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In a recent note we presented a new· geometrical description in terms 

of a muitidimensional space (i ). The dimensions of this manifold are 

expressed in terms of a generalized set of physical variables termed 

quanta! units (1, 2). These variables can be uniquely expressed as unit 

dimensions in terms of universal constants; Wheeler's "quantum of 

length" is one such dimension (3, 4). Each quantal unit, in its dimen-

sional representation, is associated with a quantized variable. The 

quantal units are one-component, single-dimensional quantities. Each 

quantized variable has an operator representation (i). We denote the 

quanta! unit dimensions of the multidimensional space or Descartes space as 

{"'lCj} and the-associated quantized variables as '"V'j'. where the index j runs 

over the dimensionality of the space. 

·The quantal units represent the geometrical structure of the manifold 

and can be expressed in metrical form as a ge-neralized Minkowski 

Metric, which is an extension of Minkowki' s four dimensional geom-

etry (-5). In the present work, we construct the generalized Minkowski 

metric for a multidimensional geometry in terms of the quantal units, 

and present new light-cone relations implied by this metric. See 

Table I for the quanta! units used in this paper. 

Invariant relations hold for ~· t) and (E_,E) in terms of the constancy 

of the universal constant, c (6, 7). We have the usual special relativistic 

expression 
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(1) 

2 where s
1 

is the four-vector invariant for (~,t) = (~ ,ti) for the vector 

length~= (xi, x
2

, x
3

) and the scalar time t = (t,O,O),where the 

index i runs i to 3. The usual four-vector invariant for (pi; E) is 

given as, 

2 2 2 2 1 E2 
s 2 = P 1 + P2 + P3 - 2 

c 

for the momentum vector E. = (pi, p 2 , p 3 ) and the scalar energy 

E = (E, 0, 0), where we use the Minkowski notation (5, 7). · 

(2) 

The concept ofinvariance is extended to include invariance in terms of 

other universal constants (including c), or quantities expressed in terms 

of universal constants, such as the quanta! units. We form a space !)'¥·} 
' ]. 

for i ~ j ~ -n..for ~orthogonal dimensions, where I'\., is the number of 

physical-variable dimensions considered for a particular space. Each 

, dimension such as space, time, momentum, or energy is considered on 

an "equal footing," forming a multidimentional Descartes space (i ). 

From any two physical-variable dimensions, IJ. and T), of the set 

{
")' .\, we can form an invariant line-element s~k in terms of the 
. Jf J 

matrix element .m'lJ jk of the. Minkowski m.etrical matrix "m.· We 

have the general expression, 

2 2 2 
s jk = 1-Lij + vm,jk TJ ij (3) 

The index i runs from i to 3, as before, and the indices j and k 

run from 1 to w. where -rv is the dimensionality of the space con-

sidered (8). 

We introduce a 11 superspace" (9) of eight components, ~= 8,· 

which is constructed in terms oi the three components of x, the three 

components of p, and the two scalars, t and E. This superspace 
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:overs a four-space, ""n/= 4, with dimensions { -xj} , where a single 

;calar component of x and p is considered so that each dimension of 

;he space is expressed in terms of a single phy.sical variable 

{ x.) = {x. t, p. E}. The metrical elements .ll'llijk of the generalized 

Minkowski metric ~ can be written as 

1 
z 

c 

1 1 z 
""""j k = c 

F Fz 
2 
c 

Fz 1 

cZF 

z 
c 
F 

1 

1 
2 
c 

1 

Fz 

z 
c 

1 

(4) 

constructed explicitly in terms of the scalar di~ensions {.,:j}. A more 

expanded form of ~for a larger dimensional space is given in Table II. 

The elements of~ in Eq. (4) are expressible e,xplicitly in terms of the 

universal constant, c and the universal quanta! force, F (Table I). 

We shall examine the manner in which this metric relates to the Einstein 

metric gal3' where a and 13 run 1 to 4. (In general, Latin indices run 

(rom 1 to 3, Minkowski notation (7), andGreek~ndices runfrom 1 to4.) 

For this particular Minkowski four- space, ~ix inva:Piant line-

z . ' . . .i 
elements, s jk, can be constructed for any tw~ physical 

variables, j.L .. and T) .. of {x.\, in terms of the constancy of th~ quanta! 
lJ 1] J ( . 

units c and F (10). The symmetry properties for each element 

""'"' - -1 -1 d ...... . 
""'~~jk of "to are """ik = llr!l.jk = ~j an tr ·•v = "'A<. 

.Returning to Eqs. (1) and (Z) and using the signature (+,+,+, -), 

we have 

(5) 

for j.Li1 = x = (x1 ,xz,x3 ) and T'li3 = (E 1 ,0,0) = E and 01111113 = 1/Fz. 

The invariant for the variable pair j.Li
4 

= E and !liz = t is given by 
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z z z z z z 
s 4 = p 1 + Pz + p3 - (F )t ; ( 6) 

and for the pair 11i1 = ~ and T)i3 = i• we have 

z z + z + z cz ( z + z z) (7)' 
s5=x1 Xz x3-2 p1 Pz+P3. 

F 

The last expression that comprises the invariant relations of this 

eight-component superspace is for the pair !liz = t · and. ;,i4 = E: 

z z z 2 
s 6 = t - (c F)E (8) 

The four-vector invariants in Eqs. (1) and ·(Z) are subspaces of the 

-=q,= 8 superspace; also, the pairs (x, E) and (p, t) form~ng the re­

spective invariants s; in Eq. (5) and s! in Eq. (6) represent four-vector 

spaces, whereas the pairs (~, p) forming the invariant s; in Eq. (7) 

represent a six-subspace and the pair (t, E) forming the invariant s~ 

in Eq. (8) represents a two-subspace. (Note that the subspaces refer to 

subspaces of the superspace ~= 8 but are termed partial spaces when 

related to the Minkowski metrical Descartes space of">{..= 4. We usually 

term the space for which we write the Minkowski metric the Descartes 

space.) 

The metrical elements for each subspace can be related to the 
. . z . 2 . . 

Einstein metric,· gaj3· For example, for s 1 and sz (Eqs, (1}and (Z)),. 

2 2 . 2 2 
we can write the Minkowski form of the invariant s

1 
= x

1
+xz +x

3 

as 

(9) 

where the indices a and 13 run from 1 to 4 so that llik=1 = x for 

i = 1 to 3 and T)ik= z = t for i = 1 i then \iYY\1 jk = gal3 for x 4 = - ict. In the 

usual notation, 
0 
1 
0 
0 L~) (10) 

. ·. ··~ 
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where c = 1 11 natural" units are chosen. Equation (1) can also be 

2 2 2 2 2 . E. . t . I • 1 1 t' . t' t t' written s 1 = x 1 + x 2 + x 3 + x 4 1n 1ns e1n s spec1a re a 1v1s 1c no a 1on 

(7); and Eq. (9) is the general relativistic form of this equation. 

The pair (~,E) invariant, s~, in Eq. (5) and the pair (£, t) invariant, 

s!, in Eq. (6) are expressed in terms of the constancy of the quantal 

force F; and to relate V\"111 jk to the metrical form ga(3' one must 

assume units in which F = 1 for a fourthcomponent x 4 = - iFE (Eq. (5)) 

and p 4 = - i 1/F t (Eq. (6)) Einstein notation (7). See Fig. 1 for light-cone 

relations for these subspaces. The pair (~,E) represents an invariant six­

subspace, and the pair (t, E) represents an invariant two-subspace. Some 

properties of six-spaces, for example invariance properties and their 

relationship to isospin space, are given by E. Y. Hsu(11 ). 

The Minkowski metric, in the representation in Eq. (4) and Table II, 

is a rank 3 matrix. Alternate form·s and symmetry properties are.given 

in Ref. (14). A contracted form and diagonal form are given in this 

reference. 

In Fig. (1a) and (1b), we can define the space-like and time-like 

events in terms of greater than or less than the velocity of light signal 

.propagation. In Fig. (1b) we could speak of momentum-like (for the 

three spatial components) or energy-like (for the fourth temperal com-

ponent) events for I'V > c or ,.,. < c signal propagation. In Fig. (ic) 

and (1d), we can define "space-like" and" time-like" quantities 

in terms of forces in the manifold greater than or less than F, the 

quantal force. Just as the velocity of light, c, is considered an upper 

bound on velocity F can be considered an upper bound on force (13). 

For a force f < F, we have an energy-like "event" in Fig. (1c) and 

a time -like "event" in Fig.(id); and for f > F, we have a space -like "event" 

in Fig. (ic) and a momentum-like "event" in Fig.(1d). Events represented 
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in Fig. (1e) and (if), relate to both c and F bounds. We usually 

speak of a light signal as the propagator of information content in the 

manifold; it is proposed that force stresses in the manifold also 

represents information (6). 

Let us look at another example Minkowski space .. If the Minkowski 

five space ('VII= 5), {")(...j_1'J = {x.t,p,E,m} , is considered, then we 

can specify ten line invariants in terms of elements of the generalized 

Minkowski metric expressed in terms of the three quantal units c, F 

and t (see Table II) which, in turn, can be expressed in terms of the 

three constants c, G and 1i, (see Table I). Note that this Minkowski 

space is covered by the supers pace of ~ = 9 dimensional components. 

Most quantal units are expressed in terms of c (associated with 

micro- and macro-phenomenon), G (associated with macro-phenomena) 

and fl. (associated with micro -phenomenon). Elements of the general-

ized Minkowski space of "11J= 10 for 

are expressed in terms of c, F, t and m in quantal unit form which 

can be expre_ssed in terms of c, G and 'fl by use of the expression in 

Table I. The expres_sions of the metric elements in Table II in terms 

·of c, F, t and m instead of c,G and 1i result in simpler and more con-

venient terms, some of which appear in Einstein's field.Eqs. (2). For 

more details see Ref. (14). The formulation of the generalized 

Minkowski metric in terms of the micro-parameter 'fl is an aspect of 

the tie-in of quantum phenomena and the geometry of our multidimen-

tional space which is is manifest as a set of constraints in cosmology (2) 

and quantum mechanics (12). The quantum properties of the quantal unit 

terminology are discussed in Ref. (12) .. The specific relationship ofthe 

generalized Heisenberg relations (12) and the metrical elements in Table II 

are given in Ref. (14). Also, simultaneous observability ofthe quantized 
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variables is discussed in this paper. The genez;al·con.cept offour-vectors. 

and Lorentz invariance is presented in terms of these quantities. 

We have pre'sented a metric, termed the generalized Minkowski 

metric, for the multidimensional space, termed the Descartes space ( 1), 

in.terms of physical variables. We have discussed in detail the 

Minkowski metric for space {~j ... "11.=4 } wh~ch is covered_ 

by ~= 8 superspace-.· · Higher order, higher dimensional 
• ::····· I 

spaces are presented and discussed in detail in Refs. (13, 14). 

The link between the quantal units as iner:t dimensions and as active 

geometrical constraints on dynamical processes may relate to the 

suggestions by G. Chew (15), that in order t!o understand elementary 

particle phenomena more completely, one may be required to 

"bootstrap space -time itself. 11 That is, pelrhaps it is the bootstrapping 

of th~ geometrical structure of a multidimehsional space that gives rise 
- J 

to the dynamical processes that occur within the "arena" in Wheeler's 

terminology (3), which we see as particle processes obeying dynamical 
I 

laws. Actually the arena is the physics (14). The bootstrap concept 
I 

is applied to a uniform formalism of the fo~r force fields in Ref. (16). 

A physical quantity, ·as a dimension of ~e manifold, cannot be 

s~parated 'from any o.ther quantity, ~8 Minko~ski suggested' for. x and t 

I 
("one cannot imagine a space without a time: or a time without a space") 

I 
when describing his concept of a four-spac~ (5). E. J. Post also 

states that matter-energy cannot exist without space-time (1 7). 
I 

It is interesting to note the comparison and equivalence of some 
I 

operator forms in Ref. {1) and Ref. (18). jThe Hermitian properties 

and Lorentz covariance of a simulat' time :operator in Ref. (1), con­

structed from the quantal units, is discuss~d in Ref. (18). 
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Table I. Universal quanta! units 

Quanta! unit 

Gft. 2 ~ )' x = 7 length 

t = ~~)!time 

Quanta! unit in 
a terms ofF, c and ft 

(c;)! 

(c~) ! 
. 1 1 

p = (c~~ )'momentum (:F) 2 

· et E = c; energy (c~F) k 

( ) 1 (:~) t eft 2 
m =. G mass 

4 
F= 

c . 4 force F 

c = c velocity c 

a=(~:/ 
1 

(c!F)' 
5 

f= 
c· 

cF G power 

L = ft angular momentum ft 

Numerical val~ of 
q uantal unit 

-33 . 
1.60X 10 em 

-44 5.36X10 sec 

4. 16 X 1 01 0 gm- em 
sec 

16 1.25X10 ergs 

-5 2.22X 10 gm 

49 
1. 22 X 10 dynes 

1o I 3.00X10 em sec 

53 2 
5. 72 X 10 em/sec 

59 em 3. 66 X 10 dyne sec 

I -27 
1. 0 6 X 1 0 erg - sec 

aThe quanta! units are expressed in terms of the quanta! force F, 
quanta! velocity c, and quanta! angular momentum ft. 

bValues used in the calculation of the universal constants (G, the uni­
versal gravitational constant; c, the velocity of light; and ft, Planck's 
constant) in terms of which the quanta! units are calculated, were 
taken from B. N. Taylor, W. H. Parker, and D. N. Langerberg, E,.ev. 
Mod. Phys. 41, 375 (1969). 
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Table !I. Generalized Minkowski Metric with Elements Expressed in Terms of c, F, t and m. 
0 

-. z ,_, 

~- ·1/x2 . 1/t
2 1/pz ! 1/E2 1/m 

z 
1/F

2 
1/e

2 1/a2 1/fz 1/L2 

' t 

~ 

J . 
.. . 

I 

z z z 1 4 t4 tz t4 t4 t ~ 

1 
.c. e ·x c F z Fz z -zz Fztz. F m me 

tz 1 t e2F 
2 z 6 F2m2 ts z 4 c2F 1 c 

z Fz 7 me me 7 c 
e 

z F Fz z 2 t2 z t2 z 
1 mt e 

p z e e m 
c2 7 c 

Ez Fz 1 1 z 1 F2tZ tz t 
1 c met 

e2F z T zz. 7 e t e t 

Fz F2 
I 

tz l· 2 t ! 
1 F2tZ 4 tz 1 m T 2 .T z z e 

c c .c c c -4-
FZt4 4 z 

c e e 

Fz 
z 1 t e2t2 cz z 1 t m t z 

7 ---zb T -,: m z 7ti T m me e 

·z '1 .t 1 . i t 4 z 
t2 t2 t e ..L 1 c ' T .F2 ·z -z - Fztz . FZt"J.· .m --rz FZt4 t m m me 

2 1 e t ' t FZt4 t t t 1 I 1 a T 7 iiit I ' met 7 ;z 7" --zz -,. 
me met .. 

-yz 
z z t z t 4 2 . 2 2 2 2 t me c c me t -r Z'4 7 7 t4 

c -2- me 7 me t 

Lz F2tZ t2 t2 t2 2 e2t4 F2e4 met3 t4 t 
c'l.F z e 

e 
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1. The usual light cone relations in Eq. (1) and (2) are 
represented in Fig. (1a) and (1b). Figure (1c) and (ld) 
represent the light cone relations for Eq. (5) and (6) and 
Fig. (1e) and (1£)' represent the light cone relations in 
Eq. (7) and (8) where q, is the null vector light cone. 
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