
i

For the ACM SIGPLAN Symp.
on Two-Dimensional Man-Machine
Communication, Los Alamos, NM
Oct. 5-6, 1972

PICASSO
A GENERAL GRAPHICS MODELING PROGRAM

H. H. Holmes and D. M. Austin

July 1972

AEC Contract No. W -7405-eng-48 0

TWO-WEEK LOAN COPY

LBL-1008
Preprint .-. 7J'

This is a librar~ Circulating Copy
which rna~ be borrowed for two weeks.
For a personal retention cop~. call
Tech. Info. Division, Ext. 5545

t""
tJj

t""
I ,...,.
0

,., 0
00

~ ..

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•

,~

PICASSO

A GENERAL GRAPHICS MbDELING PROGRAM

by

H. H. Holmes and D. M. Austin
Lawrence Berkeley Laboratory, University of California

Berkeley, California 94720

ABSTRACT

A ~ew two-dimensional graphics modeling pro
gram wh1ch has been fully implemented is introduced.
Fe.atures include a generalized extendable graphics
ed1tor, an open-ended library of elements, a trans
lator-macro processor for interface with a wide range
of analysis routines, and on-line operating system
control.

I. Introduction

Two-dimensional communication may be con

. side red as the transmitting of information by pic

tures. One form of picture information is position,

or coordinate information, as used in architectural

or circuit board design and map-making. Another

form is symbolic pictures, or modeling.

Modeling is the construction of a symbolic

representation of a hypothetical reality. Graphics

modeling is especially suited to models composed

of many elements, where each element corresponds

to a simple, well-defined operation, and where the

investigator is most interested in the elementary

operations required to mimic some natural or arti

ficial phenomena.

In the following, a brief review of graphics

modeling programs is presented and a new mod

eling system incorporating both forms of picture

communication is described.

II. Graphics Modeling Programs before PICASSO

The first graphic modeling program was

SKETCHPAD [Sutherland, 1963] • It manipulates

lines, constraints, and subpictures (which may in

clude other subpictures), and evaluates the con

straints to produce a drawing which satisfies them.

We may characterize SKETCHPAD by noting that

a single data structure and a single analysis routine

are used. Following SKETCHPAD, there appeared

programs with more practical analysis routines,

such as CIRCAL [Dertouzos, 1967], CADIC

[Preston, 1963] and CADD [Dertouzos, 1965] .

Baskin and Morse [Baskin, 1968] introduce the

idea of a partition in the set of modeling functions

as well as a multilevel data structure. A conver

sational program (DIM) [Riekert, 1967] creates

the graphic data structure, an intermediate routine

analyzes the topology and creates a list of ele

ments (second level data stru~ture), and a batch

type simulator (CSMP) [Brennan, 1966] evaluates

the elements. This work was extended to the de

velopment of ari experimental block diagram pro

gram called DESIGNPAD [Baskin, 1969 and

Belady, 1971] which was designed as a more gen

eral two- system (host- satellite) graphics package

with an interface data file accessible by host-res

ident analysis programs.

Past work has suffered from a lack of modu

larity and a lack of extension capability. The

programming required for' one application is not

easily transferred to another. More importantly,

they lack a facility for user extension of the set of

primitive elements, the building blocks of the

system.

III. Requirements of a General Graphics Modeling
System

-1-

A comprehensive system of interactive

graphics requires facilities which allow the user

to draw his model and "plug in" the appropriate

analysis package. To implement this idea, we

must separate the model building facilities from

the analysis routines and define a simple and con

cise interface between the modules. With a single

graphics package for all analysis routines, we can

justify making it very elaborate and general. A

translator is required to mediate between the

graphics data structure(s) and existing analysis

routines, which expect input in the form of card

images. Such a translator also provides a con

venient starting point for writing new analysis

routines.

A second requirement is an open-ended

library of elements which may be altered or sup

plemented by the user whenever necessary. The

alteration must, of course, be reflected in every

instance of the element without further user inter-

vention.

A third requirement is hard copy documen

tation of both the graphics and analysis packages.

Film output (including microfilm and microfiche)

seems the most desirable form, but printer output

should also be available on demand.

A fourth requirement is permanent storage

with easy access for the data structure generated.

Data cell, chipstore, magnetic tape or punched

cards (in decreasing order of convenience) are ex

amples of permanent storage facilities available.

An additional feature which should be in

cluded is real-time control of the job process, so

that model editing and analysis may be done se

quentially in real time for maximum feedback to

the user.

Other useful features include multiple de

finitions of elements, so that a single model may

be analyzed by several programs, and user-ex

tendible graphic command structures.

IV. PICASSO

PICASSO [Austin, 1972] is de signed to be a

general interactive graphics program capable of

producing card image and other forms of input for

a variety of analysis routines. Initially, we will

distinguish two broad classes of user activities:

the creation of primitive elements, and modeling,

the interconnection of established primitive ele

ments. PICASSO,however, does not- distinguish

between these activities, and so they gradually

blur together, with the experienced user working

in both areas simultaneously.

We next describe how the graphic and text

editing facilities in PICASSO are used to create a

primitive element, and the meaning associated

with these operations.

After the user names a primitive element,

the graphic editor is used to draw a symbol for it.

For many disciplines (e. g. , electronic circuits,

digital logic diagrams) the choice of a symbol is

obvious. The user must then specify the formal

parameters for the definition. These parameters

take the form of labels attached to the sketch of

the symbol at strategic points. These labels, by

their location on the symbol, define points of ref

erence (attacher points) where the parameter may

be referenced when an instance of the symbol ap

pears in a model (or macro definition). The user

must now create a definition for his new element.

Using the text editor, he may write a mathemati

cal expression, or other text using the format

and syntax of the input language for the analysis

routine which he desires to use. A simple symbol

and its text definition are illustreate" in Fig. 1.

Usually, most of the common definitions will have

been created, and the new user can borrow these

without having to start from scratch. If an em

pirical definition is desired, a curve may be drawn

ADDI:R SYMBOL.

+ 4-----eUT

TEXT DEFINITION

OUT=IN1+IN2

Fig. 1. A symbol and definition of an element
named ADDER.

-2-

•

..

•

, ..
\

'(i

on the screen, or a curve may be created from

data in auxiliary storage. The graphics editor

can supply a grid overlay and labels may be used

to establish scales. To define an element in terms

of existing elements (a macro definition) the mod

eling techniques to be described are used.

Models are created by composing symbols,

lines and labels to describe graphically the desired

arrangement of elements. Symbols are selected

(by name) and placed on the screen with the light

pen. A symbol used in a model represents a call

on its definition. Line segments are drawn con

necting the attacher points of the symbols. A set

of attacher points connected by line segments con

stitutes a net; each net represents a flow of in

formation between the attacher points on the net.

The labels for a net may be placed on either lines

or attacher points; different labels on the same

set are equivalenced by the translator. The label

for a net may be described as the actual parameter

which will replace the formal parameter (associ

ated with the particular attacher point) when the

instance of the primitive element is processed by

the translator. Thus a net which topologically

joins a set of 'attacher points causes them all to

refer to the same piece (s) of information. For

example, a net will typically consist of a line

joining the output of one element to the input of an

other element, and the net label will replace the

corresponding formal parameters of both attacher

points when the translator analyzes the model.

Figure 2 shows three adders joined by nets,

and the translator output corresponding to this

model. Disjoint sets may also be 'connected by

means of identical labels instead of by line seg

ments. This feature facilitates model construction

on a 11 sheet" which is too large to appear on the

screen.

By means of a special convention in the

translator labels may represent either local or

global parameters. The use of labels in specifying

parameters also allows analysis routines to rec

ognize special variables (such as the time variable

T in MIMIC).

The data structure includes a directory of

elements, a dynamic storage area, a label storage

area and a working area. The directory contains

the name and definition type (macro, empirical or

AOOS MACRO Oe~1N1T10N

+
UM

TRANS~ATOA OUTPUT

GOOO•C+'I.O

SUH•GOO'I+G002

Fig. 2. The model named ADD3 and the trans
lator output.

text) of the element and pointers to the location in

the dynamic storage area of its symbol, its clef

initio~ and its topology (not all of these components

need exist for a given element of course). When

a symbol or definition is to be edited (o:i: created),

the data is copied from the storage area into the

working area and control is passed to either the

graphics editor (for symbols, macro and empiri

cal definitions) or the text editor. When editing

is complete, the data is copied from the working

area to the storage area and the directory pointers

are updated. The storage area is dynamic in the

sense that the program automatically captures the

memory required to store the data, and releases

surplus memory to the system, so that the pro

gram always occupies the minimum amount of

memory.

The graphics editor creates lines, labels

and symbol calls and stores them in the working

area. These components are encoded in pseudo

display instruction format; each item requires

one machine word., A line consists of a type

field, and four 12 bit coordinates specifying

the endpoints. A label consists of a type field,

-3-

two coordinates specifying the position, size and

orientation fields and a pointer to the label storage

area. A symbol call is similar to the label item,

except the pointer indicates the position in the di

rectory of the symbol name. Data points for em

pirical curves are stored in floating point form.

Text definitions are created in the te:Xt editor

and stored in compressed display code format with

a word count.

When a model is analyzed, its topology is

encoded and stored for later use by the translator.

Nets are numbered sequentially and a list of nodes

is stored in the dynamic storage area. A new

topological analysis is done only when the model

has been re-edited and a new analysis is called

for.

All graphic interactions are under the con

trol of the graphics editor, wherein symbols, mod

els (macro definitions) and empirical definitions

are created and edited. The graphics editor uses

two types of commands - light pen commands and

teletype (or keyboard) commands. The teletype

must be used to specify symbol names and other

text-string type data (labels, numbers). A list of

command words appears on the screen for imple

menting the graphic features, such as zooming,

grid overlay, erasing, etc. Subeditors are called

for the placing of labels and symbols. These edi

tors display their own list of commands' appropri

ate to their functions (such as specifying the size

and orientation of labels and symbols). The zoom

feature effectively makes the "work sheet" up to

64 times the size of the screen. The grid overlay

can be specified with arbitrary spacing between

dots, which facilitates accurate drawing. Other

commands allow £or variable line-straightening

parameters, an absolute scale factor for use with

the grid overlay and an external picture syntax for

I/O of the drawing. The latter feature is useful

for the construction of accurate drawings. (via tele

type or card image) when the zoom and grid over

lay features are inadequate. Pictures converted

to card images can be edited, copied into other

drawings, or serve as input to analysis routines.

The te"xt editor was designed primarily for

teletype input of text definitions, but the inclusion

of powerful I/O facilities have made it useful for

many other duties, such as creating on-line control

card sequences to guide the operating system, dis

playing the output of analysis programs, editing

the external picture card images produced in the

graphics editor and creating and releasing disk

files for temporary storage. These features

make most of the BKY system facilities available

on-line as needed.

The translator analyzes a model by using

the output of the topology routine for that model.

In the translator's interpretation the model repre

sents a series of subroutine (or macro) calls on

the elements represented by the symbols. These

in turn may be defined as a set of calls on ele

ments. Thus the translator produces a tree struc

ture of subroutine calls, an interpretation which is

commonly desired, easily perceived and under

stood by the user and yet difficult to state com

putationally. Equally important are the features

of the translator which make it easier to create

models. For example, for one -node nets (unused

attacher points), the translator recognizes default

values specified by appending a slash and a de

fault string to the formal parameter ("name" be

comes "name/1.0").

The first phase of the translator is the ex

traction of the topology from the drawings which

compose the model. All drawings which have

changed since the last translation are reanalyzed

at this time. Each drawing is copied into the

working area, with the pseudo-display instructions

hashed by their coordinates. For each symbol in

the drawing, the locations of its attacher points

are computed and these are added to the working

area. The routine then matches coordinates and

follows lines to create a list of nodes belonging to

a particular net. A flag is set to distinguish nets

with only one node, and the list of nodes is then

stored in the dynamic storage area. Analysis

programs may examine this topology directly if

they desire, bypassing the macro expansion part

of the translator.

After the topological analysis is complete,

the translator scans the template and records in

formation about how to process the model. Figure

3 illustrates such a templete. Included in the

template are header and trailer cards for the main

program and subroutines (or macros) as well as

information on how to call subroutines. The

-4-

•

' 8lAH HlHlC

2

5 ..
15

G

7 OATA/R

B

9 S,.L-, 70000.

'0 RI!:WlNO, OATA,

1 1 MlMGioO, DATA, HIH •

12 S,.L., 615000.

1.5 CRAW.

.. UN 01" . P .. OOUCI!:O BY HlMVI!: .. T

!!:NO

SMA I

I!:HA

CHAI

CI"NI<, 0)

NOI!:OI" OATA

Fig. 3. The template for producing MIMIC pro
grams.

translator inserts names (in place of the asterisks)

and parameters into these template specifications

during expansion of the drawings and text defini

tions. Also included is the set of control cards

necessary to run the analysis program. These

cards are written to the control file and will be

executed when the modeling program (PICASSO)

terminates. After reading the template the trans

lator uses the topological analy~is to compile a

list of all elements which are used directly or in

directly in the model. These are sorted so that

elements are defined before they are used, are

quirement of many analysis programs (e. g.

MIMIC, ALGOL). For each element on the list,

the translator scans the topology for the element

and assigns a name to every het. If a label is on

the net, then that becomes the name for the net.

If no name is supplied, the translator generates

one as specified by the template (see Fig. 3). These

names then become the actual p-arameters for all

the formal parameters (attacher points) on the net.

The translator then creates a call on ~a:ch of the

subelements of the. element with the proper actual

parameters. If an attacher point was not connec

ted, the translator examines the subelement for

default specifications. The user may elect to have

the translator do the actual string substitution of

actual parameter for formal parameter in the def

initions. This facility is a necessity, since very

few analysis routines understand subroutine (or

macro) calls.

Collections of named libraries are stored on

a random access disk file while the program is

operating. Each named library is. a complete

group of elements and models. A user may 11 load"

a library, modify it, and save it under a different

name, thus preserving the original set of elements.

Several libraries rriay be loaded simultaneously,

combining the libraries so that all the elements

are access'ible together. ':Permanent storage is

available on a Data Cell which is manipulated by

control cards.· Ordinarily, a collection of li

braries is copied from the Dafa Cell to disk at the

beginning of a session and the new libraries are

replaced at the end of the session. These opera

tions may be performed at any time, however.

PICASSO provides documentation in the

form of microfilm and microfiche for both the

graphics and text. Conventional line printer out

put is also available for the text. Xerox copies

of the microfilm and microfiche may be made and

most users have microfiche .viewers.

V. PICASSO on BKY Operating System

PICASSO is implemented on a CDC 6600

computer with a VISTA 250 display system and is

currently used with MIMIC [Control Data, 1968],

CORNAP [Pottle, 1966], Fortran, and two co

ordinate-driven analysis routines. Less than two

weeks were spent installing CORNAP as an anal

ysis routine. Most of ,the time was spent testing

various sequences of control cards, learning about

CORNAP and its limitations, and creating a li

brary of primitive elements (resistors, capaci

tors, transistors, etc.) for users. Our exper

ience indicates that PICASSO (compared to card

input) is much more likely to produce a working

model the first time around, because it keeps

track of all the details (especially calling se

quences) and doesn't make typing mistakes. We

have also found that naive users -can construct

models from existing elements, but do poorly at

defining .new primitive elements until they have

had some experience. On the other hand, an ex

perienced user can construct definitions which ap

pear to make a given analysis routine act in a com

pletely different manner. Thus, a simulator for

continuous systems (MIMIC) can be made to eval

uate digital logic.

ACKNOWLEDGMENT

Work performed under the auspices of the U.S.

Atomic Energy Commission.

-5-

APPENDIX

A more extensive model is illustrated in

Figs. A1 through A4. This is a model of water and

pollution flow in the San Francisco Bay region, and

illustrates a type of compartmental modeling 'which

is very common in biological applications

[Horovitz, 1972]. The model is composed of

Nodes, which represent the water within a given

partition, and Channels which direct the flow of

water between the Nodes. Nodes and Channels are

11=:
Tr.:t-

documented in Figs. A3 and A4. Also included

are several other components to simulate the

tides, the flow of rivers, and to allow the analysis

program (MIMIC) to recognize input and output

·quantities. Approximately 100 card images are

generated by the translator for this model. Fig

ure A2 shows one of the tides and pollution his

tories for three of the Nodes.

Fig. Ai. A water and pollution flow model of the San Francisco Bay region.

-6-

•

I)
L

0 0
0 0

• .; .;

-d 0
0

ci

•••

0
0

.;
0
0

.;

Fig. AZ. MIMIC plot for a representative tide and pollution
in three San Francisco Bay regions .

-7-

v
HT

p

MT

NODE SYMBOL.

T

TEXT OEPlNlTlON
lNTt~~A+~~B+~~e,VO~)

tV-VO~)/ARII!!!A

HT

lNTt~~A+~~B+~~e,P~O)

P/V

Fig. A3. A node and its definition in terms of
MIMIC integration functions. Note use of the
translators concatenation function (-).

-8-

CHAN SYMBOL.

TEXT OEPlNlTlON

ZH ~lDH+ICD, O, » •-

Fig. A4. The channel symbol and its definition
in terms of MIMIC first-order transfer function.

t.t

I

'Q

\~

REFERENCES

1. Ivan E. Stitherland, SKETCHPAD-A Man.:..Machine Graphical

Communication System, AFIPS Confe renee Proceedings, 'Spring

Joint Computer C?nference 23, 329-346 (1963)> ·

2. M. L. Dertouzos·, ir CIRCAL: On-line circuit design, 11 Proceedings

of the IEEE 55, No. 5, 637-654 (May 1967).

3. F. S. Preston et al., Development of Techniques for Automatic

Manufacture of Integrated Circuits, Technical Report

AFML-TR-65-386, Volumes I & II, Electronics Branch, Air

Force Materials Laboratory, Wright-Patterson AFB, Ohio

(Nov. 1965). -_,.

4. M. L. Dertouzos and P. J. Santos, Jr. , CADD: On-Line~.

Synthesis of Logic Circuits, Electronic Systems Laboratory,

Massachusetts Institute of Technology, Report ESL-R-253, ·_

Cambridge, Massachusetts.

5. H. B. Baskin and S. P. Morse, A Multilevel Modeling Structure

for Interactive Graphic Design. IBM Systems Journal, No. 3

& 4, 1968.

6. R. H. Riekert and D. V. Lieberman, DIM: A Low Level Modeling

System for Conversational Graphics, IBM Research Report,

RC - 1981, IBM :;r. J. Watson Research Center, Yorktown, New

York (Oct. 1967).

7. R. D. Brennan, 11 Digital Simulation for Control System Design, 11

Proceedings of the SHARE Design Automation Workshop, New

Orleans, Louisiana (May 1966).

8. Donald M. Austin and Harvard H. Holmes, PICASSO: A General

Interactive Graphics Modeling Program, LBL-580, University of

California, Lawrence Berkeley Laboratory, Berkeley, California

(Jan. 1972).

9. CONTROL DATA MIMIC; A Digital Simulation Language, Ref

erence Manual,· Publication number 44610400. Control Data

Corporation, Special Systems Publications, St. Paul, Minnesota,

(Apr. 1968).

-9-

10. Program CORNAP, Systems Theory Research Group, School of

Electrical Engineering, Cornell University, based on:

C. Pottle, State-Space Techniques for General Active Network

Analysis: Chapter 3 of 11 System Analysis by Digital Computer, 11

F. F. Kuo and J. F. Kaiser, Eds., Wiley; 1966; pp. 59-98.

11. H. B BaskinandL. A. Belady, 11 DESIGNPAD: A.GraphicDe

sign/Problem-Solving Facility", Proceedings of the Third Annual

Pri_~eto~g-~_~_!'~_!~_E:~e on Information Sciences and Syst~ms_, 173

(1969).

12. L. A. Belady, M. W. Blasgen, C. J. Evangelist, and R. D.

Tennison, A Computer Graphics System for Block Diagram

Problems, IBM Systems Journal 10, No. 2, 143-161 (1971).

13. Mark W. Horovitz, Donald Austin and Harvard Holmes, Symbolic

Computer Graphics and Biological Models, ACM/SIGGRAPH

Symposium, Pittsburgh, Pa. (March, 1972).

-10-

J

0.

r------------------LEGALNOTICE---------------------

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

~ 'a.;
TECHNICAL INFORMATION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

":.~ ~

