraordinary variety of experimental data on inclusive

reactions has appeared in the past two years. Much of the data is from

bubble chamber experiments. A smaller fraction is from counter
experiments. 'There are in addition angular data from cosmic ray
experiments and from the CERN Intersecting Storage Rings (ISR). Each
type of data.‘has certain advantages and disadventages.

Bubble chamber data have the advantage that they provide A
resﬂts over a continuous kinematic range. They also allow the
detection of hyperons and Ko's which are not as amenable to counter
experiments. On the other hand, there are severe problems of particle
identification for high momentum particles of the same charge.
Rejection of events with ambiguities of identification can be /z} source
?f bias in the data. Since it is impossible to obtain high statistics
in a small kihematic interval, the bubhle chamber data is particularly
suitable for cc_vmpa.rison of integrated spectra, e.g., do/dz or
do/dy. _

Counter date basically provide information only on long-lived
particles. On the other hand, it is possible to make precise compari-
sons, say; of particle ratios at fixed values of the kinematic
pa‘ra.meters.'

Cosmic ray data have had the advantage -of providing the
highest energy reactions, but their usefulness in this regard may
have come to an end with the completion of the ISR. The ISR has
provided during the past year the most exciting data on inclusive

reactions. Its range of s, from about 400 to 2800 GeV2, is .

-gh-
invaluable for testing predictions about the approach to (or existence
of!) scaling. Of course, the ISR data are limited in accuracy by
normalization problems more severe than those of conventional
accelerators.

NAL's 200-500 GeV machine should make a substantial contribu-
tion to the understanding of inclusive reactions. While not reaching
as high a c.m. energy as the ISR, it should provide high quality data
in the near asymptotic region, as well as giving data on processes
other than proton-proton collisions.

In this chapter we review some of the inclusive data bearing

on the assumptions and conclusions of the preceding chapters. This is

by no means & comprehensive review of the inclusive data, but it should
provide a means of evaluating our present understanding of these

processes.

B. Do Inclusive Reactions Scale?
Apparently they do. Figure 8.1 shows data (Allaby, 1971) for
(p:n*lp) at p; . =1k and 24 Gev/c at p, = 0.1 GeV/c. The data

, L
for the two energies are strikingly similar as functions of x.

‘Figure 8.2 and 8.3 show data for (p:'|p) and (p:x |p) as a

function of the lab rapidity, y, with EL fixed, at incident (or

equivalent) moments from 12 to 1500 GeV/c. (Sens, 1972.) The data

. show no sign of having & local minimum at 2z = 0, as anticipated by

the dual resonance model (see Fig. 6.3, and Brower and Ellis, 1972),
or by some multiperipheral models (Pignotti and Ripa, 1971).

| None of these data are preciée enough to determine whether
the cross section is really independent of s. Certainly a behavior

s-0.02

like {(log s)-l or cannot be excluded. As we emphasized in
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Chapter Four, the Mueller picture does not reqqire 8 pure polé pomeron
with intercepp one. We might considervfour pOSSibilitiés:

1. The leading sinéularity does not have vacuum quantum
numbers. For example there could be two cuts which éoincide, one having
C-+ end G=+1 and another weaker one with C = -1 and G = +l.

2. The leading singularity has vacuum quantum numbers, but is
not factorizable. |

3. The leading singularity has pure vacuum qQuantum numbers and
is a factorizable pole with intercept less than one. ‘

L. fThe léading singularity has vacuum quantum numbers and is
a factorizable pole with intercept one.

Possibility #4 is the simplest and was implicitly assumed in
most of Chapter 3 and 5. Possibility #3 is quite'similar if we consider
everywhere the differentiél cross section normalized by the total cross
section at the appropriate value of s. Possibility #l is clearly
undesirable, but how can it be distinguished from #22

Consider (nt:ntlp), (nt:nﬂp), (x*|x":p), and (x%]x":p).

If the leading singularity is purely C = +1, then (see footnote 2,

Chapter 4)
(«":7lp) = (TallR) (8.12)
(Filp) = (Tle) ()
() = (x|xi0) o " (8.1c) .
'(,t*|,r‘:p).= (x"|x"2p) - | v(a.m)

at high s, independent of whether there is factorizafion. These

relations would be a .consequence of a Pomeranchuk-type Theorem for
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inclusive processes. In Fig. 8.4 these proposed equalities are dis-
played schematically. Data for six of the eight processes are shown
in Fig. 8.5 (Alston-Garnjost, 1972; Alston-Garnjost et al., 1972). The
date of Fig. 8.5 are at relatively low energy and a good deal of energy

dependence is apparent. The curves have yet to coalesce at x = 0. At

N\ x<0 (x|« :p) and (x|x":p) are not equal, but lie distinctly

below (n+|n+:p). The overall appearance, nevertheless, is similar to
that of Fig. 8.4. Further study of these reactions could demonstrate
that the leeding singularity has- C = +l. Later we shall mention a
test of isospin nature of the leading singularity.

Evidenée on the factorization of the leading singularity is
inconclusive at present. In Fig. 8.6' (Chen et al., 1971) we see
(1/0)ac/dp for (p:n-|x+), (pn |n7), (p:x'|K+), and (p:x |p) at

"7, 24.8, 12,7, and 28.5 GeV/c respectively. If all reactions had
reached their limiting values and if the leading singularity were
lfnctorizable, the curve would coincide. While this is clearly not
zrealized, the largest discrépancy is between (p:x |x~) and (p:x-lx+)

" vhose asymptotic equality depends not on factorization, but only on the

leading singularity having C = +1 as we noted above.

_ On the basis of the exoticity requirement of Chan et al. (1971),
Chen et al. (1971) interpreted the data to indicate the (p:n-|n+) had

reached its scaling limit while the other reactions had not. Whether

' this is true or not, the comparison of (p:n-|x+) with (p:n |n”) is

~ not a test of factorization, but of the C quantum number of the

leading j-plane singularity.
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C. Symmetry Relations exchanges we have
Some of the relations derived in éha.pter Four have been
discussed in connection with the quantum number of the leading trajec- (plp|p) = PP 2P®(P' ¥ w). (8.62)
tory. We continue these considerations turning to the data from the (o|plp) ~ P®P +2P@(P' -w) . (8.6b)

ISR. In the pionization limit, we have the C invariance predictions: '
. The discrepance between (p|p|p) and (p|p|p) indicates large P'

(lPl) = (‘1—>|) (8.2a) and ® contributions which tend to cancel for P production. In this
+ ’ - ) same framework, we would have for neutron and anti-neutron production
(I«"1) =" (="} (8.2v) ’
g - | (olalp) = POP + 2P@[E' - p + o - ;) (8.78)
(<) = (KD | | (8.2¢) | el 2
‘ ) : nlp) = P®P + 2P®[P' +p - w - A] . (8.70)
and by isosinglet dominance, A : . (vlnlp) ® PO( P 2
+ Y - . i In the approximation in which we ignore all but I = 0 exchanges , we
(<D = U« = (7D - (8.3) -
‘have
In the fragmentation region we have the weaker statement: i’
_ . (plplp) =~ (plnlp) . (8.8a)
0 1 + - , :
(pin”) = Fl(px’) + (pix )] (8.4) - o
2 4 ®lEle) ~ Gl . ~ (8.8w)

In Fig. 8.7 we show the data of the Saclay-Strasbourg group (Sens,
: These relations have not.yet been tested.

1972) for (plplp) and (p|plp) at 90 degrees to the beam direction

Data for (p|x'|p) and (p|x"|p) at x =0 are in excellent
and s = 2800 GeV>. The P curve is similar in shape to, but about : :
. agreement. In Figs. 8.8 we again show data of the Saclay Strasbourg
& factor of two higher than, the p curve. If the asymptotic term is :
. Co Group at 90 degrees. A simple exponential in p_L gives an excellent
given by P®P (a pomeron in both the aa and bb channels), we ‘ ) .
' ~ £it to the data, while the dual resonance model with oy = 0.9 gives
have, up to lowest order in nonleading terms Y
- . behavior which is too steep. To terms of order s “

(plelp) = P@P +2P@(P' +p + 0 +4y) (8.58) .
: (plx"1p)

PGP + 2P®(P' + p) (8.9a)

(o/7lp)

P®P +2P®(P' -p-~uw +A2) , (8.5b)

(pl="|p) PP +2P@(P' - p) . | (8.90)

where we use p to indicate the G =+, C = -i contribution, etec.

If we accept the 'two-body Regge lore that pp couples weakly to I =1
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If the near equality of the data for s from 960 to 2800 GeV"

indicates an absence of s—& terms, then we must have [see Eq. (3.3)]

*

. |
frpe(®) = TBe(®) = 0. (8.10)

e is no obvious reason for expecting this. In Fig. 8.9 we show
data for the ratio x '/x~ as a function of x (Albrow et al., 1972).
We expect the ratio to appfoach unity as x =0, This is consistent
within the errors.

While the vanishing of the s% terms for (p|nip) seems
surprising, it is consistent with the flatness of the rapidity
distributions shown in Fig. 8.2 and 8.3. The absence of the s_%
behavior implies the absence of the cosh(z/2) behavior of Eq. (3.6L4).
We postpone analysis of the inferred -no distribution to a later
section of this chapter.

The SU(3) relations both in the fragmentation and pionization
regions have yet to be tested. An exteénsive experiment at Brookhaven
- should provide interesting information for the fragmentation of

pseudoscalar mesons into pseudoscalar mesons (Beier et al., 1972).

D. Angular Distributions of Charged Particles at ISR

Barbiellini et al. {1972) and Breidenbach et al. (1972) have
measured the angular distribution of cherged particles at s = 910,
770, and 2800 GeV2. Breldenbach et al. have also measured the distri-
~ bution at s = 450 GeV2. The data of the two groups are consistent,
except perhaps at s = 2000 Gevz. The data of Breidenbach et al. are
displayed in Fig. 8.10. There is no noticeable curvature to the data

as a function of 1 = Zn(cot g). There is, however, a clear rise in
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[

the cross section with increasing s. As we noted in Chapter Five,
for distributions with a flat behavior in 1 the cross section is
expected to be an increasing function of s. At 1 = 0, the data cag
be fitted with

=— = A' + B s'ﬂ‘

T - (8.11)

where plausible fits range from A' = 2.0, B' = -4.0 to A' = 2.6,
B' = -7.0, with 8 measured in GeV2. In Fig. 8.10, we compare the
date with a fit assuming the charge particles have a transverse

momentum distribution given'by

-bp
fop @ & - (8.128)

-bp
4
fPR «xc e g o

(8.12v)
The normslizations are determined by Eq. {8.11). We have taken

b =6 Gev'l,approximately the figure obtained by the Saclay Strasbourg
group for pions at 90 degrees (Sens, 1972). The curves in Fig. 8.10

were obtained by evaluating Eq. (5.11) numericaelly. The quality of

_the fitslis quite good.

E. Multiplicity at High Energies

.From the angular distribution analysis above we can estimate

" . the asymptotic multiplicity df_charged particles. The coefficient of

"log s in the mean multiplicity is

2 do
Ay = d P, ;—z—d—z— (z = 0) (8.13)
‘c charged p_]_
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where A, 1s the variable of Eq. (5.19). We found above that

Ay 2,0-2.6. Now from (5.21b)

= Ayl /mp) (8.1k)
For a pion distribution proportional to exp(-bgl) with v =6 GeV-l,
we obtain (gx/gl? = 0.83 and A, = 2.4-3.1. This is a surprisingly
large number. Cosmic ray data indicated a value of about 0.7
(L. W. Jone; et al., 1970). A naive interpretation of the photon
data of Neuhofer et al. (1971, 1972) suggest a value of about 1.5
[see Eq. (8.26)]. v

We can check the consistency of the angular distributions
against the Saclay strasboﬁrg results (Sens, 1972) for pion production

at 90 degrees. Both the positive and negative pions can be fitted,

independent of s in the range 900 to 2800 GeV2, with

- bp
E é%— = Ne 4
a‘p ) .

with
140 mb /c;ev2

2
1]

o
1]

6.25 Gevt

go that, for either ' or =,

- 900-2800 GeV") ~ 25m ..

We. can apply a correction to relate this to the angular distribution,

g
dn ’
have, with

As we noted sbove, this correction is about 0.83. Thus we

dinel = 33 mb,
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. .1

2 2 (q-0, s = 900-2800 Gev‘?) ~ 1.15 .
%inel d"

On the other hand, the data of Breidenbach et al. (1972) for
charged particles of all kinds increases from about 1.1 to about 1.5
as 8 1increases from 450 to 2800 Gevz. If these data were taken

literally, they would mean that the increasing charged multiplicity

was due entirely to nonpion sources.

F. Analysis of the ISR Photon Data
Data are available for photon distributions at s = 900, 2000,
and 2800 GeVE, at 10, 16, 2L, and 90 degrees. Neuhofer et al. (1971,
1972) provide a parametrization of the data for photon energies between

100 MeV and 5 GeV as

k do_ A L _x
Simel ox | K ( k. x > (8.19)
with A = 1.48 Gev'T, k, = 0.162 GeV, and x, = 0.083.

The parametrization in Eq. (8.19) clearly does not satisfy the

requirements of Eq. (7.32). But it does permit a reasonable evaluation

of the right-hand side of the equation. Thus we have the prediction

lim ‘fT(x =0, k) ~ 535GV 2 . (8.20)
k=0 L

Verification of this prediction is obscured by the bremsstrahlung. If
at s = 2800 GeV2, _(nc) ~ 10, then from Eq. (7.32)

—= 9‘3—’— ~ 2x107 kl-a . (8.21)
inel &’k
Brems.
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Comparing the bremsstrahlung prediction with .the parametrization
- of the data, we see that the bremsstrahlung becomes significant in the
region liL_-: 1-10 MeV. The data cited above have been binned by total
photon momentum into bins of 100 MeV. The bremsstrahlung contribution
*~ primarily in the first bin. Formally, the integrated bremsstrahlung
contribution diverges: the actual bremsstrahlung contribution to the
measured cross section depends critically on the detection efficiency
at low photon momenta. In principle, careful measurement of the photon
spectrum at low transverse momentum could identify the bremsstrahlung
by its characteristic 1/kf behavior. After subtracting the
bremsstrahlung, the remaining cross section should conform to the
condition imposed by Eq. (7.32).

Figure 8.11 shows that the data of Neuhofer et al. are
consistent with this interpretation. The cross section for the lowest
transverse momenta lies above the curves anticipated on the basis of a
spectrum like ‘tha.t of Eq. (7.36). Presumably this is a reflection of
the bremsstrahlung contribution. The data shown in Fig. 8.12 are not
exactly at x = 0.' At fixed i)ro‘d.uction angle, as k a8 increases, so
does x. Since we expect & fall-off in x (c.f. Fig. 7.5), the data -
might be expected to be below the anticipated curve for x =0 for
larger values of k . Such & trend seems to be present in the 10
degree data. On the other hand, the choice of a hypothetical xo

‘ctrum at x = O . is quite arbitrary; different spectra woﬁld give
somewhat different photon distributions. (See Fig. T7.4.)
'~ Using the stérnheimer prescription and the parametrization of

the photon data of Neuhofer et al., we deduce a neutral pion

. distribution

| -104-
k
B _ do 1 d 3\ A (__._L_;__
oinel 33;(2=§,s’) = -2Q+k‘LB?L+XE;> ..Lexp k° xo)
k «
1/ x A _x _ 4
SICHITICIT

In f&rticu].&r, at x =0, we have

& A%

E_ 49 (r.o0p) - : (8.23)
%inel d5p N % .

0

Using %inel = 33 mb, we have for the x cross section

-6.2p
_E_ 4 _0,p) ~ 150e Amfee . (8.24)
Cinel d3p gi o )

Thig distribution is closely similar to the charged plon cross séct;on
(8.15 and 8;.16) of the Saclay Strasbourg collaboration , in confirma-
tion of the prediction that at x =0 the 3t+, x, and “0
distributions must coincide at very high energies.

For x > 0, isospin invariance requires for scaled fragnenta.-

tion of protons [Eg. (4.9d)]1,
(p:l|p) = %[(D:ﬂ+lp) + (p |P)] . - (8.25)

A comparison is shown in Fig. 8.12. The agreement is less satisfac-

tory for x > O than for x = 0. The da.ta. shown are for (p::t-lp)

" and are taken from the Saclay-Strasbourg Collaboration (x = 0)

(Sens, 1972) and Bertin et al. (1972) (x >0). For x >0, we

+

would expect the no curve to lie above the data, since the =«

data of Ratner et al. (1971) are slightly higher. While the relation
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in Eq. (8.25) does not appear to be satisfied by the data for x > 0,
we should like to emphasize that this relation igxon very good footiﬁg.
It requires only the dominance of an I = O amplitude in the bb
channel: factorization of the pomeron is not required. Thus the
good agreement with the data at x = 0 1is reassuring and we expect
to see similer agreement for x >0 as the accuracy of the experiments
improves. Since Eq. (8.25) ignores 10 production, the number of
photons observed should exceed the number of charged pions. With very
precise measurements, this discrepancy could be used to deduce the
magnitude of the 17 production.

A comparison similar to those made above has been performed
by Charlton and Thomas (1972) who found good agreement between the
charged and neutral pion data. In their comparison, however, they
treated the date of Ratner et al. and Bertin et al. as if it were
taken at 90 degrees, and compared it with the inferred spectrum at
90 degrees. Actually, the charged pion data they used were for
x > 0.05 and should have been compared with the inferred pion spectrum
for the same x. values. Had this been done, the inferred &0
spectrum would lie below the charged pion date as in Fig. 8.12.
This is & strong reminder that in many inétances a value of x = 0.05
is not necessarily small!

The parametrization of.Neuhofer_et al. gives us a méans'of
evaluating the photon multiplicity and implicitly the charged pion

multiplicity. Prom Eq. (8.1k) we find

A x02 .
(nr) ~ 2n Ak, log(-—2 s) ) . (8.26)
ko v .
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from vwhich Neuhofer et al. deduced a photon multiplicity at s = 2800
GeV2 of 9.4. By our isospin equality, Eq. (8.25), this means that

the charged pion multiplicity ié also 9.4. The photon data from

.8 = 900 to 2800 GeV2 showed no clear energy dependence while data on

the production of charged particles appear to show energy dependence.

. A good deal of caution is called for under these circumstances. The

Saclay-Strasbourg Collaboration found the charged pion production at

90° to be energy independent from s = 910 to 2800 GeVE. This is

consistent with the constancy of the photon spectrum, but it would

require that the increasing charged particle multiplicity due entirely

to nonpion sources.
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CONCLUSION

Inclusive reactions are certain to be extensively studied for
years to come, partly becawse of the impossibility of studying high
multiplicity events as exclusive processes and partly as a result of
th~ many theoretical problems which are associated with inclusive
p:.vesses. The correctness of the Mueller picture has not been
thoroughly established, but. it seems to be in accord with existing
data and provides a powerful means of analysis. In this paper we have
exploited the Mueller picture to derive tests of its basic hypotheses
and to isolate quéntities.of significant interest, such as symmetry
breaking effects and the high-energy behavior of the mean multiplicity.

The use of the fundamental symmetfies of the strong inter-
actions provides & means of isolating certain crossed channel j-plane
singularities. The energy dependence of these contributions to the
inclusive cross section is a decisive test of the Mueller picture,
independent of the facforization of the singularities. The failure
of these contributions to exhibit behavior like that anticipated from

two-body scattering would indicate the presence of important j-plane

singularities outside the two-body framework. The experimental data .

available indicate that the dominant crossed channel singularity has
" C = 41, and probably I = O, but little can be said about lower lying
singularities. .

The application of SU(3) leads to numerous predictions of
equalities of inclusive cross sections. Each prediction offers an
opportunity to measure the effects of 8U(3) breaking. The potential
here is very great in view of the scarcity of testable SU(3)

predictions for two-~body scattering.
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The predictions of the Mueller picture for the behavior of
particle distributions in the central rapidity region can be translated
into.predictions for wide;angle production. The deta extant are
consistent with these predictions and indicate, with a large uncer-
tainty, an asymptotic multiplicity much greater than previously ‘
expected.

Inclusive photon production gives significant information on

the inclusive no distribution. This in turn can be used to check

isospin relations. At low transverse momentum; the photon spectrum
consisté of two contributions, one coming from no decays, and the
other from bremsstrahlung associated with charged particle production.
Both can be related to the magnitude of the charged particle production.
The data from the CERN Intersecting Storaée Rings are consistentvwith
these predictions. More refined photon measurements at low transverse
momentum would furnish valuable information about the charged

multiplicity.
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FOOTNOTES
Introduction
1. See Cocconi (1958) and references therein for earlier develop-

Chapter
1.
Chapter

1.

ments of "fireball" theories.

3

. D. Tow, private communication.

h:

This chapter is based on work done in collabora£ion wifh
Dr. Martin B. Einhorn (Cahn and Einhorn, 1971).

We shall use (a:c|b) to represent both the amélitﬁde and
the cross section for the process. This is slightly
inaccurate since the kinematical factors relating the two
may manifest some symmetry bréaking in the instance of SU(})
symmetry. Since this is most likely not the entirety of the
symmetry breaking, we may Just as well ignore the effecf

since we make little effort to analyze possible symmetry
breeking effects. )

The notation is that of the standard reference (DeSwart, 1963).
For a fine review of SU(3), see Carruthers {1966).

5 )
This chapter is based on work done in collaborafion withvnr.,
Martin B. Einhorn and Professor J. D. Jackson. This problem
has élso been treated in parf by.Lyon, Risk, and Tow (1971).

6

For a review of the dual resonance model, see Mandelstam

(1971).

e s v ke sl s
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This chapter has.appeared as a part of a report, LEL-943, with
the same title. |

See, for éxample, J. D. Jackson, Classical Electrodynaﬁics
(1962).
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Fig. 3.1.
Fig. 3.2.
Fig.

3.3%a.

Fig. 3.3b.

Fig. 3.4,

Fig. b4.1.

Fig. 5.1.

Fig. 5.2.

-17-

FIGURE CAPTIONS Fig. 5.3.

A Mueller diagram representing the process (bicla) and
factors entering into the evaluation of the diagram.

A Mueller diagram representing the process (blcla) and
factors entering into the evaluation of the. diagram.

A dia.gra.m'-.representing & +b - c + missing mass in a Fig. 5.h4.
domain in which Regge exchange dominates in the bc channel,

A triple-Regge Mueller diagram and associated couplings.

Schematic representation of x dd/dx for a triple-Regge

dominated cross section. Curve (a) triple-pomeron with
pomeron‘intercept =1 and a linear zero in the triple- Fig. 5.5A.
pomeron vertex, gPPP(t), at t = 0. Curve (b) reggeon-

reggeon-pomeron with reggeon intecept =l/2. The actual
curves plotted are y = ((l - x) log((1 - x)"l))-r]T and
®) v = s@ea - 0.

A Mueller diagram in which thére is double Regge exchange Fig. 5.6.
in the bb channel. The J -plane singularity thus gener- ’
ated does not factorize, but has a charge conjugation

quantum number of cic 3 3 . '
i and J, similarly for G, ete. {

where C; and C, are the C

values for reggeons
| Fig. 6.1a.

s 2
The ratio A]'_/A(') vs. am for a transverse momentum distri-

bution proportional to exp(-a.p_f). See Egs. (5.20), (5.24), {Fig. 6.1b.

and (5.32).

The ratio B]'_/B(') vs. am® for & transverse momentum
distribution proportional to exp(-a.p-f). See Egs.(5.20),

(5.25), and (5.33).

- rapidity distribution,

Fig. 6..1c..' : A discontinuity equation for the six-point function.

‘ pa.rticies .

as those of the unprimed particles.
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The angular distribution

dan
PP term in Eq. (5.5), with a transverse momentum dependence

resulting from the asymptotic,

proportional to exp(-alf ) for various values of a.x_n2.

" The normalization is such that the rapidity distribution,

do/dz is unity for all z.

dn
PP, term in Eq. (5.5) with a transverse momentum dependence

The angular distributions resulting from the asymptotiec,

proportional to exp(—b;jL) for various values of (bm)g.
The normalization is such that the rapidity distribution,

dg/dz is unity for all z.
d

40
dn
P-R, term in Eq. (5.5), with a transverse

The angular distributions resulting from the non-

asymptotic,
momentum dependence proportional to e:\cp(-a.lza_L2 ) for
various values of a.mg. The normalization is such that the

do/dz(P - R) is cosh(z/2).

do

——

an
P - R, term in Eq. (5.5), with a transverse

The angular distributions resulting from the non-

asymptotic,

" momentum dependence proportional to exp( -bliL) for

verious values of (bm)2. The normalization is such that
the rapidity distribution, do¢/dz(P - R) is cosh(z/2).

The two-body opticai theorem for a + b — anything.

‘The inclusive cross section for a +b —»c + anything as

sum of squares of amplitudes.

The
summations indicate permutations of initial or final

The equation holds for nonforward amplitudes

so the momenta of the primed particles need not be the same

(Tan, 1971.)
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The discontinuity equation in Fig. 6.1lc below threshold for

all but the abc channel. (Tan, 1971.)

. The inclusive cross section as & discontinuity of the

six-point amplitude.

Four tree diagrams in the duasl resonance model contributing
to (a:x|b). The diagrams are distinct because the
ordering determines which channels have resonances and
Regge behavior.,

The inclusive distribution, -f('y,EL) , of the dual resonance
model using only the diagram of Fig. 6.2a. The curvés are
for fixed gl_ as & function of the lab rapidity, .

The vacuum intercept is taken to be one-half.

The pionization function, F(x = O,;:L) s of the dual reson-
ance model vs. 11[_, with the vacuum intercept taken to be
0.5 and 0.9. i

Cross sections of the paraboloids in momentum space on
which xo's must lie to contribute at given values of
photon momentum.

The geometry for determiniﬁg the photon spectrum from a
given pion spectrum.

The photon spectrum as a function of (k_L/n;) at x=0
resulting from a pion spectrum given by exp(-ap ﬁ) with
am = 0.3. The behavior at extremeley small valugs of k..L
is shown in more detail in Fig. 7.k,

Photon spectra as funct.iohs of l_t_L/m at x =0 resulting
from two pion spectra having the same (i)_La):'sélid line,

2

exp(-ap_L) with am” = 0.3; dashed line, exp(-inL) with

(bm)2 = 1,8, Both spectra are normalized to unity at li= 0.

+

Fig. 7-5.

Fig. 7.6.

Fig. 8.1.

|

~.Fig. 8.2.

Fig. 8.3.

- Fig. 8.4.

‘Fig. 8.5.

Fig. 8.6.
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The photon spectrum 'fr(x,lf) as a function of x for
various fixed values of kJ_ in GeV/c. The original pion

spectrum is exp(-alil_zj with an’

= 0.3.

A typical 5remsstra.hlung diagram in charged pa.rticle"
production. 7

Date for (pin*|p) at p, . = 14.25 and 24.0k GeV/c:

2E_ do

%ot d3p

as & function of x at fixed p =0.1 GeV/e.

(Allaby, 1971).
Invariant cross section for (p:n+|p) at various fixed -
values of p_L as a function of lab rapidity, y. From
the compilation of Sens (1972).

Invariant cross section for (p:x |p) at various fixed
values of 11 as & function of lab rapidity, y. From
the compilation of Sens (1972).

\

A schematic representation of scaled distributions,

: + 4+ - +
x do/ax, for (xflx"p), («Flx"p), (xFix®lp), and
(n*:n*lp) as functions of X.

~

o+ - -
Low-energy data for (n+:n*|p), («" |x=:p), (x :x|P)»

-y - . x do
and (x"|x":p). The quantity plotted is F(x) = == &
"ag a function of x. '
A test of factorization and scaling: L do vs p for

(alx"m) with & =x7(a), p(B), K'(C)and (D), in
the proton rest frame. The incident momenta are 2k.8,
28.5, 12.7, and 7 GeV/c respectively. If the distributions
had scaled and if the leading singularity factorized, .

the curves would coincide. Chen et al. (1971).



Fig. 8.7.

Fig. 8.8a.

Fig. 8.6b.

Fig. 8.9.

Fig. 8.10.
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Data of the Saclay-Strasbourg Group as ﬁresented by Sens
(1972) on the invariant cross section for (plp|p)
(circles) and (p|p|p) (triangles) as & function of
gL. at p;. = 1500 GeV/c-equivalent. Charge conjugation
invariance requires thé distributions to coincide
asymptoti;ally.

Data on the invariant cross section &s a function of »p
for (pln-lp), x = 0, from the Saclay-Strasbourg Group
as presented by Sens (1972). Also shown is the data of

Bertin et al. (1972) for (p:r |p) at x = 0.076. The
solid curve is a fit (Sens, 1972) given by 140 exp(-6.25%L).
The dashed curve is a dual resonance pionization function
with av = 0.9. The normalization was determined by
fitting to the data at. gL? = 0.3 GeV®. See Fig. 6.b.

Data on the invariant cross section as a function of gL
for (p|a+|p), x = 0, from the Saclay-Strasbourg Group

as presented by Sens (1972). Also shown is the data of
Ratner et al. (1971) for (p:n+|p) at x = 0.07.
Particle ratios NS and p/x  from p-p collisions
at ISR energies as a function of x. From the data and
compilation of Albrow et al. (1972).

1_do vs. n of

Uinel dn

charged particles (Breidenbach et al., 1972). The center-

Data for the angular distribution

of-mass energy squared is (a) 450 GeV2, (v) 910 GeV2,
(c) 2000 Geva, and (4) 2820 Gev2.' The curves were
obtained by assuming & transverse momentum dependence in
the PP and PR terms .[Eq. (5.5)] of exp(-bgl? with

b = 6(Gev/c)-l, and using Egs. (5.1lc) and (5.114).

Fig. 8.11.

Fig. 8.12.

See Eq. (8.20).

- .102-

' k_ac
Some of the data of Neuhofer et al. (1972) for o—— =
_ inel a’k

r i

- -

at low transverse photon momentum and fixed angles of 10
and 24 degrees away from the beam direction. The curves
are predictions for x = O photons based on an assumed
pion spectrum proportional to exp(-agl?) “with am? = 0.3,
The normelization for the curve is determined by Eq. (7.32).
The data pions have values of x between
zero and 0.05.

The data of Bertin et al. (1972) and the Saclay-Strasbourg
Group as reported by Sens (1972) for (pix |p). The solid
curves are fits to lower energy data for (p:n |p). The
dashed curve is the velue of the invariant cross section
for (p:uolp) at P = 0.4 GeV/c derived with the
Sternheimer approximation, Eq. (8.22). The data of
Ratner et al. (1971) for (p:n'|p) are slightly higher
than those shown for (p:n |p). Isospin invariance,
together with the assumption that the leading J-plane
singularityihas I = 0, requires that asymptotically,

(p:x°lp) = [(pax*|p) + (p2x"|p)]/2. Cahn (1972).
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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