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* PHENOMENOLOGY OF INCLUSIVE REACTIONS 

Robert N. Cahn 

Lawrence Berkeley Laboratory 
university of California 

Berkeley, California 94720 

July 18, 1972 

ABSTRACT 

LBL-1OO7 

Inclusive reactions are examined in the .context of the Mueller 

formalism, Which exploits the connection of the inclusive cross section 

with the six-point amplitude and Regge behavior. Some previous results 

of the model are reviewed. Internal symmetries together with the 

Mueller picture are used to produce a large number of testable predic-

tions. The fundamental symmetries of the strong interactions yield 

predictions which test the validity of the basic assumptions of the 

moael. SU(3) gives predictions Which are expected to be violated, and 

thus furnish extensive information about symmetry breaking. Angular 

distributions yield information about behavior in the central rapidity 

region, if the transverse momentum distribution is known. The dual 

resonance model provides predictions for fragmentation and pionization, 

but the results are based on a naive model and do not agree with the 

data. Inclusive photon distributions are examined in detail. They 

provide information mainly about the inclusive nO distribution. In 

the iow-transverse momentum region, bremsstrahlung is Significant and 

can provide a measure of the charged multiplicity. The photon distri

bution arising from nO decays in the central ·region obeys an equality 

relating the spectrum at zero transverse momentum to the integral of 
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the spectrum over all transverse momenta. A variety of experimental 

data are reviewed and compared with the predictions and prescriptions 

of the preceeding chapters. 
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INTRODUCTION 

This is not intended as a review of inclusive processes. Such 

an effort would be nearly futile in a field which is expanding as 

quickly as is this one. Fortunately, a few brave persons have under

taken such a task and the uninitiated reader is referred to their 

works for an introduction to the subject (Frazer et a1., 1972; 

Berger, 1971a, 1971b;. Quigg, 1971a, 1971b; Bjorken, 1971; Young, 1971; 

Arnold, 1971; Horn, 1971; Gasiorowicz, 1971). Among the original 

papers, those of DeTar (DeTar 1971) and Mueller (Mueller, 1970) 

provide an excellent starting point. 

The title "Phenomenology of Inclusive Reactions" is meant to 

suggest that we shall focus on. questions which are immediate to the 

interpretation of data. Consequently, we do· not consider to any great 

extent a number of important topics such as the helicity structure of 

the six-point amplitude (Goddard and White, 1970, 1971, 1971a, 1972; 

DeTar et al., 1971a; Weis, 1971, 1972; Jones, Low, and Young, 1971). 

In addition, a number of important phenomenological topics are not 

discussed. One of these is the question of "exoticity." For this 

continuing controversy, the reader is referred to the original litera

ture (Chan et al., 1971; Ellis et al., 1971; Chan and Hoyer, 1971a; 

Einhorn, Green, and Virasoro, 1972). An equally important topic is 

the analogue of finite energy sum rules for inclusive reactions 

(Dias De Deus,and Lam, 1972; Kwiecinski, 1972; Sanda, 1972; Einhorn, 

Ellis, and Finkelstein, 1972). 

Phenomenological theories not based on the Mueller approach 

have been developed by several authors (Grote et a1., 1971; G. Ranft, 

1971; J. Ranft, 1971; Hwa and Lam, 1971, 1972; Jacob and Slansky, 1971, 

1 
1972; Jacob, Slansky, and Wu, 1972). 
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There has been no attempt to review all the experimental data; 

only a portion of the. data bearing on the theoretical developments of 

the text is discussed. The reader is referred to the review articles 

cited above for further experimental references. 

\ 
. ~ .~. 
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CHAPTER ONE 

PRELIMINARIES 
~ 

A. Kinematics, Notation, and Definitions 

An inclusive reaction or process is one in whiCh not all the 

out~~ing particles are specified. Thus the total cross section for 

a 'u> crab(s), where s is the center-of-mass energy squared, might 

be called an inclusive measurement. The primary focus of this work is 

single particle inclusive processes, the archetype of whiCh is 

a + b ~c + anything. We shall develop notation and investigate the 

kinematics first for single particle inclusive processes and then 

consider generalizations to n-particle inclusive processes of the 

form a + b ~ cl + c2 + ••• + cn + anything. 

To begin, consider a + b -+ C + ,anything in a frame in whiCh 

the momenta Pa and Pb are colinea.r. We can parameterize the 

momenta as 

where 

Pa 

Pb 

Pc 

w c 
2 

= 

= 

(ma cosh ~a' 0, 0, m a 

(~ cosh ~b' 0, 0, ~ 

(w cosh~, P ,p , c xc yc 

sinh ~a) 

sinh ~b) (l.l) 

w sinh ~) c 

(1.2) 

Three frames have special significance: the rest frames of particles 

a and b, and the center of mass frame. Explicitly, in the rest 

frame of particle b ( the "lab frame" if b is the target) we have: 

-8-

Pa = {ma cosh Y, 0, 0, ma sinh Y} 

(~, 0, 0, 0) 

On the other hand, in the center of mass frame, we have 

(~ cosh ~, 0, 0, ~ sinh ~) {1.4} 

(w cosh z, p ,p ,wc cosh z) • c xc yc 

The variables ~,y, and z are called rapidities. Their 

utility derives from their intimate .connection with the Lorentz group. 

The rapid1ties of particles measured relative to two different frames 

moving colin early with the momenta Pa and ~ are related by a 

constant which reflects the boost necessary to bring one frame into 

equivalence with the other .In particular, Y = Za - ~ • Furthermore, 

the Lorentz invariant phase space factor, d3p/E, is given by 

2 
d P..L dy. 

We can relate the rapidities defined above to the center of 

2 
mass energy squared, s = CPa + ~) • Directly from (1.3) and {1.4} 

we find 



s 

m cosh Z = a a 

~ cosh ~ 
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2 2 
ma + ~ + 2ma~ cosh Y 

2 
s + m 

a -~ 
1 

2(S)2 

2 

s + ~2 _ m
a

2 

2(s)} 

For large s, Eqs. (1.5) yield immediately 

Y - £n(~a~) 

B. The Phase Space Boundary 

(1.6) 

The phase space boundary for a + b ... c + anything can be 

determined by calculating the missing mass, M*: 

There is a minimum value of M* determined by the quantum numbers of 

a, b, and c. 

while for p 

- + For example, for p + K ... A + anything, M* > m 
- 1t 

+ 
+ P "':rc + anything, M* > mass of the deuteron. Let 

2 
- m c (1.8) 
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Then from (1.4) we 1'ind that 

l!. J. 
- = 1 - 2s 2 w cosh z 
s c 

(1.9) 

is the equation of the phase space boundary. For large s, to lowest 

order in ~s, the curve has a universal shape in the center of mass, 

independent of particles a and b: 

1 
cosh z = s2j(2w) c 

(1.10) 

For fixed Wc and for large s, the extreme values of z permitted 

are 

z xt - +£n(s~) e - - w c 
{loll} 

Using Eq. (1.6) we can find equivalent forms in the rest frame of 

particle b: 

(1.12) 

C. Fragmentation and Pionization 

We de1'ine three important domains for single particle inclusive 

processes: 

lo P.l. fixed, Za - z fixed, s increasing , 

2.· 
Pol 1'ixed, z - ~ fixed, s increasing , 

3· ~ 
fixed, z fixed, s increasing. 
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The first and second we call fragmentation of a and b respectively. 

The third we call pionization. We denote these three symbolically by 

(blc:a), (b:cla), and (blcla). A colon indicates a fixed rapidity 

difference and a vertical slash a growing one. With b at rest in 

the ' ... boratory, the process (b:cla) is a function of the lab 0 

rap~~ty, Y, of particle a, the lab rapidity, y, of particle c, 

and Pl.' its transverse I!lomentum. The hypothesis of limiting fragmen

tation (Benecke et al., 1969; Chou and Yang, 1970; Feynman, 0 1969) 

suggests that as Y -+ 00, 
2 

dO/d lldy (y, PJ.:' Y) approaches a limit 

which is independent of Y and which we shall indicate by fey, Pl.). 

Similarly, (blcla) is a function of Za - ~ = Y, z, and PJL. As 
2 

,Y -+ 00, with Z and PJL. fixed, it is expected that dO/d pJ..dz 

(z, PJ: Y) approaches a limit which is a function of PJ... only. 

The generalization of these concepts is straightforward. , 
Consider (b:cllc2,c3Ic4Ic5:a). Here we are interested in the five-

partic17 inclusive cross section with Zc - zl' z4 - z3' and z5 - z4 

increasing while zl - Zb' z3 - z2' and Za - z5 are held fixed. 

It is understood that all the transverse momenta are fixed as well. 

We expect that at high values of s, da/~d2~dZi) becomes a 

function of the transverse momenta and the fixed, finite, rapidity 

differences only. 

D. Kinematic Relations 

While rapidities are generally the most useful longitudinal 

variables, in some applications, Feynman' s variable (Feynman, 1969) 
1 

x = P /[{s)2/2] (z is the beam direction) has advantages. In this zc 

language, x = ° corresponds to the pionization limit defined above. 
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As s -+ 00, with P.L fixed, the phase space boundary is given simply 

by Ixl = 1. The relation between x and z is easily determined: 

x == 
1. 

W sinh z/{2s 2 ) • c 

If we consider x ~ 0, as s -+00, we have 

If z > ° 
x 

Wc -(Z -z) 
e a 

ma 

(1.14 ) 

(1.15) 

where y' is the rapidity of c in the rest frame of a. If, on the 

other hand, z < 0, then 

where y is the rapidity of c in the rest frame of b. 

For x > 0, from (1.4) and (1.19), as s .... 00 

M*2 _ m 2 
c 

s 
1 -

'" 1 - Ixl . 

(1.16) 
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It is also convenient to be able to express the standard 

invariants s, t, and u in terms of the rapidities or x. Of course 

one bas the usual relation between the Mandelstam invariants: 

s + t + u (1.18) 

Using rapidities in the rest frame of a, 

t = 
(1.19) 

2 2 
= .ma + m - 2m W cosh y' c a c 

Using (1.15) we find 

. (1.20) 

2 2· . 2 f 
'" -Pi. fx At- ma (1 - x) + mc (1 - 1 x) 

The analogous calculation for u yields: 

u '" -xs • (1.21) 

In deriving (1.19) and (1.20), we bave assumed x > 0 as s.-. .... For 

x > 0, the roles of t and u would be interchanged. An interesting 

combination of Mande1stam invariants is given by tufs. For fixed y' 

and Y ...... , we' see that / 

tu 

... sew 2_ [m 2 + m 2Jx + m 2x2). 
c a ca. (1.22) 

Thus in the pionization domain, 

tu 
s '" w c 

2 
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For convenience we record here the phase-space volume in a variety ot 

variabl~s (the approximate relations are true asymptotically at high 

s}: 

d3p 2 
E d Pi dz 

2 
~nd:t dz 

'" ndp 2 dx :Lx 

'" ndx(-dt) 

<112 . 
OM 

1( -- dt s 

(1.24) 



-15-

CHAPTER TWO 

MODEL INDEPENDENT RELATIONS 

Certain relations involving inclusive reactions may be derived 

without the introduction of models or assumptions such as Feynman 

s~qling. These fUndamental relations rely on kinematics and conserva-

~_~4 laws, and their usefulness comes from the tests they provide on 

the consistency of both data and theories. 

Let us abbreviate dPi = d3Pi lEi . Then 

J do 
,dp - = c dp 

. c 
(2.1) 

The factor (nc) is the mean multiplicity of particle type c. 

It arises because by integrating over dpc we count up each particle 

of type c which occurs. We could define 

(2.1) by 

co 

L 
111=1 

m 0 
m 

(n) independently of c 

(2.2) 

where om is the cross section for producing precisely m particles 

of type c. 

If c and d are distinct particle types, then 

Jd d do 
Pc Pd dp dp 

,c d 

It c = d, then 

J do 
dpc dPd dp dp 

c d 
(2.4) 

/ 

-16-

since each n-particle production event will be counted n(n - 1) times. 

Equations (2.3) and (2.4) can of course be generalized further. 

Consider a conserved, additive quantity Q (such as charg~).: 

It is clear that 

Four momentum conservation yields (DeTar, Freedman, and Veneziano, 

1971; Predazzi and Veneziano, 1971) 

~ Jopc Pc" ~~ot ~;c) 
'~" 

The extension to double inclusive cross sections is,immediate: 

~ fill dO L dPd Pd -0- dp dp 
d tot c d 

We define 

(2.6) 

(2.7) 

where g is called the correlation fUnction. Then from (2.6) and 
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_p 1.1. N(p ) • 
c c (2.10) 

a 

The case 1.1. =0 shows that g cannot vanish identically. 

Constraints are placed on inclusive reactions by the symmetries 

of the strong interactions. Certain of these are quite obvious. For 

example 

(b:c\a) ('b:c\9:) (2.ll) 

-where a is the conjugate, Ca, of particle a. Similarly, if. Ii 

are the generators of isospin SU(2), and if 

a' exp(-in:I,,)a 
c 

(2.12) 

then 
, 

(b:c\a) (b':c'\a') • 

This analysis has been extended by Lipkin and Peshkin (1972) to cover 

combinations of inclusive reactions involving various members of the 

same isomultiplets. 
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CHAPTER THREE 

THE MUELLER FORMALISM 

A. Mueller Diagram Rules 

While the hypothesis of limiting fragmentation, Feynman scaling 

has an extensive history, its plausibility and attractiveness were 

enormously increased by the seminal work of Mueller (1970) and its 

elaboration by Abarbanel (1971a, 1971b). The key insight of Mueller 

was to recognize that inclusive cross sections are related to discon-

tinuities of three-to-three amplitudes. While Mueller did not specifY 

precisely the discontinuity required, that point has been investigated 

subsequently (Stapp, 1971; Tan, 1971; Polkinghorne, 1971). In most 

applications, the specification is inessential. We shall return to 

this point in Chapter Six. 

The importance of this insight was enhanced by the introduction 

of Regge concepts to the analysis of the three-to-three amplitude. 

This was achieved through group theoretic analysis a la Toller. Just 

as two-body reggeology can be phrased in terms of 0(1,2) expansions, 

so can inclusive reaction phenomenology. Since the inclusive cross 

section is related to a discontinuity of the forward three-to-three 

amplitude, in fact 0(1,3) can be used, just as it can for forward 

two-to-two amplitudes. 

In spite of much elegant phraseology concerning Plancherel 

measures and the like, at heart the basic Regge assumptions are still 

required--almost nothing can really be proved mathematically. Indeed, 

nearly all the content of these analyses can be summarized in terms 

of ''Mueller diagrams" and some rules for the amplitudes they represent. 
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Consider (b:cla) in the rest frame of particle b. Let y 

and ~ be fixed while Y -+ co. Our rules for evaluating the cross 

section corresponding to the diagram in Fig. 3.1 are: 

1. For each growing rapidity difference, insert a sum of 

Regge poles, each with a factor exp(o.~) where 0i is the Regge - ~ 

int~_~ept at t = 0 and ~ is the growing rapidity' difference. 

2. Each Regge vertex has a residue which is a function of 

the rapidity difference of the particles attached to the vertex and 

the perpendicular momenta of those particles. For convenience we 

shall call the vertex with b entering and c exiting, and a 

reggeon i at t = 0 fibC(Y,PJ! exp(y). 

3. The invariant differential cross section is exp(-Y) times 

the amplitude obtained from 1. and 2. 

Thus for (b:cla) in Fig. 3.1, we have 

i 

a where lai = 1 - 0i and l3i is the two-body Regge vertex. If the 

leading pole is a Pomeron with. OJ, = 1, then we find 

This shows hOw Feynman scaling is related to the constancy of total .. 

cross sections at high energy. 

. As a second example consider (blcla) as shown' in Fig. 3.2. 

B,y our rules, using center of mass rapidities, we obtain: 
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-(Z -~) \ b 
e a ~ exp[oi(Za - z) +OJ(z - ~)]fijC(p.L)l3ial3j 

+ L l3i al3j b f ij C(P..L' exp[ -lai Za + t!xj~ + (OJ - 0i )z] • 

i~P 
jf:p 

(3.3) 

Even if the rapidity separation between ·b and'c is not growing, 

as long as it is large we might anticipate that an expansion like that 

in (3.4) would be appropri~te. Clearly this requires 

- y-+co 

2: l3i
b f

ij 
c(p ) °iY 

eY fjbC(Y'PJL) ~ e 

i 

or 

f/C(Y,Pl) ~L 13 b f ij C(~ e 
-laiY 

i 
i 

) a b 
With our conventions, the value of crab(s = co is I3p I3p ' Thus 13 

1 
has the dimensions of (mb)2 while f ij

C has ~e dimensions of 

GeV-2 • 
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The Mueller expansion for (b:cl,c2Ia) can be derived 

s imil.e.rly : 

do -.caj (Y - Y2) 
~.L2) e 

(3.7) 

B. The Triple Regge Expansion 

In a particular kinematic region, we can se;y something explicit 

about the residue f j
be• Consider t = (~ - pc)2 fixed, and Ixl 

near 1. Any particle c' other than c must have Ix'i < 1 - Ixl 

by energy conservation. In terms of rapidity 

w' c -y' -e 
~ 

y' 

A fortiori, with y( w) ~ .en (~) 

y' > log ~ - 109(l _ e -ry-y(w)]) 

m 
y' 2: log ~ - log 0- -y(wD 
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Thus by choosing y sufficiently near yew), we can insure that there 

must be a large rapidity separation between c and the nearest out

going particle. This justifies inserting Regge pole in the be 

channel. See Fig. 3.3a. 
*2 If we now require M to be large and 

consider the sum over final states we see that we should have a 

reggeized aa channel as well (Abarbanel et al., 1971a, 1971bj 

DeTar et al., 1971a). See Fig. 3.3b. What is the contribution of this 

so-called triple-Regge term to the invariant cross section? At fixed 

M* it should behave as s 
axi(t)-l 

is the Regge trajectory in 

the be channel. This comes from for the reggeon in 

Fig. 3.3a, squared, times s-l for a flux factor. On the other 

hand, from the general principles of fragmentation outlined above, 
<lj(O)-l 

we know that for fixed t and fixe.d:ic or y, it must go like s , 

where <lj is the trajectory in the aa channel. Thus the s and 

M* dependence must be 

where sO:: 1 Gev'2 and thus. sets the scale. If the two-body residues 

are ~i and ~j and if the triple-Regge coupling is gUj(t) we 

have, using a standard normalization, 

1 
l6:n: 
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dO' - "" dp 

wher- in (3.13) we have expanded as in (3.9). We have defined the 

tri~~~-Regge domain by 

t fixed 

s -+ co 

M*2 large 

_1_ large 
1 - x 

In terms of rapidity the last two conditiors mean y - yew) is small 

and s(! - y(wi) is large. Let us thererpre say that the triple-Regge 

region \s given by . [ 

8 > y - yew) > 

where 8 is small and K is large. We now investigate the contribu-

tion of the triple-Regge region to the distribution in x and in y 

and its contribution to the multiplicity. In fact, its contribution 

to muitiplicity times the cross section is the same as its 

contribution to the cross section since no event can have two 

particles in the triple-Regge region as we showed above. 

The most important result (Abarbanel et al., 1971a, 1971b) is 

that if ~(O) = 1, then Sppp(t = 0) = O. To prove this, we 

-24-

integrate the contribution of the triple pomeron to find its contribu-

tion to the total cross section 

Let ap(t) = 1 + apt and approximate all the couplings by their 

t = 0 values. Then we have 

2 
In this region t:: -P..L' so that we can write 

dt 
-2apt 

~ klpp(0)1
2 

PP<O) .,.,..(0) !~O ~ ["€"'" 10s D 
-., (2"'" 108 s~)] 

(3.15) 

• f 
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1 (!) 
og K 

log 
1 log -
8 

Thus this partial. contribution to the cross section grows like 

log(log s) while the"cross section itself is constant by assumption. 

This contradiction shows that we must have gppp(t = 0) = 0 ' if the 

pomeron is a pole with unit intercept. 

If we start with the ansatz 

we have 

so that the triple pomeron contribution is a + b(log s)-n, which is 

consistent with a pomeron with unit intercept, provided n > O. 

-26-

We turn now to the contribution of the triple-Regge region to 

the inclusive cross section integrated over 

2 
t :::: -P..L and we have 

2 P J.. In this region, 

The integral. is dominated by the region near the largest t value, 

t • We have roughly, 
max 

x 2a' lOge _1_) 
i 1 - x 

We can check that for 0j(O) = 1 this gives a finite contribution to 

the cross section if 1 - 2ai (tmax) > -1, i.e., if i! P. 
, n 

If, on the other hand,i = P, and Sppp= Yppp(-t) 



-27 

Thus with a linear zero in ~PP' the triple pomeron contribution goes 

like (1 - x)-l<:log(l - x»)-2, while a reggeon-reggeo~-pomeron 

contribution with ~ = 1/2 goes like <:log(l - x»)-l. See Fig. 3.2. 

C. Mean Multiplicity at High Energies 

Let us see what Muellerism tells us about the average multi-

plicity of some species. For simplicity, we will consider the 

symmetric case a = b. Then 

Let us define 

so that 

em 
fi'y,s) 

= 21Y

/

2 

dy 

ymin 

2 1 ~I 
d Pol -0- ap'y,p. ,s) . 

tot ...... 

dN 
~y,s) , 

+ 2 L
O 

dy :(y,oo) - 2 LO 
ymin ymin 

-28-

If we make the definitions: 

we can express the rapidity distributions as 

:(y,oo) 

Then for large y, we have by virtue of (3.1) and (3.6)· , 

~y,oo) 

:(y,s) = L f3tf3 j
b 

Fi/(Y) exp[-lai(Y - y) ~ lnjY] .(3.37) 
i,j 

Using (3.33) and (3.36) we find that 

f ."C~o,o) -~Y'oV < o. 

For large Y we have 

LO 
."C:<o,o) - :<y,OV 

'2 
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Now.as Y -+ GO the 1-ntegral (3.40) over y up to some fixed YO 

gives a result of order exp(-~iY)' Now consider the contribution 

from large y > YO 

I
Y/ 2 

- ~ [:(y,GO) -:(y,S)l 
YO 

(3.41) 

Combining the third and. fourth terms of (3.30) yields, 

The last term in (3.30) is evaluated in the s -+ GO limit: 

which is of order exp( -la
j 
Y) 0 

Combining these results, we have for a = b, , 
-~Y -tIXaY 

(nc) = AY + B + CY e + (9'G, ) 

where. CXa is the leading non-pomeron pole a.nd tIXa = 1 - ~. (so that 

~ ~ 1/2). The coefficients A, B, and C are given by 

C~.46) 

.... 
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Even if a # b, the term proportional to exp(-~Y/2) in Eq. (3.42) 

vanishes when the distribution for y > Y/2 1 
is added in. 

The most relevant case is a = b = p. We can re-express 

At first sight, the expansion for the average multiplicity 

seems to contradict the results for the triple-Regge region. There 

we found that the triple pomeron domain could contribute an amount 

a + b(log s)-n, while no such term turned up in the multiplicity 

expansion. A careful examination of our procedures reve~ls the cause 

of this discrepancy. In the triple pomeron case, we required M *2 

to be large in order to insure that the aa channel had reggeized. 

This gave rise to the condition ([ - yew») > K/(S/SO)' On the other 

hand, in the multiplicity expansion, we assumed that for all values 

of y the ai channel had reggeized. This is equivalent to 

assuming in the triple-Regge estimate the integration continues right 

up to the phase-space boundary (K -t 0). This would have the effect 

of eliminating the (log s)-n term. Of course this may not Qe 

justified. The presence or absence of logarithmic terms causes 

difficulties as well for the sum rules discussed in Chapter 2. Most 

simply put, the problem is that in a pure pole model for two-body 

-trJ. cr' sections, the total cross section has terms of the form s , 

while the diffractive contributions (triple pomeron say) appear to 

give logarithmic contributions. Of course, these logarithmic contri-

but ions may be cancelled by other logarithmic contributions. On the 

other hand, this quandry may be an indication that pure pole models 

are inconsistent--that "dynamical" cuts are a necessity. 
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D. Sum Rule Constraints on Fragmentation Distributions 

The energy-momentum conservation sum rule, (2.6), places 

constraints for the residues f 
bc 

j • (Caneschi, 1971.) Let us work 

in the rest frame of a, and consider the Y -teo limit. From (2.6), 

Considering only a pomeron with op = 1, and an effective non-pomeron 

with intercept OR < 1, 

When y is large. This is the dominant region for (3.48},since 

" Pa'Pc = maWc cosh y • 

Thus as Y -t cici <:3.48) yields 

= 

c 

( a bC( ) -tJ:1.p.y) 
+~ fR Y - y,~ e 

Now in analogy with (3.49) 

. Inserting this in (3.51) and expanding, we have 
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Let yl = Y - y, so that (3.53) becomes 

1 ='" \J,Y-ymin dy' J d2 Wc L 1]. mb 
c, Y-yma,x 

Ta.king Y -+ <11>, we obtain the fragmentation sum ru1es: 

W 
2 c -y' dp - e 
J.~ 

and 

Superf'icially,the sum ru1e (2.8) is a cause for concern. To see why, 

begin with (2.10) in the form 

2 da 
= -m -c dpc 

Now 

The right-hand side of (3.51) is bounded, so the integral on the left-

hand side must converge. But for Yd large, 

Pd'Pc ~ wdWc[cosh(Yd - yc)J/2. Thus we must have some cancellation 

near the upper limit of the y integration. To see how this comes 

about, let us evaluate g(Pd,pc) 

Fig. 3.3. By our Mueller ru1es, 

" 

for y d large and y c fixed. See 

From (2.l0), (3.49), (3.52), and (3.59); we obtain 

+ higher order in Y and Yd 
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where the arguments are the same as those in (3.59). The terms shown 

explicitly in (3.61) are the ones which appeared to cause trouble on 

account of the exp(yd) in the integrand. However, by virtue of the 

sum rules (3.55) and (3.56), the displayed terms in (3.61) cancel, 

1 ~ng the high-order terms which permit the saturation of this sum 

rule (Ellis, Finkelstein, and Peccei, 1972; oahn and Koplik, 1972). 

E. Behavior in the Central Region 

One of the. most interesting consequences of Mueller analysis 

concerns the behavior at high energies of the inclusive differential 

cross section near z = o. (Ab~rbanel, 1971, 1971a). From (3.4) we 

have for (blcla) 

For Simplicity consider only two Regge poles, P and R, with <Xp = 1, 

and ~ <.1 and suppose a = b. Then the inclusive cross section is 

-2Jla...Z 
B-2 ~ a f. c( 2) 

+ r-R e RR II 

Since s cc exp(2Za ), the cross section at z = 0 approaches its 
-(~/2) 1 

asymptotic value as s (typically s -4) • For fixed large s, 

the z dependence for small z is 

do 
dp c = A(P..J + B(~ cosh ~z 

It is clear that the sign of Bis rela.ted to the riSing or :t'B.lling 

of do/dp a.t z = 0 as s increases. A cross section increasing c 

with s requires B to be negative and vice versa. 
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CHAPTER FOUR 

CONSEQUENCES OF INTERNAL SYMMETRIES IN A MUELLER MODELl 

A. Quantum Numbers of the J-plane Singularities 

In its simplest form the Mueller model assumes that (a:clb) 

is dominated by ~ in the bb channel of the corresponding six-

point function. The spirit of the model is more general though, and 

the existence of cuts as well as poles is expected. In a pure ~odel 

with op(O} = 1, scaling obtains [Eq. (3.2)]. In a pure pole model 

( ) 
1 do wi th op 0 < 1, scaling holds for C1{'S) dp (s). By the factoriz-

ability of poles, 

1 do I ~ d [(a:c b},s] Uab\s, p 

is independent of b as s -+ 00. . It isprobab~ too much to ask that 

all the important j-plane singularities be poles and so factoriz

ability may indeed be broken. This alone would not invalidate the 

Mueller approach any more than the existence of cuts in two-boctr 

reactions vitiates Regge phenomenology in that domain. 

Whatever the nature of the j-plane singularities, they must 

have well-defined quantum numbers for certain symmetries of the strong 

interactions, including charge conjugation, C, and isospin. Thus 

we can decompose the cross section quite generally as 

do I dp (a:c b) = " f(a:clb)( y) L j y,~ (4.1) 

j 

where the sum is over j -plane singularities in the bb channel. In 

a pure pole model, we have explicit~ 
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(4.2) 

If the charge conjugation eigenvalue of the singularity j is Cj , 

then 

dO(a·clb} dp· = 
\" C f(a:clb)( y) L j j y,~ 
j 

If G = exp(-inI
2

}x C is the G-parity operator and Gj the eigen

value of the singularity j, 

~;(Ga:GClb) \" G f(a:clb)( y) L j j y,p~ (4.4) 

a.nd 

In a model in which cuts are generated by double pole exchange, it is 

easy to see how the cuts remain pure C and G objects while losing 

their factorizability. We might schematica~ represent the amplitude 

for Fig. 4.1 as 

f 4 b b i 
d q expfoj(t)[y - y] +oi(t)[y - y]) ~i (t) ~j (t) _~.q 

(4.6) 

with t = _q2, and where er>t, is a forward four-particle, two-reggeon 

amplitude. Although factorizability is clearly lost, this contribution 

to the amplitude for (a:clb) = (a:cl'b) is CiCj times the amplitude 



-39-

for the i <8> j contribution to (a:clb). Of course the existence of 

well-defined ·Co's and Go's does not depend on such an explicit 
J J 

model, but is a consequence of the symmetries themselves. 

By taking combinations of reactions, we can isolate certain 

~rities. For example (~+:n-Ib) - (~-:n+lb) is pure G = +1, 

C -1 in the bb channel--what we would ordinarily call "p", but 

including singularities like the p ~ P cut as well. 2 Similarly 

( + -I - + K:rr b) - (K :n Ib) is pure C = -1 with p-, w-, and 9-like 

contributions. 

the significance of this decomposition into amplitudes with 

well-defined quantum numbers in·the bb channel is that it enables 

us to see whether or not the singularities correspond to those in 

two-body scattering. Does the G = +l~ C = +1 amplitude dominate at 

high energies? Do the other amplitudes vanish as s -~ with 

~ ~ 1/21 these are the fundamental points to be verified in 

establishing the correctness of the Mueller approach. 

B. Isospin Equalities 

Let us proceed under the assumption that the leading singula.r-

ity--the pomeron--has C = +1 and I = O. then we may analyze the 

ac isospin structure of fp • We turn again to the six-point function 

and see that, in effect, fpac is a vertex which we may represent 

8 

Because P is an I = 0 operator the Wigner-Eckart theorem gives us 

an especially simple decomposition: 
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(aclplac) = L (acli,IZ)(l,lZlpll' ,lz><l' ,lilac) 

1,1' 
1z,1z 

L 
1,1Z 

-I )2 I (ac I,IZ p_ 
Ac 

where P I represents the reduced matrix element for isomultiplets 
ic 

A and C of which a and c are members. Now the range of I is. 

a range of 21 0 + 1, where ID.l.n 

the number of fragmentations (a:c) is 1min = min(lA,Ic). 

(2IA + l)x (2LC + 1) so there are 21. + 1 independent amplitudes ml.n 

and 2Imax (2I
min 

+ 1) linear relations. thus for example as 

s -+ co (so that the I = 0 bb ';,mpli tude dominates) 

o (p:n ) 

(n:n +) 

o 
(n:n ) (4.9c)· 

(4.9d) 

where we have dropped b since it remains unchanged throughout. Of' 

course these relations hold read either as fragmentation of' nucleons 

into pions or vice versa: the isospin structure is the same in both 

instances. 

Many of' the isospin relations follow just from C and G. 

Of'the relations (4.9), only (4.9d) requires I = 0 in the bb 
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channel; the other follow from C = G = 1. The following asymptotic 

equalities follow just from C = G = 1: 

(K+ :A) (KO:A) 

(n+:A) (n - :A) 

(n+:1:-) (n- :1:+) (4.10) 

(u + :1:+) (n-:1:-) 

(n + :iP) (n - :1:0) 

C. SU(~) Equalities 

In analogy to (4.7), we can find the relations Which would 

follow from exact SU(~) and the assumption that the pomeron is a 

unitary singlet. The Wigner-Eckart theorem becomes slightly trickier 

to apply because the C1ebsch Gordan series for SU(~) is more complex. 

For example we have the famous decomposition: 

8 ® 8 = 27 Ef) 10 (f) 10* @ 8 <a3 8 $ 1. Two 8's occur, While in 

the Clebsch Gordan series for SU(2) no irreducible representation 

occurs more than once. With this caveat we continue as in (4.8). For 

a ~nd c members of octets A and C,~ 

8 

(ac\p\ac) 

(4.11) , 
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In general we have seven reduced matrix elements; 

_10 0* 8,8 8 ,8 8 ,8 
p- *1 , P a a, pas, p s s, and ~,l. By time reversal 

8 ,8 8 ,8 
pas = p s a. Let us con-invariance for the six-point function, 

sider first the case in which a is a pseudoscalar meson, and c is 

an octet baryon: (P:B). There are 64 reactions of this sort. By the 

isospin analysis above there are 2lmin + 1 independent reactions for 

each isomultip1et fragmentation. Thus the number of independent 

reactions remaining after isospin equalities is 

(n:1:) -t ~ (K:1:) -+ 2 (K:1:) -+ 2 ( '1:1:) .. 1 

(n:N) -+ 2 (K:N) -+ 2 (K:N) -+ 2 ( '1:N) -+ 1 

(n:::::) -+ 2 (K:::::) -+ 2 (K:::::) -+ 2 ( '1:::::) -+ 1 

(n:A) -+ 1 (K:A) -+ 1 (iC:A) -+ 1 ( '1:A) -+ 1 

(4.12) 

a total of 26. Since there are seven SU(~) invariant amplitudes, 

there are nineteen linear relations. These are determined from (4.12). 

The explicit decomposition into SU(~) invariant amplitudes is given 

in Table 4.1. One choice for the 19 independent relations is 

(n-:p) 

(n +:p) 

(n - :1:+) 

(n - :1:--) 

(K-:1: +) 

(K .-=0) .-
(K -:p), 

(K- :::::-) = 

(K+:::::O) 

(K+:1: +) 

+ -) (K ::::: 

(K+:P) 

(K+ :n) . 

(K+:1:-) 

Equation (4.l~) continued next page 



Equation (4.13) continued 
- + + ° 2{n :p) + 2{K :n) + 4{n :~ ) 

(n+:A) 

2(n-:p) + 2(n+:p) + 4(n+:~0) 
(4.l3) 

We turn now to the case (p:p). Since the pomeron is C even, 
8 ,8 

P as = 0, and plO*,lO* plO,lO . = . Consequently, there are only 

five SU(3)' invariant amplitudes for (P:p) and (4.12) simplifies to 

(aclplac) ~vC. 
8 

(4.14) 

Since 

we have 

(actplac) (calplca) (4.l6) 

where a and c are members of the same SU(3) multiplet. Thus 

asymptotically, where P dominates in the bb channel, (a:c) = (c:a). 

". 
",",' " 

" 
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We have as an example of the power of this SU(3) relation, the 

predictions for s ...... , (n+:K-) = (K-:n+) = (n-:K+) = (K+:n:-) using 

the charge conjugate variants of (a:c) = (c:a). USing C and 

isospin, the 64 reactions (P:P) can be reduced to 12: 

(K:K) ... 2 

(K:iO ... 2 

(4.17) 

Among the twelve independent amplitudes there must be seven more 

SU(3) relations beyond those of the form (a:c) = (c:a). We may 

choose them to be 

(n - :n: +) (K- :K+) 

(K- :KO) (- + K :n: ) 

(K-:K-) (n-:n:-) ...... 

'j~ ; (K- :n: -) (K-:if) '. (4.l8) 

3{K- : '1) + 0 +0 
= 2{n: :n: ) + (K ~n: ) 

3{n:-:TJ) 4 + 0 + 0 (K :n: ) - (n :n: ) 

The last relation is written for completeness only. The others are 

experimentally accessible. Notice that it is unnecessary to observe 

(K-:no) since by isospin and C, 

',,' 



By similar manipulations, these relations can be written in a variety 

of other forms. 

A multitude of SU(3) relations can be derived for (B:B), 

(B:P), (P:B), etc. from (4.13) and (4.14) mutatis mutandis. Fragmenta-

tion into vector mesons can also be treated. If we consider the 

vector mesons as a degenerate nonet, designating the isosinglets by 

Wl and wB we find for the number of independent reactions after 

invoking C and isospin invariance in the case (P:v) 

(n :K*) ~ 2 (K:K*) ... 2 (1l:K*) ~ 1 

(n:p) -+ 3 (K:K*) ... 2 (1l:«]. ) -+ 1 

(n:wl ) ... 1 (K:Wl.) ... 1 (1l:wa) ... 1 

(n:wa) -+ 1 (K:wa) .... 1 ( 1l:p) -+ 1 

(K:p) -+ 2 . (4.19) 

With seven SU(3) invariant amplitudes, there are twelve linear 

relations. It is possible to choose eight which do not involve wl 

or.' ,wa' thus obviating the problem of the mixing angle. The relations 

involving the mixing angle are more complex and not accessible to 

tests. One choice of relations not involving. w1 and wa is 

( ,- *-) 
~, :K = 

( - *+) n :K 

( - + K :p ) 

Equation (4.20) continued next page 
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Equation (4.20) continued 

( - *+) K :K 

*+ 3( 1l:K ) 

+ 0 + 0) 4(K :p ) - (n:p • (4.20) 

Using isospin invariance in conjunction with these relations, one can 

generate other experimentally testable predictions, such as 

- 0 - -iIO) (- '1(0) 2(K :p) = (K:K +, K:K • 

D. Symmetries in Pionization 

From Fig. 3.2 and Eq. (3.7), we see that (alclb) is controlled 

by double' pomeron exchange. The residue fpp c corresponds to a 

four-point amplitude for two pomerons at t = 0 and particle c 

c~ming in and going out. Thus the SU(3) content might be SUlllllllU'ized 

as 

(4.21) 

If . P is a unitary singlet, then fpp c is the same for everyc in 

the SU(3) 'multiplet. For members of the same isomultip1et, this 

relation should be exact '(up to electromagnetic effects), as it 

should be for particles related by C. 

A primitive model for SU(3) breaking in the pionization 

reglon can be obtained by assuming the pomeron has a sm&ll. octet 

contribution: 
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P Po + €P8 (4.22) TABLE 4.1. P .... B = L C~r = . 
r 

Then, to first order, (4.21) becomes 

p27 ,27 ~O*,lO* p10,10 8 ,8s 8 ,8 8 ,8 
~,1 

c 
p s p a 8. pas 

fpp a: (clpopolc) + 2E(clpoP8 Ic ) . (4.23) 
+ 

1/5 1/6 1/6 3/10 1/6 2-V5/10 0 n .... p 

Of course (4.23) is analogous to the Ge11-Mann-Okubo prescription - 1/2 1/2 0 0 0 0 0 n .... p 
for mass sp1ittings. We can immediately conclude that (4.24) implies 

+ K .... p 7/40 1/12 1/12 1/5 1/3 0 1/8 

~[(INI) + (~)J f[(ltl) + 3(IAI)J K+ .... n 1/5 1/6 1/6 3/10 1/6 -2...[5/10 0 
(4.24) 

( IKI) f[(lnl) + 3(1~I)J K- ..... p 1 0 0 0 0 0 0 

K .... n 1/2 0 1/2 0 0 0 0 
where N denotes anyone member of the N isomultip1et, etc. 

Tj .... p 9/20 0 1/4 1/20 1/4 -V5/10 0 

- + n .... t 1 0 0 0 0 0 0 

+ to :rt .... 1/2 1/12 1/12 0 1/3 0 0 

+ .... t+ 7/40 1/12 1/12 1/5 1/3 0 1/8 :rt 

K+ .... t+ 1/5 1/6 1/6 3/10 1/6 21/5/10 0 

K+ .... t- 1/2 0 1/2 0 0 0 0 

K- .... t+ 1/2 1/2 0 0 0 0 .0 

K - .... t - 1/5 1/6 1/6 3/10 1/6 -2-v5/tO 0 

Tj 
+ .... t 3/10 1/4 1/4 1/5 0 0 0 

.J 
+ .... A 3/10 1/4 1/4 1/5 0 0 0 :rt 

K+ .... A 9/20 1/4 0 1/20 1/4 -W10 0 

K- .... A 9/20 0 1/4 1/20 1/4 V5/10 0 

Table 4.1 continued next page 
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Table 4.1 continued. 

p27,27 ~0*,10* plO,lO 8 ,8 
p s s 

T} ~A 27/40 0 0 1/5 

+ ... :=: 1/2 0 1/2 0 1t 

- ... :=: - 1/5 i/6 1/6 3/10 1t 

K+ --~.::. 1 0 0 0 

+ _0 
li2 1/2 K ... .::. 0 0 

- ... :=: - 7/40 1/12 1/12 1/5 K 

K - _0 
1/5 1/6 1/6 3/10 ... -

-+-= - 9/20 1/4 0 1/20 T} 

" 

8 ,8 
p a a 

8 ,8 
pas ~,l 

0 0 0 

0 0 0 

1/6 -2-{5/10 0 

0 0 0 

0 0 0 

1/3 0 1/8 

1/6 21{5jlO 0 

1/4 V5/l0 0 
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CHAPTER FIVE 

ANGULAR DISTRIBUTIONS IN THE CENTRAL REGIOr 

A. General Relations between Rapidity and Angular Distributions 

In thepreviotis chapters we have seen how the rapidi.ty is a 

natural variable for the study of inclusive reactions. Some experimen-

tal data, however, cannot be treated in rapidity or Feynman's x 

variable because only the production angle is measured. This is 

frequently true for cosmic ray data, and is so for some accelerator 

data. In this chapter we shall. investigate how distributions for which 

the rapidity is the natural variable appear when viewed only as angular 

distributions. Of course nothing precise can be said without specifYing 

the actual distribution which is to be viewed as a function of produc-

tion angle. Nevertheless, from the general behavior of the particle 

spectra as a function of transverse momentum we can form an adequate 

estimate of the modification of the spectra which occurs when the total 

particle momentum is averaged over. 

The first step is to choose an angular variable which resembles 

the rapidity variable. The center of mass rapidity defined by Eq. 

(1.1) can be expressed as 

z 

is where E is the center of mass energy of the particle and Pit 
the momentum parallel to the beam direction. Wi th PI I = P cos 9, 

this becomes 

(
1 + ~ cos e) 

z = ~.en -l---..:P;:.---e 
- E cos 

(5.2) 

... ~ 
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For p» mc ' z is evidently determined by the production angle and 

approximates the angular variable 

! .tn(l + cos ~) 
2 1 - cos (5.3) 

Fixed angle behavior corresponds to (b\c\a) since for fixed 

total momentum, it corresponds to fixed momentum parallel to the beam 

direction. Thus we begin with Eq. (3.64), Which assumes two effective 

Regge poles--one pomeron with ~ = 1, and one non-pomeron (Which we 

call the reggeon here) with ~ = 1/2. For simplicity we shall assume 

a = b, although this is certainly not necessary. Absorbing some 

kinematical factors, we can write 

In Chapter 3 we pointed out that this form indicates a-correlation 

between the cross section at z = 0 as a fUnction of s and the 

variation with z near z = 0 at fixed s: rising cross sections 

must have a local maximum at the center While falling cross sections 

must develop a local minimum there. Clearly the same holds true for 

(5.6) 

To investigate the nature of angular distributions we require some . 

kinematical identities: 
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sech ~ = sin e 

.tanh T} cos e 

11- p sech T} 

PI! P tanh T} (5.7d) 

d3p d2~ dz E 

2 
1! dpJ.dz (5.7f) 

= 1( dp, dT} 1 + 2 2 2 ( m
2 

..... P..l. cosh 

Equation ( 5.7g) follows from 
) 

, 

wbere m~ = P~ + m2• Thus the cross section analogous to (5.6) is 

da 
dll = J 2 ~ m

2 J-~ da dp 1+ 2 2 d 
:L PJ.. cosh T} P 

We define 

da da (p _ p) + da (p _ R) 
dz = dz dz 

da (p _ p) + do (p _ R) 
dT} dT} 



with 

do (p _ p) 
dz 

do (p _ p) 
dl'} 

do (p _ R) 
dT) 
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Equation (5.lld) can be expanded for small T) as 

Thus we can make the comparisons, . 

~ (p - p) dT) 
do (p _ p) 
dz 

(5.llb) 

(5.llc ). 

(5.12) 

do (p _ R) 
dT) 
do (p _ R) 
dz 

From (5.13a) we see that 

do (p _ p) < do (p _ p) 
dT) dz 
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Z2 4 
1 + '8 + e'(z ) 

J 

for all T) and ~~ (p - p) approaches ~ (p - p) monotonically a.s 

T) -t CD. From (5 .13b) 

~~ (p - R)]TJ=O < ~~ (p - R)] z::O (5.15) 

From (5.llc) and (5.lld), for T) = z -tCD 

e -T)/2 ~ (p- R). . q·(mPlJ..)t ) 
d-zj2 do (p _ R) 

dz 
.. (5.16) 

Using (5.13b) and (5.16), for T) = Z 

do (.) do ( ) dTi p - R TJ=O < dTi P - R T}=CD 

~ (p _ R) do (p - R) 
dz z::O dz Z=CD 

< 1 • 
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B. Expansions about the Center 

Asymptotically, the rapidity distribution becomes flat near 

z = O. Its curvature comes from the pomeron-reggeon term what has 

s-k behavior. We can expand the rapidity distribution (5.10a) as 

do 
dz It J d~ fpp(:J + It s-t G + ~ + •• ) J d~2 fPR(lj} 

(5.18) 

with ~/BO = 1/8. 

The angular distribution on the other hand does not become 

flat asymptotically, but develops a local minimum at the center. We 

can write an analogous expansion for small ~: 

where 

At = n: o 

'J.! = A m -(; 2 Pol) 
--:1 0 2mJ.2 ~ , 

(5. 20) 

(5.21b) 

(5. 21c ) 

Thus the center of the ~ distribution is depressed by a factor 

The asymptotic curvature is given by 

At 
1 

A' o 

~e curvature of the nonasymptotic reggeon-pomeron term is 

<:~) 
As mc -t 0, !I and z become equivalent. It is easy to verify that 

in this limit, all the primed coefficients tend to the unprimed 

coefficients. 

Because the asymptotic pomeron-pomeron term in the rapidity 

distribution is flat, the curvature of the distribution at finite 

s can be attributed to the nonasymptotic terms. For the angular 

distributions, the situation is not so simple. At finite s, the 

curvature depends on both the asymptotic and nonasymptotic terms. 

From (5.24) and (5.25) we see 



B' 1 1. 1 
B'<B"<2' 

o 

If at finite s we have 

do 
dT} 

2 C' + C'T} + ••• o 1 
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with Ci < 0, then we can conc1ude Be < 0, since 

C t = A' + s -k B; ( Bi ) 
1 1 0 B' o 

/' 

(5.28) 

If Ci > 0, Be, may be either positive or negative. No matter what 

the sign of BO' eventually Ci is simp1y determined by Ai, which 

is positive. 

C. Numerical Exa.mp1es 

To c1arify these ideas, consider a hypothetica.1 distribution 

with 
2 

0pp -apJ.. 
T e 
m 

Then 

do (p _ p) 
dz 

-58-

ddz0 (p _ R) (S )-.: °PR Z = :rt m2 8Jf12 cosh (2') 

do (p _ p) 
dT} J 2 ( J. ;ropp 2 -apJ.. m2) 2 

-2- dPJ.. e 1 + 2 2 
m ~ cosh T} . 

O 
m2 

X 1 + 2 2 
P..L cosh 

Dne evaluation of (5.30c) is straightforward and yields 

do ( :rtOpp X ' 
dT) P - p) = 2""" x e (IS. (x) - Ka(x)] 

8Jf1 . 

(5.3Od) 

dth x = (am
2 

sech
2 

T})/2 and where Ka and IS. are the usual. 

IIOdified Besse1 functions. From (5.31) we find easi1y the expressions 

t'or Ae and Ai 

:rtOpp X 
Ae ----2 x e [IS.(x) - Ko(X)] 

am 
(5.32a) 



A' 
1 
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where x = am2/2. In a similar fashion we find 

~ ~ x 
BO = am2 m2 x e [IS.(x} - Ko{x}] 

~e ratios Ail AO and BilBo are shown in Figs. 5.1 and 5.2 as a 

function of the parameter a. A tuJ.1. eva.luat1on of the angular 

distributions arising from the pomeron-pomeron and pomeron-reggeon 

terms is shown in Figs. 5.3-6. The tuJ.1. expressions (5.ll) have been 

evaluated numerically for transverse momentum distributions of the 

form 2 
exp(-ap.L } and exp(-bPi' Clearly the genera.lfeatures are 

qui te similar. 

distribution, 

distribution, 

At the center of the distributions, the angular 

~~, is about 70 to ~ as great as the rapidity 

do 
dz' 
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CHAPl'ERSIX 

INCLUSIVE REACTIONS m A DUAL RESONANCE KIDEL 

A. Introduction 

One of the most exciting and remarkable developments in 
. 1 

particle physics has been the dual resonance model. Not only bas' 

this model had success in representing theoretical concepts such as 

Regge behavior, factorization, crossing, and duality, but it has even 

had some success as a phenomenological tool. It was natural that it 

be applied to the problem of inclusive reactions. 

Since the dual resonance model provides an ~xplicit six-point 

amplitude, the inclusive cross sections can be deduced by examining 

the appropriate discontinuity. This suggests a lack of ambiguity which 

is unfortunately not real. In the Mueller framework, we lmow that 

scaling arises from a pomeron with intercept C4v = 1. However, a 

trajectory with intercept C4v = 1 in the simplest dual model is not 

believed to be the way to represent the pomeron. This belief relies 

on duality: the pomeron is supposed to the dual to nonresonant 

production in the crossed channel, While the "bare" Regge poles in the 

simple dual models are all dual to resonances. A more popular 

representation of the pomeron is the "twisted loop" which is, in fact 

dual to nonresonant production. UnfortunatelYr it is not yet possible 

to do calculations with the twisted loop pomeron--nor is it even clear 

that this ~s the proper representation for the pomeron. ·We are left 

with a choice: we can take C4v = 1 so as to obtain scaling and 

ignore the complications. mentioned above, or we can take C4v < 1 and 

sacrifice sca.ling. Since both procedures h,ave serious drawbacks, 

it is worthwhile to see what conclUsions follow from one or the other, 

or perhaps both of the assumptions. 
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This chapter relies heavily on the work of Virasoro (1971) and 

of DeTar et a1. (1971b). Independent, but similar work to that 

presented here has been performed by Thomas (1972). Virasoro and 

DeTar et a1. give detailed explanations of the identification of the 

inclusive cross section with the appropriate six-point amplitude. The 

work of Thomas contains extensive numerical ca1culat~ons. We shall 

pursue a middle course, half pedagogical, half phenomenological. 

At this point it becomes necessary to delve slightly more 

seriously into the question of precisely which discontinuity of the 

six-point amplitude is connected with the inclusive cross section. 

(stapp, 1971; Tan, 1971; Polkinghorne, 1971). We follow Tan, but 

present only the simplest heuristic arguments. 

The optical theorem for two-body scattering relates the 

discontinuity of the forward amplitude to the total cross section. 

See Fig. 6.1a. The required inclusive cross section is represented 

in Fig. ·6.1b. A discontinuity formula for three-to-three amplitudes. 

can be written down (if not justified) by inspection. See Fig. 6.1c. 

In a region in which all channels except abc are below threshold, 

"extended" unitarity would give the relation shown in Fig. 6.1d, where 

the ab and a'b' channels have no + or - labels since they are 

below threshold. 

To achieve the arrangement of Fig. 6.1b, we have to set sab 

above its cut and sa'b
' 

below its cut as we raise sab from below 

threshold to above threshold. Thus we have the equality in Fig. 6.1e 

as our discontinuity relation for inclusive cross sections. The 

reader is referred to stapp and Tan for further.discussion. 
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The dual resonance model provides a prescription for evaluating 

the six-point amplitudes occurring in Fig. 6.1e. Even in the simple 

approach in which only tree diagrams are used, there are numerous 

contributions arising from the various permutations of the particles. 

As DeTar et a1. show, the contributions of the various diagrams can be 

calculated in terms of a single configuration, say that given in 

Fig. 6.2a. If we consider (a:xlb), it turns out that the contributing 

diagrams are those shown in Fig. 6.2c. This is, as DeTar et al. note, 

precisely what we expect from Mueller-like considerations. On the 

other hand, for (alxlb) we have contributions only from the diagram 

in Fig. 6.2d. 

B. Explicit Calculations 

For simplicity, we shall consider only the last diagram, 6.2&, 

both for (alxlb) and for (a:xlb). This diagram alone possesses most 

of the properties we wish to discuss. In the small x region it 

shOuld give an adequate representation of fragmentation since the other 

contributing diagrams vanish as x -+ O. Evaluation of the other . 

fragmentation diagrams has been performed by Thomas. 

We begin without assuming that the vacuum trajectory, ay, 
necessarily has intercept unity. Accordingly, we define, as s -+CD, 

f(X'~ 
1 d-

= lim a E ; (x,pJ.:'S) 
s-+ 00 ab d p 

If at = a _(t) is the value of the Regge trajectory in the ax 
ax 

channel, then Eq. (3.3) of DeTar et a1. may be written 

(6.1) 
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. (l. (l.-Z 

= (l. - x)~ J 0 dz J 0 

cx.._-l. 
dy(yz) v 

-~ ~ (! + y + z) (l. - Y - z) (6.2) 

where r = x/{l. - ~). We assume that both the aa and bb channel.s 

have the same vacuum trajectory. The outgoing particle, x is assumed 

to be spinl.ess and to lie on the ·trajectory of the aax (or &ai) 

channel. We ~hall further assume.that at = -1 + t, so that particles 

a and b are spinl.ess , with unit mass; 

Next we transform. variabl.es until one integration in (6.2) can 

be done conveniently. Let 

s = y + Z 

car-culAting the Jacobian,·we find 

2 1 
dy dz = (s - 4t)""2 ds dt 

r{x,p) = 2(1, _ x)~ (1 
~ Jo 

2 

i
s /4 

ds dt 

o 

1 cx.._-l. 
(s2 _ 4t)""2 tV 

( l)at-t<Xy ~ ~ 
X ~ + p. + t (r + s) (l. - s) • 

(6.3a.) 

(6.4) 
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Letting t = t's2/4, we can do the t' integration to get 

~ -<¥ r(!)r{ -<¥ ) 1l. ~-l. -~ 
r(x,~ = 2(l. - x) 4 V 2 i ds s . (r + s) 

r( -<¥t + 2') 0 

where F(a,b,c; z) is the usual hypergeometric fUnction. Equation 

(6.5) is a convenient form. for numerical. integration since the argument 

of the hypergeometr~c function has a modul.us less than unity and thus 

the power series for F converges. 

Typical. resul.ts are shown in Fig. 6.3. In these cal.cul.ations, . 

the vacuum trajectory was taken to have an intercept of 0.5 (the 

choice of DeTar et al..). Each fixed P..,l curve rises from zero at 

the kinematical. boundary, attains a maximum value and then f'alls to 

its asymptotic value which is onl.y a fraction of the maximum. The 

asymptotic value is, of course, the x = 0 resut. In particulAr, 

this naive model predicts that the central value is a local minimum. 

C. Limiting Cases 

From Eq. (6.5) we can evaluate certain limiting cases. First 

consider l1.» 1 (Our units are always determined by the slope of 

. ~!~ 

"'". 

the trajectories, which we assume to be about 1 GeV-2). From (1.29) 

for fixed x, as p ~ 00 we find that t ~ -00. This can be exploited' 

by using the properties of the hypergeometric function: 
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(6.6) 

Now the hypergeometric function on the right hand side goes to unity 

as t .... - co (at .... co) (Erdelyi et al., 1953, p. 76) ifT > o. 

Thus we have 

1(x,pJ., » 1) 

X (r + o)-a." (1 - 0)"- G + ~r)2(at«>V) (:r +,=. t ~ + ~:} 
(6.7) 

Since -at» 1, the integral is dominated by s near 1, so' that. we 

mq write 

f(X,~» 1) 

(6.8) 

where we have put s = 1 - s'. The integral now is dominated by s' 

near zero and we find 
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1(s':L» 1) 
C1v ~ r(~} r( -at} -l. +~ 

... 2(1 - x) 4 1 (4r) 2 (1 + Y) 
r( -at + 2) 

With 

2 2 2 1J.. - ma x(l - x) - me (x - 1) ; 

2 we have, for Q »1 

2 
(1 _ x) 2+ fl:v (1 _. x) -:Pv (~)-2Q Ix X l-x 

(6.9) 

(6.10) 

:; ,:' 

(6.U) 

2 
Thus the ~ behavior is essentially exp( -blJ} times a power of P...L 

with 

2 (1 + x) b = x log y-:-x . (6.12) 

From (6.5) we can also derive an expression for pionization 

(x == 0); As y .... 0, with P ~ fixed, 
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1 1. 1 4r 41 ~ ~ )-j F rxv + 2' 2' -at + 2; - s + l -+ 

+ 1 

2)rxv 2 - (~ in 1 4Q.2) 
j \rxv + 2' rxv + 1; -s-

where ~(a,c; z) is the usual confluent hypergeometric function whose 

integral representation is (Erdelyi, 1953) 

. 1 (CO -zt a-l( )C-a-l 
i(a,c; z) = rraJ Jo dt e t 1 + t • 

In this limit, 
2 

-at -t Q /r and we have 

-rxv-1 ex 
s (1 - s) V 

(6.14&) 
) 

(6.14b) 

NUmerical evaluation of the pionization distribution is shown 

in Fig. 6.4 tor two values of the vacuum intercept: rxv = 0.5 and 

CXv = 0·9. Both give rather steep behavior which is compared with 
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experimental data in the final chapter (see Fig. 8.Sa). The asymptotic 

form of the pionization can be found easily from (6.11): 

-~-2 -rxv-3/ 2 -4m 2 
r(x = O,pJ..» 1} .:: r(~) r(rxv + 1) 2 (Q2) . e J.. 

(6.15) 

For small values of the transverse momentum, the distribution is much 

steeper, and in fact diverges for mol = O. 

) 

'. 
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CHAPTER SEVEN 

1 
INCLUSIVE l'HOTON DISTRIBUTIONS 

A. Introduction 

The most exte~sively studied inclusive processes are the single-

particle inclusive reac~ions of the form (a:clb). If particle c 

is not a hadron, but rather the decay product of a hadron, d, the 

observed spectrum is an indirect image of the original inclusive 

process (a:dlb). In particular, the observation of (a:rlb) yields 

information primarily about Of course the information is 

not as precise as would be a direct measurement of (a:nOlb) in a 

coincidence experiment. 

There are further complications in interpreting the photon 

spectrum. Some photons arise from the decays of hadrons other than 

nO's, most notably from the decays of ~'s. The ~ ~3nO mode is an 

especially copious source of photons. Each ~ yields an average of' 

3. 2 photons. Because of the much greater production of nO,s and 

because the photons from the ~ ~3nO mode are essentially indistin

guishable from "true" nO photons we shall generally ignore the 

complication introduced by ~ decays. 

A second complication is the production of photons by charged 

particle bremsstrahlung. For soft photons bremsstrahlung must be 

taken into account. We shall do this in Sec. F in the context of 

a model. 

The ,basic assumption of the paper is that at high energies 

hadronic processes exhibit Feynman scaling. Beyond thiS, we shall 

need little more than kinematics. Since these kinematics are 
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essential and somewhat unfamiliar, we present them in some 

: detail in Sec. B. These results are combined with Feynman scaling 

in Sec. C.· A numerical example is presented in Sec.D to clarifY the 

preceding sections. The prescription of sternheimer (1955) for 

extracting the ° n spectrum from the observed photon spectrum is 

examined in Sec. Eo, The bremsstrahlung contribution to the photon 

distribution is analyzed in Sec. F. Finally, the principles derived are 

applied to an analysis of the CERN ISR data on (p:rlp) in Chapter 8. 

The principal results are 

1. °1 ' If (a:n b) scales, so that the inclusive nO differen-

tial cross section gives 

E dO' 2 
lim -- T (x'PJ, ,s) 
s~ DO O'inel d p 

1 2 
-0'-- f O(x,p J... ) 
inel n 

° where P.J. is the component of the n momentum perpendicular to the 
1 

beam direction and x = p\I/[(S)2/2], then the photon spectrum resulting 

° from the n decays also scales: 

k dO' 2 
lim -0'-- T (x,~ ,s) 
s~DO' inel d k 

1 2 
= -0' - fr(x,k. ) 

inel ..L. 

= f (x,k. 2) r ....&-

where kJL is the component of photon momentum perpendicular 
1 

direction and x = kll/[(S)2/2]. 

to the beam 



I 
I 
I 
l , , 
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2. is continuous as x -+ ° except for 2 
~ = 0, 

where we have 

1 2 
2" lim lim f (X,k~ 
~-+ ° x-+ ° r 

3· For the photon spectrum arising from nO decays, 

on the assumption that the nO distribution has scaled. 

4. For the photon spectrum arising from bremsstrahlung, we 

derive the result for large s~ small kJ2 and x = 0, 

kda 
-3- (kJ.! s ) "'" 
ad k 

where a is the fine structure constant, and (n
c

) is the mean 

charged multipliCity. 
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B. DECAY KINEMATICS 

o The calculation of the photon distribution from a known n 

distribution is straight-forward. ° If a single n with four-momentum 

'p and mass m decays into two photons, the distribution of photons 

is given, in invariant form, by 

dN 1 ~ 2) k - (p,k) = - 8 p.k - ~ 
d3k n 2 

(7.l) 

Consequently, the Lorentz invariant cross section for photon 

production is 

where 

do 
E T (p,s) 

dp 

;is the invariant differential cross section for the production of 

° n's at a center-of-mass energy squared equal to s. For definiteness 

we shall assume that the ° . n's result from p-p collisions, and the 

center of mass is that of the p-p system. It will be apparent that 

all the results apply equally to (a:nOlb) with only trivial 

modifications,if any. 

° The n'S which contribute to the photon spectrum at a given 

momentum, k, are constrained by Eq. (7.1) to satisty 

E - p' 

" 
2 

m 
2k 
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o is the component of n momentum parallel to the photon 

momentum. From (7.3) we find 

k '2 
PO + 2' PJ. 

m 

vlhere P.i is component of 

momentum and where 

o n momentum perpendicular to the photon 

2 m 
PO= k - 4k 

See Fig. 7.1. In momentum space; the ~O's contributing at a given 

photon momentum are confined to a paraboloid whose axis is along the 

direction of the photon, and whose apex is at p' = PO' For large 
II 

kim the paraboloid becomes very narrow. The limit k ~O is 

degenerate and must be handled with care. 

The delta function in (7.2) can be eliminated by integrating 

o 
Q, the angle between the n and the photon, with the result over 

;k ret> dE (2n d¢ E d; (p,s) 

JE Jo d P o 

where¢ is the azimuthal angle in the plane perpendicular to the 

photon, and where 

2 2.!. (p + m )2 o 

2 
m 

k + 4k 

In (7.6) we have taken the upper in the .. E integration to beinfin:i.t'e 

and assumed the kinematical limits are incorporated into the nO 

d1fferential,cross section. The nO three momentum in (7.6) is given, 

} 

in co-ordinates relative to the photon, by 

o The n inclusive cross section is a function of s, Pz 

the component of momentum parallel to the beam direction, and ~ the 

component perpendicular~to it. If the azimuthal angle ¢ is 

measured away from the plane containing the photon and the beam 

direction, and if the photon has components of momentum parallel 

and perpendicular to the beam direction kU and kJL respectivelyp 

then 

2 
P.l 

( 2) k 12 
\E - ~k ?-] 

.!. 

- Eo) r k ~ I cos ¢ + 

2 2 +: (E - EO) sin ¢ 

where E is the nO energy. See Fig. 7.2. Thus we have explicitly 

k :~ (k,.) = ~k L: dE r d~ E :;. {E,.l 

(I[ 2 ]~ k r., 2) k )2 
~: (E - Eo) =f cos ¢ +" -~k f 

(7.10) 
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1 For k/m» 1, the paraboloid over which the integration takes 

I-Place becomes narrow. if it is approximated by one of vanishing 

width, Eq. (7.10) becomes 

dO' 
k T (k,s) 

dk 

2f.OO dO'-
"" it dE E T (p,s) 

E d p 
o 

(7.11) 

where ~ lies ir.the same direction as k. In this limit we can -
also approximate EO by k. Then we have the approximation 

of Sternheimer (1955): 

o [2 dO' 1 
Ok k d3k q~,s)J -2 E d; (£ = ~,s) 

dp 

We postpone until Sec. E an evaluation of the reliability of 

Sternheimer's approximation. 

C. SCALING 

The scaling hypothesis is that as s -+ 00, the invariant 

2 differential production cross-sectio~ becomes a function of p~ and 
1 

x = PII/[(S)2/2] only. (See Sec. A) To see how this scaling manifests 

o itself in the photon spectrum arising from n decay, we being with 

Eq. (7.10) and introduce new co-ordinates: 

Q cos ¢ 

\ = Q sin ¢ 

Then we have 

k d; (~,s) 
dk 

2 
pJ. = 

If we take s -+ 00 with Xr # 0, "in the notation of Sec. A we have 

, 

Equation (7.15) makes manifest the scaling of the photon distribution for 

x ~ O. 

J 
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The o 
~ spectrum is expected to become a function of PJL 

alone as s -+ co with P JL and Pn fixed. This carries over to the 

photon spectrum as we show below. From (7.14), we have in the Xy = 0 

limit (with kJ.. and kll fixed), 

.:2J d2
Q f.~pl· {[~ ~ + C'i + p~·~r 

(7.i6) 

Only ~O's 'with x = 0 contribute, since fro~ (7.14), ~O'swith 
~ 

2 
x~ :f. 0 would have P.l. oc s, and we assume the cross section falls 

2 off in P..L. We can change variables in (7.16) to 

to get 

{( 
k.1. '2]2 '2D PO(k.J + m2 Q . + \ . 

(7~18) 

where 

From (7.18), we see that the photon spectrum in the central region is 

indeed independent of kll' 

If ~:f. 0, then fy(Xy,kJl) [Eq. (7.15») joins smoothly to 

fy(O,kl) [Eq. (7.18»). To prove this, let 

2 
O' Q m 
"'X = "'X + 2k 

.:1. 
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in Eq. (7.15) and let xy .... O. Then we find 

2 = f (O,k. > • Y ..J.. 

On the other hand, if kJL = 0, t~e transformation given by (7.19) cannot 

be used. Instead, we have from (7.15), 

fy<x,..O) • ~2 f d2
Q f. G -"r0+~), pi = Q~. 

(7.21) 

Evaluation of the k..L
2 

-+ 0 limit of fy(O,kl> requires some care. 

Because PO(kj} ~ - 4k~ P~ is large unless [see Eq. (7.18») 

k 0'2 2 
:1..""X m -;;r- - 4~ ~ o. (7.22) 

With 

we have from (7.113), 
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Hence there are two identical contributions to the photon spectrum. We 

can write (7.18) as 

= ~ fDO dO." J. co dO" f G'p 2 = Q"2 + 20" k 
11m2 . "y 2 -""x:rr. .:J. ""x :.L 

-co m 
- 2~ 

€ "2) y.. 1 +~ 
m 

f. 112)2) +~~+:2 • 

For k.J!m« 1, we separate out an integral over the entire Q" plane 

where we anticipate that E will die.exponentially in m/kJL In 

particular , 

B .'rom (7.21) 

lim f (x,O) 
x~o y 

4 /2" 2 "2 = -;;;l d Q f:rr.(O,p.J.., = Q ). 

2 
2 
:rr.m 

f 2 (. 2 2) 
d Q f1l O'Pl. = Q • 

(7.26) 

(7.28) 

-80-

Thus fy(x,kl) is not continuous at the point x = 0, k,L= O. To 

understand how this comes about, examine Eq. {7.15). Contributions to 

the integral come from small values of 2 P-L • 

while the integral in Eq. (7.15) extends to 

~2 
!... - 1 -r Xy m 

The condition 2 
~ =0 . yields, for (~m) 

2 

~ "" kL or m 
- kJ.. 

For \ = 0, 

x = 1, or 
:rr. 

<.<. 1, 

2 
Thus the small ~ regions are near (~= ~ \ = 0) and 

(7.29) 

(~ = _m2/~ ~ = 0). If x> (lJ!m)2, then by (7.~0), the second 

. , region falls outside the integration domain determined by the kine-

. matical limits. Thus as x decreases to values less than about 

(~m)2, the second region is introduced into the integrations, giving 

rise to the factor of two between (7.27) and (7.28) 

We can reformulate (7.27) in an interesting f'a.shion. To do this 

we first note that 

This relation can be proved directly from (7.1). It reflects 

the fact that the central rapidity region for the photons must be 

twice as heavily populated as the central region for pions. 
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As a consequence, we have a theorem for the photon spectrum 

arising from the decays of a scaled nO spectrum: 

lim 
kJ.-'O L

oo 

f Ok 2 - ~ y( ':.L) - 2 dk 2 f (0 k 2) 
m 0 :.L. y ':.L 

Equation (7.32) is a striking consequence of scaling in hadronic 

collisions, relating the photon spectrum in the central region at 

zero transverse momentum, to the spectrum in the central region 

integrated over transverse momentum. Since the equation is linear in 

the photon cross section, it is unaffected by uncertainties in overall 

normalization. 

The integral in Eq. (7.26) ca.n,beexpanded in powers of lJim: 

rr(O,~) = ,:2 f _~2 f' _+,(d) + [2Q "". ~ k.i~ +~) 

+ kJ.2 ~ + ::; k0,Q2) + ~[2Q 00' ~ k.L~ + ~~r f';(O,Q2) 

+ "l~/m4)} (7.3') 

~ r ~2 {r,(O,Q2) + klC' + :~ ) r~(o,Q2) 

+ Q""l ~ + :~ };(O,Q2) + "l".J.4 1m 4~ (M4) 

where primes denote differentiation with respect to Q2'.Assuming, 

Q2f (2) . 2. ( 2) 2 . n O,Q and Q fn O,Q vanish for Q = 0, we integrate. by parts 
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to get 

~2 f ~2 r.(O,Q2) {l + :t [2 + j2) + ~(~)} 
(7.35) 

As ~ increases, the E term in Eq. (7.26) must be considered 

as well. From Eq. (7.35), though, we expect a rise in the photon 

spectrum for transverse momenta increasing from zero to small values. 

For larger values of ~ the E term reduces the value of the right

hand side of (7~26). We expect E to become significant when 

(m2/2kJ2 ~ {~, where {~ is the average transverse pion momentum. 

The general principles outlined here are displayed explicitly 

in the next section. 

, -1. 



D. A SIMPLE EXAMPLE 

An appreciation for the results of the preceding sections can 

be gained by considering an especially simple example. Suppose that 
o 

the scaled ~ distribution is independent of x and given by 

2 
fO(X'p.i) 

11: 

From (7.15) we find 

2 
-ap.l 

e o < Ixl <.. 1 • 

J
2~ 

d§2 dQ 

o 

= ~ (~-l) ~2.xp {'-[Q2 + k1 ~ + 55]} 
X IO~.L+ +~]) (7.38) 

where 10 is the usual modified Bessel function. Similarly, from (7.18) 

we find 

We can find the k.L --+ 0 limit of the two expressions. From (7 ~}8), 
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while from (7.39) 

(7.41) 

This shows explicitly the factor of two associated with interchanging 

the order of the limits x --+ 0 and k..i --+ 0, which we proved generally 

in Eqs. (7.27) and (7.28). 

The numerical evaluation of Eq. (7.39) with am2 
= 0.3 is shown 

in Figs. (7.3) and (7. 4). In Fig. (7.3) we see that the 'fall-off in 

o kJL is much steeper than that of the generating ~ spectrum. For 

1 kl!m »1, (7.39) becomes 

2 
-ak..i am2/2 

e e {7.42} 

In Fig. t .4~ the quadratic rise away from kJ.. = 0 is clearly 

visible in confirmation of Eq. (7.35). Also shown is the x = 0 

spectrum arising from a o 
~ distribution 

2 -bl!.L 
f o(O'P.L) = e 
~ 

with the value of b chosen to give the same 

(b2m2 
= 1.8 corresponds to am2 

= 0.3). 

2 (P-L> as (7.36) 

Figure (7.4) shows that two rather different 1(0 spectra cangtve 

rise to quite similar photon spectra, provided the (p~) values are 

rougbly the same. It also shows the turn-over as the E term in 

Eq. (7.26) becomes significant, around (m2/2~2 = (PJl>' Numerical 
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calculations reveal that fr(O,kJl) is not terribly sensitive to the 

parameter a in Eq. (7.36), if the results are normalized to the same 

2 value at kJL= O. For example, with am = 0.2 the curve differs 

2 from that with am = 0.3 by no more than 15% in the range 

o ~ kim ~ 1. 

The evaluation of [Eq. (7.38)] is shown in Fig. 7.5. 

For small. kJ!m and x not too small, Eq. (7.40) is a good representa

tion of the photon spectrum. For very small x, the distribution rises 

towards the value dictated by Eq. (7.39). The transition takes place 
. 2 2 

in the region x "" m Ik.!. . 
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E • STERNHEIMER' S PRESCRIPl'ION 

At any finite energy, Sternheimer's prescription, Eq. (7.12), 

o 
~y be used to derive the n spectrum from a known photon spectrum 

if kim» 1. A scaled form of Sternheimer's prescription is also 

easily obtained. From Eq. (7.i2), 

do ( ) {a (2 dcr ]~ 2 E T 1', • ~, s = - dk k T (k, s ) 
d p d k "" 

~=I'.n 

In terms of kl- and kll we have 

4- + kJ..2... '\ [k dd~k (k,s)' -. ok'i d~/ ~ J 

Passing to the scaling limit, 

,If k..1.. = ~x and if , j 

, then. 

~ + x ~ + XI' ~i) ,/x''l - 1lX) (7.48) 

ThUS we can write (7.46) as 
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In effect, k has been replaced by x, and tan Q = kJlk
l1 

by 

B = kJlx. From (7. 46) the x = 0 analogue is 

We can test this prescription with the model of the previous 

section. From (7.42) 

2 2/ -ak. 
"" -2 eam 2 e ..&. 

Thus the value of the pion distribution we would infer from 

Sternheimer's prescription differs from the true expression by a 

constant. It is easy to see how this has happened. The approximation 

PO "" k is inadequate since exp(-aPo2) differs by a constant factor 

from exp(-ak2). For less rapidly varying ~o distributions this 

problem would not arise. 
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F. BREMSSTRAHLUNG 

While o n decays are the primary source of photons in hadron1c 

collisions, in a restricted kinematic region bremsstrahlung is an 

important source also. The bremsstrahlung arises primarily from the 

sudden creation of charged particles, i.e., inner bremsstrahlung 

analogous to radiative beta-decay. The general features of the 

bremsstrahlung contribution can be anticipated by considering the 

classical formula for the intensity of inner bremsstrahlung from a 

2 
particle created suddenly with a velocity ~: 

dN 
k dndk 

where k is the photon energy and Q is the angle between the photon 

direction and the direction of ~. For the Lorentz invariant form we 

have 

a 2 sin2 Q . ~ ~ ---=;:'::"--=-~2 
4~ k (1 - 13 cos Q) 

(7.53) 

Consider the special case of photons emitted at 90 degrees to 

the· beam direction. As the value of s (the center of mass energy 

square) increases, more and more charged particles are produced in the 

forward and backward directions. While the bremsstrahlung from these 

particles peaks also in the forward and backwa~d directions, a 

contribution at 90 degrees persists. Indeed, it can be seen from (7.53) 

thatj,withtheassumption of incoherence, each particle gives a contri

butionto the soft photon spectrum at 90° of (a/4~2k2). Thus at goO 

the bremsstrahlung contribution is 
kdO' "" _a_ (n ) 
O'd3k 4n2k2 c 
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Where (nc ) is the mean multiplicity of ,charged particles. Since 

(nc ) is believed to grow like log s, this contribution, unlike that 

o from n decay does not scale, but increases with increasing s. 

We shall now treat the bremsstrahlung in a more complete 

fashion. Our model will be based on a number of assumptions. Firstly, 

we shall assume that the photons are emitted incoherently from the 

charged particles. Secondly, we shall assume that all the created 

charged particles are pions. Thirdly, we shall neglect bremsstrahlung 

from the incident particles. Finally, we shall assume that the 

relevant diagrams are like that in Fig. 1.6. We shall restrict ourselves 

to low photon momenta and assume that the extrapolation of the hadronic 

matrix element is negligible. Thus a typical matrix element squared is 

IM(Pa,~,ql - k,~,···,~)12 2 1 e 
1 2 212 (ql - k) - m 

X L 1(2qi - k)'€i I2 (7.55) 
i 

Where M(Pa,~,ql, ••• ,qn) is the matrix element for the nonradiative 

process. The sum is over the photon polarizations. Because we have 

assumed incoherent production of the photons, and negligible extrapola-

tion of the matrix element, after summing over exclusive processes, we 

get a form which factorizes between the hadronic production and the 

emission of bremsstrahlung: 
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Making manifest the correspondence with the classical result, we 

have 

,.. 
Where ~ = I~I/qo and Q' is the angle between q and k. The 

bremsstrahlung spectrum them is 

_ !!... cos Q,)2 
qo 

Specializing to the case of photons at 90° to the beam direction, we 

can re-express the result in terms of angles relative to the beam 

direction rather than the photon direction. Thus we have 

k do 
C; d3k. 

Equation (7 .59) continued next page 



Equation (7.59) continued. 

k dO' 
a d3k 
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(7.59) 

As we shall see, R is a small correction. The basic result 

is simply that at 90 degrees, each charged particle contributes to the 

bremsstrahlung according to the classica~ 90° result for relativistic 

particles: 

We can derive an estimate for R by considering a model in which 

(~o) (do/d3q) is a function o~ .~ only, except that it vanishes 

for Iq I > P, with s = 4p2. With (qo/O')(dO'/d3q) = g(qI2), we have " .... 
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R 

2 Gog :~ ) -V / log (./m
2

) 
(7.63) 

2 2 2 2 where m-L = ~ + m and where we have assumed s» m. In 

2 'addition to the lQg(s/m) suppression, R is reduced by cancellation 

between the two terms in the numerator. For example, if 

2 2 
g(~) = exp(-~), 

2 2 
= eam El (am ) 

where El is the usual exponential integral function. For a reason-

able value of am2, say am
2 = 0.3, (lOg mm~2 > = 1.2 so that 

. 2 
R "" 0.4/log(s/m ). 

For photons with fixed center of mass momentum, but not 

necessarily perpendicular to the beam direction, we have Similarly, 

where R' is given by the previous expression for R ~xcept that the 

argument of the pion inclusive differential cross section is shifted by 

theaJilountnecessary.to bring the, photon to a 90° orientation. 
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CHAPTER EIGHT 

COMPARISON OF THEORY AND EXPERIMENT 

A. The Nature of Incl.usive Data 

An extraordinary variety of experimental data on incl.usive 

reactions has appeared in the past two years. Much of the data is from 

bubble chamber experiments. A smaller fraction is from counter 

experiments. There are in addition angular data from cosmic ray 

experiments and from the CERN Intersecting Storage Rings (ISR). Each 

type of data has certain advantages and disadvantages. 

Bubble chamber data have the advantage that they provide 

results over a continuous kinematic range. They also allow the 

detection of hyperons and Ko's which are not as amenable to counter 

experiments. On the other hand, there are severe problems of particl.e 

identification for high momentum particl.es of the same charge. 

Rejection of events with ambiguities of identification can be a source 

of bias in the data. Since it is ,impossible to obtain high statistics 
I 

in a small kinematic interval, the bubble chamber data is particularly 

suitable for comparison of integrated spectra, e.g., da/dz or 

da/dy. 

Counter data basically provide information only on long-lived 

particles. On the other hand, it is possible to make precise compari

sons, say; of-particle ratios at fixed values of the kinematic 

parameters. 

Cosmic ray data have had the advantage of providing the 

highest energy reactions, but their usefulness in this regard may 

have come to an end with the completion of the ISR. The ISR has 

provided during the past year the most exciting data on inclusive 

reactions. Its range of s, from about 400 to 2800 Gev2, is 
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invaluable for testing predictions a1:lout the approach to (or existence 

of:) scaling. Of course, the ISR data are limited in accuracy by 

normalization problems more severe than those of conventional 

accelerators. 

NAL's 200-500 GeV machine should make a substantial contribu-

tion to the understanding of inclusive reactions. While not reaching 

as high a c.m. energy as the !SR, it should provide high quality data 

in the near asymptotic region, as well as giving data on processes 

other than proton-proton collisions. 

In this chapter we review some of the inclusive data bearing 

on the assumptions and conclusions of the preceding chapters. This is 

by no means a comprehensive review of the inclusive data, but it should 

provide a means of evaluating our present understanding of these 

processes. 

B. Do Inclusive Reactions Scale? 

Apparently they do. Figure 8.1 shows data (Allaby, 1971) for 
+ -

(P:1t Ip) at Pinc = 14 and 24 GeV/c at PJ.. = 0.1 GeV/c. The data 

for the two energies are strikingly similar as functions of x. 

-Figure 8.2 and 8.3 show data for (P:1t +Ip) and (P:1t -Ip) as a 

function of the lab rapidity, y, with ~ fixed, at incident (or 

equivalent) momenta from 12 to 1500 GeV/c. (Sens, 1972.) The data 

_ show no sign of having a local minimum at z = 0, as anticipated by 

the dual resonance model {see Fig. 6.3, and Brower and Ellis, 1972}, 

or by some multiperipheral models (Pignotti and Ripa, 1971). 

None of these data are preCise enough to determine whether 

the cross section is really independent of s. Certainly a behavior 

like {log s)-l or s-0.02 cannot be excluded. As we emphasized in 
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Chapter Four, the Mueller picture does not require a pure pole pomeron 

wi th intercept one. We might consider four possibili tie.s : 

1. The leading singularity does not have vacuum quantum 

numbers. For example there could be two cuts which coincide, one having 

C- +1 and G = +1 and another weaker one with C = -1 and G = +1. 

2. The leading singularity has vacuum quantum numbers, but is 

not factorizable. 

3. The leading singularity has pure vacuum quantum numbers and 

is a factorizable pole with intercept less than one. 

4. The leading singularity has vacuum quantum numbers and is 

a factorizable pole with intercept one. 

Possibility 54 is the simplest and was implicitly assumed in 

most of Chapter 3 and 5. PossibilitY'3 is quite similar if we consider 

everywhere the differential cross section normalized by the total cross 

section at the appropriate value of s. Possibility #1 is clearly 

undesirable, but how can it be distinguished from #21 

Consider (~t:~±lp), (~t:n+lp), (ntl~+:p), and (ntln-:p). 

If the leading singularity is purely C = +1, then (see footnote 2, 

Chapter 4) 

+ -I (n :~ p) (~-:~ +Ip) (8.1a) 

+ +1 (n :n p) (~-:n-Ip) (8.lb) 

+1 + (n ~ :p) (n -In +:p) (8.lc) 

+1 -(~ n :p) (n -In- :p) (8.ld) 

at high s, independent of whether there is factorization. These 

relations would be a consequence of a Pomeranchuk-type Theorem for 
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inclusive processes. In Fig. 8.4 these proposed equalities are dis

played schematically. Data for six of the eight processes are shown 

in Fig. 8.5 (Alston-Garnjost, 1972; Alston-Garnjost et al., 1972). The 

data of Fig. 8.5 are at relatively low energy and a good deal of energy 

dependence is apparent. The curves have yet to coalesce at. x = O. At 

\ x < 0 (~-In-:p) and (n+ln-:p) are not equal, but lie distinctly 

below (n+I~+:p). The overall appearance, nevertheless, is similar to 

that of Fig. 8.4. Further study of these reactions could demonstrate 

that the leading singularity has' C = +1. Later we shall mention a 

test of isospin nature of the leading singularity. 

Evidence on the factorization of the leading singularity is 

inconclusive at present. In Fig. 8.6 (Chen et al., 1971) we see 

{l/a)da/dp for (p:n-In+), (p:~-In-), (p:n-IK+), and (p:~-Ip) at 

'7,24.8,12.7, and 28.5 GeV/c respectively. If all reactions had 

reached their limiting values and if the leading singularity were 

factorizable, the curve woUld coincide. While this is clearly not 

:realized, the largest discrepancy is between (p:~-In-) and (p:n-In+) 

whose asymptotic equality depends not on factorization, but only on the 

leading singularity having C = +1 as we noted above. 

On the basis of the exoticity requirement of Chan et al. (1971), 

Chen et &1. (1971) interpreted the data to indicate the (p:n-In+) had 

reached its scaling limit while the other reactions had not. Whether 

. this is true or not, the comparison of (p:n-In+) with (p:n-In-) is 

not a test of factorization, but of the C quantum number of the 

leading j -plane singularity. 
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c. Symmetry Relations 

Some of the relations derived in Chapter Four nave been 

discussed in connection with the quantum number of the leading trajec-

tory. We continue these considerations turning to the data from the 

ISR. In the pionization limit, we have the C invariance predictions: 

(Ip I) (lpl) (8.2a.) 

(8.2b) 

(8.2c) 

and by isosinglet dominance, 

In the fragmentation region we have the weaker statement~ 

(8.4) 

In Fig. 8.7 we show the .data of the Saclay-strasbourg group (Sens, 

1.972) tor (plplp) and (plplp) at 90 degrees to the beam direction 

and s = 2800 Ger. The p curve is similar in shape to, but about 

a factor ot two higher than, the p curve. If the asymptotic term is 

given by pCi)p (a pomeron ,in both the a.a and bb channels), we 

have, up to lowest order in nonl.eading terms 

where we use p to indicate the G = +1, C = -1 contribution, etc. 

It we accept the two-body Regge lore that pp couples weakly to I = 1 

I 
I 
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~xchanges we have 

(8.6&) 

(plplp) '" P®P + 2P®(p' - w) (8.6b) 

. The discrepance between (plplp) and (p\plp) indicates large P' 

and w contributions which tend to cancel for p production. In this 

same framework, we would.have for neutron and anti-neutron production 

In the apprOximation in which we ignore all but I = 0 exchanges, we 

·.have 

(8.&) 

(8.8b) 

: These relations have not yet been tested. 

I . Data for (pj,/Ip) and (p\1t -\p) at x = 0 are in excellent 

agreement. In Figs. 8.8 we again show data otthe S&clay strasbourg 

Group at 90 degrees. A simple exponential in P.J.. gives an excellent 

fit to the data, while the dual resonance model with ay = 0.9 gives 
1 

behavior which is too steep. To terms of order s-~ 

(8.9&0) 

(8.911) 
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If the near equality of the data for s from 960 to 2800 Gel

indicates an absence of s-t terms, then we must have [see Eq. (3.3)] 

+ 
- ~~(:J - 0 • (8.10) 

e is no obvious reason for expecting this. In Fig. 8.9 we show 

data for the ratio ~+/rr- as a function of x (Albrow et al., 1972). 

We expect the ratio to approach unity as x ~ O. This is consistent 

within the errors. 

While the vanishing of the s-t terms for (p\rr\p) seems 

surprising, it is consistent with the flatness of the rapidity 

distributions shown in Fig. 8.2 and 8.3. The absence of the s-t 

behavior implies the absence of the cosh(z/2) behavior of Eq. (3.64). 

We postpone analysis of the inferredrrO distribution to a later 

section of this chapter. 

The SU(3) relations both in the fragmentation and pionization 

regions have yet to be tested. An extensive experiment at Brookhaven 

. should provide interesting information for the fragmentation of 

pseudoscalar mesons into pseudoscalar mesons (Beier et al., 1972). 

D. Angular Distributions of Charged Particles at ISR 

Barbiellini et al. (1972) and Breidenbach et al. (1972) have 

measured the angular distribution of charged particles at s = 910, 

.... -"0, and 2800 Gel-. Breidenbach et al. have also measured the distri

bU1;ion at s = 450 Ge.j. The data of the two groups are consistent, 

except perhaps at s = 2000 Ge.j. The data of Breidenbach et a1. are 

displayed in Fig. 8.10. There is no noticeable curvature to the data 

as a function of e 
TJ = .en(cot '2). There is, however, a clear rise in 
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the cross section with increasing s. As we noted in Chapter Five, 

for distributions with a flat behavior in TJ the cross section is 

expected to be an increasing function of s. At TJ = 0, the data can 

be fitted 'with 

1 do 
a dll 

(8.11) 

where plausible fits range from A' = 2.0, B' = -4.0 to A' = 2.6, 

B' = -7.0, with s measured in Gel-. In Fig. 8.10, we compare the 

data with a fit assuming the charge particles have a transverse 

momentum distribution given·by 

-bp 
f ex: e ].. pp 

-bp 
fPR ex: e 1. 

The normalizations are determined by Eq. (8.11). We have taken 

(8.l2a) 

(8.12b) 

b = 6 GeV-l,approximately the figure obtained by the Saclay Strasbourg 

group for pions at 90 degrees (Sens, 1972). The curves in Fig. 8.10 

were obtained by evaluating Eq. (5.11) numerically. The quality of 

the fits is quite good. 

E. Multiplicity at High Energies 

·From the angular distribution analysis above we can estimate 

the asymptotic multiplicity of. charged particles. The coefficient of 

: log s in the mean multiplicity is 

\ J 2 do AO = L d Pl.c 2 (z = 0) 
c charged dz d PJL 
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where AO is the variable of Eq. (5.19). We found above that 

Ab ~ 2.0-2.6. Now from (5. 21b) 

(8.14) 

-1 For a pion distribution proportional to exp(-bpj} with b = 6 GeV , 

we obtain (~m~) = 0.83 and Ao = 2.4-3.1. This is a surprisingly 

large number. Cosmic ray data indicated a value of about 0.7 

(L. W. Jones et al., 1970). A naive interpretation of the photon 

data of Neuhofer et a1. (1971, 1972) suggest a value of about 1.5 

[see Eq. (8.26»). 

We can check the consistency of the angular distributions 

against the Saclay Strasbourg results (Sens, 1972) for pion production 

at 90 degrees. Both the positive and negative pions can be fitted, 

independent of s in the range 900 to 2800 Ge~, with 

with 

N 

b 

-bp 
Ne l 

140 mb/Ge~ 

+ so that, for either ~ or ~ I 

do ( 
dz z = 0, s = 900-2800 Ge~) '" 22.5 mb 

We. can apply a correction to relate this to the angular distribution, 

do 
d1) • As we noted above, this correction is about 0.83. 

have, with <1ine1 = 33 mb, 

Thus we 
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.l:- dd
(
1) (1) = 0, s = 900-2800 Ge~) '" 1.15 

<1ine1 

On the other hand, the data of Breidenbach et a1. (1972) for 

charged particles of all kinds increases from about 1.1 to about 1.5 

as s increases from 450 to 2800 Ge~. If these data were taken 

literally, they would mean that the increasing charged multiplicity 

was due entirely to nonpion sources. 

F. Analysis of the ISR Photon Data 

Data are available for photon distributions at s = 900, 2000, 

and 2800 Ge~, at 10, 16, 24, and 90 degrees. Neuhofer et ale (1971, 

1972) provide a parametrization of the data for photon energies between 

100 MeV and 5 GeV as 

(8.19) 

4 -1 with A = 1. 8 GeV , kO = 0.162 GeV, and Xo = 0.083. 

The parametrization in Eq. (8.19) clearly does not satisty the 

requirements of Eq. (7.32). But it does permit a reasonable evaluation 

of the right-hand side of the equation. Thus we have the prediction 

- ( -2 lim fy x = 0, ~ :: 53 GeV 
k.L-t 0 

(8.20) 

Verification of this prediction is obscured by the bremsstrahlung. If 

at s = 2800 Ge~, (n ) '" 10, then from Eq. (7.32) 
c -

(8.21) 



-103-

Comparing the bremsstrahlung prediction with the parametrization 

. of the data" we see that the bremsstrahlung becomes significant in the 

region ~:: 1-10 MeV. The data cited above have been binned by total 

photon momentum into bins of 100 MeV. The bremsstrahlung contribution 

, - primarily in the first, bin. FoIllD8.lly, the integrated bremsstrahlung 

contribution diverges: the actual bremsstrahlung contribution to the 

measured cross section depends critically on the detection efficienqy 

at low photon momenta. In principle, caref'ul measurement of the photon 

spectrum at low transverse momentum could identifY the bremsstrahlung 

2 by its characteristic l/kJ.. behavior. After subtracting the 

bremsstrahlung, the remaining cross section should conform to the 

condition imposed by Eq. (7.32). 

Figure 8.11 shows that the data of Neuhofer et 801. are 

consistent with this interpretation. The cross section for the lowest 

transverse momenta lies above the curves anticipated on the basis of a 

spectrum like that of Eq. (7.36). Presumably this is a reflection of 

the bremsstrahlung contribution. '!he data shown in Fig. 8.12 are not 

emctly at x = O. At fixed production angle, as k..L increases, so 

does x. Since we expect a fall-off in x (c.f. Fig. 7.5), the data 

might be expected to be below the anticipated curve for x = 0 for 

larger values of k. Such a trend seems to be present in the 10 

degree data. On the other hand, the choice of a hypothetical 7(0 

'ctrum at x = 0 ' is quite arbitrary; different spectra would give 

somewhat different photon distributions. (See Fig. 7~4.) 

Using th~ Sternheimer prescription and the parametrization of' 

the photon data of Neuhofer et 801., we deduce a neutral pion 

distribution 
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In particular, at x .. '.0, we have 

__ E _ dO' ) A -PJ!ko T ex = 0 ,p I ' - 2k_ e 
O'ine1 d p -L -0 

b ha ~ th ~O cross section Using O'inel = 33 m ,we ve ~or e " 

(8.24) 

) 

This distribution is closely similar to the charged pion cross section 

(8.15 and 8.16) of the Saclay Strasbourg collaboration, in confirma-

+ 0 
tion of the predictio~ that at x = 0 the 7(, 1t, and 1t 

distributions must Coincide a.t very high energies. 

For x > 0, isospin invariance requires for scaled i'ragInenta-

tion of protons [Eq. (4.9d»), 

(8.25) 

A comparison is shown in Fig. 8~12. The agreement is less satisfac

tory for x > 0 than for x = O. The data shown are for (P:1t -\p) 

and are taken from the Saclay-Strasbourg Collaboration (x = 0) 

(Sens, 1972) and Bertin et al. (1972) (x > O). For x > 0, we 

would expect the 7(0 curve to lie above the data, since the 7(+ 

data of Ratner et ale (l97l) are slightly higher. While the relation 
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in Eq. (8.25) does not appear to be satisfied by the data for x > 0, 

we should like to emphasize that this relation i; on very good footing. 

It requires only the dominance of an I = 0 amplitude in the bb 

channel: factorization of the pomeron is not required. Thus the 

good agreement with the data at x = 0 is reassuring and we expect 

to see similar agreement for x > 0 as the accuracy of the experiments 

improves. Since Eq. (8.25) ignores ~ production, the number of 

photons observed should exceed the number of charged pions. With very 

preCise measurements, this discrepancy could be used to deduce the 

magnitude oOf the ~ production. 

A comparison similar to those made above has been performed 

by Charlton and Thomas (1972) who found good agreement between the 

charged and neutral pion data. In their comparison, however, they 

treated the data of Ratner et al. and Bertin et al. as if it were 

taken at 90 degrees, and compared it with the inferred spectrum at 

90 degrees. Actually, the charged pion data they used were for 

x > 0.05 and should have been compared with the inferred pion spectrum 

for the same x values. Had this been done, the inferred nO 

spectrum would lie below the charged pion data as in Fig. 8.12. 

This is a strong reminder that in many instances a value of x = 0.05 

is not necessarily small! 

The parametrization of Neuhofer et al. gives us a means of 

evaluating the photon multiplicity and implicitly the charged pion 

multiplicity. From Eq. (8.14) we find 

(8.26) 
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from which Neuhofer et al. deduced a photon multiplicity at s = 2800 

aev2 of 9.4. By our isospin equality, Eq. (8.25), this means that 

the charged pion multiplicity is also 9.4. The photon data from 

,s = 900 to 2800 aev2 showed no clear energy dependence while data on 

the production of charged particles appear to show energy dependence. 

,A good deal of caution is called for under these circumstances. The 

Saclay-Strasbourg Collaboration found the charged pion production at 

90° to be energy independent from s = 910 to 2800 aev2. This is 

consistent with the constancy of the photon spectrum, but it would 

require that the increasing charged particle multiplicity due eptirely 

to nonpion sources. 

O~ 
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CONCLUSION 

Inclusive reactions are certain to be extensively studied for 

years to come, partly becawe of the impossibility of studying high 

multiplicity events as exclusive processes and partly as a result of 

tp6 many theoretical problems which are associated with inclusive 

p~~~esses. The correctness ,of the Mueller picture has not been 

thoroughly established, but, it seems to be in accord with existing 

data and provides a powerf'ul means of analysis. In this paper we have 

explOited the Mueller picture to derive tests of its basic hypotheses 

and to isolate quantities of significant interest, such as symmetry 

breaking effects and the high-energy behavior of the mean multiplicity. 

The use of the fundamental symmetries of the strong inter-

actions provides a means of isolating certain crossed channel j-plane 

singularities. The energy dependence of these contributions to the 

inclusive cross section is a decisive test of the Mueller picture, 

independent of the factorization of the singularities. The failure 

of these contributions to exhibit behavior like that anticipated from 

two-body scattering would indicate the presence of important j-plane 

singularities outside the two-body framework. The experimental data 

available indicate that the dominant crossed channel singularity has 

C = +1, and probably I = 0, but little can be said about lower lying 

singularities. 

The application of SU(3) leads to numerous predictions of 

equalities of inclusive cross sections. Each prediction offers an 

opportunity to measure the effects ofSU(3) breaking. The potential 

here is very great in view of the scarcity of testable SU(3) 

predictions for two-body scattering. 
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The predictions of the Mueller picture for the behavior of 

particle distributions in the central rapidity region can be translated 

into predictions for wide-angle production. The data extant are 

consistent with these predictions and indicate, with a large uncer

tainty, an asymptotic multiplicity much greater than previously 

expected. 

Inclusive photon production gives significant information on 

the inclusive 1(0 distribution. This in turn can be used to check 

isospin relations. At low transverse momentum, the photon spectrum 

o consists of two contributions, one coming from 1( decays, and the 

other from bremsstrahlung associated with charged particle production. 

Both can be related to the magnitude of the charged particle production. 

The data from the CERN Intersecting storage Rings are consistent with 

these predictions. More refined photon measurements at low transverse 

momentum would furnish valuable information about the charged 

multiplicity. 

' ....... ,), 
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FOOTNOTES 

Introduction 

1. See Cocconi (1958) and references.therein for earlier develop-

ments of "fireball" theories. 

Chapter 3 

1. D. Tow, private communication. 

Chapter 4 

1. This chapter is based on work done in collaboration with 

Dr. Martin B. Einhorn (Cabn and Einhorn, 1971). 

2. We shall use (a:clb) to represent both the amplitude and 

the cross section for the process. This is slightly 

inaccurate since the kinematical factors relating the two 

may manifest some s~etry breaking in the instance of SU(3) 

symmetry. Since this is most likely not the entirety of the 

symmetry breaking, we may just as well ignore the effect 

since we make little effort to analyze possible symmetry 

breaking effects. 

3. The notation is that of the standard reference (DeSwart, 1963). 

For a fine review of SU(3), see Carruthers (1966). 

Chapter 5 

1. This chapter is based on :work done in collaboration with Dr. 

Martin B. Einhorn and Professor J. D. Jackson. This problem 

has also been treated in part by Lyon, Risk, and Tow (1971) • 

. { Chapter 6 

1. For a review of the dual resonance model, see Mande1stam 

(1971). 
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Chapter 7 

1. This chapter has appeared as a part of a report, LBL-943J with 

the same title. 

2. See, for example, J. D. Jackson, Classical Electrodynamics 

(1962). 
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FIGURE CAPTIONS 

Fig. 3.1. A Mueller diagram representing the process (b:cla) 

factors entering into the evaluation of the diagram. 

and 

Fig. 3.2. A Mueller diagram representing the process (blcla) and 

factors entering into the evaluation of the diagram. 

Fig. 3.3a. A diagram representing a + b ~c + missing mass in a 

domain in which Regge exchange dominates in the be channel. 

Fig. 3.3b. A triple-Regge Mueller diagram and associated couplings. 

Fig. 3.4. Schematic representation of x da/dx for a triple-Regge 

dominated cross section. Curve (a) triple-pomeron with 

pomeron intercept = 1 and a linear zero in the triple-

pomeron vertex·, Sppp(t), at t = O. Curve (b) reggeon

reggeon-pomeron with reggeon int~cept =1/2. The actual 

curves plotted are y = (11 - x) log«i - x)-l»)-l and 

(b) y = 5{fOg(1 - x)-l». 

Fig. 4.1. A Mueller diagram in which there is .double Regge exchange 

in the bb channel. The J-plane singularity thus gener-

Fig. 5.1: 

Fig. 5.2. 

ated does not factorize, but has a charge conjugation 

where 

values for reggeons i and j, similarly for G, etc. 

2 
The ratio Ai/A6 vs. am for a transverse momentum distri-

bution proportional to 

and (5.32). 

2 
exp( -a.P.l)' See Eqs. (5.20), (5.24), 

The ratio Bi/Bo 2 vs. am for a transverse momentum 

distribution proportional to 2 
exp( -apJ.. ). See Eqs. (5 .20) , 

Fig. 5 .• 3. 

Fig. 5.4. 
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do 
The angular distribution d~ resulting from the asymptotic, 

pp term in Eq. 

proportional to 

(5.5), with a transverse momentum dependence 
·22 

exp( -a~ ) for various values of am. 

The normalization is such that the rapidity distribution, 

da/dz is unity for all z. 

do The angular distributions d~ resulting from the asymptotic, 

PP, term in Eq. (5.5) with a transverse momentum dependence 

proportional to exp(-b~ for various values of (bm)2. 

The normalization is such that the rapidity distribution, 

da/dz is unity for all z. 

Fig. 5.5. The angular distributions ~~ resulting from the non

asymptotic, P-R, term in Eq. (5.5), with a transverse 

momentum dependence proportional to 2 
exp(-a.~ ) for 

various values of am2 • The normalization is such that the 

rapidity distribution, dO/dz(P - R) is cosh(z/2). 

Fig. 5.6. The angular distributions ~~ resulting from the non

asymptotic, P - R, term in Eq. (5.5), with a transverse 

. momentum dependence proportional to exp( -bP..J for 

various values of (bm)2. The normalization is such that 

the rapidity distribution, da/dz(p - R) is cosh(z/2). 

; Fig. 6.;La. The two-body optical theorem for a + b -+ anything. 

i Fig. 6.1b. The inclusive cross section for a + b -+ c + anything as 

sum of squares of amplitudes. 

. Fig. 6.1c.· A discontinuity equation for the six-point f'unction. The 

summations indicate permutations of initial or final 

particles. The equation holds for nonforward amplitudes 

so the momenta of the primed particles need not be the same 

as those of the unprimed particles. (Tan, 1971.) 
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Fig. 6.1d. The discontinuity equation in Fig. 6.1c below threshold for 

all but the abc channel. (Tan, 1971.) 

Fig. 6.1e. The inclusive cross section as a discontinuity of the 

six-point amplitude. 

~. 6.2. Four tree diagrams in the dual resonance model contributing 

to (a :x I b) • The diagrams are distinct because the 

ordering determines which channels have resonances and 

Hegge behavior. 

Fig. 6.3. The .inclusive distribution, 'f(y,~), of the dual resonance 

model using only the diagram of Fig. 6.2a. The curves are 

Fig. 6.4. 

Fig. 7.1. 

for fixed ~ as a function of the lab rapidity, y, 

The vacuum intercept is taken to be one-half. 

The pionization function, r(x = 0':J!' of the dual reson

ance model vs. P£ with the vacuum intercept taken to be 

0.5 and 0.9. 

Cross sections of the paraboloids in momentum space on 

which o 
~ fS must lie to contribute at given values of 

photon momentum. 

Fig. 7.2. The geometry for determining the photon spectrum from a 

Fig. 7.3. 

given pion spectrum. 

The photon spectrum as a function of (k~m) at x= 0 

2 resulting from a pion spectrum given by exp(-aP1-) with 

am = 6.3. The behavior at extremeley small values of k..L 

is shown in more detail in Fig. 7.4. 

Fig. 7.4. Photon spectra as functions of ~m at x =0 resulting 
. 2 . 

from two pion spectra having the same (PJ..): solid line, 

2 am = 0.3; dashed line, exp(-bll' with exp( -apJ! wi th 

(bm)2 = 1.8. Both spectra are normaJ.ized to unity at lJ.. = o. 

Fig. 7.5. 
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2 The photon spectrum fr(X,~) as a function of x for 

various fixed values of ~ in GeV / c. The original pion 

spectrum is exp( -a~2) with am
2 

= 0.3. 

Fig. 7.6. A typical bremsstrahlWlg diagram in charged particle. 

production. 

Fig. 8.1. Data for (p:~+lp) at Pinc = 14.25 and 24.04 GeV/c: 

~ ~ I - as a function of x at fixed PI = 0.1 GeV c. 
atot d3p -'-

(Allaby, 1971). 

.Fig. 8.2. Invariant cross section for (p:~ +Ip) at various fixed' 

values of PJ.. as a function of lab rapidity, y. From 

the compilation of Sens (1972). 

. Fig. 8.4. 

Invariant cross section for (P:1t -Ip) at various fixed 

values of P..L as a function of lab rapidity, y. 

.the compilation of Sens (1972) •. ' 

From 

A schematic representation of scaled distributions, 

and 

(~*:~+Ip) as functions of x. 

·Fig. 8.5. Low-energy data for (~+:~*Ip), (~+I~±:p), (~-:~-Ip), 

Fig. 8.6. 

The quantity plotted is () x da 
Fx =-~a dx 

as a function of x. 

1 da 
A test of factorization and scaling: -- -- vs p for 

atot. dP 11 II 

(al~ -:p) with a = ~ -(A), pCB), K+(C) and 1( +(D), in 

the proton rest frame. The incident momenta are 24.8, 

28.5, 12.7, and 7 GeV/c respectively. If the distributions 

had scaled and if the leading singularity tactorized, 

the curves would coinCide. Chen et a1. (1971). 
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Data of the Sa~1ay-Strasbourg Group as presented by Sens 

(1972) on the invariant cross section for (p!p!p) 

(circles) and (p!p!p) (triangles) as a function of 

~ at Pinc = 1500 GeV/c-equivalent. Charge conjugation 

invariance requires the distributions to coincide 

asymptotically. 

Fig. 8.8a. Data on the invariant cross section as a function of p 

for (p!~-!p), x = 0, from the Sac1ay-Strasbourg Group 

as presented by Sens (1972). Also shown is the data of 

Bertin et a1. (1972) for ( -!) t 6 The p:~ p a x = 0.07 • 

Fig. 8.Bh. 

solid curve is a fit (Sens, 1972) given by 140 exp(-6.25PJL
). 

The dashed curve is a dual resonance pionization function 

with OV = 0.9· The normalization was determined by 

fitting to the data at pI = 0.3 Ge~·. See Fig. 6.4. 

Data on the invari~nt cross section as a function of PJL 

for (p!~+!p), x = 0, from the Saclay-StrasbourgGroup 

as presented by Sens (1972). Also shown is the data of 

Ratner et a1. (1971) for (p:~+!p) at x = 0.07. 

Fig. 8.9. Particle ratio~ n+/n- a~d p/n- from p-p collisions 

at ISR energies as a function of x. From the data and 

compilation of A1brow et al. (1972). 

Fig. 8.10. Data for the angular distribution ___ 1 ___ da vs ~ of . aine1 d~ • 

charged particles (Breidenbach et al., 1972). The center

of-mass energy squared is (a) 450 Ge~, (b) 910 Ge~, 

,( c) 2000 Ge~, and (d) 2820 Ge~. The curves were 

obtained by assuming a transverse momentum dependence in 

the PP and PR terms .[Eq. (5.5)] of exp(-bp) with 
-1 ~ 

b = 6(Gev/c) , and using Eqs. (5.11c) and (5.l1d). 

Fig. 8.11. 

Fig. 8.12. 

.. -122- . 

Some of the data of Neuhofer et a1. (1972) for -L ~ 
aine1 d3k 

at low transverse photon momentum and fixed angles of 10 

and 24 degrees away from the beam direction. The curves 

are predictions for x = 0 photons based on an assumed 

pion spectrum proportional to exp(-a~) with am
2 = 0.3. 

The normalization for the curve is determined by Eq. (7.32). 

See Eq. (8.20). The data pions have values of x between 

zero and 0.05· 

The data of Bertin et al. (1972) and the Sac1ay-Strasbourg 

Group as reported by Sens (1972) for (p:~-!p). The solid 

curves are fits to 1.ower energy da~ft for (p. -!p) "'" .n· The 

dashed curve is the value of the invariant cross section 

for (p:nO!p) at P...L = 0.4 GeV/c derived with the 

Sternheimer approximation, Eq. (8.22). The data of 

Ratner et al. (1971) for (p:n+!p) are slightly higher 

than those shown for (p:n-!p). Isospin invariance, 

together with the assumption that the leading J-plane 

singularity has I = 0, requires that asymptotically, 

(p:nO!p) = [(p:n+!p) + (p:n-!p)J/2. Cahn (1972). 
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r------------------LEGALNOTICE---------------------

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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