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I‘n‘ a recent note we presented a new- geometricai de’sci-iption in terms
of a multidimenswnal space (1) dThe' dimensions of this manifold are
expressed in terms of a generalized set of phys1ca1 variables termed
quantal units (1,2). These_vanables can be uniquely expressed as unit
dimensions in terms of universal'constants; Wheeler's ' quantum of
length" is one snch dimension (3,4). Each quantal unit, in its dimen-
sional representation, is associated with a quantized vvariable. The
quantal units are one -component, single-dimensional quantities. Each

quantized variable has an operator representation (1). We denote the

quantal unitdimensions of the multidimensional space or Descartes spdce as

{"‘j} and the-associated quantized variables as Vj" where the index j runs
over the dimensionality of the space.
" The qua.ntal units represent the geometrical structure of the mamfold
and can be expressed in metrical form as a generahzed M1nkowsk1 »
Metric, which is an extension of Minkowki's four dimensional geom- |
etr? (5). In the present work, we construct the generalized Minkowski
- metric for a multidimensional geometry in terms of the quantal units,
and present new light-cone relations implied by this metric. See
Table I for the quantal units used in this paper. |
Invariant relations hold for (x,t) and (p,E) in terms of the constancy
of the universal constant, c (6, 7). We have the usual special relativistic

expression

2 _ .2, .2 2 2.2 .
51'x1+x2+x3'Ct’. . (1)
where si is the four-vector invariant for (x,t) = (xi ’ti) for the vector

length i‘ = (xi, X, x3) and the scalar time t = (t, 0, 0), where the

index. i runs.1 to 3. The usual four-vector invariant for (pi yE) is
given as,
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for the momentum vector p = (p'i,pz, P3) and the scalar energy
=(E,0,0), where we use the Minkowski notation (5, 7).

The concept of invariance is extended to include invariance interms of
other nnivers.al constants (including c), or quantities e:ipr,essed interms
of universal constants , such as the quantal units. We form a space ) }
for1 =3 =< Wpfor . orthogonal dimensions, where " is the number of
physical—vafiable dimensions considered for a particular space. Each

.dimension such as space, time, momentum, or energy is considered on
an ”equa_l footing," forminga multidimentional Descartes space (1).
From any two physical-variable dimensions, W and 7m, of the set

{3‘ } we can form an 1nvar1ant line-element sJZk in terms of the

-matrix element .zm, ik of the M1nkowsk1 metncal matrlx ‘77& We

- have the general’ expressmn,

2

2
sjk = “ij +

i 'r]zij . ; (3)
The index i runs from 4 to 3, as before, and the indices j and k
run from 1 to v where “is the dimensionality of the space con-
sidered (8).

We introduce ; " superspace' (9) of eight_compon.ents, “Po- 8,

which is constructed in terms oi the three components of x, the three

components of p, and the two scalars, t and E. This superspace



.
overs a four-spéce,' "N= 4, with dimensions {‘x)} ) yvhere a sinéle
scaiér component of x and p is considered so that each dimension of
he space is éxpré_ssed in terrﬁé of a single phy:s:icalrvaria.ble

{xj} = {x,t,p,E.}. The metrical elerr_iénts "m‘jk of the generalized_

Minkowski metric % can be written as

1 czl < 1

—if 1 -% .c:2 o
mjk— c F (4)
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constructed explicitly in terms of the scalar diiner}siopé {’j}' A more
expanded form of M for a larger dimensional space is given in Table II.
The elements of my, in Eq. (4) are expréssible e‘xplicitly; in terms of the
gniversal constant, ¢ and the unive_rsal quantal force, F (Table I).
We shall examine the manner in which this metric relates to the Einstein
metric gaﬁ' where @ and $§ run 1 to 4. (In general, L.atin indices run
from 1 to 3, Minkowski notation (7), and Greekindices runfrom 1to4.)

- For this particular Minko&ski four-space, six inval'iant line -
e‘Iéﬁ;éﬂté, ) ,s;'ak’ c.an be coﬁstructed for any tw:) physmél
variables, My 1j and " of {x » in terms of the constancy of the quantal

units ¢ and F (10). The symmetry properties for each element

.. -1 =wy|1(j-i and try =

o of M, are v, =lﬂwjk

Returhing to Eqs. (1) and (2) and using the signature (+,+,+, -),

we have
' 2_ 2, .2,.2 1 .2 :
83 =X, +x; +Xq - —ZE 5 : (5)
F :
for py, =X = (x,,%,,%3) and n., = (E;,0,0) = E andvmw,,; = 1/F°.

The invariant for the variable pair Kig =P and pip =tis given by
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2_ 2,2, 2 2.2 -
S4 =Pyt Py tpy - (F)t7 . - (6)
and for the pair By TX and N3 =P we have

- 2

2.2, .2 2“2, 2, .2 '
s -x1+x2+,x3-}—2(p1+p2+p3)-, E {7) -

5
The last expression that compnses the invariant relatlons of this
elght cornponent superspace is for the pair . 2=t and n, 4 = E:
6,- t ( F)E L h Toe oL s -(8) -
The four vector mvana.nts in Egs. (1) and (2) are snB_spaiéea of the

"')Z’._. 8 superspace; also, the pairs (x,E) and (p,t) forming the re-

spective invariants s§ in Eq. (5) and si in Eq. (6) represent four -vector .

spaces, whereas the pairs (i'P) form.ing the invariaﬁt sg in Eq. (7)
represent a six-subspace and the pair (t; E) forming the invariant 82
in Eq. (.8)“represents a two-subspace.
subspaces of the superspace %= 8 but are termed partial spaces when
related to the Minkowski metrical Descartes space of‘){,: 4. We usually
term the space for which we w1;ite the Minkowski metric the Descartes

space. )

The metrical elements for each subspace can be related to the

_’Einste'in rhetric, g o For éxamf;le,’ for s‘2 and'.sg (Eqs_,_ (i,)va:nd -('2)),,,"

2 2.2, 2

weé can write the M1nkowsk1 form of the mvar1ant 8y = x1,+xZ +x3
2 2
-c as
2 _ o ) .
d0? = g q a0l @

where the indices @ and B run from 1 to 4 so that Big=q = X for
i=1to3 and Mig=2 = t fori =1; then sy = ga,‘3 for Xy = - ict. In the

usual notation,

1 0 0 0
_[o 1 0 o

8- (0 0 1 0 (10)
0 0 0

(Note that the subspaces refer to
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.where. ¢ =1 "natural" units are chosen. Equation (1) can also be
written si = xi + xg txq % xi in Einstein's special relativistic notation

(7); and Eq. (9) is the general relativistic form of this equation.

The pair (x,E) invariant, si, in Eq. (5) and the pair (p, t) invariant, .

si, in Eq. (6) are expre_ssed in terms of the constancy of the quantal

force F; _énd to relate Vm’j’k to the metrical form gaﬁ’» one must

assume units in which F=1 fé_l_' a fourt_h,component Xy

- - iFE (Eq. (5))

~and Py = -1 1/Ft (Eq. (6)) Einsteinnotation (7). See Fig. 1 forlight-cone .

relations for these subspaces. The pair (x,p)represents aninvariant six-
sﬁbspace » and the pair (t, E) represents aninvariant two-subspace. Some

properties of six-spaces, for example invariance properties and their

. relationship to isospin space, are given by E. Y. Hsu(11).

The Minkowski metric, in the repreéentation in Eq. (4) and Table 1I,

"is a rank 3 matrix. Alternate forms and symmetry properties are given

in Ref. (14). A contracted form and diagonal form aire given in this
reference.
In Fig. (1a) and (1b), we can define the space-like and time-like

events in terms of greater than or less than the velocity of light signal

_propagation. In Fig. (1b) we could speak of momentum-like -(for the

three 's_pétial'c.qmpdnents) or energy-liké v(f_o.r.'t,he fQurthftempé‘fal;‘com-
p‘onentz) bevents for &> cor ar< c signal propaga;tion. In Fig. (1c)
and (1d), we can define " space-like‘i and ' time -like'' quantities

in terms of forces in the manifold greater than or less than F, the
quantal force. Just as the velocity'of light, c, is considered an upper
bouﬁd on velocity F can be considered an upper bound on force (13).

For a force f < F, we have an energy-like "event" in Fig. (1c) and

a time -like "event'' inFig(1d); and for f > F, we have aspace-like "event"

in Fig. (ic) and a momentum-like "event'" in Fig(1d). Events represented

6
in Fig. (1e) aﬁd (1f), relate to both ¢ gmd F bounds. We usually
speak of a light signal as the propagator of information content in the
manifold; it is proposed that force stresses in the manifold also
represents information (6).

Let us lock é.t' another example

Minkowski space. _If the Minkowski

five space (W= 5), {%j—- w} = {x,t,p,E,m} , i8. considered, then we

_can specify ten line invariants in terms of elements of the _generalize'd ‘

Minkowski metric gxprésséd in terms of the three quantal units c, F

and t (see Table II} which, in turr_1; can be expressed in terms of the
three constants ¢, G and .‘ﬁ » (see Table I). Note that this Minkowski -
space is covered by the superspace of %= 9 dimensional components.

Most quantal unif:s are expressed in terms of ¢ (associated with

micro- and macro-phenomenon), G (associated_ with macro-phenomena).
and h (associafed with micro-phenomenon). Elements of the: genéral-
ized Minkowski space of 'W=> 10 for {xj} = {x,t,p,E,m,F,c,a,‘P_,L}

are expressed in terms of c,F,t and m in quantal unit form which

can be expressed in terms of ¢, G and h by use of the expression in

Table I.  The expressions of the metric elements in Table II in terms

cof ¢,F,t and m instead of ¢c,Gand h result in simpler and more. con-

" venient terms, some of which appear in Einstein's field Egs. (2).” For.

more details see Ref. (14). The fc}rmulation.of the géne.l%alized; .
Minkowski metric in terms of the micro-parameter h is an aspect of
the tie-in of quantum phenomena and the geometry of our multidimen-
tional space which is is manifest as a set of constraints in cosmology (2)
and quantummechanics (12). The quantum properties of the quantal unit
terminology are discussed in Ref. (12). .The specific rellationship of the
generalized Heiseﬂbe rg relations (12) and the metri‘cal‘elements in Table II

are givenin Ref. (14). Also, simultaneous observability of the quantized
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variablesisdiscussedinthis paper. The generalconcept of four-vectors

and Lorentz invariance is presented interms, ofé these quantities.
We have presented a metric, termed the generalized Minkowski
metric, for the multidimensional space, termed the Descartes space (1),

in terms of physical variables. We have discussed in detail the
Minkowski metric for space {xj_’ w=4} which is covered

C by Y-8 superépaceﬁ.~- -~ Higher order, highiér_dimensioﬁa.}

Rt

-spaces are pi'ésented and discussed in detaii; in Refs. (13,14).

The link between the quantal units as inert dimensions and as active
geometrical constraints on dynamical processes may relate to the .

suggestions by G. Chew (15), that in order t!o understand elementary

particle phenomena more completely, one may be required to

""bootstrap space-time itself.' That is, perhaps it is the bootstrapping

of the geometrical structure of a multidimexfxsional space that gives rise
to the dynamical processes that occur within the ''arena' in Wheeler's

terminology (3), which we see as particle pl"'ocesses obeying dynamical

laws. The bootstrap concept

Actually the arena is the physics (14‘).
is applied to a uniform formalism of the four force fields in Ref. (16).

A phy‘si'c“é.l qpé.ntitf.';as a‘_dixvne",ns»idn of -fhe manifol'd.c_a'rmot B_e ,

separated from any other quantity, as Minkojws_ki suggested for :_:"z'rnd”t '

. . . . . .
(" one cannotimagine a space without a time or a time without a space'')

when describing his concept of a four-space {(5). E. J. Post also
g

- states that matter-energy cannot exist without space-time (47).

It is interesting to note the comparison fmd equivalence of some
operator forms in Ref. (1) and Ref. (18). iThe Hermitian properties
and Lorentz covariance of a simular time ioperator in Ref. (1), con-

structed from the quantal uﬁits. is discusseéd in Ref. (18).

|
i
i
!
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‘Table I. Universal quantal units

. al uni P ‘
Quantal unit in Numerical val%e of
t

Quantal unit - "~ terms of F,c and h? =~ ‘quantal uni
_ 1 1 S
’ 2 ) +f 2 ' . _ .
X = @- length = R 1.60X10 33 cm
., h . . -
t.= <:Gg—]-> time o <E?‘> o S , 5.36 X10 44 sec
34)° | AE) o |
_ |eh ' hEY C 10 gm-cm
p = |~ momentum (c | S 4.16X10 Sec
- v' CS 2 2 ‘ - . 16
E =1\ G energy <CﬁF : Lo : 1.25X10" " ergs
' o 1 1 Sl _
e |2 o AR\ 2 Lo -5
‘m =<—G> mass <:3—> : o 2.22X10 7 gm
F= —% force F o 1.22X1049 dynes
c = ¢ velocity c , o 3.00X10 cm/sec
7\ 2 3. :
a= <éﬁ> | (CﬁF> 5.72X10°> cm/sec?
P-= -9—5- power | cF o 3 66><1059 dyne ==
.' G ' ' o T yne sec
L = f angular momentum *h L 1.06X10° " erg-sec

2The quantal units are expressed in terms o f the quantal force F,
quantal velocity ¢, and quantal angular momentum. .

| bVa;lue's used in the calculation of the universal constants (G, the uni-

ve'rs'_al-gravitational constant; c, the velocity of light; and f, Planck's
constant) in terms of which the quantal units are calculated, were -
taken from B. N. Taylor, W. H. Parker, andD N. Langerberg, &ev.
Mod Phys. 41, 375 (1969). S




-12-

’ Tablell. Generalized Minkowski Metric with Elements Expressed in Terms of ¢, F, ¢t and m.

IRV SV 1/p2 1 1/E2 . 1/m? - /R 1/ 1/t 1t /1.2
. &2 <2 4 ct ¢t 2 A4 b 1
F o Fz Fz mz mzc _th
| .
[ : - o
' 2 5 2
1 1 b2 c 2 6 2 2 t” . 2 4 c°F
i —— - m ¢ F'm —_ m
& Fe ¥ < R
‘ 2 2
—Fz Fz i cz ¢.:z tz m2 mt ——; <
c ' c t
g2 L * T OO
czF ? tz cztz tZ
2 2 |2 2
F- F 1 , t N t thz c4 tz 1
L. c? :2— :i c 4 24 3 3
' i ) ¢ F°t e c
2 2 :
m 1 i 2,2 - 2 1 i
- - ct 1 m 2 -1
t m-c ¢ i : :2- ti m ‘ :2 N c't
1 4 B T Y Y . 2 & 1
tz "Fzﬁiz mz ’ thz’ th ' m mzcz th4
1 c i it 1 1 . 1 1
t ts mt mct c4 ;2 :i- mZCZ mect
22 2 4 22
m ¢ 1 c 1 c 2 m 22 1
~5— —_— c m ¢ i 3
t4 mzc4 tz tz t‘ tz t
2 2 ;
thz t t tz 2 2.4 2 4 3 4

- -3 ' c ct - Fc mct t _ t.
c'F c ! ‘ . :

ok
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Fig. 4. The usual light cone relations in Eq. (1) and (2) are
represented in Fig. (4a) and (1b). Figure (1c)and (1d)
represent the light cone relations for Eq. (5) and (6) and
Fig. (1e) and (1f) represent the light cone relations in
Eq. (7) and (8) where ¢ is the null vector light cone.



