
Submitted to Physical Re·.riew D 

··~-

l~~- ···-·"' .. ~ ... --·- -· 

L!bMf, , ~ ... o 
~'CUMENTG '':T~"f<t-t-"' 

LBL-1042 
Preprint 

SCALING IN HADRONIC COLLISIONS 2 
AND THE NEW KINEMATIC VARIABLE n 

E. Leader and M. R. Pennington· 

September 11, 197 2 

AEC Contract No. W-7405-eng-48 

c./ 

For Reference 

Not to be taken from this room 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



·• 

·.,, 

-1-

SCALING IN HADRONIC COLLISIONS 

AND THE NEW KINEMATIC VARIABLE 

E. Leader 

Department of Physics 
Westfield College 

University of London 
London NW3, U.K. 

and 

M. R. Pennington 

2 * 
n 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California _94720 

September ll, 1972 

ABSTRACT 

LBL-1042 

We present the underlying theoretical motivation for the 

recently introduced kinematic variable 
2 

n . Scattering amplitudes 

.are considered· as functions of and 
2 n , and asymptotic formulae s 

for s -+ 00 at fixed n
2 are derived. It is shown empirically that 

many diffracti ve reactions appear to scale, i.e. , they 'show little or 

no energy dependence when considered as functions of 
2 

n . The 

shrinkage of dcrjdt versus t, seen in many reactions at present 

energies, is predicted to die out with increasing energy. It is 

shown that pp -+PP scattering should antishrink. Several reactions 

are studied: 
+ :r :n:-p -+ :n: p, rp -+ pp, TP -+ ¢p, 

* pp ~ pN . Speculative predictions are made for a. kirid of "super-

scaling" in inclusive reactions and in deep inelastic eiectron 

scattering. 
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I. INTRODUCTION AND MAIN RESULTS 

2 
n In a recent letter1 we introduced a new kinematic variable 

(whose origin lies in certain group-theoretical considerations) in 

terms of which high energy scattering data show remarkable regulari­

ties. In the above mentioned letter we were content to.discuss some 

of the phenomenological consequences, mainly in connection with the 

energy dependence of the slope in diffraction scattering, and.to·point 

out the connection in pp scattering between 2 
n and the variable 

2 2 2 
~ P_L introduced long ago by Krisch, on totally different grounds. 

The aims of this present paper are: 

(i) To describe in detailthe basic theoretical reasons for 

suggesting that 2 
n is a more suitable and natural variable than. t 

for the description of scattering at high energies, and 

(ii) to make a more detailed, though still somewhat qualitative, 

comparison between theory and experiment for several high energy 

reactions. It will be shown as an empirical fact that diffractive 

processes exhibit a type of scaling, i.e., are essentially energy 

independent, when considered at fixed n2 . The empirical results go 

far beyond the predictions of the theory and suggest that 2 
n is not 

only a preferred variable from the point of view of kinematics, but 

also perhaps is singled out for some underlying dynamical reason-. 

Unfortunately, the starting point for the derivation of the 

variable 2 
n is a rather technical one, based on considerations of 

the theory of conspiracies and Toller poles. Nevertheless we believe 

that the principles involved and the results obtained are of great 

interest. We shall therefore attempt, in this introduction to give 

a. qualitative and nontechnical discussion of the main principles 

invobl:ed,--~ aJlii,Q, to summarize the essential results of our analysis. 
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A discussion of phenomenological applications is to be found in 

Sec. III. Our conclusions, as well as some speculative predictions 

about the behavior of inclusive re~ctions, about deep inelastic 

electron scattering and about nondiffractive 2 ~2 scattering are 

located in Sec. IV. All technical details are contained in Sec. II 

and can be skipped by the reader who is primarily interested in the 

phenomenologiCal implications of our results. 

The scattering amplitude, f, for any 2 ~-2 process is 

basically a function of two independent continuous variables--say 

k and e or s and t--and very often one expands f in terms of 

well-defined functions of one of the variables with coefficients which 

depend on the other variable, for example, the usual partial wave 

expansion, 

f(k,9) 

CD 

L (2t + 1) f.e(k) P .e(cos 9) 

.e=<> 
(1.1) 

The question we wish to discuss is: ·~t determines which expansion 

we choose1 Why use the Legendre expansion and not a Fourier integral 

or any other type of expansion? The answer is always that simplicity 

is a vital criterion. lt makes sense, for eJq;~J~~ple, to use the 

Legendre expansion, Eq. (1.1), for 1fP -+1fP scattering at 200'MeV 

because we know, from other considerations, that only a few terms in 

the series are necessary to obtain an excellent approximation to 

f(k,9) in this energy region. It does not make sense to use Eq. (1.1) 

at ISR energies.1 We shall thus take as an axiom that an expansion is 

·only useful or worthwhile if there is at least a chance that the 
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function under study can be reasonably-approximated by one or a very 

small number of terms in the series. 

Now it sometimes happens that we can tell, on general.grounds; 

that there is no hope at all of approximating a function by one or just 

a few terms of a certain expansion. Suppose, just for the purposes 

of illustration, that f(k,9) possesses a peculiar symmetry such that 

f(k,9) f(k,9 +'IV) (1.2)' 

where 1V is some given angle, say 23°. Then it is clear that the 

expansion, Eq. (1..1), is not a useful one since to satisfy Eq. (1.2) 

we would have to calculate P_g[cos(9 + 1jr)] in terms of P.e,(cos 9), 

involving a range of values of £',and the condition (1.2) would then 

impose a host of linear relations amongst the f£(k). 

In general terms, if f(k,9) possesses some exact symmetry 

under 9 ~ g(9) say 

)..f(k,9) 

then, if simplicity is our aim, we should use expansion functions that 

themselves possess this symmetry, i.e., we should write 

f(k,9) a (k) d (9) n n 
n 

where each dn ( 9) has the symmetry property 

In this way it is clear that there is no inconsistency in approximating 

f(k,G) by just one term in the expansion. 

... 
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It is precisely this type of difficulty that appears in Regge 

theory. One considers a process 

A+B->C+D (1.3) 

and uses as variables t and et the energy squared and the 

scattering angle, respectively, in the center of mass of the t-channel 

AC _, BD. One then performs a Legendre expansion based on the t-'channel 

scattering angle and obtains, with zt = cos et, 

~ (2£ + 1) f£(t) P£(zt) • 

£ 

It is very well known how one replaces the sum over £ by the 

(1.4) 

Sommerfeld-Watson integral, etc., and eventually obtains the Regge 

asymptotic behavior 

(1.5) 

For almost all values of t, the above procedure is perfectly' all right. 

The trouble arises at certain special values of t where F(t,et) 

suddenly develops additional symmetry properties, symmetry properties 

which are not possessed by the P£(zt) themselves. Thus one obtains 

complicated equations amongst the fit) for different £ values . 

To avoid this one should not use the Legendre expansion at these, 

special t values, but rather an expansion based on representation 

functions which themselves possess the necessary symmetry property. 

The most important special t value, from the point of view_ 

of describing physical scattering processes is t ~ O. For example, 

in elastic scattering, it can be shown3'
4 

that f(t = o,et) has an 
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extra symmetry as compared with F(t t o,et). This necessitates, 

according to our criterion of simplicity, that we restrict our use of 

the P£(e), i.e., representation functions of the rotation group 0(3), 

to t t 0 and that for t = 0 we use the representation functions of 

the homogeneous Lorentz group, 0(3,1). 

We ask now: "What happens at t 0 in inelastic scattering?" 

Again it can be shown
4

' 5 that F(t = o,et) has a special symmetry, 

but--and this is the crux of our entire investigation--the special 

symmetry is not the same as in the elastic case at t = 0, and to 

satisfy our criterion of simplicity we should now employ representation 

functions of the group of representations and translations in a plane, 

Now this is a very peculiar state of affairs. The representa-

tion functions of 0(3,1) and T2 X 0(2) are quite different in 

character, yet on physical grounds it is almost impossible to believe 

that a reaction in which the masses of the final particles equal those 

of the initial particles and a very slightly inelastic reaction are 

totally different from each other as s ~ro. For example, if we 

compare the case of reaction (1.3) in which with a 

reaction in which but ~ = ~ + 6m we would expect the 

reactions to look more and more alike as Dm ->0, and we would expect 

some kind of smooth transition from one case to the other. However, 

the mathematical structure changes discontinuously--no matter how 

small Dm is one must use T2 X 0(2) and not 0(3,1). We have a 

situation, therefore, in which a small continuous change in the physics 

is being described by a major discontinuous change in the mathematical 

structure. It is not difficult to show5 that the cause of this 
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peculiar behavior lies in a bad choice of kinematic variables, namely. 

in the use of t, or more precisely in the use of the momentum 

transfer vector 

K t (1.6) 

as a fundamental variable in the description of the scattering 

amplitude. We have therefore looked for a vector to replace K, in 

terms of which the mathematical structure would be insensitive to 

whether the reaction was elastic or inelastic. In other words, if the 

scattering amplitude has a certain symmetry at some fixed value of 

the new vector, then we require this symmetry to remain unchanged as 

we vary the external masses of the reaction. In this way the 

unnatural distinction between processes with different external masses 

is eliminated and it becomes possible to use the same expansion 

functions in all types of reactions. For example, if we wish to 

* compare the diffractive production pp ~pN with pp ~PP then in 

terms of the new vector the mathematical structure of the two reactions 

is similar and any differences would presumably reflect genuine 

dynamical effects. 

The only vector we have been able to find with the above 

properties is the 4-dimensional normal to the scattering.plane: 

v p [J 

2E PA PB Pc iJ.VprJ 
(1. 7) 

Because of momentum conservation it is essentially irrelevant which 

three of the vectors pA' pB' Pc' Pn we choose for the definition 

of N • 
iJ. 
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In the c.m. of the reaction (1.3), with the y-axis taken 

perpendicular to the scattering plane as usual, one has 

o, (O,sin 9,0) 

where pi = l:e_i I and Pf 

and final c.m. momenta. 

l:e_fl are the magnitudes of the initial 

As is discussed in detail in Sec. II it is the invariance 

properties of NiJ. that determine the symmetry group6 and thus the 

expansion functions. It is clear that for e ~ 0 or ~, NiJ. is 

unchanged by the pure Lorentz transformations in the x or z 

directions and by rotations about the y-axis, and this will lead. to 

the use of representation functions of the group 0(2,1) made up of 

these three operators. On the other hand, for e = 0 or rr, N 
iJ. 

becomes a null vector and is unchanged by any Lorentz transformation·; 

so we will be led to use the representations of. 0(3,1) for forward 

or backward scattering. The most important point is that these 

statements hold regardless of the values of the external masses and 

therefore apply uniformly to all 2 ~ 2 reactions. 

We therefore consider the scattering amplitude as a function 

of the vector together with 

p and q f(N; p,q) 

(1. 9) 

The general property of Lorentz covariance, as usual, allows f to 

depend only on two independent scalars, which in this case are N2 

and p·q; p·q is essentially s and 

.. 
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- ¢(s,t,u) {l.lO) 

where ¢ is the Kibble function,7 whose vanishing defines the bound-

aries of the .Physical regions in the Mandelstam plane for all of the 

related channels 

AB ~ CD' AC ~ BD' 

Whilst specifying s and t defines a unique kinematic point 

. in the Mandelstam plane, it should beroted that specifying s (> 0) 

2 and N (:=; 0) defines two points in the s-channel, related by having 

scattering angles 9 and n-9, respectively. This implies that a 

.function of the variables (s,t) is actually a function of (s,~,cr), 
J 

where a= sgn(¥ - e). The introduction of such a sign is a common 

feature of coordinate transformations. This ± sign will be taken as 

implicitly present in all that follows even when not explicitly written. 

2 2 Of course, f(s,N ,+) and f(s,N ,-) will, in general, be completely 

different. However, in special cases like pp scattering 

f 
2 2 

f(s,N ,+) = f(s,N ,-) 

In general, for any scattering amplitude, one can write 

f(s,9) (l.ll) 

from which it follows that only the symmetrized and antisymmetrized 

scattering amplitudes 
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1 - 2[f(s,9) + f(s,n-G)] 

(1.12) 

1 
~2-c~o~s~G [f(s,e) - f(s,n-e)] 

can be analytic functions of s and N2 . 

For the purposes of making the little group expansion, to 

be discussed in 

the dimensions 

n 
iJ. 

Sec. II, we define from N 

of a 4-momentum. 

N 

2 
R(s,t,mi ) 

iJ. 
This little 

a vector, n , which has 
iJ. 

vector is defined by 

(1..13) 

where 2 
R(s,t,m. ) is a Lorentz scalar with mass squared dimensions. 

. ~ 

This.vector niJ. then has exactly the same group properties as N • 
iJ. 

We then consider the symmetrized and antisymmetrized scattering 

amplitu~es of Eq. (1.12) as functions of s and n2. A Regge-type 

· analysis leads to the asymptotic behavior 

s~ co 

f(s,n
2

) ~ (1.14) 

n
2 

fixed 

where 2 
a(n ) is the position of a pole in an angular momentum-like 

plane conjugate to the momentum vector Since N2 is completely n • 
iJ. 

crossing-symmetric between all three channels, it might seem 

aesthetically appealing to choose R 2 constant (GeV) so that n2 

still has the same crossing properties as N2--for the purposes of 

this analysis the normalization R could be any scalar. However, a 

difficulty arises when we study the high energy behavior of f(s,n2) 

at fixed n2 if R = constant. Since as s ~co 



and for small n2 we have 

2 
a(n ) 2 a(O) + a'(O)n 

Equation (1.14) gives 

da 
dt ~ 
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However for small t and asymptotic energies we expect 

do . (t) 2[a(O)-KX't-l] dt ~ g s 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

We see that Eq •. (1.17) is in complete contradiction with this expected 

behavior if R = constant. I~deed with R = constant and a' ~ 0 

the amplitude given by Eq. (1.14) is not polynomially bounded for 

0 < t < 4mrr2 . Thus we are forced to choose the function R such that 

R ~ s 

as s ~~ for small t. We shall find that the most convenient choice 

is just R = s so we define 

n 
ll 

(1.19) 
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A more detailed discussion of this problem, given in Sec. III, shows 

that it is not advisable to attempt to make R a crossing-symmetric 

function. 

We shall therefore describe the scattering amplitude as a 

function of s and n
2

, not forgetting a= sgn[t
0

(s - s
1

)] where 

2 2 2 2 
t - u + (mA - ~ )(nC - 1I1J )/s 

2 and the line t = t 0 intersects the curve n constant at 

s = s1 ,s2 with s1 < s2, which means a = sgn(~ - 9) in the 

s-channel. We note that 

2 
n 

2 2 
-4 _P_i:_P_r_ sin2 9 

s 

(1.20) 

(1.21) 

and that as s -> ~. However, as will be discussed in 

2 Sec. III, one cannot neglect the s-dependence of the factor pi /s 

even at Serpukhov energies. 

From Eqs. (1.10, 1.19) one has, in general, 

2 
n 1 2 2 2 2 

+- (m - m )(m_ - m_ ) 
s A C .tl lJ 

1 2 2 2 2 
+ 2 [t(mA -~)(me - ll!J) 

s 

.. , . 
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with 

s + t + u 
(1.22) 

In most 2 ~2 reactions either rnA= me or ~ ~· 
In these 

cases 

2 
n 

(1.23) 

( 19) n2 ~t at fixed t as s ~co, 
Whilst by definition, Eq. 1. , 

2 
n is very different from t for nonasymptotic energies and for large 

scattering angles. 
This is illustrated in Fig. 1 where a typical curve 

2 of n = constant is shown in the Mandelstam plane. 

s and 

The main results of our theoretical analysis using the variables 

2 
n 

(i) 

are as follows: 

scattering amplitudes considered as functions of s and 

n2 possess a mathematical structure that is independent of the values 

of the external masses. 

(ii) Comparison of experimental data as a function of and s 

n2 for similar reactions but with differing external masses should 

give a direct indication of dynamical effects. 

(iii) A "Toller:-like" treatment shows that for forward 

scattering in~ reaction: 

a+(o)-1-lM-1:>-.A-:>-.cll 

o) ~ !\A -:>-.c'~-A.n s 

(1.24) 
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for a pole with Lorentz quantum number M and trajectory intercept 

a (o) 
+ 

at 2 
n 0. We see that the dominant pole for a given helicity 

amplitude has M = ~(A.A - A.C). It should also be noted that this 

result is identical to Toller's result for elastic scattering,3 but 

that Eq. (1.24) now holds for all processes. 

(iv) For backward scattering we obtain 

(1.25) 

where a (o) is now the intercept of a pole which dominates in the 

backward region. 

(v) For the region inside the physical boundaries one has 

(1.26) 

where the ± signs refer to poles which dominate scattering in the 

regio.n g < !I. respectively. >2 These formulae are expected to hold only 

for jn
2

1 <-<s. 

As emphasized earlier the only point in using such expansions of the 

scattering amplitude is if they simplify the description of the 

physics. We have therefore studied several reactions, plotting the 

data as a function of 2 
n to see what emerges. The results of this 

phenomenological study are quite dramatic. We find: 

(vi) Differential cross-sections for reactions that are mainly 

diffractive, such as pp ~pp, K+p ~K+p, 0 
YP ~ p p, and 

* pp ~pN, show a remarkable s-independence, or scaling, as a function 
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of 
2 

n Data from a very large range of energies and angles all fall 

close to a universal curve which is a function of 2 
n only, i.e. , one 

has phenomenologically that 

dcr dcr 2 
dt - dt {s,n ) only. (1.27) 

This means, Eq. (1.26), that the leading pole in diffractive scattering 

has 

2 
a(n ) 1 (1.28) 

in the physical scattering region and all the shrinkage in t for 

these reactions comes not from a moving pole but merely from the 

s-dependent relation between 2 
n and t. 

It will be shown in Sec. III that each pole in our angular 

momentum-like plane, which produces the asymptotic behavior given by 

Eq. (1.26), induces an infinite set of poles in the usual Regge j-plane. 

Thus our leading trajectory, Eq. (1.28), corresponds to a model for 

the pomeron which would look like an infinite sequence of "fixed" poles 

at j = l,0,-1,-2,···, in the Regge j-plane. There is an important 

lesson to be learnt from this result. Normally one associates 

shrinkage of the forward diffraction peak with the nonzero slope of 

a Regge trajectory; and one always neglects very low lying trajectories, 

say those with a~ 0, or equivalently terms of order 1/s compared 

to the leading ones. Yet in the above a sequence of essentially flat 

poles, corresponding to terms of order 1/s, 
2 1/s ,···etc., compared 

to the leading one, add up to give a differential cross-section that 

shrinks, even at Serpukhov energies. 
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(vii) For those diffractive reactions which are exotic in the 

s-channel, the slope parameter 

where 

2 
b(s,mi ) 

l:= [ 
i 

2 ... 
m. · ·and. t3o 

l ·' . 
is a reaction-dependent constant. 

For reactions reached from these by s-u crossing, one 

predicts that ultimately their slope parameters will be given by 

where 

- 2 b(s,m. ) 
J,. 

t30 is the same constant as in the crossed reaction. In 

(1.29) 

(1~30) 

particular since pp ~PP forward scattering obeys Eq. (1.29) we 

find that PP ~PP scattering should obey Eq. (1.30) and so antishrink 

(at least at energies where secondary trajectories cease to be 

important). 

(viii) For reactions that are not purely diffractive, e.g., 

+ ± 2 
~-p ~~ p, we find that the data cluster on an n -plot and seem to 

oscillate around a universal 2 
n function as the energy is varied. 

There is some indication that the magnitude of the oscillations is 

dying out as the energy increases and we are tempted to conjecture 

that the data will ultimately collapse onto the universal 2 
n curve. 

A more detailed analysis of the s-dependence of the data at fixed n2 

is under current investigation. 

.. 
.. 
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II. PARTIAL WAVE ANALYSIS; THE NEW LITTLE GROUP EXPANSION 

II .1. General Discussion 

We have seen that the little group of n within the physical 
~ 

region is 0(2,1) and on the physical region boundary is 0(3,1) 

regardless of the masses of the external particles. It is therefore 

our aim, in this section, to expand the scattering amplitude for 

':,( arbitrary masses and spins in terms of unitary irreducible representa-

·.'"""'\ 
•. ,<I' 

··-,;~-.. .... 
•' 

tions of the appropriate .little group of the normal vector n • 
~ 

In 

order to achieve this we must eXpress the helicity amplitudes as a 

function of the Lorentz transformation leaving n invariant .. We do 
' ~ 

this in the spirit of Toller's approach) but using essentially the 

formalism of Delbourgo, Salam, and Strathdee. 8 

·We begin by defining a type of M-function from the s-channel 

the process A + B ~ C + D: 

s 0 ' ~0 
De~ C (Lp ) DdA- (L ) 

c - c ·1J PD 

X (2.1) 
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The states JpASAa) and (pcScci transfo d' rm accor lng to the finite 

dimensional representations of the Lorentz group as follows 

s 0 
IpS ' ) D A (L -1) . A"A A.Aa P 

Using these equations we see that the M-function satisfies the 

covariance condition 

c'd'a'b' 

(2.2) 

(2.)) 

(2.4) 

We rewrite M 
cd,ab as a function of the 3 four-vectors n, p, and q 

defined in Eqs. (1.9, 1.19): 

Mcd ab(n; p,q) = M (p P · p p ) , cd,ab C' D' A' B • 

Just as in conventional Regge theory we will find separate asymptotic 

formulae for the forward and backward regions. In the following 

analysis we shall assume that we are in the forward hemisphere. 

results for the backward hemisphere then follow by analogy. 

The 
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We next couple spins SA,SC 

J 1 9 and define formally 

to give J and SB,SD to give 

~J1m 1 ,Jm(n; p,q) 

(pJ 1m1 IT(n) lqJm) (2.6) 

~ C(SBb; J 1 m1 ,~d) C(SCc; Jm,SAa) Mcd,ab(n; p,q). (2.7) 
cdab 

This new matrix element, ~ 1 1 J (n; p,q), satisfies the following '·~ m , m 

covariance condition: 

am (n· > J 1 m1 ,Jm ' p,q 

\ J 1 0 -1 CV\t! · ) . JO( ) 
L_ Dm 1 k 1 (A ) /I£J 1 k 1 ,Jk(An; Ap,Aq Dkm A. (2.8) 
kkl 

Recalling Eq. (2.6) it c~n be seen that we can formally ~ite this 

covariance requirement as 

U(A)iqJm) (2.9) 

L Dmlk,JO(A -1) (ApJikl I (2.10) 
kl 

T(An) • (2.ll) 
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Having described some of the formalism we now go on to discuss 

our partial wave expansion for the forward scattering amplitude. 

II. 2. Expansions on the Physical Region Boundary 

In any reaction, for either forward or backward scattering we 

have n = (o,o,Q,O) so that for any AE 0(3,1): 

T(An) T(n) T(O) (2.12) 

Now in the s-channel both the vectors p. and q are timelike so that 

we can define the standard vectors p,q such that Ap,Aq are real 

transformations: 

p (2.13) 

q 

We can now rewrite the covariance condition, Eq. (2.8) with A = A -l 
p 

and obtain 

· 7'rLJ1m1 ,Jm(o; p,q) 

kkl 

We lastly define ·the function 

FJI I J (A) m , m 
\ e-M ( o o) JO( ) L "'Jiml ,Jm" 0; p,Aq Dm"m A • 
m" 

With A = A -lA we see that 
p q 

(2.15) 

(2.16) 

"./ 

..,.;t 



.. 

FJ' I J (A) m , m 

X 

i.e.' 

FJ; I J (A) m , m 
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r \ D J'O(A -1) 
L m'k' p 

m" kk' 

L Dm'k'J'O(Ap-l)(pJ'k' jTjqJk) DkmJO(Aq) 

kk' 

(pJ'm'jTU(A -lA )jqJm) 
p q 

(pJ'm' jTU(A) jqJm) (2.17) 

where we have used the fact that with n = 0, T(n) = T(An). We have 

at last succeeded in defining a function F which depends only on the 

little group transformation of the vector n , and this is the function 
Jl 

we shall expand. However, before discussing the actual expansion we 

must first consider not just the transformations A = A -lA but also p q 

A = (A h )-1 (A h ), where A h ,A h belong to the so-called left p p q q p p q q 

and right covariance groups. These are the intersections of the groups 

of transformations which leave both n and p and both n and q, 

respectively, invariant. As p,q are timelike, the transformations 

h 
p 

and h 
q 

can be any rotations: 

(2.18) 
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These in variances give rise to the right. d 1 ft · an e covariance conditions, 

as follows: 

and similarly 

FJ' I J (RA) m , m 

(pJ'm'jTU(ii.)U(R) jqJm) 

(2.19) 

r (2.20) 
m" 

We are now ready to consider the expansion of the function 

FJ'm' ,Jm(A). Any function which is square-integrable over the non­

compact group manifold may be expanded in terms of the representations 

of the principal series. We parametrize AE 0(3,1) in the following 

way:3 

where 0 < Jl < 4n, 
- 1 

0 < I; < oo, 

(2.21) 

(2.22) 

R1 ,R2 are rotations and az a z-direction boost. We can then expand 

a square-integrable function F(ll.), in the following way:3 

f(A) 

(2.23) 
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where the parameters M,A are such that 

Re A o, oo· < Im A< oo 

j,j' IMI, IMI + 1, ... (2.24) 

Then 

J MA * dA D. I I • (A) f(A) 
J ll ,Jjl 

(2.25) 

where the invariant measure on the group, dA, is given by 

dA (2.26) 

and the integration is. over the ranges given in Eq. (2.22). We refer 

to the work of Toller3 for the properties of the representations of 

the homogeneous Lorentz group, 

Before applying the expansion formula, Eq. (2.23), to 

F 1 1 (A), which we shall assume to be square-integrable over the 
J m ,Jm 

0(3,1) group manifold,10 we use the covariance conditions to eliminate 

some of the indices. We note from Eq. (2 .21) that any AE 0(3,1) can 

be written as 

where R
1

,R2 are rotations and az is a z-direction boost. Applying 

Eq. (2.25) to the function f(A) = Fj'm',Jm(A) and using the right 

and left covariance conditions, 1Eqs. '(2.19, 2.20), together with the 

properties of the representation functions DMA 3 we obtain 
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(2.27) 

which defines the generalized partial wave amplitudes Now 

using the inverse of this last equation, i.e., Eq. (2.23), we obtain 

FJ, I J (A) m,m 
r r·~ 
M ]_ 

o) DJ' , J MA(A). m , m 
2 2 MA 2 

dA(Ml - A ) FJ'J (n 

(2~28) 

This integral corresponds to the generalization of the background 

integral in the usual complex angular mo~entum plane. 

In order to pick up the contributions of poles in the 'complex· 

A-Plane, we must move the contour in Eq. (2.28) to the left, which 

requires replacing the representation functions D by representation 

functions of the second kind, A. These are analogous to the Q.(z)'s 
J 

and like them have more suitable asymptotic behavior than the functions 

of the first kind. 

MA 
D. J' I I (A) Jjl, ll 

where 

u.MA 
J uj 

The A .. , ,MA(A) are defined by 
Jll,J ll 

MA MA . -M··A( MA ~1 
A. . I I (A) + u. A. . I I u. I ) 

Jll,J ll J Jjl,J ll J 

j 
-MA ~ ~ s + A 

s=IMI 

and the D's have the property that 

(2.29) 

(2.30) 



., "'J,, 
.. t-: • 

~ ........ 
.• ..i 
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With A = az(~) the functions of the second kind have large ~ 

behavior given by 

(2.32) 

·with M ,::: ~. Now from the properties of the D's, Eq. .( 2. 31), and 

the definition of FJ'JMA of Eq. (2.27) we have that 

MA. 
FJ'J (2.33) 

This property can be used in Eq. (2.28) to restrict the sum over M 

to positive values; however, instead we shall substitute Eq. (2.29) 

into Eq. (2.28) and using the property Eq. (2.33) obtain 

co 

F J'm' ,Jm(A) 
M-A. M-A.( ) 

FJ'J AJ'm',Jm A 
M=- co 

The purpose of replacing the D-functions by the A's is exactly the 

same as that of replacing P. 's 
J 

by the Q. 's 
J 

in the spinless Regge 

expansion; i.e., they have suitable behavior at infinity in the complex 

A.-plane enabling us to neglect the contributions from infinity when we 

move the contour into the left-half plane. This we do now, assuming 

the F , M-A. have poles in the left half of the complex A.-plane at 
J ,J 

A.= a.(o), whose positions are independent of J,J'. We define the 
~ 

residues of these poles--called Lorentz poles--in the following way 
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+ MA. 
gJ'J (o) (2.35) 

where we have introduced a plus sign to remind us that the poles and 

residues are those which dominate scattering in the forward hemisphere. 

Then assuming ~ is meromorphic in a strip jRe A.j < A.' we move 

the contour in Eq. (2.34) to some A.0 , jRe A.j = A.
0 

<A.' to give 

FJ' I J (A) m , m ( 2 2) M-A. M-A. 
dA. M -A. FJ'J (0) AJ'm,Jm (A) 

+ 
M-a. 

·(if a 
2

) g + (o) A J.(il) + fixed poles . - +i i J'J J'm' ,Jm 
i,M 

The fixed poles occur because the functions AMA(A) can have poles 

at integral values of A.-M. However, it can be shown3 that their 

contributions either actually cancel out or at least are asymptotically 

negligible. 

Because of Eq. (2.33) we see that if ~-A. has a pole at 

A.= a(o), then there is also a pole in the right half of the complex 

A.~plane at A.= -a(O): this is called a mirror pole. These mirror 

poles, as we shall see [Eq. (2.~3)], have the same asymptotic behavior 

as their corresponding Lorentz poles. 

Before we can consider the asymptotic behavior of the amplitude 

FJ' , J. (A -lAq), m , m p Eq. (2.17), and hence of the s-channel helicity 

amplitudes we must define some kinematics. We choose to work in the 

s-channel center of mass. With n = 0 we can take 
~ 



(I = A,B,C,D) 

where the three momenta satisfy pB = -pA and Pn = -pc and of 

course EA + EB = Ec +En· We then have, Eq. (1.9), 

p~ = (EB + En,o,O,-pA - Pc)) 

q~ = (EA + EC,O,O,pA + Pc) 

which we can rewrite as 

where 

p~ =. IPI~osh(~ - ~0),o,o,-sinh(~- ~oD ) 

q~ = jqj(cosh ~0 ,o,O,sinh ~0 ) 

2 2 2 
IPI = 2(~ + mn > - t, 

2 2 2 
jqj = 2(mA +me ) - t and 

(2.39) 

jpjsinh(~ - ~0 ) = jqjsinh ~0 . Since p·q = s - u = IPI jqjcosh ~ we 

have therefore 

cosh ~ 
s - u (2.40) .2 . 2 2 2) 

[2(mA + ~ ) - t)2[2(~ + mn - t] 2 

which is only large for s ~oo and n2 fixed if we are considering 

scattering in the forward hemisphere. We then have 

(2.41) 

and so 

U(JI. -lA ) 
p q 
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(2.42) 

Putting -1 ( A=JI. A =a S) p q z in the expansion formula, Eq. (2.36), and 

letting ~ ~oo we obtain the high energy behavior of the forward 

scattering amplitude. Then the rightmost Lorentz pole at ~ = a+(O) 

will dominate giving: 

FJ' , J (n = o,~) m , m 

~(a+-1-IM:-Imll> 

Recalling Eqs. (2.1, 2.7) and noting that 

D SO (L ) 
~v . p 

we have that as s ~ oo 

e iv(¢+iS) 

(pCSC)I.C; Pn8n"njTjpASA~A; pBSB~) 1
2 

n =0,9=0 

e 

(2.43) 

(2. 44) 

The Kronecker delta ensures angular momentum conservation in the 

forward direction and we see that the dominant Lorentz pole has 

M = ±(~A - ~C). 

It should be stressed that this behavior of the forward 

scattering amplitude, Eq. (2.44), holds regardless of the external 

mass configuration. To leading order in s, Eq. (2.44) is in complete 



""•·I\ . ·.~· 
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agreement with both analyticity and other group-theoretic results. Of 

course, Eq. (2.44) is absolutely identical to th~ result of Toller3'll 

in the EE mass configuration at t = 0 to all orders in s, since 

in this case t = 0 correspo'nds to 2 
n o. However, in other mass 

configurations our result has been derived without the need for assuming 

either analyticity in the external masses
12 

or that expansions should 

be made with respect to the classification group of Regge trajectories 

rather than the appropriate little group. 13 Indeed previous imposi-

tions of 0(3,1) symmetry at t =·o may be regarded as a first 

approximation to the exact Lorentz symmetry when 2 
n 0, since, 

asymptotically in s, t = 0 means forward scattering and so coincides 

with 2 
n 0 there. 

Up to now we have. considered P = PB + PD' and 

accordingly coupled spins sB,sD and SA,SC. This corresponds to the 

usual t-channel analysis. As we have seen (p·q/IPIIql) -> 00' as 

s->co,at fixed 2 n , only in the forward hemisphere. We could equally 

well have chosen p = PB + Pc' q = pA + pD and have coupled spins 

cosh s. 

Then 

s - t 

[2(~2 + mC2) - u]2[2(mA2 + ron2) - u]2 

(2.45) 

2 
and s __.co gives s ->co at fixed n for scattering in the backward 

hemisphere. Thus in analogy with the forward case, we now obtain at 

n2 = 0 for backward scattering at asymptotic energies: 
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(2.46) 

Here ;..._ = a_(o) refers to the Lorentz pole which dominates scattering 

in the backward hemisphere. In similar way we could choose 

but with 2 
n fixed P · qf I P I h I is never 

asymptotic in the s-channel physical region. 

II.3. Relationship to the Theory of Cosenza, 

Sciarrino, and Toller 

We have already mentioned in Sec. I that the 0{3,1) analysis 

of Toller only applies at t = 0 to elastic reactions of the type 

A + B ->A +B. In an attempt to extend their analysis to processes 

of the type A + B -> A + C, referred to as UE reactions, 5 and 

processes like A+ B ->C + D (UU type), Cosenza, Sciarrino, and 

Toller
11 

studied expansions based on the complex Lorentz group and 

predicted the asymptotic behavior 

where k is a non-negative integer which can only be nonzero in UE 

type reactions. The value of k is specified in terms of the internal 

quantum numbers (I,G,B,Y) of the exchanged pole. On the contrary, 

in our 2 
n analysis, the result with 

Another difference between this 

k = 0 holds for all reactions. 

2 
n approach and the complex 

Lorentz group result is in the allowed range of M in FJ'm' ,Jm 

[see Eq. (2.24)]. In our analysis we always have 



-31-

whereas in Ref. 11 M may take any non-neg~tive value in UE and UU 

type reactions. This difference arises because we exploit the exact 

0(3,1) symmetry at · 9 = 0 in all reactions and not just in EE 

scattering. 

II.4. Expansions inside the Physical Region 

We now consider the case of scattering in the physical region 
\ ... 

when n2 < 0 and derive high energy expansions at fixed negative 

We shall see that the dominance of a single term in our expansion 

2 
n . 

gives resul~s very different from the usual Regge case. As before 

we have different asymptotic expansions in the forward and backward 

hemispheres. The analysis presented refers to scattering in the. 

forward hemisphere and the backward case then follows trivially. 

We return to Eq. (2 .1 7) and define 

F J'm' ,Jni{n,A) (2.49) 

where A = A -lA • The four-vector, n,, is always spacelike inside 
p q ... 

2]._ 
the physical scattering region, so we can choose n = [o,o,o,(-n ) 2 ]. 

iJ. 

Clearly if ~'Aqe 0(2,1) then An = n. Now the left and right 

covariance groups are the intersection~ of the groups of transforma­

tions which leave both n,p and n,q, respectively, invariant. Both 

covariance groups are 0(2,1){)0(3), i.e., 0(2), the group of 

rotations about the z-axis. The covariance conditions are 

.L FJ'm' ,Jk(n; A) Dkm.J(Rz) 
k 

(2.50) 
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FJ1 1 J (n; R A) m , m z L (2.51) 
k' 

where -im¢ 
e . 

If FJ1 1 J (n,A) is square-integrable over the 0(2,1) m , m 

group manifold, we can performan 0(2,1) expansion as follows. 10 

We note that any .AE 0(2;1)· can be written as 

A 

We use this fact t&ge~her with the covariance conditions, Eqs. (2.50, 

2.51), to simplifY the indices and obtain14 

FJ1. 1 J .<n,A) m , m 

1 
~+ioo 

d.e 
1 • . 
2-J.oo 

co 

+ 

(2£ + 1) f £,e(n2) D .. £,e(A) 
tan ~c.e- e) J'm',Jm m1m 

(2.53) 

The first term on the right-hand side of this equation involves the 

principal series representations for which m,m 1 = e,e ± l,e ± 2,···, 

and the second term involves the discrete series for which 

m,m' = ±k,±(k + 1), ... With n 
iJ. 

A­
q 

2 ]._ 
[o,o,o,(-n ) 2 ] we can choose 

.... 

- ' 



.. 
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so that 

a ((;) 
X 

where \p\sinh(s -_s
0

) = \q\sinh so gives us the s-channel center 

of mass frame. Cosh s is given by Eq. (2.40) just as before. This 

is because with ni-L in the z-direction -p
3 

= q3 = 0 and so the 

Lorentz scalar p·q = p
0
q

0 
- p1q1 - p2q2--the 0(2,1) product. 

left 

In order to move the integral contour of Eq. (2.53) to the 
2 

and to pick up contributions to FJ 1 1 J (n ,A) from poles in m , m 

the complex £-plane we replace the continuous class of representations 

by representation functions of the second kind, A, which are defined 

by 

D t,E(A) 
m'm 

where 

u £ 
m 

r(£ + m + l)/r(m - t) 

and 

(u .e)-1 D t,E u t 
m1 m1m m 

From this last property of the D's we have that 

f £ ,E 

J'm' ,Jm 
(Um'£)-1 f -£-l,E U £ 

J'm' ,Jm m 

(2.55) 

(2.57) 

We use this relation together with Eq. (2.55) to write the integral of 

Eq. (2 .53) as 

2 
.L 1-~+ioo (2 n l) d£ "' + . f -£-l,E(n2) A -£-1( ) 

tan rr(£ ~ E) J'm' ,Jm m1 m A 
€ -~-ioo 

If we assume that the function f£ is meromorphic for 

\Re(£ + ~)\ ~ L we can move the contour from Re £ = ~ to Re £ = -L0 

(L ~ L0). The functions A are such that the contributions to the 

integral at infinity is negligible. We assume that the partial wave 

-£-1 2 f_ have a pole at £ = a(n ) with residue defined by 

E( 2 
bJ' 1 J n ) . m , m 

(2.59) 

We can then rewrite the expression, Eq. (2.58), as 

2 d£ (2£ + l) f -£-l,E(n2) A -£-1( ) 
tan rr(£- E) J'm 1 ,Jm m'm A 

(2a. + l) 
:L 

tan rr(a. - E) 
:L 

E 2 -a.-1 
biJ 1m' ,Jm (n ) Am 1 m :L (A) (2.60) 

From Eq. (2.57) we see that a pole in f-£-l at £ = a(n2 ) implies 

the existence of a mirror pole at £ = -a(n2) - 1, both having the 

same asymptotic behavior. 

Recalling that A= ax(s), Eq. (2.54), we shall consider the 

behavior of FJ' , J (s,n
2

) as s -> ""· We note that m,m 
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A .er., (~)\\ r--1 e-(.e+l)~ [1- 2m_n +
1

ml e-(: + O(e-
21;)1 

m1m ~x "'!) " ~~ 00 

(2.61) 

and that the contribution of the discrete class decreases faster than 

e-1; and so is neglected. If we are considering scattering in the 

forward hemisphere cosh I; is given by Eq. (2.40) and in the backward 

hemisphere by Eq. (2.45)· The leading high energy behavior is given 

by the rightmost pole in the complex .e-plane
1

5 

2 
FJ1 1 J (s,n ) m , m 

(2.62) 

where we have again introduced the + signs to refer to the poles 

which dominate forward or backward hemisphere scattering, respectively. 

We note that when we take the limit 
2 . 

n -> 0 of a single pole 

contribution 

( 
2 

FJ1 1 J s,n m , m 
0) 

(2a + 1) b (o) A -.e-l(A) 
tan ~(a- €) J 1 m1 ,Jm m'm 

(2.63) 

where A€ 0(2,1), we find that the covariance conditions for A€ 0(3,1) 

which apply when n = o, cannot be satisfied by such £-plane contribu-

tions individually. Howe·ver, of course, a single Lorentz pole does 

satisfY such covariance conditions and as shown by Sciarrino and 

16 Toller such a pole at ~ = ~(0) corresponds to an infinite family 

of £-plane poles at .e (o) = ~(o) - v - 1, 
v 

v = 0,1,2, .... We see 

therefore that as n2 ~o an infinity of single _£-plane pole contri-

butions, Eq. (2.63), must conspire to produce a single Lorentz pole 
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term so that the scattering amplitude may satisfy the correct 

covariance conditions, Eqs (2 19 2 20) · · , . , at n = 0. 

II.5. Connection Between the_Complex .e 2 and .et Planes 
n 

In the previous sections we have f · per ormed a Regge-type 

analysis which was based on assuming the existence of poles in an 

angular momentum-like plane, .e 2, conjugate to the vector n • It 

is · · · n J..l 
not at all clear whether' it is in fact meaningful to postulate poles 

in this plane. However: any singularity in the complex .e 2 plane 
. n 

ngu ar~ ~es ~n the more familiar complex gives rise to a sequence of si 1 ·t· · 

angular momentum plane .e a d •t · th t' n ~ ~s erefore of interest to ask 

what singularity structure is induced in the 

pole in the .e 2 plane. 
n 

plane by a simple 

To see this, we consider the usual Froissart-Gribov integral 

defining f 2(t) at fixed t: 

(2.64) 

where .e here is short for .et. We now feed in for F the asymptotic 

form induced by a pole in the £ 2 plane at .e a(n2) · 2 = ' ~.e., 
n n 

2 
2 (s )a(n ) 

~ b(n ) sO (2.65) 

If the residue b(n2) 2 is a polynomial in n we can rewrite it in 

the following form 

(2.66) 

. ; 

-------- ----~.:---~---:..~-- - ·---- -- ~----·-



-37-

We shall further assume that the "trajectory function," 

linear in 

2 a(n ) 

2 
n so that 

a(o) + ta' (o) + ilil a' (o) +~a' (o) 
s s2 

2 " 2 2 2 2 2 
where A(t) t - t L m~ + (mA -me )(~ -.~) 

i ~ 

2 2 2 2) 
B(t) t(mA - ~ )(me - ~ 

Then using the shorthand 

a:( t) a(o) + ta' (o) 

and 

. 2 a(n ), 

bm(t) qp(t) (Asao' ).i· (Baso;)k 
r{i + l)r(k + 1) 

(2.67) 

is 

(2.68) 

(2.69) 

(2.70) 

we have on putting Eqs. (2.65-.70), into Eq. (2.64) and integrating 

at fixed t, that 
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L 
13ikmp(t) r(i +k + 1) 

f.e ( t) 
"' Ji+k+l 

(2.71) 

ikmp [.e - a:( t) + i + 2k +m + -P 

2 
We see from this last equation that an b(n2 ) sa(n ) asymptotics 

corresponds to a very complicated family of Regge poles and multipoles. 

However, the leading pole at .e = a:(t) is a simple Regge pole. 

In a similar way a single Lorentz pole in the A 
2 

plane 
n 

gives a series of Toller multipoles at t 0, except in the case of 

EE scattering, where there is a one-to-one correspondence between.our 

Lorentz poles and those of Toller.3 

It should be noted from Eq. (2.71) that if the leading Regge 

pole has a factorizable residue, then b(n2 ) will not in general be 

completely factorizable. However, in the expansion of b(n2 ) in 

inverse powers of s, Eq. (2.65), the leading term will· factorize. 

It has been argued that the use of the variable 2 
n simplifies 

and unifies the group theoretical structure of the expansions used for 

the scattering amplitude. However, there is no guarantee that the 

amplitude is dominated by a simple set of singularities in the complex 

£ 2 plane. It is a dynamical question as to whether the singularity 
n 

structure will be simpler in the .et or £ 2 planes. Thus it might 
n 

be that a few .e 2 poles suffice, implying the need for an infinity 
n 

of Regge poles, or vice versa. In our present state of ignorance it 

is impossible to answer questions of this kind by means of dynamical 

calculations and therefore the only way to test for simplicity is by 

means of a phenomenologicai study of scattering data. It turns out, as 
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will be discussed in the next section, that the data do indicate quite 

remarkably simple properties in the 
2 

n description. 
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? 
III. ANALYSIS OF SCATTERING DATA AS A FUNCTION OF n-

The main result of the above analysis is embodied in the 

suggestion that the description of scattering amplitudes as functions 

of s 2 and n , rather than s and .t, could lead to simplifications, 

in the sense that all spurious kinematical effects are absent and that 

the behavior of the scattering amplitudes is a direct reflection of ~' 

the underlying dynamics. 

Thus the first: issue to be settled is to see whether experi- ·~ 

mental data when pfotted against 2 s and n do show any simplicity. 

It will be seen in what follows that diffractive processes show a 

remarkable kind of "scaling" or universality and. that their cross-

sections appear to be independent of s over a very large range of 

energies. 

The second issue relates to the specific Regge-like model 

based on the existence of poles in the complex £ 2 plane. Here we 
n 

have the predictions that at fixed n2, with n2 ~~ s, 

deY 

dt forward 
hemisphere 

dO' 
dt backward 

hemisphere 

2[a _(n2 ) -1] 
,-...._/ b_(n2

) s 
S-+"" 

(3.1) 

(3.2) 

where are "trajectory functions" associated with the quantum 

numbers of the exchanges which dominate forward and backward 

scattering respectively. To test these one must perform the same 

. ' 



-41-

kind of analysis as is usually done to te~t the Regge model, except 

that here one works at fixed n2 rather than fixed t. 

It should be stressed that the above two issues are quite 

separate. There are good theoretical grounds for suggesting the use 

of the variable 2 n . On the other hand, the analytic structure in the 

P 2 plane is not well understood and the pole-like model may be far 
n 

too simple. Even if it is, it will still be of great interest to look 

at the structure of scattering amplitudes as functions of s 

as indicated by the data itself. 

2 and n , 

It should also be stressed that some care must be taken in 

. 2 
analyzing the data as a function of n . As mentioned in the 

Introduction, one should, strictly speaking, plot the symmetric and 

antisymmetric combinations: 

! [dcr(9) dcr(:n: - 9)) 
2 dt + dt 

1 [dcr(9) _ do(:n: - 9)] 
-2--c~o-s-9- dt dt 

when looking at data which ~over a very large angular range. 

(3.3) 

(3.4) 

For small 9, d~i9 ) ~ 100 dcr(~t- 9), typically, so that near 

the forward or backward regions the above construction is of little 

importance. It is vital, however, if the data include the region 

near 9 = :n:/2. The exceptions to the above are reactions like 

pp ~pp which are symmetric around 9 = :n:/2, so that (dcrjdt)A s 0, 

and one need only look at dojdt itself. However, in general, if 

one is testing for scaling over a large range of angles and energies, 
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it is necessary to use the combinations given in Eqs. (3.3, ).4). on 

the other hand, in testing the Regge-like predictions listed in Eqs. 

(3.1, 3.2), it should be borne in mind that the formulae are only 

expected to be valid for values of 9 close to 0° or 180° 

respectively. Thus for testing Eqs. (3.1, 3.2) it is not necessary 

to form the symmetric and antisymmetric combinations. 

the 

We shall now consider several 2 ~2 reactions and show that 
2 

s,n behavior of the data possesses quite dramatic features. 

(i) PP ~pp: In Fig. 2 is shown the differential cross-

section for PP ~pp scattering as a function of t for various 

energies between PL = 1.7 and 21.3 GeV/c. It is seen that the 

curves show a very strong energy dependence at fixed t. At small t 

one has the characteristic shrinkage of the diffraction ~eak, and at 

large t' do/ dt may vary by 2 or 3 orders of magnitude over the 

energy range plotted. The same data (only for pL ~ 5 GeV/c) is 

shown in Figs. 3 and 4 plotted against 2 
n . It is seen that the 

shrinkage has disappeared and aside from the region around 

n
2 

= -1.2(GeV/c)
2 

(enlarged in Fig. 4), which corresponds to the 

shoulder seen at a similar value of t (in Fig. 2), there is very 

little s 

at fixed 

dependence at fixed n 
2

- -in fact the data appears to "scale" 
2 

n . 

That the PP data looks universal is not really surprising 

since for pp 

Krisch variable 

elastic scattering 

Q2 2 17 
~~· 

2 
n becomes just equal to the 

If we interpret this scaling in terms of the pole model, then 

from Eqs. (3.1, 3.2) we see we must have 

(3.5) 



for all 
2 

n in the scattering region. This suggests that the 

dominant term in high energy diffractive processes, the analogue of 

the pomeron, looks like a fixed pole in the £ 2 plane. We thus have 
n 

even at moderately large energies. Assuming that in the near forward 

direction the differential cross-section is given by a single exponen­

tial in n2 , with an energy independent slope, i.e., 

dO 
dt 

with t3o 

dol dt 2 
n =0 

(3.7) 

constant, we then have, as pointed out in,
1 

a definite 

formula for the s-dependence of the near forward logarithmic slope 

on a t-plot: 

b(s) 

For pp ~PP scattering this gives 

b(s) (3.9) 

In this way the energy variation of the slope is completely determined. 

It was shown in Ref. 1 that Eq. (3.9) provides a reasonable interpola­

tion for the pp slope data all the way from threshold up to ISR 
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energies. It predicts that shrinkage will stop and that b(s) will 

flatten out to an ultimate value 130 , which is just the slope on an 

2 n plot at any energy. 

In summary the pp data looks remarkably simple as a function 

of n
2 

and appears to show almost no s-dependence at fixed n2 

+ + d. ( ii) K p ~ K p and rp ~ I"P: Both these reactions are similar 

to pp elastic scatterinef:in that they are very-largely diffractive 

processes with little-:·~tructure in do/dt as a function of t other 

than the usual shrinkage. Both should be dominated at large s by 

the pomeron and therefore, if there is any validity in our interpreta-

tion of the pp elastic reaction, we should expect both these 

reactions to show little energy dependence at fixed 2 n . Figures 5 and 

6 show that this is indeed the case. Both reactions scale at fixed 

2 n over a wide range of energies and there is no visible shrinkage 

of dcr/dt as a function of n2• That.this happens is nontrivial, 

since the shrinkage in t for pp ~pp, K+p -> K+p, and rp ~ ¢p 

are all different, and the mechanism for transforming these varied 

shrinkages in t into nonshrinkage against 
2 . -

n , is completely 

contained in the mass dependence of the factor dn
2/dt in Eq. (3.8) 

[see also Eq. (1.22)]. 

(iii) 
0 

yP ..... p p: It is known that the cross-section for this 

reaction is fairly constant above 2 GeV and that the natural~parity 

exchange dominates. Thus it has the main characteristics of a 

diffractive process and we might hope to find an n2-universality 

similar to the cases studied above. A plot of dcr/dt against 2 
n 

for ~ ranging from 6 to 17.8 GeV is shown in Fig. 7· It is 

again seen that there is essentially no s-dependence in the data at 

fixed 2 
n . 

..: .. 
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It was remarked in the Introduction that the normalization 

used to define n 
f.l. 

from N is to some extent arbitrary from a 
f.l. 

group-theoretical point of view. Any renormalization of the form 

n = N /R(s,t,u) where 
f.l. f.l. 

R(s,t,u) :)o s 
S-t oo 

t fixed 

would provide an acceptable description of scattering at very small t. 

However, the choice R(s,t,u) = s is essentially unique in providing 

a description of the data in which the s-dependence disappears, i.e., 

in which the shrinkage on a t-plot becomes automatically accounted for 

as a kinematic effect. For example, one can show that no crossing 

symmetric polynomial in s,t,u and the external masses exists which 

has this property. It is possible that there is some deep underlying 

dynamical reason for the particular choice n 
il 

singled out by the 

data. 

(iv) ~±p -t~1p: These reactions are not purely diffractive. 

Their cross-sections are varying with energy and there is a.consider-

able amount of structure in the t-dependence of dcr/dt. Nevertheless, 

as is seen in Figs. 8-11 the large s-variation of dcr/dt at fixed t 

is very much reduced when considered at fixed 
2 

n . The 
2 

n plots are 

not nearly so universal as in the previous reactions, but this is in 

accordance with our knowledge that ~±p -t ~±p are not completely 

dominated (in Regge language) by the pomeron, and that large contribu-

tions must be attributed to the secondary trajectories. In the 2 
n 

description the secondary effects play a much smaller role and we are 

at present trying to study them quantitatively. 
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* (v) N production: There is not much detailed data on the 

* energy variation of dcr/dt for processes like pp -> N p, but we show 

one example in Fig. 12 for the * N (1690) with I = 1/2, 

It .is seen that within the limited statistics the data points are 

compatible with little or no energy variation at fixed 2 
n . 

(vi) pp -tpp: Since the dominant component of the pp elastic 

differential cross-section is just a function of -¢/s2 = -tu/s, it 

follows from the crossing properties that the diffractive part of the 

PP elastic differential cross-section must be the same function of 

-¢/u2 = -st/u. In particular this implies that the slope parameter 

for this diffractive component of pp scattering satisfies 

b (s) 
PP 

(3.10) 

where f3o is the same constant that appears in Eq. (3.9). Thus the 

pp diffraction peak is predicted to expand until it ultimately has the 

same, s-independent, limiting slope, 130 , as in pp scattering. Of 

course secondary effects are very important in pp scattering at 

accelerator energies, so Eq. (3.10) cannot be expected to fit the pp 

slope at these energies, but one would expect Eq. (3.10) to hold at 

NAL energies. Nevertheless it is interesting to note that the pp 

differential cross-section appears to antishrink already at medium 

energies. It is important to note, as suggested by Odorico18 and 

discussed in detail by Pinsky, 19 that the breaks in pp elastic 

scattering data and the dips in the crossed reaction pp -tpp fall 

on the same n2 = constant curves. The relation of this effect of 

crossing to the shrinkage of the pp diffraction peak and the anti-

shrinking in pp scattering has already been discussed in Refs. 18, 19. 
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IV. CONCLUSIONS 

The variable 
2 

n has been introduced in order to unify the 

group-theoretical kinematic structure of elastic and inelas-tic 

reactions and thereby to provide the same high energy expansions for 

these different types of processes. A Regge-type analysis has led to 

predictions of the form 

(4.1) 

valid for Plots of dcr/dt against 
2 

n for many diffrac-

tive reactions show a remarkable lack of energy dependence at fixed 

n2 . This "scaling" corresponds to having a(n
2

) = l for the dominant 

diffractive term at high energies. Such a pole is of course the 

analogue of the pomeron. The shrinkage of dcrjdt versus t appears 

here as a purely kinematic effect and is predicted to die out at very 

high energies. Thus our picture of the "pomeron" is quite different 

from the traditional Regge version. Since in any case, one has never 

had a ~ idea of the nature of the Regge pomeron, it is perhaps not 

too difficult to accept our new description of what the "pomeron" 

term is like. 

The situation as regards nondiffractive processes is still not 

clear and awaits further study. However, Maor, 20 and independently 

Pond, 21 have plotted 
2 

dcr/dt versus n for .the two classic Regge 

reactions 

p and ~ 

rr p ~ rr0n and rr~P ~ ~' which are supposed to isolate 

·exchange respectively, and which indeed, are the main 

sources of our knowledge of a (t), p 
aA (t) for 

2 
t < o. In both 

2 
cases they find that the s-variation at different fixed n values 
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is controlled by an n2-independent power. Maor finds 2 a (n ) ~ 0.4, 
p -

2 
aA (n ) ::: 0.3 

2 and Pond finds that any allowable slope in n would 
2 

have to be 
22 

~ 0.2 for both a and aA • These results are very 
p 2 

surprising and perhaps suggest that also in these nondiffractive 

reactions the shrinkage in t is a kinematic effect and will die out 

at higher energies. This viewpoint would be quite different from the 

usual Regge one and it is of great importance to test it experimentally. 

The most direct method would be to perform a high statistics measure-

ment of the differential cross-section for these reactions at Serpukhov 

energies and see if the s-dependence of the data is at all compatible 

with the behavior 

da · - 0 
d"E"(rr p ~ rr n) 

dG( -dt rt p -> ~) 

. ? 

2 
2[a (n- -1] 

~ b(n ) s P 

2 c(n ) s 

2 
2[aA (n )-1] 

2 

at fixed n2 values, in which 2 a (n ) 
p 

and 

or weakly dependent on 
2 

n . 

2 
aA (n ) 

2 

(~.?) 

(4.3) 

are constants 

The remarkable simplicity found in the data for many 

reactions, when considered as a function of s and 2 
n (and cr) 

goes far beyond the expectations of the original theory. The theory 

suggested that describing amplitudes as 
2 f(s,n ) would simplify 

comparison of elastic and inelastic reactions by eliminating spurious 

kinematical effects. The empirical discovery that diffractive ampli­

tudes are strongly dominated by s-independent terms, f(n
2

) only, 

.; -) 

. .. 
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is a surprise, and although nicely compatible with the theory is not 

really predicted by it. Thus it may be that there is some deep 

~'~ · 1 · ·f· ance to n2, which is not yet understood. 23 underlying YJ"am1ca s1gn1 lC 

In view of our ignorance of dynamics it seems imperative to 

extend the empirical study of scattering data as functions of s 

n
2

, so as to learn as much as possible about the structure of the 

and 

( 
2 ) To this end one should study the predictions amplitudes f s,n ,cr . 

that 

2 2(a (n )-1] 
+ s -

2 for s --. oo and n fixed such that 

(4.4) 

In 
2

1 << s, in both the forward 

and backward hemispheres, and one should plot the symmetrized cross­

sections (dcr/dt)
8 

and (dcr/dt)A [see.Eqs. (3.3, 3.4)] as functions 

for the full range of n2 for all known 2--.2 reactions. 

we have stressed in the Introduction that the ~se of n~ 

makes the mathematical structure of the scattering amplitudes invariant 

under changes in the external masses. Thus it would be extremely 

interesting to ·look at a reaction in which we can vary smoothly the 

mass of one of the external particles while leaving unchanged all 

its other properties. Just such a possibility is provided by deep 

inelastic reactions in which a final hadron is actually monitored. 

For example in 
0 ep -> epp 

production reaction 

we 

r( q2) + P __. Po + P 

are essentially studying the photo-
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in which the mass of the r can be continuously varied 
2 2 2 

(mr = q '0). Since for q = o, as mentioned in Sec. III.3. and 

shown in Fig. 7, 

dcr 0 err< /1l _. p p) 2 f(n ) only 

one might hope that this holds for reasonably small q2 ~ 0. If this 

is so, then defining b(s,q2) by 

dcrG 2 0;.\ dt r(q )p ->p ~ 

for small t, one has 

2 b(s,q ) 

2 A exp[b(s,q )t] 

s -

2 
q 

~2 

where b(s,O) is the logarithmic slope in true 

(4.s) 

(4.6) 

0 
p photoproduction. 

It should be noted that according to Eq. (4.6) the diffraction peak 

lq21 gets narrower as increases, at fixed s--the square of the rp 

c.m. energy. The data is at present somewhat self-contradictory and 

it is not yet possible to test Eq. (4.6) adequately. It is also 

possible in inclusive reactions that scaling may set in at lower 

energies if instead of considering 2 
f(s,p...L ,x) . 2 

one uses (s,n ,x); 

i.e., one looks at the s-dependence at fixed n2 and x rather than 

fixed and x. The differential cross-sections, 

(M is the missing mass), may also scale sooner if plotted at fixed 

2 . 2 . 2 24 n and M rather than t and MI. 
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In summary the empirical evidence suggests that the variable 

2 n may have some deep and fundamental dynamical significance. It will 

be of great interest on the one hand to extend these empirical studies 

2 and, on the other hand, to try to understand the role of n from a 

dynamical point of view. 
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FIGURE CAPTIONS 

A typical curve of n
2 

= v. (<- o) plotted in the Mandelstam 

plane--for simplicity we have chosen the masses of all the 

external particles to be equal. This hyperbola asymptotes to 

the lines t = v and u = v which are shown. The branches 

of the curves with their signs, a, defined by Eq. (1.20), 

are also given. 

pp elastic differential cross-section for pL from 1.7 to 

19.84 GeV/c for jtj < 20 (GeV)
2

• The graph is from Ref'. 25 

and references to the data are given there. 

pp 

2 
n 

elastic differential cross-section plotted against 

-~2p~ taken from A. D. Krisch. 2 The lines indicate 

the three characteristic slopes in the differential cross­

section data.. The dq+/dt is not actually the differential 

cross-section, but rather dajdt multiplied by a montonically 

decreasing factor which equals 1 at G = 0 and 0.5 at 

G = ~/2. For an explanation of this factor and for references 

to the data plotted see Ref. 2. 

pp elastic differential cross-section for pL between 6.0 

and 29.7 GeV/c for jn2 j < 3-3 (GeV)
2

. This is essentially 

the top·left-hand corner of Fig. 3 in more detail. The 

data is from Ref. 26 .. 

K+p elastic differential cross-section for pL = 1.96-14.8 

GeV/c plotted against 

shown on the figure. 

2 
n . References for the. data are 

Fig. 6. yp ~ '/rp differential cross-section plotted against n
2

--data 

from Ref. 27. 

~ 
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yP ~ p 0p differential cross .. -section plotted against n2 --

data from Ref. 27. 

Differential cross-section for n-p elastic scattering 

plotted against t for p1 = 2.50-26.23 GeV/c. The data 

are from Ref. 28. 

Fig. 9. Differential cross-section for n p elastic scattering 

Fig. 10. 

Fig. ll. 

plotted against 2 
n for p1 = 2.50-26.23 GeV/c. The data 

are the same as that shown in Fig. 8. 

n+P elastic differential cross-section plotted against t 

for p1 = 2.50-20.19 GeV/c. The data are from Refs. 2$ and 

29. 

+ 
n P elastic differential cross-section plotted against 

for p1 = 2.50-20.19 GeV/c. The data are the same as that 

shown in Fig. 10. 

2 
n 

* Fig. 12. Differential cross-section for pp ~pN (1690) plotted 

against 2 
n for p1 = 5.02-29.70 GeV/c--data from Ref. 30. 
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J.ALLABY ET AL 

pp-pp 
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-v Foley et at. (1963) 

Foley et at. ( 1965) 
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K+p -K+p 

• PL = 1.96 GeV/c Chinowski PR 139 B 1411 (65) 
, . . . a 2.97 Debaisieux NC 43 A 1421 (66) 
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P-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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