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Abstract

The principles of limited-angle reconstruction of space-limited objects using the con-
cepts of "allowed cone” and "“missing cone” in Fourier space are discussed. The distortion
of a puint source resulting from setting the Fourier components in the missing cone to zerc
has been calculated mathematically, snd its bearing on the convergence of an iteration
scheme involving Fourier transforms has been anzlysed in detmil. It was found that the
convergence rate is fairly insensitive to the position of the point source within the bound-
ary of the object, apart from an edge effect which tends to enhance some parts of the bound-
ary in reconstructing the object. Another iteration scheme involving Radon transforms was
introduced and compared to the Fourier trensform method in such areas as root mean square
ecror, stability with respect to noise, and computer reconstruction time.

Introduction

Many imaging devices, such as planar positron cameras, electron microscopes, radlo-
telescopes, etc., view an obhject only from a limited angular range. As shown in our pre-
vious papers,!*? the only Fourier components of the object that can be determined directly
under these circumstances are those inside the "allowed cone,” which is the region In
Fourier space where thc optical transfer function of the system is non-zero. Figure 1 shows
the shape of the space-invariant point response function and optical transfer function for a
typical limited-angle imaging system. Fourier space is partitioned into an "allowed cone"
and a "missing cone" according to whether the optical transfer function is zero or not.

In Reference 1, an iteration sch was introd d to recover the Fourier components of
the object in the missing cone. The scheme, which is illustrated in Figure 2, makes use of
the knowledge of the finite extent of the nbject to fill in the missing-cone components.
Some properties of the iteration scheme, »uch as convergence and error propagation, have
been analysed in Reference 2. In this paper the spatial unifermity of the reconstructed ob-
ject is studied by considering the effect of the missing cone on point sources. Another
iteration scheme for limited-angle reconstruction involving Radon trsnsforms is described
and compared with the present one involving Fourier transforms. Throughout the paper the
axis of the allowed cone is assumed to lie along the ky-axis, and the cone has a half-angle
8, (see Figure 2).

Spatial Uniformity
The effect of setting the missing-cone components tv zero on a point source bas been
mentioned in previous papers.?’ In this section this effect is analysed in more detail in
two dimensions. Besides casting light on the nature of the distortion caused by the missing
cone, results of the analysis are also useful in understanding the spatial vniformity of
reconstructed objects.

Assume a point source is located at the origin x = z = f. With the Fourier components
in the missing cone set to zero, the distorted point source p'(x,z) is given by

- Htlnﬁu
p'(x,2) = [_dkyexp2xikex) [ dk,exp{2aik,2) 8]
-Hunoo

Treating the integrands as generalized functions,® we get, by integrating,
o' (x,2) = _‘E;_e_:—-_"-r— for (x,y) # (0,0) (2)
m an z -
3 tand,
The distortion as expressed by Equation (2) possess the antisymmetry property with

respect to the interchanges: x e z, tanfg+ 1/tané,. This is to be expected froa the
complementary nature of the allowed and missing cones.
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Equation (2) also shows that the distortion is positive in the cones [x]| < taneyjz],
and negative in the cones|x|> tan6y|[z[. In an extended object, most of the nogative dis-
tortion will be swamped by the positive densities at other positions in the object. There-
fore, the use of a positivity constraint in iterations, i.e. resetting ull negative densi-
ties to zero, improves convergence significantly for point sources but not for extended
objects, as reported in a previous paper.? The positivity constraint was utilized in all
subsequent iterations in this paper.

The positive distortion in the vegion |x| < tan6glz| 1ises to high positive values in
the immediatc vicinity of the lines x = + tanBoz; the negative distortion in the region
|x[ > tan0olz| also becomes large near the lines. These high positive and negative values
give rise to what appear to be four ridges originating {yom the point source and decaying
with distance; two positive ones and two negative ones bordering the lines x = + tanfgz.
These distortions are singular and discontinuous in crossing tke boundary between the posi-
tive and negative regions. These singularitics and discontinuities are smeared out in
digital Fourier transformation and averaged ont to small finite values.

The positive distortion in the cones |x] < tandylz] makes %he point source appear
elongated in the z direction. FElongation along the z-axis (x = 0} is especially serious
when the half-angle 8, of the allowed cone is small, as implied in Equation (2).

The distortion of a point source caused by the missing-cone co-gonents is illustrated
pictorially in Figure 3. The half-angle of the allowed conc is tan-"(0.5). Figure 3A shows
the positive demsity distribution of the distorted point source, and Figurc 3B shows the
negative density distribution. The prescence of the two positive and the two negative ridges
originating from the point source, and the elongation of the point sourcc along the z-axis
are cvident, The other smaller ridges not origiaating from the point source are due to the
sharp cut-off of the Fourier areca.

At small angle 8,5, most of the distortion cnergy of the distorted point source resides
in thc clongated portion along the z-axis, where the amplitude is highest. If part or all
of thix cvlongation is repcatedly reset to zero, during iterations, convergence will be very
rapid. Thus, at small allowecd-cone angles, cohvergence of the iteration scheme is primarily
determined by whether .or not the point source is located in a position where part or ail of
its clongaticn extends outside the object boundary and thus is repeatedly resct to zero
during iterations.

The above discussiop can be made clear by considering the situation in Figurc 4. The
32 x 32 array is the reconstruction arca, while the 11 x 11 square arca in the middle of the
array represents the finite extent of sn object: anything outside the square is reset to
zero during iterations. As far as the convergence of the iterations is concerned, the pixel
A{16,17) in Figure 4 is the worst location within the square boundary because a point source
at this position has the largest fraction of its ridges inside the square boundary, whereas
pixel B{36,22), similar to the other pixels on the top and bottom edges, represents the best
location, since half of each ridge is outside the boundary for a point source located at B.
For pixcl C(21,17} and the other pixcls on the 1left and right edges, half of each ridge is
also outside the boundary, but all nf the elongated portion is still inside; thus a pcint
source at C is not cxpeuted to do much hetter than at A.

To verify thesc points, a point source with an allowed cone of kalf-angle tan~'(0.5)
was reconstyucted through iterations at the locations A, B, and C, respectively. The
results are presented in Figures 5-7. Part A of each figure shows the individual poiat
source with missing-cone components set to zero, and the improved point source after 20
iterations 1s shown in part B. 1In these figures all thc negative den.ities have been ser o
zero, and the densities have been sraled to give the minimum root mecan square error o from
the original point source taken over the square boundary. While the quality of the recon
structed point source at B is much hetter than that at A, the one at C is only slightly
better. These tesults show that at smzll angles the elongated portion along the z-axis is
the main factor determining the convergence of the iterations, and thus the pixels on the
top and bottor edges of the squarc boundary will reconstryct much better than the <:hers.

Fortunately this edge effect is very localized at the top and bottom boundaries. To
show this, a missing-cone point source was reconstructed at position D, in the vicinity of
B and further inic the interior of the boundary. The result was very similar to that of A
and C. The values of the root mcan square error, o, of the missing-cone point sources
before and after iterations taken over the area enclosed by the square bourdary for the
positions A, B, C, and D are tabulated in Table 1. .

As the angle of thc allowed cone increases, the distortion amplitude becomes more
spread out in the ridges and the x-axis. As a result, more pixels near the boundary will be
reconstructed better than the interjor pixcls. However, since the convergence of the itera-
tion scheme improves rapidly with the increase in the allos.d-cone angle,? the reconstruction
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error would he small everywhere within the object bourdary, and thus could not cause any
serious problem in Spatial uniformity.

Table 1. Valucs of o taken over the arca enclosed by the square
boundary for various positions ol the point source
o_(arbitrary units)

Position Bcfors 1TeTations after 20 1tcrations
A B -659
B 0.699 0.334
[ 0.793 0.610
n 0.783 0.643

Raden _transform itcration scheme

The iteration scheme described ahove Fourier transforms the object back and forth
between the object space and the Fouricer space, the constraints used being the known Fourier
components inside the allowed cone, and the known finite extent of the object. An alternate
approach to object reconsiruction from limited-angle information is to apply Radon trans-
forms and munipulate the object bachk and forth betwcen the object space and projection space,
the constraints used in this case being the projections in the limited angular range and the
known finite extent of the object. We have been trying to improve the performance of the
iteration scheme for limited-angle reconstruction; the alternative wethod invelving Ra n
transforms represents such an attempt, which is motivated in part by the success of othe:
workers in performing complete-angle image reconstructions in object space.

The Radon transform iteration scheme is shown in Figure R. Inverse Radon transformu-
tion is achicved through convolution with the kernel developed by Shepp and Logan.® Since
there is a one-to-one corrcspondence between projections of a function and lines of Fourier
componcnts of the funciion passing through the oripgin in the Fourier space,® the convergence
of the Fourier transform iteration scheme ensures that of the Radon transform iteration
scheme.

The Radon transform itcration scheme was applicd to reconstruct a point source located
at position A in Figure 4. The tetal number of projections mniformly gemerated between zero
and v is 17. This number was chosen according to the sampliine criteria of Klug and
Crowther,’ and so the projections contain all the information nccessary to reconstruct ths
ohject up to the bandwidth imposed by the grid size. Out of the 17, orly five projections
which lie within a conc of half-angle tan~!(0.5) oriented ulong the z-axis were used in
Teconstructing the point source.

The results are summarized in Table 2, which shows the root mcan square crror o of the
reconstructed point 50icce after 20 itevations taken over the arca enclosed by the square
houndary for variour as«ditive noisc levels in the prejactions. Also shown in Table 2 for
comparison purposes arc the corresponding results of reconstructing ficm the same five
projections through the Fourier transform iteration scheme, the Fourier components inside
the allowcd cone being obtaiped through deconvolution.® As far as the quality of the recon-
structions and stability with respect to noise are concerned, Tatle 2 shows that the Radon
scheme is a feasible alternative. That this schemc gave slightly inferior results to that
of the Fourizr scheme is due to the fact that digital Fourier transform and inversc trans-
form are cxact inverscs of each other, whereas the digital Radon transform and inverse trans-
form are not. As for computer time, the availability of fast Fourier transform subroutines
gives the Fourier scheme advantage over the Radon scheme, especially when there are large
numbers of projections involved. For the subroutines that were used in our works involving
a 32 x 32 array, onc cycle of Fourier transform iteration used 1] msec on a CDC 7600 machine,
wherecas the computer time for one cycle of the Radon transform iteration involving 17 pro-
jections was about 350 msec.

Table 2. Comparison between the Rado~ transform iterations and

the Fourirr transform iterations.
g after 0 iterations (arbitrary units)

Radon tTransform Fourier transforn
Noise level (%) iterations iterations
0 0.757 0.668
+ 10 0.775 0.688
+ 40 0.865 0.828
Discussion .

We have demonstrated that the Fourier transform iteration scheme gives spatially-
uni form reconstruction across an vuject. The Radon transform itcration schemc was shkown to
i .
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be practical, but because of the much longer computer time required, the Fourier transform
method is preferable.
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Figure 1. A 2-D point risponse function 00(51 and its optical transfer function €o(K) -

Known Fourier components of
the object inside the allowed
cone; missing-cone components
set to zero initially.

Estimated Fourier spectrum
of the object, corrected to

the known Fourter components [ {E-F-T:]

{nside the allowed cone.

A
Y ]
£stimated abject density. A priori information
FF.T corrected to zero outside; on the extent and

the known extent of the
object.

tocation of the object.

Figure 2. Fourier transform iteration scheme for filling in missing-cone Fourier components.
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A, POSITIVE DENSITY DISTRIBUTION B. NEGATIVE DENSITY DISTRIBUTION

Figure 3. Positive and negative density distributions of a point source
“whose missing-cone Fouricr components have been sct to zero.
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Figure 4. A 11 x 11 square boundary representing the finite extent
of an object within a 32 x 32 reconstruction area.



Figure

Figure 0.

Fig
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5. A missing-conc point source at the center of the square boundary.
The half-angle of the allowed cone is tan”?(0.5).
A. No iterations. BR. After 20 iterations.

LW R
A missing-cone point source on the top edge of the squarc boundary.
The half- angle of the allowed conc is tan~'(0.5
A. No iterations. R. After 20 iterations.

™ el.m3

ure 7. A missing-cone point source on a side edge of the square
boundary. The half-angle of the allowed cone is tan~” ).
No iterations. B. After 20 iterations.
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Known projections of the Estimated projections of the,
object in 8 limited angu- vbject, corrected to the
lar range; Other projec- > known projections. —(—‘Mjectiml

tions set to zero fnitially \

~
Y
Estimated object density, A priori inforsation
|Convn!ution l > Jcorrected to zero outside . on the extent and
the known extent of the location of the object
Lob!ect.

Figurc B. Radon transform iteration scheme for filling missing projections.



