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Abstract 

The principles of limited-angle reconstruction of space-limited objects using the con­
cepts of "allowed cone" and "missing cone" in Fourier space are discussed. The distortion 
of a point source resulting from setting the Fourier components in the missing cone to Z«TO 
has been calculated mathematically, and its bearing on the convergence of an iteration 
scheme involving Fourier transforms has been analysed in detail. It was found that the 
convergence rate is fairly insensitive to the position of the point source within the bound­
ary of thi object, apart from an edge effect which tends to enhance some parts of the bound­
ary iii reconstructing the object. Another iteration scheme involving Radon transforms was 
introduced and compared to the Fourier transform method in such areas as root mean square 
error, stability with respect to noise, and computer reconstruction time. 

Introduction 
Many imaging devices, such as planar positron cameras, electron microscopes, radio-

telescopes, etc., view an object only from a limited angular range. As shown in our pre­
vious papers,1*3 the only Fourier components of the object that can be determined directly 
under these circumstances are those inside the "allowed cone," which is the region in 
Fourier space where the optical transfer function of the system is non-zero. Figure 1 shows 
the shape of the space-invariant point response function and optical transfer function for a 
typical limited-angle imaging system. Fourier space is partitioned into an "allowed cone" 
and a "missing cone" according to whether the optical transfer function is ZCTO or not. 

In Reference 1, an iteration scheme was introduced to recover the Fourier components of 
the object in the missing cone. The scheme, which is illustrated in Figure 2, makes use of 
the knowledge of the finite extent of the object to fill in the missing-cone components. 
Some properties of the iteration scheme, .such as convergence and error propagation, have 
been analysed in Reference 2. In this paper the spatial uniformity of the reconstructed ob­
ject is studied by considering the effect of the missing cone on point sources. Another 
iteration scheme for limited-angle reconstruction involving Radon transforms is described 
and compared with the present one involving Fourier transforms. Throughout the paper the 
axis of the allowed cone is assumed to lie along the kx-axis, and the cone has a half-angle 6 0 (see Figure 2). 

Spatial Uniformity 
The effect of setting the Missing-cone components to zero on a point source has been 

mentioned in previous papers.2'1 In this section this effect is analysed in more detail in 
two dimensions. Besides casting light on the nature of the distortion causc-d by the missing 
cone, results of the analysis are also useful In understanding the spatial uniformity of 
reconstructed objects. 

Assume a point source is located at the origin x • z • 0. With the Fourier components 
in the missing cone set to zero, the distorted point source p'C*,z) is given by 

,- , Wt«nB 0 

P'(x,z) " /jUcxexp^uikjtX) / dkzexpf2aik2z) (1) 

Treating the integrands as generalized functions,* we gel, by integrating, 

P'(x.z) - — ^ -,— for (x,y) * C0,0) C2) 
^Ctane,.* - ^gj-) 

The distortion as expressed by Equation (2) possess the antisymmetry property with 
respect to the interchanges: x ** z, tan60 ••» l/tan60.. This is to be expected from the complementary nature of the allowed and missing cones. 
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Equation (2) also shows that the distortion is positive in the cones |x| < tan60|z|, and negative in the cones|x|> tan6p|z|. In an extended object. Most of the negative dis­

tortion will be swamped by the positive densities at other positions in the object. There­
fore, the use of a positivity constraint- in iterations, i.e. resetting it 11 negative densi­
ties to zero, improves convergence significantly for point sources but not for extended 
objects, as reported in a previous paper.2 The positivity constraint was utilized in all 
subsequent iterations in this paper. 

The positive distortion in the region |x| < tan60|z| lises to high positive values in the immediate vicinity of the lines x • +. tan90z; the negative distortion in the region |x[ > tan0o|z| also becomes large near the lines. These high positive and negative values 
give rise to what appear to be four ridges originating from the point source and decaying 
with distance: two positive ones and two negative ones bordering the lines x • +, tan80z. These distortions arc singular and discontinuous in crossing the boundary between the posi­
tive and negative regions. These singularities and discontinuities arc smeared out in 
digital Fourier transformation and averaged out to small finite values. 

The positive distortion ir. the cones |x| < tan90!zj makes the point source appear elongated in the z direction. Elongation along the z-axis (x - 0) is especially serious 
when the half-angle 0 O of the allowed cone is small, as implied in Equation (2). 

The distortion of a point source caused by the missing-cone components is illustrated 
pictorially in Figure 3. The half-angle of the allowed cone is tan - 1(0.5). Figure 3A shows 
the positive density distribution of the distorted point source, and Figure 3B shows the 
negative density distribution. The presence of the two positive and the two negative ridges 
originating from the point source, and the elongation of the point source along the z-axis 
are evident. The other smaller ridges not originating from the point source are due to the 
sharp cut-off of the Fourier area. 

At small angle 0 o, most of the distortion energy of the distorted point source resides in the elongated portion along the z-axis, where the amplitude is highest. If part or all 
of this elongation is repeatedly reset to zero, during iterations, convergence will be very 
rapid. Thus, at small allowed-cone angles, convergence of the iteration scheme is primarily 
determined by whether-or not the point source is located in a position where part or all of 
its elongation extends outside the object boundary and thus is repeatedly reset to zero 
during iterations. 

The above disrussion can be made clear by considering the situation in Figure 4. The 
32 x 32 array is the reconstruction area, while the 11 x 11 square area in the middle of the 
array represents the finite extent of an object: anything outside the square is reset to 
zero during iterations. As far as the convergence of the iterations is concerned, the pixel 
A(16,I7) in Figure 4 is the worst location within the square boundary because a point source 
at this position has the largest fraction of its ridges inside the square boundary, whereas 
pixel 8(16,22), similar to the other pixels on the top and bottom edges, represents the best 
location, since half of each ridge is outside the boundary for a point source located at B. 
For pixel C(2I,17} and the other pixels on the left and right edges, half of each ridge is 
also outside the boundary, but all of the elongated portion is still inside; thus a pcini 
source at C is not expected to do much nette*" than at A. 

To verify these points, a point source with an allowed cone of half-angle tan"'(05) 
was reconstructed through iterations at the locations A, B, and C, respectively. The 
results are presented in Figures 5-7. Part A of each figure shows the individual poi/it 
source with missing-cone components set to zero, and the improved point source after 20 
iterations is shown in part B. In these figures all the negative densities have been set Lo 
zero, and the densities have been scaled to give the minimum root mean square error o from 
the original point source taken over the square boundary. While the quality of the recon 
structed point source at B is much better than that at A, the one at C is only slightly 
better. These results show that at small angles the elongated portion along the 2-axis is 
the main factor determining the convergence of the iterations, and thus the pixels on the 
top and bottor edges of the square boundary will reconstruct much better than the c:hers. 

Fortunately this edge effect is very localized at the top and bottom boundaries. To 
show this, a missing-cone point source was reconstructed at position D, in the vicinity of 
B and further into the interior of the boundary. The result was very similar to that of A 
and C. The values of the root mean square error, o, of the missing-cone point sources 
before and after iterations taken over the area enclosed by the square boundary for the 
positions A, B, C, and D are tabulated in Table 1. 

As the angle of the allowed cone increases, the distortion amplitude becomes more 
spread out in the ridges and the x-axis. As a result, more pixels near the boundary will be 
reconstructed better than the interior pixels. However, since the convergence of the itera­
tion scheme improves rapidly with the increase in the allotod-cone angle,* the reconstruction 
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error would he small everywhere within the object boundary, and thus could not cause any 
serious problem in spatial uniformity. 

Table 1. Values of o taken over the area enclosed by the square 
boundary for various positions of the noint source 

" ' o (arbitrary units) 
Position before iterations alter 20 iterations 

A" 0TS53 0ToT9 
B 0.699 0.334 
C 0.793 0.610 
I) 0.783 Q.643 

Radon transform iteration scheme 
The iteration scheme described above Fourier transforms the object back and forth 

between the object space and the Fourier space, the constraints used being the known Fourier 
components inside the allowed cone, and the known finite extent of the object. An alternate 
approach to object reconstruction from limited-angle information is to apply Radon trans­
forms and manipulate the object bad. and forth between the object space and projection space, 
the constraints used in this case being the projections in the limited angular range and the 
known finite extent of the object. h*e have been trying to improve the performance of the 
iteration scheme* for limited-angle reconstruction; the alternative method involving Ra n 
transforms represents such an attempt, which is motivated in part by the success of other 
workers in performing complete-angle image reconstructions in object space. 

The Radon transform iteration scheme is shown in Figure R. Inverse Radon transforma­
tion is achieved through convolution with the kernel developed by Shepp and Logan.* Since 
there is a one-to-one correspondence between projections of a function and lines of Fo:irier 
components of the function passing through the origin in the Fourier space,* the convergence 
of the Fourier transform iteration scheme ensures that of the Radon transform iteration 
sch'.-me. 

The Ration transform iteration scheme was applied to reconstruct a point source located 
at position A in Figure 4. The total number of projections uniformly generated between zero 
and it is 17. This number was chosen according to the sampling criteria of Klug and 
Crowthor,7 and so the projections contain all the information necessary to reconstruct tl"? 
ohject up to the bandwidth imposed by the grid size. Out of the 17, only five projections 
which lie within a cone of half-angle tan-ll0.5) oriented along the i-axis were used in 
reconstructing the point source. 

The results arc summarized in Tabic 2, which shows the root mean square error o of the 
reconstructed point so i.-cc after 20 iterations lakon over the area enclosed by the sc,\iare 
boundary for variour additive noise levels in the projections. Also shown in Table 2 for 
comparison purposes are the corresponding results of reconstructing f.sm the same five 
projections through the Fourier transform iteration scheme, the Fourier components inside 
the allowed cone being obtained through deconvolution.• As far as the quality of the recon­
struction.? and stability with respect to noise are concerned, TaMe 2 shows that the Radon 
scheme is a feasible alternative. That this scheme gave slightly inferior results to that 
of the Four ier scheme is due to the fact that d igital Fourier t ransforn and inverse trans­
form are exact inverses of each other, whereas the digital Radon transform and inverse trans­
form are not. As for computer time, the availability of fast Fourier transform subroutines 
gives the Fourier scheme advantage over the Radon scheme, especially when there are large 
numbers of projections involved. For the subroutines that were used in our works involving 
a 32 x 52 array, one cycle of Fourier transform iteration used II msec on a CDC 7600 machine, 
whereas the computer time for one cycle of the Radon transform iteration involving 17 pro­
jections was about 350 msec. 

Table 2. Comparison between the Radoi transform iterations and 
the Fourirr transform iterations. 

o alter m iterations tarbitrary units) 
Noise level CM Radon transform 

iterations 
Fourier transform 

iterations 
0 

* 10 
. 40 

0.7S7 
0.775 
0.86S 

0.668 
0.688 
0.828 

Discussion 
We have demonstrated that the Fourier transform iteration scheme gives spatially 

uit: form reconstruction across an object. The Radon transform iteration scheme was shown to 
I 
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be practical, but because of the much longer computer time required, the Fourier transform 
method is preferable. 
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A. * 0(r.) 
Figure 1, A 2-D point response function • (r) and i t s optical t ransfer function # 0 (K)-

Known Fourier components Of 
the object inside the allowed 
cone; missing-cone components 
set to zero i n i t i a l l y . 

Estimated Fourier spectnm 
of the object, corrected to 
tire known Fourier components 
inside the allowed cone. 

KEt3 

E-ttttwted ohlect density 
corrected to zero outside] 
the known extent of the 
object. i_ 

A priori Information 
on the extent 2nd 
location of the object 

Figure 2. Fourier transform iteration scheme for filling in nissing-cone Fourier components. 
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A. POSITIVE DENSITY DISTRIBUTION B. HECATZVE DEKS1TY D1STM1DTIOH 

Figure 3. Positive and negative density d i s t r ibu t ions of a point source 
~*faose missing-cone Fourier components have been set to zero. 
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Figure 4. A 11 x 11 square boundary representing the f in i t e extent 
of an object within a 32 x 32 reconstruction area. 
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Figure 5. A missing-cone point source at the center of the square boundary. 
The half-ani:Jc of the allowed cone is tan~l(0.5). 

A. No iterations. B. After 20 iterations. 

}'• i g u r c A missing-cone point source on the top edge of the square boundary. 
The half-angle of the allowed cone is tan"TC°-5)-

A. No iterations. B. After 20 iterations. 
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Figure 7. A missing-cone point source on a side edge of the square 
boundary. The hnlf-angle of the allowed cone is tan*'(0-5). 

A. No iterations. B. After 20 iterations. 
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Known projections of the 
object In * limited angu­
lar range; other projec­
tions set to zero initially 

Estimated projections of the 
object, corrected to the 
known projections. -^-|>roJection| 

Estimated object density, 
corrected to zero outside 
the known extent of the 
object. 

A priori infOtaatfon 
on the extent and 
location of the object 

Figure 8. Radon transform iteration scheme for filliiig nissing projections. 
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