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One of the most familiar problems in classical physics, the 

analysis of damped motion, gives rise to a significant amount of 

puzzling features when extended into the realm of quantum 
1 2 mechanics ' . Recent developments in nuclear physics, especially in 

the field of heavy ion collisions and, to a lesser extent, nuclear 

fission, have stimulated both the necessity and the interest in the 
3 4) problem of quantal damped motion ' . The major approaches to the 

subject can be classified into three groups. In one of these we may 

consider treatments based on time-dependent perturbation 

This 
5,6) 

r e -i \ 

theory ' ' ' that give rise to transport-like equations. This 

category includes the finite-temperature linear response theory 
that leads to a Fokker-Planck equation, the zero-temperature perturba
tion method that provides equations of motion for the fluctuations 
of the quantal trajectory, and the quantal master equation based on 
zero-temperature linear response theory . Another group could 

include the frictional Schrodinger equation that can be extracted from 
9) Liouville-Von Neumann equation ' with the help of perturbation 

methods. The third major category could contain the several attempts 

to construct a frictional Schrodinger equation with a non-linear 

Hamiltonian that provides a satisfactory description of the classical 

limit 1). 

This listing is far from exhaustive and the field is at the moment 

receiving contributions from various different standpoints (see 

for references regarding other methods of quantizing damped motion). 

Recently, the possibility of describing the relaxation of the charge 
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asymmetry in c heavy ion collision via a damped, time-dependent, 

quantal harmonic oscillate;"1 pointed out the convenience of 

reviewing these methods and selecting the most adequate for the 
2) problem . In the case of interest, the nature of the system being 

studied casts some doubt on the legitimacy of perturbation-based 

treatments, due to the comparable time scales, or characteristic 

energies, of the damped collective mode and its thermal environment. 

Furthermore, the time-dependence of the inertial, potential and 

dissipation parameters of the oscillator prevents the use of formal

isms that rely on frequency-dependent, rather than time-dependent, 

transport coefficients. Lastly, the appearance of overdamped oscilla

tions and the need to achieve relaxation of the mode towards a steady 

state, as suggested by experiment / pose further restrictions on 
the picture to be selected. The non-linear Schrodinger equation 

12) 13) 
derived by Kostin and Kan and Griffin proved to fulfill 

2 11) every requirement of the model for charge asymmetry equilibration ' 

The purpose of the present work is to reexamine the approaches 

towards the construction of a non-linear frictional Hamilton!an and 

discuss the significance of dissipation in the quantal limit. It will 

be shown that, although the correspondence principle indicates that 

the center of damped wave packets must move along the classical tra

jectories, the quantal picture does not correspond to a dissipative 

process unless the non-negligible fluctuations evolve towards 

asymptotic values. We will restrict ourselves to the study of the 

motion of a particle in presence of a conservative quadratic potential, 
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V(x) = |k(x - x Q ) 2 (1.1) 

that includes both free and free fall motion, in addition to the 

harmonic one. The derivation, although based on a particular 

assumption - the conservation of the gaussian shape of wave packets 

undergoing damped motion - is illustrative enough for the purpose of 

understanding the role of quantal fluctuations in the nonlinear 

frictional Schrb'dinger equation. It should be borne in mind that all 

known frictional Hamiltonians conserve the gaussian shape and that 

this shape is suitable for a large number of applications regarding 
1 ? 4 11) free, free fall and harmonic motion ' ' ' 

In Section 2 we illustrate the construction of a frictional 

Hamilton!an that cause gaussian wave packets to move along the 

classical damped path. This derivation is valid for the full time-

dependent problem in which the parameters k and x in (1.1), as well 

as the inertia m and the friction coefficient Y, are given functions 

of time. In Section 3, we study in detail the consequences of assum

ing that the coefficients of the quadratic terms in the frictional 

Hamiltonian are time-independent. We show that a family of 

Hamiltonians can be derived and they do not correspond to harmonic 

motion. This destruction of the original system under analysis can be 

traced to the neglection of fluctuations in the frictional term. 

Section 4 summarizes the properties and consequences of Schrodinger-

Kostin equation, which gives the proper dissipative behavior of the 

damped oscillator We also discuss the evolution of time-dependent 

wave functions towards stationary oscillator states. The conclusions 

are presented in Section 5. 
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2 < Derivation of the generalized frictional Hamiltonian 
we will assume that the system in the quadratic potential well 

(1.1) is subject to dissipation via a linear frictional force, 
F = - YP and can be described, at all times, by a gaussian wave packet 
(GWP). Following Hasse ' ' we write 

" ° ( " ' t ) = 7^x)~1 7 4~e x p |" & + * ( p * ' e ) } ( 2 , 1 ) 

We utilize the following notation; 

X = x - x (2.2a) 

P = P - P (2.2b) 

where 

x = <x"> , (2.3a) 

P = <P> (2.3b) 

are the first moments of the wave function. The quantity e is a real 
phase and a is a complex width whose relationship to the fluctuations 
or second moments, 

x = < X 2 > (2.4a) 
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t = <P2> (2.4b) 

c = \ <{X, P}> (2.4c) 

can be summarized in the expressions, 

1 l l o l f T / . . - 1 2 o \ ,0 C \ 

^ + i h7 ^ N / T ^ K 1 - ) (2-5b) f 2 

a 

We assume that the cnaracteristic GWP condition, 

2 h 2 , 
x t - o = T (2.6) 

is preserved during the time evolution of ̂  . Our aim is to find a 
frictional Hamiltonian 

H = T + V + W (2.7) 

such that ip is a solution of the wave equation 

i h > 0 = H* Q (2.8) 

Substitution of eq. (2.i) into (2.8) yields the following constraint, 
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_ i t l 7 J ! + i h x 2 Ag - P X * gjj + e 
da 

.2 fc2 „, „ Ww, 
JL. _ il... x + V(x) + " (2 9) 

2ma 0 
Eq. (2.9) shows that W has to be a second-degree polinomial in X, P. 
We choose to represent it as 

"2 * „ * * 
w =

 p__ + Y_ { X ) P } + k x 2 + Y p X _ i_ .. y % _ k_x ( 2 1 0 ) 

2m c L 2m ^ 
* * * where m , Y and k are unknown functions of y. The coefficient 

of the linear term has bee:) selected so that Ehrenfest's theorem, 

p = _ <1_ (V + w)> (2.11) 
3X 

becomes identical to the classical equation of motion, 

P = - k(x - x Q) - YP (2.12) 

The independent term has been chosen to yield a vanishing average for 
w. This selection guarantees that the energy of the damped system 
(i.e., E = <H>) coincides with the expectation value of the kinetic 
plus potential operators. 

With the shorthand notation 
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1 1 . 1 . , * ,, 0 * k x 
" m m ° 2m 2 

we can extract the equations of motion for n(t) and p(t) as follows: 

2 
ifid = - — + <a 2 + 2ih y* a (2.13a) 

Eq. (2.13a) is equivalent to the fol lowing system 

x = 2y x + 2 - (2.14a) 
M 

2Y i> - 2<a (2.14b) 

<x + z (2.14c) 

hi addition, the energy of the system varies in time according to the 
law, (disregarding the conservative variation associated with the 
time-dependence of < and u), 

In the correspondence limit, fluctuations vanish and we recover the 2 
classical law, E = -YJjp In the quantal situation in which fluctua
tions are not negligible, according to eqs. (2.14) the energy rate 
takes the form 
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which indicates that the time-evolution of the second moments of the 

wave packet is crucial to guarantee dissipative behavior, i.e., E _< 0 

at all times. The importance of the role of fluctuations in dissipa-
7 9) tion has been stressed by Hasse ' . One should keep in mind that 

for sufficiently long times, E > 0 is to be expected. This observa
tion corresponds to the fact that the system cannot decrease its 
energy beyond the ground-state. 
3. The _t l^e-independent qsc lJJ a tor 

Let us assume that the inertial, potential and frictional 
parameters of the oscillator under study are given constants. In this 
situation, the assumption that k , m* and y* in W are also con
stants allows an analytical solution for the fluctuations as functions 

"A" 1 -k 
of time. The particular case k = -j- = 0 and y proportional to y 

1 4) m 

has been considered by Hasse . We readily find the general 

linear solution for the system (2.14), 

(:)• i e V (:;) 
with the eigenfrequencies \. = o, ± 2m, where co plays the role of 

the shifted frequency of a damped oscillator. In fact, if we 
* introduce the "total" frequency a , 
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fl*=JI (3.2) 
* u 

we have 

1*9 *? 
» = Vn - Y (3.3) 

This is identical to the shifted frequency of the classical damped 
* 1 * Y 1 4)i oscillator when k = -* = 0, i = ̂  (see ' ' ) • We can see 

m 
that the solutions (3.1) correspond to an undamped system, since 
E(t>°°) ̂  0 (cf. eq. (2.16)). This example indicates that damping in 
quantum mechanics demands damping of the wave function at least, up to 
the second moments. In the situation we are considering, the wave 
function (GWP) is fully described by its first and second moments. 
However, the particular selection of the coefficients in the fric
tional term W gives rise to a nonlinear Hamiltcnian that depends only 
on the first moments. We see from the above discussion that this 
partial dependence of the frictional Hamiltonian on the wave function 
is insufficient to yield the expected dissipative behavior. These 
considerations thus suggest that W should depend on on the second, as 
well as the first, moments. In such a case, one can expect the oscil
lating pattern depicted in eqs. (3.1) to change into an asymptotic 
evolution of the fluctuations towards steady states. 

It is of interest to note that the system (2.14) admits the 
time-independent solution^ 
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x = «— (3.4a) 

t = ^ (3.4b) 

o = - * • * - ( 3 . 4 c ) 
l i s s 

These values are to be compared with those of the ground-state of the 

undamped osc i l l a to r , 

A < 3 - 5 a > 

ft (3.5b) 

„ = 0 (3.5c) 

The quantities displayed in eqs. (3.5) should constitute the 

asymptotes of the damped fluctuations x(t), t(t) and o(t), in corre

spondence with the fact that damping cannot have any effect on the 

zero-point motion. In other words, one could say the process under 

study is characterized by a frictional force that vanishes asympto

tically, as the particle approaches a helt. The frictional 

Haruiltonian thus becomes identical to the unperturbed one, except for 

an irrelevant constant, and the system must evolve towards the 

unperturbed ground-state. 
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Since the frictional term W with constant coefficients does not 

represent a quantal damped oscillator, it is of some interest, before 

giving up the subject, to understand which is the object described by 

this particular Hamiltonian. This is a simple project in Heisenberg 

representation: let x(t), p(t) be canonical conjugate Heisenberg 

operators. With the help of eqs. (2.2), ^2.7) and (2.10) we can write 

the Hamiltonian as 

H = \ V T(t)M v(t) + N (t). V (t) + C (t) (3.6) 

where 

* P -Y x - i L 

* 
m 

M0 - k x + (Y - y ) P/ 

(3.7a) 

(3.7b) 

(3.7c) 

2 
C(t)= | k x 2 t ^ Y + £ _ + (Y* _ Y ) x p + w (3.7d) 

2m 

The quadratic form (3.6) can be reduced to canonical form, 
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H = J v'(t) M V (t) + c'(t) (3.8) 

with 

V = V - V (3.9a) 

A ( x - x Q ) + [-̂- + Y*(Y-Y*)]P 

V1'-^ o i , * kx 
, 2 - *) x + (X-- I)P + .-Jl 

(3.%) 

C (t) = |fv'(t). V 0(t; + (;(t) (3.9c) 

and diagonalized afterwards. Let us choose ':he adimensinnal notation, 

;3.10a) 

We easily obtain 

[3.10b) 

H = [, * * •- 2 , * * * ? 1 to -Y Jn + (n
 + Y k (3.11) 

where the principal axis n, £ are given by 

€ - IT (3.12a) 
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C = ±~/~ (3.12b) 

A reduction to occupation number representation via the boson operators 

j * * I * * 
!3.13a) 

* * | * * 
—7" *> - i J-'-T--^ (3.13b) 

allows us to write 

H = ho)(a+a + j) + c (t) (3.14) 

We realize that the system described by the Hamiltonian (3.6) is a 
harmonic oscillator with the shifted frequency u, undamped, whose 
time-independent spectrum rests on the time-dependent referencp level 

i 

C (t). For sufficiently long times, this reference level becomes 
identical to W plus a constant (ef. eqs. (3.7) and (3.9)). These 
harmonic oscillations, however, take place along the "normal" 
coordinate r{, rather than along the physical coordinate x. The 
explicit time-dependence for the Heisenberg operators x(t), p(t) can 
be recovered with the help of the equation of motion for a, 

iha = [a,H] = o>a (3.15) 

and its hermitian conjugate. The solution reads, in terms of the 
displaced operators x (t), p (t), 
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X ( t ) (cosut + ^ - s i r i w t ) x ' ( o ) + 1 1 " - ^ - p ' ( o ) :3.16a) 

i 2 , * i 

p ( t ) = - ^-- s in lot x (o) + /cos .'ot - - - sin u t ) p (o) (3. 16b) 

This result should be compared with the corresponding one for the 

undamped oscillator with frequence a = •»/— , 

x(t) = cos:;..t x(o) + -1-n— p(o) (3.17a) 

p(t) = - y/sin ;.'t x(o) + coswt p[o) (3.17b) 

It is interesting tn quote here the solution obtained by Ford, Kac ar.d 
14) 

Mazur for the Heisenberg operators of an oscillator that under
goes brownian motion. Disregarding the terms associated with the 
fluctuating part of Langevin force, these operators are, in the 
present notation, 

x(t) = exp sinmt 
ma 

P(t) exp 

(" T~) \{C0Swt ¥ ̂  sin , j t) *(°) + 

f- ^-x) |--ma)Sinitft x(o) + (cos«t - X- sinutj p(o) 

(3.18a) 

13.13b) 

The remarkable point here is that the Heisenberg operators themselves 

exhibit attenuation. This ought to be regarded as a characteristic 

feature of the quantal damped system and it could be considered as a 

"trial test" to decide whether a given Hamiltonian representation 

provides a sensible approach to the problem of dissipation in quantum 

mechanics. 
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4. Di ssjj3_a_ti^ve_Ham[Uonj_an and[jionstat^onarywave functions 
12) Kostin ' put forward a nonlinear, frictional Schrbdinger 

equation for a Brownian particle on the basis of the Langevin equation 
14) of motion for Heisenberg operators given by Ford et al. . This 

13) approach was completed by Kan and Griffin who obtained the same 

equation within a hydrodynamical picture and provided a clear physical 

interpretation of the significance of the frictional term in the 

Hamiltonian . More recently, Skagerstam ' derived an identical 

equation on the basis of stochastic mechanics. These independent 

derivations provide a solid foundation for this approach. Its useful

ness has been recently tested in a variety of examples concerning 

.11) 

2) variable mass systems ' and in a full description of the time-

dependent charge equilibration process in heavy ion collisions 
In this section we shall concentrate in the analysis of the asymptotic 

behavior of the wave functions that satisfy Schrodinger-Kostin (SK) 

equation. 

"mis wave equation reads 

i h l | l = |Vv-J|p ( l n t _ ln<4>)L (4.1) 

13) If the wave function ip is expressed in complex notation as 

« = rfexp(- ^ \ • (4.2) 

the frictional contribution to the Hamiltonian takes the form 
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W = - m Y(S - < S >) (4.3) 

In the case in which ^ is a GWP (eq. (2.1)) we obtain the explicit 

representation 

W = ?£-- + ypX - ^ (4.4) 

Tnis frictional potential is of the general form (2.10) with 

k* = 11 , y* = 4 = 0. 

The equations of motion tor the complex width, real phase and 
fluctuations can be easily extracted from eqs. (2.13) and (2.14). It 
is clear that the system (2.14) becomes non-linear and it has been 

2) shown that these fluctuations evolve in time towards steady 
o 

values, allowing the energy rate E to vanish asymptotically. When the 

variable parameters of the oscillator tend towards con^f-a^t values, 

the final state of the GWP is the oscillator ground state associated 
. . . 2) 

with the asymptotic inertia and stiffness '. 

The GWP is a particular type of solution of the frictional 

Schrodinger equation . Kan and Griffin ' have shown that when 

the mass, stiffness and damping parameters are time-independent, the 

SK equation admits a complete set of stationary solutions, namely, 

those of the undamped harmonic oscillator. This puzzling feature 

becomes more understandable in view of the fact that harmonic 
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oscillator wave functions whose centers move along the classical 
damped trajectory, are also solutions of SK equation '. These 
moving wave packets evolve in time towards the stationary, unperturbed 
oscillator eigenfunctions, that appear as temporal asymptotes for the 
damped motion. However", we still wonder about the type of wave 
functions that are to be expected for the oscillator with time-
dependent parameters, including damping. It is a straightforward 
exercise to show that the functions 

J2NN1 \[?7\ 
X2 ;+ i (PX - «jl »J4^ . * N ( X , t ) = 7 = ^ ^ e x P < | - ^ ^ ( P X - 6 N ) | H ^ , (4.5) 

where H„(Z) is the N-th Hermite polynomial, are solutions of SK 
equation (4.1). Here a is the complex width that satisfies the 
equation (cf. eq. (2.13a)). 

ih; = - J k + (k(t) +lti!-<0 « 2 , (4.6) mTtl 

x is given by eq. (2.5a) and e N is related to e in eq. (2.13b) by 

A complete and more sophisticated derivation of the solutions (4.5) 
can be traced to the theory of invariant operators ' ^ and is out 
lined in the Appendix. Since the system (2.14) that rules the 

4) evolution of the three fluctuations can be decoupled , we obtain a 
closed-form equation for x 2 ) , 
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XX X~ - xx (T(t) - m ( t' 
m ( t V 2rri (t) 

(4.8) 

For very long times, the solution of this equation tends to the 
value 

rm si 
(4.9) 

hk 
Correspondingly, <b and a = 0. 

We see that the nonstationary wave functions (4.5), not only travel 
along the classical path, but the "oscillator length" associated with 
x also evolves towards a steady value. The function *., possesses 
the following asymptote, 

v^vTj^T 
exp 

'?. 

' 2x 
(4.10) 

The noticeable aspect in these observations is the fact that in 
the quantal picture of damping by means of a frictional Hamiltonian, 
we can find a complete, time-dependent set of states that decay 
towards the unperturbed stationary states of the harmonic oscillator. 
This corresponds to the intuitive motion that damping cannot have any 
effect on any stationary state; it seems then necessary that such a 
set of sharp, well-defined states be eigenfunctions of the damped 
Hamiltonian for sufficiently long times. 
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The evolution of an arbitrary solution of the time-dependent SK 
equation can be analy ed with the help of the set {ih.} given by 
eq. (4.5). The completeness of this set is obvious insofar as the 
time variable is regarded as a parameter. Accordingly, for each value 
of t. we can write an expansion, 

no 

*(t) = S CN'*N(t) ( 4- U ) 

For this expansion to be valid at all times, we must allow a time-

dependence in the set (c.,L flow, the nonl inearil.y of SK equation 

prevents us from writing an explicit expression for H(i|,)iK.. 

However, we can represent this result, for every t, as 

H (<Kt)) * N(t) = ^ dj] ̂ (t)) * M(t) (4.12) 
M=0 

with nonlinear coefficients dM(i)j). The wave equation 

ihiKt) = H(i(;)i(i(t) gives rise to the following nonlinear, coupled 

equations for c J t ) , 
1'- ; 

ihcN(t)= ^ N + | ) ( k x * J + T « ) + ^ + k f ] c N (4.13) 

+ AfT(p - \\;) c^ - >/7("N+rr ( p + 1 4 x) c N + 1 

+ m | SwT) | t ( a -)c N _ 2 

oo 

a M=0 
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A close look at eq. (4.13) leads to the conclusion that for a very 

long time the coeff ic ients c N become constants. Indeed, i f we 

consider that in th is l im i t the f r i c t i o n term '/J(^) vanishes, H(i|i) 

becomes l inear and we can draw the fol lowing symbolic sequence, 

h>N > i l i * N > e N * N > hS2m * N (4.14) 

which upon substituion in (4.13) together with (4.7) and (4.9) brings 

cancellation of the r .h .s . This woiild indicate that in p r inc ip le , the 

arbi t rary wave packet would move towards a superposition of 

stationary states for the asymptotic Hajniltoniam. However, as pointed 
20) * 

out by Kostin ' the condition E = 0 that must occur for 

su f f i c ien t l y long times is only consistent with a steady wave 

funct ion. In the present stage, we cannot extract further information 

from eq. (4.13) and some more investigation is necessary to determine 

which is the f i na l state of i//(t), 

5 • Conclusions 

A quantal description of damping must exhibit dissipation 

features, i . e . , E<o, at any level , in the extreme quantal l i m i t , as 

well as in the classical l im i t where the energy rate must coincide 
2 

with the well-known expression E = -v— . When quantum numbers are 

small, i . e . , near the ground-state or low excited states, the presence 

of non-zero quantal f luctuat ions may y ie ld a d i f ferent expression for 

the t ime-derivative of the expectation value of the energy operator. 
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In this case, the evolution of these fluctuations must take place in a 
way that guarantees £<o at all times and E»0 for very long times. A 
close look at eq. (2.15) indicates that the coordinate and momentum 
fluctuations must evolve towards constant values, i.e., the second 
moments must be damped. When the wave function under consideration is 
a gaussian wave packet, this "dissipation condition" is equivalent to 
the statement that the wave function itself must be damped and evolve 
towards the unperturbed ground-state. This consideration is further 
supported by the time-dependence of the Heisenberg operators for an 

14) oscillator exposed to a Langevin-type force' . 
12) In agreement with these analysis, the Kostin ' and Kan and 

Griffin ' picture of quantal damped motion provides wave functions 
that move along the classical damped paths towards a stationary state 
of the asymptotically unperturbed Hamiltonian. This behavior is to be 
regarded as a peculiarity of quantal systems subject to loss 
mechanisms that provide, in the average, a linear frictional force. 
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acknowledges useful conversations with Dr. W. D. Myers and many 
clarifying discussions with Dr. J. Randrup, and warm hospitality with 
the Nuclear Theory Group at Lawrence Berkeley Laboratory. 
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Appendix. The invariant operator. 
One can easily verify that the following operator, 

J = | IxP 2 + 4 X 2 - a {X,P}| (A.l) 

is an exact invariant of the motion for the frictional Kostin 
Hamiltonian H = T + V + W(ij; ), W given by eq. (4.4). It means, J 

19) satisfies the conservation equation ' 

i ff + [J,H] = 0 (A.2) 

Eq. (A.2) can be readily proven with the help of the set of equations 
(cf. eqs. (2.14) and 4.4)) 

2 ^ (A.3a) 
m 

2 -2ko -2*2- (A.3b) x 

o' = - k X + f - Y a (A.3C) 

in addition to the classical equation of motion p = - k (x-x ) - YP» 
x = ^ and the commutators [X,H], [P,H],. It is interesting to 
recall that the operator J in (A.l) is an exact invariant as well for 

21) a time-dependent, undamped harmonic oscillator '. In fact, it can 
be shown that J is the invariant operator for any motion consistent 
with the gaussian shape , since the symmetry associated with this 
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constant of the motion is, precisely, the minimality of the 
o generalized uncertainty relationship x$ - o (cf. eq. (2.6)). 

With the help of the operator J it is a simple task to derive 

solutions of the time-dependent Schrodinger-Kostin equation. First, 

the eigenvalue equation 

J*M (X,t) = x M y x . t ) (A.4) 

18) gives us a complete set J <t>J that contains the time as a parameter , 

Secondly, it is possible to find real phases e N(t) such that the 

functions, 

* N(t) = * N(t) exp - £e(t)j (A.5) 

1 Q\ 

are so'iut'ons of the wave equation ih^N = Hi|i (see ' ) . These 

phases are given by 

e N = <" I " " l n i t ' (A.6) 

Eq. (A.4) can be solved according to the following steps. We 

diagonalize J in (A.l) by means of the boson operators, 

^ (P - i - X) (A.7a) 
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D + = v5I (p + j \ x) (A.7h) 
h 

such that [D,D 1 = 1 fA 7'^ 

and obtain J = |- (D + 0 + |) (A.8) 

We can now find the structure of the vacuum * , 
o 

D<t>Q = 0 . (A.9) 

With D given by (A.7a) and recalling the significance of the displaced 
operators X and P (ef. eqs. (2.2)) we get, 

*o o r e x p | - ^ + F p X > ( A - 1 0 ) 

The remaining eigenfunctions *.. are 

• .. = < X|N> with | N> = ^--'-- | 0> (A.11) 
/NT 

I f we express 

<X|= 2 * N < N | (A,12) 

and write the eigenvalue equation < X| X = X<X| , with 

X = - i / T ( D + - D) , (A. 13) 
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we readily find the recurrence relationship, 

X ^ - i v/xN" <t»N_1 + i >/x(N+l) * N + 1 = 0 (A. 14) 

In virtue of the recurrence properties of Hermite polynomials, this 
establishes that .. must be of the form 

With the proper normalization, the eigenfunctions of J are found to be 

where the explicit time-dependence is displayed in x, a, x and p. 
Expression (A.6) can also be evaluated using the properties of the 

+ ladder operators D, 0 , the inverse of transformation (A.7) and the 
representation 

H 4 ( k + ^ ) " x 2 + S - P X + ^ + ? M x - x o ) 2
+ f e - I f ( A. 1 7) 

After some algebra, we find the diagonal matrix elements 

<N|H|N> = ( N + £ ) (kx + J + Y a ) + \ k(x-x Q) 2 + fjj - I | (A.18) 
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and 

<N|>> . - I N ( k x + | + Y c . - ^ ) • < 0| | ^ | 0> (A.19) 

which leaves the phase of the vacuum undetermined. Since it is 

convenient to settle this phase according to the general equation 

(2.13b) (for this particular case, u ~ m and W = - i^-), 

combining this requirement with (A.18) ana (A.19) we obtain the 

equation of motion, 

which proves that the wave functions i|*N(t) in eq. (4.5) are the 
nonstationary solutions of SK wave equation. 
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