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ABSTRACT
‘We présent the underlying theoretical motivation fo; the -

2 L .
recently introduced kinematic variable n . Scattering amplitudes

and n2, and asymptotic formulae
are derived. It is shoﬁn,empirically3that

many diffractive reactions appear to scale, i.e., they shon little or

no energy dependence when considered as functions of n”. The
shrinkage of do/dt versus t, seen in many reactions at present

energies, is predicfed to die out with inéregsing_enérgy. It is

shown that Vﬁb -pp - scattering should antishrink. Several reactions

S : + + + + '
are studied: PP —DP, Kp—=Kp, nP—x p, T - e, TP = PP,

PP —épN . Speculatlve predlctlons are made for a klnd of 'super -

scaling" in 1nclu51ve reactlons and in deep 1nelast1c electron

scattering.
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I. 'INTRODUCTION AND MAIN RESULTS

In a recent letterl’we introduced a new kinematic variable n
(vhose origin lies in certain. group-theoretical consideraﬁidns) in
terms of which high energy'sgattering data'shpw remarkable regulari-
ties. 1In the above mentioned lettef we were content to.discuss some
of the phenomenclogical consequences, mainly in connection with the
energy dependence of the slope in diffraction scattering, and-ﬁb[point
and the variable

out the connection in pp scattering between . n2

introduced long agb by Krisch,2 on totally differént gréunds.

22
& %L
The aims of this present paper are:
(1) To describe in detail. the basic theoretical reasons for

suggesting that n2 is a more suitable and natural variable than_ t

~for the dgscription of scattering at high energies, and

:(ii) to make a more detailed, though still somewhat qualitative,
comparison between theory and experiment for éeveral high eneréy_.
reactions. It will be shown as an empirical fact thgt diffractive
prbnessés eghibit'a type of scaling, i.e., are essentially energy

!
The empirical results go

independent, when considered at fixéd n2.
far beyond the predictions of the theory and suggest that n2 is not
only a preferred variable ffom the point of view of kinematics, but
also perhapé ié singled out for‘some underlying dynamical reason.
Unfortunately, the starting point for the derivation of the
‘is a rather technical one; based on cpnsiderations of

varisble n°

the theory of conspiracies and Toller poles. Nevertheless we believe

that the principles involved and the results obtained are of great

interest. We shall therefore attempt, in this introduction to give

a qualitative and nontechnical discussion of the main principles

involved. apd.alse. to summarize the essential results of our analysis.
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A discussion of phenomenologicel applications is to be found in
Sec. III. Our conclusions, as well as some speculative predictions
about the behavior of inclusive reactions, about deep inelastic
electron scattering and about nondiffractive 2 -2 scattering are
lﬁcated in Sec. IV. All technical details are contained in Sec. II
and can be skipped by the reader who is primarily interesﬁed in the

phenomenokogical implications of our results.

The scattéring amplitude, f, for any 2 -»2 process.is
basically a function of two independent continuous ﬁariabies—-say
k aqd © or s and t—-énd very often one expands f in terms of
well-defined functions of one of the variables_with coefficients which
depend on fhe other variable, for example, the usual partial wave
ekpansion,
o

£(k,0) = Z (2z'+ 1) £,(k) Pz-(cos ) . (1.1)
' 2=0 :

The‘queStion we wish to discuss is: "What determines which expansion

we choose? Why use the Legendre expansion and not a Fourier integral

_or any other type of expansion? The answer is always that simplicity

. is & vital criterion. 1t makes sense, for example, to use the

Legendre expansion, Eq. {(1.1), for xp —xp scattering at 200 MeV
.because we know,'from other considerations, thgt only a few terms in
the series are neceésary to obtain an excellent approximation to .
£(k,8) in this energy region. It does not make sense to use Eq. (1.1)

at ISR energies.l We shall thus take as an axiom that an expansion is

‘only useful or worthwhile if there is at least & chance that the

-

fﬁnction under study can be réaébnably-approximated by one or a very

small number of terms in the series.

_under © —g(8) say

Now it sometimes happens that we can tell, on general grounds,
that there is no hope at all of approximating a function by one or just
a few terms of a certain expansion. BSuppose, just»for the purposeé

of illustration, that £(k,0) possesses a peculiar symmetry such that
_ v

£(k,0) = f£(k,0 +¥) (L2)”

where V¥ 1is some given angle, say 23°, Then it is clear that the
éxpansion,‘Eq. (lfl), is not a useful one since to satisfy Eq. (1.?)
we would have to calculate Pz[cos(e +¥)] in terms of P,,(cos ),
involving a range of values of £', and the conditioﬁ (1.2) would then
impose & host of linear relations amongst the fz(k).

In general terms, if £(k,0) possesses some exact symmetry

o e(se0) = af(k,0)

then, if simplicity is our aim, we should use expansion functions that

themselves possess this symmetfx, i.e., we should write

f(k,O). - Z 8, (k) d;l(Q)

n . : » .

where esch dn(e) has the symmetry property

a @) = ra (o) .

In this way it is clear that there is no inconsistency in approximating

f£(k,8) by just one term in the expansion.
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It is precisely this type of difficulty that appears in Regge

theory. One considers a process
A+B - 'C+D (1.3)

and uses as variables t and Gt the energy squared and the
scattering angle, respectively, in the center of mass of the t-channel
AC — BD. One then performs a Legendre expansion based on the t-channel

scattering angle and obtains, with Zy = COS Qt’

Cf(k,0) = F(t,Ot) = Z (22 + 1) fl(t) Pz(zt) . (1.%)
P

It is very well known how one replaces the sum over £ by the

Sommerféld-Watsonintegral, etc., and eventually obtains the Regge

asymptotic behavior

F(tJet) ~_/ B(t’) Pa(t)(_zt) . (1'5) .

Z, ~®
t.

For almost all values of t, the above procedure is perfectly all right.

The trouble arises at certain special values of t where F(t,Ot)
suddenly deveiops aéditional symmetry properties, symmetry properties
which afe not possessed by the. Pz(zt) themseives. Thus one obtains
complicated equations amongst the fé(t) for differeht £ -values.
.To avoid this one should not use the Legendre expansion at these.
special t " values, but rather an expansion based on representation -
functions which themselves'possess the necessary éymmgtry property.
The most important special t value, frbm the point of view,'

of describing physical scattering processes is t = 0. For example,.

in elastic scattering, it can be shownB’h that f(t = O;Qt) has an

reaction in which m

-6

extra symmetry as compared with F(t # 0,0,). This necessitates,

according to our criterion of simplicity, that we restrict our use of

the PE(G)’ i.e., representation functions of the rotation group 0(3),
to t £ 0 and that for t = O we use the representatidn functions of
the homogeneous Lorentz group, O0(3,1).

We ask now: '"What happens at t =0 in inelastic scattering?"

L,5

Again it can be shown that F(t = O,Gt) has a special symmetry,
but--and this is the crux of our entire investigation--the special
symmetry is not the same as in the elastic case at. t = 0, and to

satisfy our criterion of simplicity we should now employ representation

functions of the group of representations and translations in a plane,

i.e., of T, X0(2).

Now this is a very peculiar state of affairs. The representa-
tion functions of 0(3,1) and T, X 0(2) are quite different in
character, yet on physical grounds it is almost impossible to believe
that”a reaction iq which the masseé of the final parficles égual those
of the initial particles and a‘very slightly inelastic reaction are
totally different from each other as s —=. For example, if we
compare the case of reaction (1.3) in which m, =my, my=m Wwitha
Yy = mC but m:B = mD + Am we would expect the
regetions to look more and more alike as /m — 0, and we would expect
some kind of smooth transition from one case to the other. However,
the mathematical structure changes discontinuouély-—no matter how

small Am is one must use T, X 0(2) eand not 0(3,1). We have a

vsituation, therefore, in which a small continuous change in the physics

" is being described by a major discontinuous change in the mathematical

structure. It is not difficult to show5 that the cause of fhis
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peculiar behavior lies in a bad choice of kinematic variables, namely

in the use of t, or more precisely in the use of the momentum

transfer vector

K =

Py - Pos K~ = t ' (1.6)

as a fundamental variable in the description of the scattering
amplitude. We have therefore looked for & vector.to replace K, in
terms of which the mathsmatical structure would be insensitive to
whether the reaction was elastic or inelastic. In other words, if the
scattering amplitude has & certain symmetry at some fixed value of
the new vector, thenvwe require this symmetry to remain unchanged as
we vary the external masses of the reaction. In this way the
unnatural distinction between processes with different external masses
is eliminated and it becomes possible to use the same expansion
functions in all types of reactions. For example, if we wish to
compare the diffractive production P -epN* with pp — pp then in
terms of the new vector the mathematical structure of the two reactions
is similaf and any differences would presumably reflect genuine
dynamical effects.

The only vector we have been able to find with the above

properties is the 4-dimensional normal to the scattering.plane:

N = 2€
M Kvpo

vVpPopC (.
Pp Py Po - : (1.7
Because of momentum conservation it is essentially irrelevant which

three of the vectors Dps» Pps Py Pp W choose for the definition

of N.
!
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In the c.m. of the reaction (1.3), with the y-axis taken

perpendicular to the scattering plane as usual, one hés

s

Ny, = O, N o= 2s% pp, (0,sin 6,0) l (1.8)
where p, = |2il end p, = |Bf| are the magnitudes of the initial
and final c.m. momenta.

As is discussed in detail in Sec. IT it is the invariance
properties of Nu fhat determine the symmetry group6 and thus the
expansion functions. It is clear that for 8] # 0 or x, N is

. 33
unchanged by the pure Lorentz transformations in the x or =z

_directions and by rotations about the y-axis, and this will lead to

‘the use of representation.functions of the group 0(2,1) made up of

these three operators. On the other hand, for © =0 or g, N
) =

becomes a null vector and is unchanged by any Lorentz transformationj

so we will be led to use‘the representations of 0(3,1) for forward
or backward scattering. The most important point is that these

statements hold regardless of the values of the external masses and

therefore apply uniformly to all 2 — 2 reactions.

We therefore consider the scattering amplitude.as a function

of the véctor Nu together with

P = py+tpy, and q = Dy + By ‘i.e., 'f = f£(N; p,q) .
(1.9)
The general property of Lorentz covariance, as usual, allows f to
2

depend only on two independent scalars, which in this case are N

and p.qg p-4 1s essentially s and

L4
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T srem

waede

¥ = - g(s,t,u) : (1.10)

where ¢ is the Kibble function,7 whose vanishing defines the bound-
aries of the physical regions in the Mandelstam plane for all of the

related channels
AB -»CD, AC —»BD, AD —CB .

Whilst specifying s and t defines a unique kinematic point

. in the Mandelstam plane, it should bemted that specifying s (> 0)

and 'N2 (< 0) defines two points in the s-channel, related by having
scattering angles © and. 3-8, respectively. This implies that a
function of the variables (s,t) is actually a function of (s,Ng,U),
where O = sgn(% - 8). The introduction of such a sign is a common

feature of coordinate transformations. This + sign will be taken ag

implicitly present in all that follows even when not explicitly written.

of course, f(s,N2,+) and f(s,Na,-) will, in general, be completely

different. 'HoweQer, in speéial cases like bp scattering
f. = f(s,N2,+) = f(s,ﬁz,—) = f(s,NE) .
In general, for any scattering amplitude, one can write
£(s,8) = vfs(s,Ne) + cos © fA(s,Nz) - (1.11)

from which it follows that only the symmetrized and antisymmetrized

scattering amplitudes
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t5(,0°) = 3(2(s,0) + £(s,5-6)]
(1.12)
£4(s0°) = 5o [£(5,0) - £(s,7-0)]

can be analytic functions of s and NE.

For the purposes of making the little group expansion, to
be discussed in Sec. II, we define from Nu a vector, nu, which has

the dimensions of a L-momentum. This little vector is defined by

N B
n, = —H— (1.13)

2
B R(s,t,mi_)
vwhere R(s,t,mie) is & Lorentz scalar with mass squared dimensions.
This_veptor nu then has exactly the same group properties as N“.

We then consider the symmetrized and antisymmetrized scattering

emplitudes of Eq. (1.12) as functions of s and 2, A Regge-type
"analysis leads to the asymptotic behavior
S= ) 2
2
£(s,0%) o~/ (&) &) (1.14)
: 2 . .
n  fixed

where a(ng) is the position of a pole in an angular momentun-like
plane conjugate to the momentum vector nu. Since N2 is completely
crossing-symmetric between all three channéls, it might seem

aesthetically appealing to choose R = constant (GeV)2 so that n°
still has the same crossing properties as N2--for the purposes of

this analysis the normalization R could be any scalar. However, &

difficulty arises when we study the high energy behavior of f(s,nz)

at fixed n? if R = constent. Since as s —w
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N~ s%t ' (1.15)
and for smell n° we have

aln® ' 2 .

a(n®) = a(0) +a'(0)n” . ‘ (1.16)

. Equation (1.14) gives

2

do 2t 2[8.(0)+a'52t/R2-l]
== ~ |b{ == s ‘ (r.17)
dt 2

: R

However for small t &and asymptotic energies we expect
T+

89 . g(t) $Plo(O)ne-L] (1.18)

We see that Eq.. (1.17),is in complete contradiction with this expécted
behavior if R = constant. Iﬁdeed with R = constant and a' £ 0
the amplitude given by Eq. (l.ih) is not polyﬁomially bounded for
0<t< Hmnz. Thus we are forced to choose the function R such that

R ~ s

as s =—ow for small t. We shall find that the most convenient choice

is just R = s so we define

N . - (1.19)

. -l2-

A more detailed discussion of this problem, given in Sec. IiI, shows
that it is not advisable to attempt to make R a crossing-symmetric
function.

We shall therefore describe the scattering amplitude as a

function of s and ne,-not forgetting .o = sgn[to(s - Sl)]‘ where

2 2 2 2 . :
tg = t-u+(m” - w)e - m)/s (1.20)
and the line t = to' intersects the curve n2 = constaﬁt at
N -. T .
S = 81,8, with s, <s,, which means o0 = sgn(§ - ©) in the

s-channel. We note .that

p’ ()

and that n2 —;-gl? ‘as s — ., However, as will be discussed in
Sec. III, one cannot ﬁegiect the s-dependence of the factor pie/s
even at Serpukhov energies.

From Egs. (1.10, 1.19) one has, in general,
‘2 2: -1 1 2 2 2 2
R o=t l-—-s—> +5 (my -mg )y - )

+ 1—2 [‘c('mA2 - mBg)(mce - _mD?)

2 2 2 2., 2 2 2 2.
- (g my” - gt (my " - mp” - m” +my)
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with

2 2 2 , .2
}: = s+t +u = mA + mB + mc mD

(1.22)

i i T = . n these
In most 2 —2 reactions either m, = mC or mB mD In the

cases

| DS Ly o (1.23)
n° -t (} -—-7;——> -+o( 2) - .
‘ s
2 .
Whilst by definition, EQ. (1.19), n° =t at fixed t as s — o,
n2 is very different from t for nonasympﬁotic energies and for large
Svery G-

scattering angles. This is illustrated in Fig. 1 where & typical curve

of n2 - constant is shown in the Mandelstam plane.

-The méin results of-ouf theoretical analysis using the variables

s and n2 are as follows:

(i) Scattering amplitudes considered as functions of s and
ng possess a methematical structure that is independent of the values
of the external masses.

(ii) Comparison of experimental data as a function of s and
n2 fof Similar.reactions put with differing external masses should
give a direct indication of dynamical effects.

- d
(iii) A "poller-like" treatment shows that for forwar

scattering in any reaction:
scarte o it

‘ a,(0)-1-]M- a2 1
f a0 = 0) ~ W W W S °
Mol ° * (1.24)

“1h-

for a pole with Lorentz quantum number M and trajectory intercept
a (0) at n° = 0. We see that the dominant pole for a given helicity
amplitude has M = j(AA - xc). It should also be noted that this
result is identical to Toller's result for elastic scattering,5 but
that Eq. (1.24) now holds for all processes.

(iv) For backward scattering we obtain

£ (5,0 = 1)/~ 5 (002t by e} (
5,0 = x). :
Ao Mt S 0

25) "

S
AherdpAg

where a_(O) is now the intercept of & pole which dominates in the

backward region.

. {v) For the region inside the physical boundaries one has

a, ()

' 2 + 2 +
fxCxD’}\AXB(s,n ) o~ b;\'A_)\C’}\B_AD(n ) s (%.26)

whgre the + signs refer to poles which dominate scattering in the

region © ;

ol

fespectively. These formulae are expected to hold only -

for (ngl_<< s.

As emphaéizéd earlier the only point in using such expansions of the
scattering amplitude is if they simplify the description of the
physics. We have therefore studied several reactions, plofting the

data as a function of .n2 to see what emerges. The results of this

phenomenological study are quite dramatic. We find:

(vi) Differential cross-sections for reactions that are mainly
diffractive, such as pp — PP, K'p —>K+p, ™ - @¥p, D —apop, and

N .
pp —» pN , show a remarkable s-independence, or scaling, as a function °
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2
of n . Data from a very large range of energies and angles all fall.
close to a universal curve which is a function of 'n2 dnly, i.e., one

has phencmenologically that

do

£ = DD 2 ea®)  only. (1.27)

}e

This means, Eq. (1.26), that the leading pole in diffractive scattering

has

a(ng) ~ 1 (1.28)

in the physical scattefing region and all the shrinkage in t for
these reactions comes not from & moving pole but merely from the
s;dependent reiation between n2 and t.

It will be shown in Sec. III that each pole in our angular
momentum-like ﬁlane, which pfoduces the asymptétic behavior givén by
Eq. (1.26), induces an infinite set of poles in the usual Regge j-plane.
Thus our leading trajectory, Eq. (1.28), corresponds to a model for
the pomeron which would look like an ihfinite sequence of "fixed" poles
at j =1,0,-1,-2,---, iﬂ the Regge j-plane. There is an important
lesson to be learnt from this result. Normally one associates
shrinkage of the forward diffraction peak with the nonzero slope of
a8 Regge trajectory, and one always neglécts very low lying trsjectories,
say those with «a <0, or equivalently terms of order 1/s compared
to the leading ones. Yet in the above a sequence of esseﬁtially flat
poles, corresponding to terms of order l/s, l/s2,--- etc., compared

to the 1eading one, add up to give a differential cross-section that

shrinks, even at Serpukhov energies.

-16-

(vii) For those diffractive reactions which are exotic in the

s-channel, the slope parameter

ARV ON

jt =0
= By [1 - ;] ‘ (1.29) - ‘

"

2
b(s,m:.L )

where Z: Z mi2
) i

-~ -and.. Bp 1S a reaction-dependent constant.

For reactions reached from these by s-u crossing, one

predicts that ultimately their slope parameters will be given by

- o ¥ ‘ :

b(s,mi ) = B_O [1 + g—] . T (1030)
where BO is the same constant as in the crossed reaction. In
particular since pp - pp forward scattering obeys Eq. (1.29) we

find that pp faﬁé scattering should obey Eq. (1.30) and so antishrink

‘ (at least at energies where secondary trajectories cease to be

important).

(viii) For reactions that are not purely diffractive, e;g.;
ﬂtp.—iﬁib, we find that the daté cluster on an nz-plof and seem'£o
oscillate around a univefsal n2 function as the energy is varied.
There is some indication that the magnitude of the oscillations is
dying ocut as the energy increases and we are tempted to conjecture
that the data will ultimately collapse onto the universal n® curve.

A more detailed analysis of the s-dependence of the data at Fixed n2

is under current investigation.



Kath
P

-tions of the appropriate 1little group of the normal vector nu.
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II. 7PARTIAL WAVE ANALYSIS; THE NEW LITTLE GROUP EXPANSION

ITI.1. General Discussion

We have seen that the little group of nu within the physical

region is 0(2,1) and on the physical region boundary is 0(%,1)

regardless of the masses of the external particles. It is therefore
our aim, in this section, to expand the scattering amplitude for

arbitrary masses and spins in terms of unitary irreducible representa-

In

order to achieve this we must express the helicity amplitudes as a

function of the Lorentz transformation leaving nu invariant. - We do

* this in the spirit of Toller's’approa.ch5 but using essentially the.

formalism of Delbourgo, Salam, and Strathdee.

We begln by defining a type of M-function from the s-channel
helicity amplitude (pCSC)\C ; pDSD)DITlpASA)\A; szBxB) which describes

the proéess A+B->C +D:

=

ca,ab(PePp3 PyoPp)

1]

(pScs pfpdlTipS a5 pf b

C(L )D

s‘Do
an, (LPD)

z De,

X {ocScres prfpplTiRgSanys Pfghy)

S0 50 -1
. 2.1
X D . LpA )D7‘Bb (LpB ) (2.1)

-18-

The states [pAS a) and (pCSCc] transform according to the finite

dimensional representations of the Lorentz group as follows

.lp s o) _ . SAO 1
a) = B
K Z |‘pSA)\A> D"Aa (Lp ) (2.2)
" .
S.0 :
’ S.c = ¢ : .
hc :
Using these equations we see that the M-function satisfies the
covariance condition
M.a,ab(PerPps BysPp)
S.0
) ¢, -1 5%, 1
L P Chyng, Pk
id!alb'
' 8,0 5.0
M (A_,n 5A ,o )p, A B
X c'd',a'b' PC’ pD’ pA: pB) ava (A) Db'b (A) . (2‘)"")

We rewrit
¢ Mg mp

defined in Egs. (1.9, 1.19):

as a function of the 5 four-vectors n, p, and q

Yoa,ap( 2:0) = Mg (rmp PpoPp) - . (2.5)

qust as in conventional Regge theory we will find separate asymptotic
formulae for ﬁhe forward and backward regions. In the following
analysis we shall assume that we are in the forward hemisphere. The

re;ults for the backward hemisphere then follow by analogy.
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We next couple spins SA’SC to give J and SB’SD to give
J' 2 and define formally

i]LJ'm' ,Jm(n; p’q)

= (pI'm'|T(n)|qdm) (2.6)

Z c(st; J'm',SDd) c(scc; Jm,sAa) Mcd’ab(n; p,9). (2.7)
cdab

This new matrix element, 67n%'m' Jm(n; p,q), satisfies the following
2

covariance condition:

M a3 ©:9)

: J'o, -1 : ~Jo ‘
= Z Do (A )WJ.k,,Jk(An; Ap;Aq) D" (4). (2.8)
. kk!

Recalling Eq. (2.6) it can be seen that we can formally write this

covariance requirement as

U(r)|qdm) = Z |aq Jx) kaJo(A) (2.9)
k g
wrw ot = ) 0 00 ek (2.10)
. k' ) )
U(A)T(n)u'l(A) = T(An) . (2.11)
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Having described some of the formalism we now go on to discuss

our partial wave expansion for the forward scattering amplitude.

I1.2. Expansions on the Physical Region Boundary
In any reaction, for either forward or backwﬁrd séattering we
have n = (0,0,0,0) so that for any Ae 0(3,1):

T(An) = T(n) ‘=‘T(o) . (2.12)

Now in the s-channel both the vectors P. and q are timelike so that

we can define the standard vectors ﬁ,a such that Ap’Aq are real

~transformations:

P = Apf) = Ap[pl(l,o,o,o) , (2.13)
q = Aq&, = Aq|q|(l,0,0,0) . ‘ o (2414)
We can now rewrite the covariance condition, Eq. (2.8) with A = Ap-l
and obtain '
: j:szmv,Jm((); P,q)
' J'o ‘ e <l ey . JO, -1,
= Z Dm'k' (Ap) %J'k',.fk(o’ P;Ap AqQ) ka (Ap ) .
1 .
e (2.15)
We lastly define the function
4 Lo e J0,,
Frg o = ) Mo 500005 3,89 D 00) « (2.26)
m” .

With A = Ap-lAé we see that
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FJ’m' ,Jm(A) =

X e 0 220 35,700 20,00, 1)

DI (R LR LIPSO
kk’

= (ﬁJ'm'lU'l(Ap)TU(Aq)lajm}

= <§J'm'|TU(Ap'lAq)|aJm)

FJ;m,’Jm(A) = {pJ'm' |TU(A)|§dm) ‘ (2.17)

where we have used the fact that with n = 0, VT(n) = T(An). We have
at lasf succeeded in defining a function F which depends only on the
little group transformation of the ﬁector nu, and this is the fUnction
we shall exﬁand. However, before discuséing the actual expansion we

-1

must first consider not just the transformations A = Ap Aq but also

-1 .
= h Ah where A h ,A h  belong to the so-called left
A= (aghy) T (Aghy) s o g g &

and right covariance groups. These are the intersections of the grbups

of transformations which leave both n _and P and both n and g,

respectively, invariant. As P,q are timelike, the transformations

h and hq can be. any rotations:

§ = R§ = § . (2.18)
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These invariances give rise to the right and left covariance conditions
2

as-follows:

(83 'm* | TU(A)U(R) | §m)

FJ'm’,Jm(AR) =
- LT :
=) Tyt ,ann(8) Dy (R) (2.19)
mn_
and similarly
Jl
FJlml’Jm(RA) = Z Dm,mn (R) FJ'm",Jm(A) . . (2_20)
mn : i

We are now ready to consider the expaﬁsion of the function
FJ’m',Jm(A)' Any function which is square-integrable over the non-
compact group manifold may be expanded in terms of the_representationé o

of the principal series. We parametrize Ae 0(3,1) in thé following

way:j

A(ul,Gl,Vl,C,eg,vg)A = By(y,00,v,) a (6) RQ(O,Qé,vg) (2.21)
where .o Sy < b, 0 < 6 <m O0<w 22n

0<¢ <, 056, <m, 0<v, <2xn : (2.22)

R R2 are rotations and a, & z-direction boost. We can then expand

l’
a square-integrable function F(A), in the following way:5

Jusdtu’

e
. 5 _ _
£(a) = z: ) dx(Mz ) 2: £, ., ,MK D. ., ,MK(A)
. . Jusd'tu Ju,dtu
. M e )

(2.23)
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where the parameters M,\ are such that

Re A = O, o< In )< ,
M = o0, 11,32,
3,3t = Ml, M} + 1, . (e.eh)
Then
fj'u';juMR - _l.dA Dd'u’,jqu(A)* £(a) (2.25)
where the invariant measure on the group, dA, is given by
an’ = G dv) dvy sin 0 @ sin 6, o, sinh® { df . (2.26)

and the integration is over the ranges given in Eq. (2.22). We refer

to the work of Toller3 for the properties of the representations of

" the homogeneous Lorentz group, D, M)‘(A).

Ju,dte!
Before applying the expansion formula, Eq. (2.23), to
Frnt gm

0(3,1) group manifold,lo we use the covariance conditions to eliminate

(A), which we shall assume to be sguare-integrable over the

some of the indices. We note from Eg. (2.21) that any Ae 0(3,1) can

be written as

where R,,R, are rotations and a, is a gz-direction boost. Applying

1’72

Eq. (2.25) to the function f(A) = F. (A) eand using the right

SJ'm',dm
and left covariance conditions, /Egs. (2.19, 2.20), together with the
properties of the representation functions DMK 3 we obtain

oo

I\d)\*
.llﬂﬁ.daz ARy Dyyr gy (Ry8Ro) Frop o (Rya Ry)

- 8, 5 F.,

JVJ! ‘6u1ml jJ um J!J (2'27)

which defines the generalized partial wave amplitudes FJ,JMX. Now
using the inverse of this last equation, i.e., Eq. (2.23), we obtain
iAo

2 w2
a0f - 3%) 15, 6 - o) Dyt (M)

(2.28)

This integral corresponds to the generalization of the background

integral in the usual complex angular momentum plane.

In order to pick up the contributions of poles in the complex
A-plane, we must move the contour in Eq. (2.28) to the left, which
requires replacing the representation functions D by repreéentatipn
functions of the second kind, A. These are analogous to the Qj(z)'é
and like them have more suitable asymptotic behavior than the functions

of the first kind. The A, ., ,'™(A) are defined by

Ju,g e

M}\(A) = A ‘M"}\.(Uj ,M)\.)"l )

M M,
D, . ™M) UM A,
Ju,dtu! Jusgtu (8) J u,dtu’

(2.29)

where : .

; A
M -Mx 5 - A
u™ - g™ Z =2 | (2.30)

s:|M|

and the D's have the property that



sy

v F

oy
oy

-o5-

M- My -1 Mo My
= (U, D, . U (2.31)
RSP LN () (UJ ) Ju,dtu! 3’
With A = az(g) the functions of the second kind have large ¢

behavior given by

#p -\ - - -1
Aju,j'“" (az) /C'\j »Suuq € C( A l M + I-l)[l + O(e )}
(2.32)

‘with M > u. Now from the properties of the D's, Eq. (2.31), and

J'J

the definition of F_, M of Eq. (2.27) we have that

s ™, Ny (2.33)

Fypg = Frg 7

This property can be used in Eq. (2.28) to restrict the sum over M
to positive values; however, instead we shall substitute Eq. (2.29)
into Eq. (2.28) and using the property Eq. (2.33) obtain

A +ico

. -]
.
FJI’mY ,Jm(A)

M=- o ~joo

2 M-n , M-\
d)\(Me - A ) FJ"'J_- AJ'm',Jm (A)

(2.34)

The purpése of replacing the D-functions by the A's is exactly the
same as that of replacing Pj‘s by the Qj’s in the spinless Regge
expansion; i.e., they have suitable behavior at infinity in the complex
x-pl;ne enabling us to neglect the contributions from infinity when we
move the contour into the left-half plane. This we do now, assuming
M-M have poles in the left half of the complex A-plane at

Jt,
» = a,(0), whose positions are independent of J,J'. We define the
i :

the F

residues of these poles--called Lorentz poles--in the following way.
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Lin [L G - 2,00 FJ,JM*-(o)] - €L ™) (2.3)

ni
A= a.+(0)
where we have introduced a plus sign to remind us that the poles and
residues are those which dominate scattering in the forward hemisphere.
Then assuming F2 is meromorphic in a strip |Re A] < A!' we move

the contour in Eq. (2.34) to some A, |Re A| = Ay < A" to give

-}\,o+ico
- » 2 2 M-x M-A
Fymt g = ) [ DO =) E N0 Ay M)

.M -)\o ~ico ’

*(A) + fixed poles

+ 2: O - a+i2) gi+J'J(O) Artmt,am
oL | (2.36)
The fixed polés occur because the functions VAMK(A) can have poles
at integral values of A-M. However, it can be shown® that their
contributions either actually cancel out or at least are asymptotically
negligible. |
Because of Eq. (2.33) we see that ir pTA has a polé at
A = a{0), then there is also a pole in the right half of the com@lex
A-plane at A = -a(0): this is called a mirror pole. These mirror
poles, as we shall see [Eq..(2.h3)], have the same asymptotic behavior
as their corresponding Lorentz poles.
Before we can consider the asymptotic behavior of the amplitude
FJ,m,,Jm(Ap-lAq),VIEq.'(E.lY), and hence of the s-channel helicity

amplitudes we must define some kinematics. We choose to work in the

bs-channel center of mass. With np = 0 we can take
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p" = (E[50,0,pp) (T = 4,8,C,D) (2.37)

I

where the three momenta satisfy Pp = -pA and PD = Po and of

course E, + Ep = E, + E. We then have, Eg. (1.9),

Pu = (EB + ED:O:O)‘PA - PC)
' (2.38)
[T g
q _(%+Ey@m%+p&
which we can rewrite as
Pu =. lPI(EéSh(C - go)’o:o:‘Sinh(g - goz)
o ' - (2.39)

qp IQI(COSh QO:O:Q:Sinh‘go)

where -|p|2 = 2(m32 + mDE) - t, |q|2v= 2(mA2 + mce) -t and
|p|sinh(¢ -.CO) = |q]sinh §0. Since p+q =s - u = |p||q|cosh ¢ we

have therefore

ht o= . s ;4 T (2.40)
cosh ¢ [2(mA2 N mta) R t]f[e(mBg N sz) Rt

which is only large for s — o and n2 fixed if we are considering

scattering in the forward hemisphere. We then have

1(6-8,)3 )
() = e 0 03, u(a,) e OO  (2.41)

and so
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R -89, :
A) = e 9, (2.42)

. <1 .
Putting A = Ap Aq = az(C) in the expansion formula, Eq. (2.36), and

letting  § — o we obtain the high energy behavior of the forward

Vscattering amplitude. Then the rightmost Lorentz pole at X\ = a+(0)

. will dominate giving:

t(a,-1-{M-|n|])
g1y (0) o

Fromt,anl® = OzC);**Tﬁéﬁ,m(Mz -0.%) g o) e

{2.43)

Recalling Eqs. (2.1, 2.7) and noting that

' . -igJg -ieJ i@J -itJ
U(Lp) = e 2. 12, 05
50 _ - _~img s iy(g+it)
Dy (Lp) = e duv (8) e
we have thét as 8 -
{peSches PpSphplTIRgSahys PeSprg)
. n“=0,6=0
a (0)-1-Im |n, a0 |

+ A °C (2.&&)

B, . : s
MM

The Kronecker delta ensures angular momentum conservetion in the
forward direction and we see that the dominant Lorentz pole has
M=ty - A

It should be stressed that this behavior of the forward
scattering amplitude, Eq. (2.44), holds regardless of the external

mass configuration. To leading order in s, Eg. (2.14) is in complete
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agreement with both analyticity and other group-theoretic results. Of

course, Eq. (2.44) is absolutely identical to the result of Toller>* 1t

in the EE mass configuration at t = O to all orders in s, since

in this case t = 0 corresponds to n2 = 0. However, in other mass

configurations. our result has been derived without the need for assuming

- 12
either analyticity in the external masses or that expansions should

be made with respect to the classification group of Regge trajectories
‘ 13

rather than the appropriate little group. Indeed previous imposi-

tions of 0(3,1) symmetry at t ='0 wmay be regarded as a first
approximation to the exact Lorentz symmetry when n2 =0, since,

asymptotically in s; t =0 meané forward scattefing and so coincides
with n2 = O“there.

Up to now we have. considered  p = P+ Py 9=0D, + Po and

accordingly coupled spins SB,SD and SA’SC' This corresponds to the
usual t-channel analysis. As we have seen (p-q/!pllql) — w0, as
s »w, at fixed n2, only in the forward hemisphere. We could equally

well have chosen p = Py + Pa q = Py + Pp and have coupled spins

s : . ) 1
SA’SD to give J and SB,SC to giver J'. Then

p.q- s-‘t

=_ offal ~ [2(mB +my ) - u]2[2(m + sz) - u]%
(2.45)

cosh §

and 5 —»o gives { -« at fixed n2 for scattering in the backward

hemisphere. Thus in analogy with the forward case, we now obtain at

n2 = 0 for backward scattering at asymptotic energies:

P = Pa

=30~

a_(0)-1-|M=[x, -
ryAohas S a7l
A" Mg

(xC,AD[Tle,xB>
n =0,0=x
(2.46)

Here A = a_(O) refers to the Lorentz pole which dominates scattering

in the backward hemisphere. In similar way we could choose

-Pp =D, - Py butwith n° fixed p-a/|p|fa| is never

asymptotic in the s-channel physical region.

II.3. Relationship to the Theory of Cosenza,
Sciarrino, and Toller
We have already mentioned in Sec; I that the 0(3,1) analysis
= 0 to elastic reactions of the type

of Toller only applies at +t

A +B—A+B, Inan attempt to extend their analysis to processes

of the type A + B - A + C, referred to as UE reactions,5 and
processes like A + B —=C + D (UU type), Cosenza, 801arr1no, and
Tollerll

studied expansions based on the complex Lorentz group and

predicted the asymptotic behavior

A(0)-1- M- |n, ng | |-k
(haorg 20y 5 2g) ~ 8 s A"C (2.k
oo pl TRy o AN gy : 7)

where k is a non-negative integer which can only be nonzero in UE

type reactions. The value of k is specified in terms of the internal

quantum numbers (I,G,B,Y) of the exchanged pole. On the contrary,

. 2 . :
in our n  analysis, the result with k = O holds for all reactions.

Another difference between this n2 approach and the complex

Lorentz group result is in the allowed range of M in Fiy_,
J'm',Jm

[see Eg. (2.2&)]. In our analysis we always have
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M < min{sA + 8y, Sp + SD} (72.1L8)

whereas in Ref. 11 M may take any noh-negative value in UE and UU

type reactions. This difference arises because we exploit the exact
0(3,1) symmetry at "6 = O in &ll reactions and not just in EE
_scattering. ' '

II.4. Expansions inside the Physical Region - --

We hOW'consider the cése of scattering in the physical region
! R

when n2 < 0 and derive high energy\expansions at fixed negative %,

We shal; see that tﬁe dominance of a single term_in our  expansion
gives results very differeﬁt from the usual Regge éase. As before
we have different aéymptﬁtic expansions in the forward and backward
heﬁispheres. ‘The anglysis presehtea fefers to scattering infthe_
forward hehisphere and'the backward cése then follows trivially.

We return to Eg. (2.17) ‘and define
» : o -l o ‘ ‘
_ 1
Froge,gu(®A) = (B'm |T(Ap n) U(4)|qu) (2.49)

where " A = Ap-lAq. The four-vector, nu, is always spacelike inside

1
the physical scattering region, so we can choose n, = [0,0,0,(—n2)2].

Clearly if Ap,Aqe 0(2;1) then An = n. Now the left and right
covariaﬁce'groups are the intersections of'the groups of transforms-
tions which leave both n,p and n,§, respectively, invariant. Both
‘covariance groups are 0(2,1){}10(3), i.e., 0(2), the group of

rotations about the z-axis. The covariance conditions are

: : g |
Fyogt (™ MR = Y P n(as0) D) (2.50)
k

-32.
. N J
Fromt gu(®s BA) = L Frogr,gnt®5 A) Do (R,) (2.51)
. s k7
where D IR ()l =5 . e‘im¢ - -~
mm' "z ~ “mm* ) C . '

If FJ,m,’Jm(n,A) is square-integrable over the 0(2,1)

group manifold, we can perform an 0(2,1) expansion &S’f@llOWS-lo ‘ v
We note that any fAe‘b(é,lj"can.be written as -
A = RZ(¢1)8‘X(C) RZ(¢2) . ) ' (2'52)

—
~

We use this fact fdgexher with the covariance conditidns, Egs. (2.50,

2.51), to simplify the indices and obtainlu

-FJ'.m1 ,Jm.(n’A)

—%+ico o )
- 24 + 1 b,€, 2 - b,e )
o E: 4 w2 - €) fJ'm',Jm (n%) Dy (a)
€=O,% -%-im ’ .
-] ) .
k,e, 2y . k,¢
£y (- ) g B0 DL ) (2.53)

k=1-€

The first term on the right-~hand side of this equation involves the
principal series representations for which m,m' = e,e + 1, + 2,---,
and the second term involves the discrete series for which

) 1
m,m' = +k,#(k + 1),--- With n, = [0,0,0,(—ng)z] we can choose

Ap = a'x(go‘ - C): A‘q = ax(go)
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so that

a7 = a(0) (2.5%)

where |p|sinh(¢ - t,) = la|sinh ¢, eives us the s-channel center
of mass frame. Cosh { is given by Eq. (2.40).just as before. This
is because with nu in the z-direction vpﬁ = q5 = 0 and so the
Lorentz scalar p-q = Pydy - Piq; - p2q2--the 0(2,1) prodgct.
In order to move the integral contour of Eq. (2.53) to the
’ - 2 v eron voles in
left and to pick up contributions to FJ'm’,Jm(n SA) om poles i

the complex £-plane we replace the continuous cla;s of representations

by representation functions of the second kind, A, which are defined

by
Dy (A) = Am.m”(Aﬁ vu b @t (2.55)
where _
Umz = (s +m +1)/T(m - £)
and
Dm'm-z_l’e _ (Ui‘z)-l Dm'mz,e Umz . o C (2.56)

From this last property of the D's we have that

£,e

f Ay-1 41, ;2 (2.57)
J'm' ,Jm

(Uﬁ f.J"m',Jm m

We use this relation together with Eq. (2.55) to write the integral of

Eq. (2.53) as

-3l

(2.58)v

If we assume that ﬁhe function fz is meromorphic for

|Re(£ + 3)| <L we can move the contour from‘ Re £ =1 to Re £ = Ly
(L > Ly). The functions A are such that the contributions to the
integral at infinity is negligible. We assume that the partial wave

ffz_l have & pole at £ = a(n2) with residue defined by

. 17 _ 2 -£-1,e, 2 €, 2
llm o ni<% a(n i) £ 'm',Jm (n") bJ‘m',Jm (n%)
t—»a(n") :
(2.59)
We can then rewrite the expression, Eq. (2.58), as
-Lo+im
u X (24 +-1) -£-1,e, 2 -£-1
2 }L_ de tan (£ - € fJ'm',Jm (n%) Am’m (1)
€ —Lo—iw
(22, +1) ¢ o ' -a,-1
* tan niai — ) biJ'-m',Jm (n%) Ay (A) : (2'60)
€,i
: . -£-1 2 . :
From Eg. (2.57) we see that a pole in f at £ =a(n”) implies
the existence of & mirror pole at £ = —a(nz) - 1, both having the

same asymptotic behavior.
Recalling that A = e (L), Ba. (2.54), we shall consider the

: . 2 .
behavior of FJ,m,,Jm(s,n ) as s —w®. We note that
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. o , ) ot

£ ~ )|y amm ~C (e )1 (2.61)
Am’m @x(CD o £+ 1 _

and that the contribution of the discrete class decreases faster than

e‘Q and so is neglected. If we are considering scattering in the

forward hemisphere cosh { is given by Eq. (2.50) and in the backward

hemisphere by Eq. (2.45). The leading high energy behavior is given

by the rightmost pole in the complex £-plane

2
a {n%)
2 t €t 2.62
(e,m ) ’A~‘/'tan nA<; (nz) € bJ‘m"Jm ’ ( )
S k + A

2a (n°) + 1

FJ'm',Jm

where we have agein introduced the *+ signs to refer to thg-poles
which dominate forward orvbackward hemisphére scattering, respectively.
. 2 : .
We note that when we take the limit n~ -0 of a single pole

contribution

: _ - ‘ el -
_ 2 20 +1) ©) A, FH®)
s,n. =0) ~ ‘—L"I":l—j 'm',Jm m'm :
FJ'm',JQ( 4 ) tan nla .€ J'm 5 . (2.63)

where Ke 0(2,1),-we find that thelcovariaﬁce qonditiéng for Ae 0(3,1)
which épply when n = 0, cannot be satisfied by such Z—plane contribu-
tions individﬁally. Hoﬁéver, of course, & single Lorentz pole does
satisfy sﬁch covariance conditions and as shown by Sciarrino and ..
Toller16 such a pole at X\ = x(O) corresponds to an infinite family
of 4-plane poles at zv(o) =a0) -v -1, v=0,1,2,000 We see
therefore tﬁat as h2 -0 an infinity of single.ﬂ—plane pole contri-

butions, Eq. (2.63), must conspire to produce a single Lorentz pole
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term so that the scattering amplitude may satisfy the correct

covariance conditions, Egs. (2.19, 2.20), at n = O.

>II.5. Connection Between the Complex £ 2 and zt Planes
. n -

In the previéus sections we have performed a Regge—type
analysis which was based on assuming thé existence of poles in an
angular momentum-like plane, 5'2, conjugate to the vector‘ n. It

- n .

is not at all clear whéfﬁéf?it is in fact meaningful to postulate poles

in this plane. However;'any singularity in the complex £ 5 plane
. : : : n
gives rise to a sequence of singularities in the more familiar complex

angular momentum plane zt, and it is therefore'of interest to ask

. what singularity structure is induced in-the zt plane by a simple

" pole in the £ 5 plane.
: n

To see this, we consider the usual Froissart-Gribov integral
defining fg(t) at fixed t:

o

£,(t) - az, 4,(z,) F(t,z,) | L (2.68)

where £ here is short for lt. We now feed in for F the asymptotic

form induced by & pole in the 2_2 plane at £ 5 = a(ng), i.e.;
n n

2
| a(n’)
F o~ b(n2>(—§;> o (2.65)

If the residue b(nz) is & polynomial in n° we can rewrite it in

the following form

oo

me(t)<§9—>m ' | (2.66)
o ,

m-==f

b(ne) =




“ay
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and we write Qz(zt) as

-£-2p-1

alzy) - ), qp<t)<§—> o
. by 0

. 7.2 .
We shall further assume that the "trajectory function,” a(n”), 1is

" (2.67)

linear in n2 so that

a(nz) =

where A(t) = 2 -t Z: mi2 + (mA2 - mcz)(mB2 -_mDe)

CB(t) = t(mA2 - mBg)(mC2 - mDE)

’ 2
o »(mAszg ; mBemcz)(mAzmee - mBz - 1)

Then using the shorthand

a(t) = a(0) +ta’(0) o ‘ (2.69)

and

Bimp( )

B 50 N S Y o)
TE +L)r(k + 1) (gg— / 502 .

we have on putting Egs. (2.65-.70), into Eq. (2.64) and integrating

at fixed t, that

a(0) + ta'(0) + 4k 41(0) B8 a0) o (2.68)
) s
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Z sikmp(t) r(i +% +1)

fz(t) .
[ -a(t) +1 +2k +m + 2p

(2.71)

]i+k+l
ikmp

2 a(ng)
We see from this last equation that an b(n“) s asymptotics
corresponds to a very complicated family of Regge poles and multipoles.
However, the leading pole at £ = (t) is a simple Regge pole.

In a similar way a single Lorentz pole in the x 5 plane
n

gives a series of Toller,muitipoles at t = 0, except in the case . of
EE scattering, where there is a one-to-one correspondence’bétween_our
Lorentz poles and those of Toller.5
. It should be noted from Eq. (2.71) that if the leading Regge
pole has a factorizable residue, then b(ng) will hpt in general be

completely factorizable. However, in the expansion of b(n2) in

inverse powers of s, Eq. (2.65), the leading term will factorize.

It has been argued that the use of the variable n2 simplifies
and unifies the groﬁp theoretical structure of the expansions usedbfor
the scattering amplitude. However, there is no guarantee that fﬁe
gmplitude is dominated by a simple set of singularities in the complex
£ 5 plane. It is & dynamical question as to whether the'singularity

n
t

poles suffice, implying the need for an infinity

structure will be simpler in the £ or £ 5 planes. Thus it might
. n

be that a few £ o
. n

of Regge poles, or vice versa. In our present state of ignorance it

is impossible to answer questions of this kind by means of dynamical

calculations and therefore the only way to test for simplicity is by

means of a phenomenological study of scattering data. It turns out, as



-39-
will be discussed in the next section, that the date do indicate quite

2 s
remarkably simple properties in the n descriptign.

=40~

IIT. ANALYSIS OF SCATTERING DATA AS A FUNCTION OF n2

The main result of the above analysis is embddied in the
suggestion that the description of scattering amplitudes as‘fuhctions
of s and n2, rather than s and t, could lead to simplifications, ’
in the sense that all spuriocus kinematical effects are absent and that
the behavior of the scattering amplitudes is évdirect reflection of -

the ﬁnderlying dynamics.

v

Thus the first' issue to be settled is to see whether experi-
mental data whéﬁ‘pibtféd.against s and n2 do show any simplicity.

It will be seen in what follows that diffractive processes show & -

remarkable kind of "scaling" oruniversality and that their cross-

sections appear to be independent of s over a very large range of

energies.

The second issue relates to the specific Regge-like model

" based on the existence of poles in the complex £ 2 plane. Here we
. _ n o

have the predictions that at fixed n2, with n2 << 8,

4o v 5 2[a+(n2)-l]

T ~_ b+(n ) s -
forward S ‘ (3.1)
hemisphere '

4o _ 5 2[a__'(n2)-l]

o ~~ b (n7) s . (3.2)
backward S— :
hemisphere ¢

where a+(n2) are "trajectory functions" associated with the quantum
numbers of the exchanges which dominate forward and backward

scattering respectively.. To test these one must perform the same
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kind of analysis as is usually done to test the Regge model, except

that here one works at fixed n rather than fixed +t.

It should be stressed that the above two issues are gquite

separate. There are good theoretical grounds for suggesting the use

of the variable n2. On the other hand, the analytic structure in the

£ > plane is not well understood and the pole-like model may be far

n

too simple. Even if it is, it will still be of great interest to look

2
at the structure of scattering amplitudes as functions of s and n ,

as indicated by the data itself.
It should also be stressed that some care must be taken in

analyzing the data as a function of ng. As mentioned in the
Introduction, one should, strictly speaking, plot the symmetric and

antisymmetric combinations:

@), - dss] e

1 [c_iﬂel ] ﬂg_t__ez] | (3.4).

2 cos © dat

(=
at A
when looking at data which cover a very large angular range.

For small O, 9%%91 ~ 100 EEK%{;_QI, typically, so that near

the forward or backward regions the above construction is of little

importance. It is vital, however, if the data include the region

near 9 = x/2. The exceptions to the above are reactions like

Pp - pp which are symmetric around 6 = /2, so that (dc/dt)A = 0,

and one need only look at dc/dt itself. However, in general, if

one is testing for scaling over a large range of angles and energies,

oo

it is necessary to use the combinations given in Fas. (3.3, 3.4). on
the other hand, in testing the Regge-like predictions listed in Egs.
(3.1, 3.2), it should be borne in mind that the formulae are only
expected to be wvalid for values of 0 close to 0° or 180°
respectively. Thus for testing Egs. (3.1, 3.2) it is not necessary
to form the symmetric and antisymmetric combinations.

We shall now consider several 2 -2 reactions and show that

the s,n° behavi
s,n ehavior of the data possesses quite dramatic features.

(i) pp =pp: In Figf 2 is shown the differential cross-
section for pp - pp scattering as a function of t for various:
ehergies between PL =1.7 and 21.3 GeV/c. "It is seen that the
curves show & very strong energy dependence at fixed +t. At small <
one has the chéracteristic shrinkage of the diffraction.peak, and at
large ¢, dd/dt may vary by 2 or 3 " orders of megnitude over the
energy ?ange plotted. The same data (only for 12 é 5 GeV/e) is
shown in Figs. 3 and b plotted against n2. It is seen that the
shrinkage has disappeared and aside from the region around
n® - -1.2(GeV/c)2 (enlarged in Fig. 4), which corresponds to the
shoulder seen at a similar value of + (iﬁ Fig. 2), there is very
little s dependence at fixed ng--in fact the data appears to "scale"
at fixed n2;

That the pp data looks universal is not really surprising

since for pp elastic écattering n2
2. 217

P, .

-4

becomes just equal to the

Krisch variable B
If we interpret this scaling in terms of the pole model, then

from Egs. (3.1, '3.2) we see we must have

a(e) ~ 1 o (3.5)
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for all n2 in the scattering region. This suggests that the
dominant term in high energy diffractive processes, the analogue of

the pomeron, looks like a fixed pole in the £ 2 plane. We thus have
n

do 2\12
x > [ ) (5.6)

even at moderately large energies. Assuming that in the near forward
direction the differential cross-section is given by a single exponen-
tial in n2, with an energy independent slope, i.e.,

Bon”
do  do 0 3.7
a = oa|, °© , (3.7)
n =0
' . 0l 4 derinit
v with BO constant, we then have, as pointed out in, avde inite

formula for the s-dependence of the near forward logarithmic slope

on a t-plot:

o = efefi /(8 >M

2
dn .8
= Bo dt . ‘ . (3 )

For pp — pp scattering this gives

(3.9)

It
S
N
'_l
m|§§
./

b(s)

In this.way the energy variation of the slope is completely determined.

If was shown in Ref. 1 that Eq. (3.9) provides a reasoneble interpola-

tion fof the pp slope data all the way from threshold up to ISR

Ll

energies. It predicts that shrinkage will stop and that b(s) will
flatten out to an ultimate value BO? which is just the slope on an
n2 plot at any energy.

In summary the pp data looks remarkably simﬁle as & function

2 : )
of n  and appears to show almost no s-dependence at fixed n2. : -

(11) K P —9K D and TP —9¢p' Both these reactions are similar

to pp elastic scatt'“' v1n that they are very-largely diffractive *s

processes with little’strucfﬁre in do/at ‘as a function of t other
than the usual shrinkage. Both should be dominated at largé s b&-
the pomeron and therefore, if there is any validity in our interfreta~
tion of the pp -elastic reaction, we should expect both these
reactions to show little energy dependence at fixed n2. -Figures.5vand
6 show that this is indeed the case. Both reactions scale at fixed .
n2 over a wide range of energies and tﬁere is no visible shrinkage

of do/dt as a function of n°.

That this heappens is nontrivial,

since the shrinkage in t for pp - pp, K+p —;K+p, and TYp ;>¢p

are all différent, and_the mechanism fof transforming'tﬁese yaried .
shrinkages in 1t into nonshrinkage aéainst ng, is‘completély

contained in the'masé dependence of the factor dng/dt in Eq. (3.8)

[see also Eq. (1.22)]. .

e

iii P = op: .It is known that the cross-section for this
2 2p D

reaction is fairly constant above 2 GeV and that the natural;parity

s

exchange dominates. Thus it has the main characteristics of a
diffractive process and we might hope to find an ﬁa-univefsality
similar to the cases studied above. A plot of dO/dt against n2
for E  ranging from © to 17.8 GeV is shown in Fig. 7. It is
again seen that theré is essentially no s-dependence in the data at

fixed n2.
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It was remarked in the Introduction that the normalization
used to define nH from NH is to some extent arbitrary .from a

group-theoretical point of view. Any renormalization of the form

n, = NH/R(s,t,u) where

R(s,t,u) ——=> s
5=
t fixed

would provide an acceptable description of scattering at very émgll t.
Héwever, the choice R(s,t,u) = s is essentially unique in providing
a description of the data in which the s-dependence disappears, i.e.,
in which the shrinkage on & t-plot becomes automatically accounted for
as a kinematic effect. For example, one can show that no crossing:
symmetric polymomial in s,t,u and the external masses exists which
has this propérty. It is possible that there is some deep underlying
dynamicel reason for the particular choice np singled out by the
data. '

(iv) nip —9nip: These reactions are not purely diffractive.
Their cross-sections are varying with energy and there is'a,consider-
able amount of structure in the t-dependence of dG/dt. Nevertheless,
as is seen in Figs. B8-11 the large s-variﬁtion of dc/dt ’at fixed t
is very much reduced when considered at fixed n2. The ‘n2 plots are
not nearly so uni&ersal as in the previous reactions, but this is in
accordance with our knowledge that nip —ani§ are not completely
dominated (in Regge language) by the pomeron, and that large contribu-
tions must be attributed to the secondary trajectories. In the n2
description the secondary effects play a much smaller role and we are

at present trying to study them quantitatively.

~LE-

(v) N production: There is not much detailed dataon the
energy variation of dU/dt for processes like Dpp - Nﬁgbut we show
one example in Fig. 12 for the N (1690) with I = 1/2, J%° = s5/27.

It is seen that within the limited statistics the data points are
compatible with little or no energy variation at fi#ed n2.

(vi) Dp —952: Since the dominant component of the pp elastic
differential cross-section is just a function of —¢/s2 = -tu/s, it
follows from the croséing propefties that the diffractive pért of the
pp elastic differential cross-section must be the séme function of
—¢/u2 = ~-st/u. In particular this implies that the slope parameter

for this diffractive component of ib scattering satisfies

hmg . . i
b_(s) = By [1 +—S—} - (3.10)
P )

where Bo is“the same constant that appears in Eq. (3.9). Thus the
Ep_ diffraction peak is predicted to expand until it ultimately has the
same, s-independent, limiting slope, ﬁo, as in pp scattering. Of
course secondary effects are very important in Pp scattering at
accelerator energies, so Eq. (3.10) cannot be expected to fit the pp
slope at these energies, but one would expect Eq. (3.10) to hold at
NAL energies. Nevertheless it is intefesting to note that the PP
differential cross-section appears to antishrink already at medium
energies. It is important to note, as suggested by Odorico18 and
discussed in detail by Pinsky,19 that the breaks in pp elastic
scattering data and the dips in the crossed reaction Eb - pp fall

on the same n2 = constant curves. The relation of this effect of
crossing to the shrinkage of the pp diffraction peak and the anti-

shrinking in Pp scattering has already been discussed in Refs. 18, 19.
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IV. CONCLUSIONS
The variable .n2 has been introduced in order to unify the
group-theoretical kinematic structure of elastic and inelastic
reactions and theréby to provide the same high energy expansions for

these different types of processes. A Regge-type analysis has led to

predictions of the form

g fé;fg;a b(nz)'sg[a(nz)‘ll (4.1)
n fixed

valid for ln2| << s. Plots of do/dt against n® for meny diffrac-
tive reactions show a remarkable lack of energy dependence at fixed
n°. This "scaling” corresponds to having a(nz) = 1 for the dominant
diffractive term at high energies. Such a pole'is of course the
analogue of.the pomeron.' The shrinkage of ‘dc/dt versus t appears
here as a purely Kinematic effégt and is predicted'to die out at very
high energies. Thus our picture of the "pomeron" is qﬁite different
from the traditional ﬁegge version. Since in any case, one has never
had a 2}2&5 idea of the natuie df the Regge fpméron, it is perhaps not
too difficult to accept our new description of what the "pomeron"
term is like. |

The situation as regards nondiffractive processes is still not
clear and awaits further study. However,~Maor,20 and independently
Pond,21 have plotted gg[gz.versus n2 for the two classic Regge
reactions =« P —;non and nfp — m, which are sﬁpposed to isolate
p and A2 -exchange respectively, and which indeed, are the main
sources of our knowledge of ap(t), aAz(t) for t < 0. In both

. 2
cases they find that the s-variation at different fixed n  values

- _4g-

_ 2. - ‘
is controlled by an n“-independent power. Maor finds a (n2) ~ 0.4
P -7

2 .
aA2(n } ~ 0.3 and Pond finds that any allowable slope in n® would

.22
have to be < 0.2 for both ap and ay - These results are very

2

surprising and perhaps suggest that also in these nondiffractive
reactions the»shrinkage in t is a kinematic effect and will die out
at higher energies. This viewpoint would be quite different from the

usual Regge one and it is of great importance to test it experimentally.

o

The most direct method would be to perform a high statistics measure-
ment of the differential cross-section for these reactions at Serpukhov

energies gnd see if the s-dependence of the data is at all compatible

with the behavior

> - 2[ap(n2-l}

Rxp =) = v(@°) s (4.2)

2[§A (nz)-l]
c(n2) s 2. :
: , (4.3)

(14

4o, -
ag(ﬂ P - W)
at fixed n2 1 i i 2y ai - (n® ‘ ‘
values, in which ap(n } and ay (n®) are constants
2 .
or weakly dependent on n2.

v )
The remarkable simplicity found in the data for mﬁny'

reactions, when considered as a function of s and n2 (and ©)

te

goes far beyond the expectations of the original theory. The theory

suggested that describing amplitudes as f(s,ng) would simplify
comparison of elastic and inelastic reactions by eliminating spurious
kinematical effects. The empirical discovery that diffractive ampli-

tudes are strongly dominated by s-independent terms, f(ne) only,
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amplitudes f(s,nz,c).

-4g-
is a surprise, and although nicely compatible wifh.the theory is not
really predicted by it. Thus it may be that there is some deep
underlying dynamical significance to n?, which is not yet upderstood.25

In view of our ignorance of dynamics it seems imperative to
extend the empirical study of scattering data as functions of s and
n2, so as to learn as much as possible about the structure of the

To this ‘end one should study the predictions

that

2[a+(n2)—1]

£~ b s (k1)

for s'—w and n° fixed such that |n2|'<< s, in both the forward
and backward hemispheres, and one should plot the symmetrized cross-
sections (do/dt)s and (dﬁ/dt)A [see.Egs. (3.3, 3.4)] as functions
of n2 for the full range of n2 .for all known 2 — 2 reactions.

We have stressed in the Introduction that the use of n“
makes the mathematical structure of the scattering amplitudes invariant
under changes in the external massesl Thus it would be extremely
interesting to look at a reaction in which we can vary smoothly the
mass of one of the external particles while leaving unchanged all
its other properties. Just such a possibility is provided by deep
inelastic reactions in which a final hadron is actually monitored.

For example in  ep —9epp0 we are essentially étuinng the photo-

production reaction

2 0
@) +p - p +p

-50-

in which the mass of the Y can be cdntinuously varied

2 2 . 2 i
(mT =Qq <0). since for ¢° = 0, as mentioned in Sec. III.3. and

shown in Fig. 7,

do 0
EE(YP -pp) ~ f(nE) only

one might hope that this holds for reasonably small q2 # 0. 1f this

is so, then defining b(s,qe) by

d . :
d_ch(qe)PﬁpoQ = A exp[b(s,qg)t] (4.5).

for small t, one has

2 2 :
2(s,0%) > b(s,0) {1 - ——9 s (L.6)
5 - EmN -m :
o : p.
where b(s,0) 1is the logarithmic slope in true po photoproductiﬁn._
It should be noted that according to Eq. (L.6) ﬁhe diffraction éeak
gets narrower as |q2| increases, at fixea s--the square of the 1p
c.m. energy. The daté is at present somewhat self-contradictory and
it is not yet possible to test Eq. (4.6) adequately. It is ;léo
prossible in inclusive reactions that scaling may set in.at lowef
energies if instead'of considering f(s,gl?,x) one uses '(s,ne,x); '
i.e., one looks at the s-dependence at fixed n‘2 and x rather than
fixed %lf and x. The differential cross-seétions, a®o/dt am?
(M is the missing mass), may also scale sooner if plottedbat fixed

2
n and M2 rather than t and ME.EL'L
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In summary the empirical evidence suggests that the variable -
n2 may have some deep and fundamental dynamical significance. It will
be of great interest on the one hand to extend these empirical studies
énd, on the other hahd, to‘try to understand the role of n~ from a

dynamical point of view.
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FIGURE CAPTIONS
. N . . .
A typical curve of n =y (< 0) plotted in the Mandelstam
plane~-for simplicity we have chosen the masses of all the

This hyperbola asymptotes to
the lines t = v and u = v which are shown. The branches
of the curves with their signs, o0, defined by Eq. (1.20),

are also given. ‘

pp elastic differential chss~section for PL from li7 to.
19.84 Gev/e for |t| <20 (GeV)E. The graph is from Ref. 25
and references to the data are given there.

pp elastic differential cross-section plotted against

n2 = -azgif taken from A. D. Krisch.2 The lines indicate

the three characteristic slopes in the differential cross-
section data. The dc+/dt is not actually the differential
cross-section, but réther do/dt multiplied by a montonically

decreasing factor which equals 1 at 6 =0 and 0.5 at

e ; n/2. For an explanation of this factor and for references
to the data plotted see Ref. 2.

pp elastic differential crdss;section~for Py, between 6.0
and 29.7 GeV/c for !ngl < 3.3 (GeV)e. This is essentially
the top-left-hand corner of Fig. 3 in more detail. The

data is from Ref. 26..

K+? elastic differential cross-section for Py = 1.96-14.8 -

({2

GeV/c plotted against n2. References for the. data are

shown on the figure.

Fig. 6. 7¥p -9¢p differential cross-section plotted against ng--data

~ from Ref. 27.



Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12,
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TP ~9pop differential cross-section plotted against n2--
data from Ref. 27. |

Differential cross-section for n'p elastic scattering
plottéd against t for p, = 2.50-26.23 GeV/c. The data
are from Ref. 28.

Differential cross-sectioh for ﬂ_p elastic scattering
plotted against n- for p. = 2.50-26.25 GeV/c. The data
are the same as that shown in Fig. 8.

n+p elastic differential cross-section plotted dgainst t
for p = 2.50f20.l9vGeV/c. The data are from Refs. 28 and
29. | |

n+p elastic différential croés-section plotted against n2
for py = 2.50-20.19 GeV/c. The data are the same as that
shown in Fig. 10.

* .
Differential cross-section for pp — pN (1690) plotted

~against n2 for pL = 5.02-29.70 GeV/c—-data from Ref. 30.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned. rights.
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