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ABSTRACT

The development of time domain multiple quantum nuclear magnetic

resonance is reviewed through mid 1982 and some prospects for future

development are indicated. Particular attention is given to the

problem of obtaining resolved, interpretable, many quantum spectra

for anisotropic magnetically isolated systems of coupled spins. New

resul~s are presented on a number of topics including the optimization

of multiple quantum line intensities, analysis of noise in two dimen­

sional spectroscopy, and the use of order selective excitation for

cross polarization between nuclear spin species.
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I. INTRODUCTION

In the last few years a class of time domain nuclear magnetic

resonance experiments has been developed which makes accessible all

possible transition frequencies and relaxation times in groups of

coupled spins. These experiments are strikingly simple, requiring in

many cases only a few radio frequency pulses. Yet they comprise a

powerful and still largely unused approach to measuring the couplings

and spectral densities which characterize a spin system.

The simple concept underlying all of these experiments is that by

recording an NMR signal in one time period as a function of a preceding

variable time, it is possible to map out features of the system which

would not be manifest in a single free induction decay (f.i.d.) signal

or its Fourier transform, the single quantum spectrum.

In retrospect it is apparent that this concept has played a role in

the development of nuclear magnetic resonance for several decades. The

earliest spin echo experiments in liquids led to the observation of echo

amplitude modulation as a function of pulse spacing(l). The explanation

of this modulation constituted the discovery of the scalar or J coupling

between spins(2), which had been masked by poor magnet homogeneity.

In solid state studies, the observation of the quadrupole echo(3)

in high field was accompanied by smaller forbidden echoes whose inten­

sity depended on the finite length of the first pulse. The explanation

was found to be a coherent superposition between states differing by two

in their Zeeman quantum number. This coherence, though not directly

detectable, led to a signal after a second pulse(3).

In the last decade various experiments in which the f.i.d. is

observed as a function of a prior time variable have been developed by a

I



number of research groups. The use in NMR of 2D arrays of signal

S(t
l
,t 2) and their conversion by double Fourier transformation to spectra

S(wl'~2) was first proposed in an unpublished lecture(4).

Experiments aimed at monitoring the evolution of forbidden multiple

quantum coherence between high field eigenstates developed. without refer­

ence to this particular means of data analysis(S-8) and also as a special

2

f h Ii d 2D
. (9)

case 0 t e genera ze experlment . Little of the work covered in

this monograph makes use of two dimensional displays of data. Nearly

all of it, however, involves repeated recording of a transient as a

function of a variable prior period of coherent evolution. In this

sense, it will be referred to as 2D NMR.

The scope of this work does not encompass the whole of the burgeoning

literature in the field of 2D NMR. Reviews of this field have

(10-12)
appeared . The focus will be only on studies of time domain (or

Fourier transform) multiple quantum NMR. At least one literature review

(13)
of multiple quantum NMR has appeared , which includes reproductions

of many of the early results. I hope that the present work presents

pedagogically the principal time domain multiple quantum phenomena

appearing in the literature through mid 1982. In addition a number of

new results and possible extensions are included. No claim to a balanced

coverage of the literature is made, though the intent is to alert the

reader to those topics which are not treated in any depth. I apologize

in advance for the possible oversights. In the interest of cohesiveness,

the notation of the original work has often been distilled away and with

it, no doubt, some of the flavor.

The approach taken is to incorporate experimental results into the

theoretical discussion as it is developed. These illustrative examples



are, as a matter of convenience, largely from the work of the Berkeley

group directed by Alex Pines.

Figure 1 is a proton multiple quantum spectrum of benzene partially

oriented in a liquid crystal (14-16). It is presented here to serve as a

point of reference for introduction of the sections to follow. This

system, whose energy level structure is well-known from its single

(17)
quantum spectrum ,has served as the testing ground for many of the

developments of time domain multiple quantum NMR. The spectrum consists

of well resolved lines at positions determined by the energy differences

between individual pairs of the 2
6

spin eigenstates of this isolated

system of 6 spin ~ nuclei.

Section II begins with a discussion of the traditional NMR experi-

ments and their relationship to time domain multiple quantum NMR. After

a consideration of some general features, much of the early work is re-

viewed in Section IIC. Attention then turns in Section lID to the

methods of separating the spe~tral lines by their transition order n,

which is the difference in Zeeman quantum number between the states con-

nected. This feature is evident in Figure 1 where n runs from zero

through six. Section lIE discusses the many facets of magnetic field

inhomogeneity, including methods for eliminating its effect on the line-

width. One such method was employed to obtain Figure 1. The information

content of the line positions is considered in Section IIF along with

symmetry operations on the spatial and spin coordinates of the

Hamiltonians.

Section III takes up the interactions of the spin systems with the

radiation field and how these determine the line intensities and the

signal-to-noise ratio. A major theme is the means by which the technique

3
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Partially Oriented Benzene
Non-selective Multiple Quantum Spectrum

o I~W 2~w 3~W 4~W 5~W 6~w

IBL E15-1766

Figure 1. Fourier transform multiple quantum NMR spectrum of benzene

partially oriented in a nematic liquid crystal. This highly symmetrical

six proton system has been used as a prototype to demonstrate a variety

of multiple quantum phenomena. The spectrum shown here is a typical

nonselective experiment in which all allowed coherent superpositions of

pairs of states are prepared and detected. Note that the transitions

appear in separated spectra according to the change in Zeeman quantum

number. The complexity of each decreases from left to right until for

the highest order spectrum labeled 66w there is a single transition. The

pulse sequences and analysis required to obtain and interpret such a

spectrum are reviewed in Section II.

[, By permission from S. Sinton, "NHR Studies of Oriented Holecules",

Ph.D. dissertation, University of California, Berkeley, 1981, published

as Lawrence Berkeley Laboratory Report LBL-13604).



may be extended to larger systems by minimizing noise (Sec. IIIB) and

making the most efficient use of the equilibrium nuclear magnetization

(Sec. IIIB and IIIe).

Section IV considers the extensions of multiple quantum techniques

to systems of two or more different spin species. The role of multiple

quanta is considered in the exchange of order between spin systems and

in the spectroscopy of heteronuclear systems.

Section V treats relaxation processes. These irreversible pro­

cesses determine the line widths of spectra such as Figure 1, limit the

range of systems for which such spectra may be obtained, and at the same

time are among the most informative phenomena measurable by time domain

multiple quantum NMR.

5



II. FUNDAMENTAL PRINCIPLES AND PHENOMENA

A. Why NMR Was a Single Quantum Spectroscopy

1. Motivation

The usual NMR experiments are designed to observe the

frequencies and intensities of the magnetic dipole transitions of a

system of nuclei in a magnetic fie1d(18). In the low power continuous

wave (CW) experiment, a precessing magnetization proportional to the

perturbing rf field is created when the resonance condition is met for

one of these transitions. In the Fourier transform (FT) experiment, an

intense brief pulse of radiation creates a transverse magnetization

which precesses with components at the same resonant frequencies found

in the CW experiment.

The identity of the spectra obtained by the two methods is a

remarkable fact (19-21) . I h th b' bn eac case e a sorpt10n spectrum may e

written in the limit of infinitely sharp lines as

6

sew) cr L
i>j

I <i I I+ I j > 1
2

<5 (w - w .. )
1J

(2.1)

The states Ii> and Ij> are the eigenstates of the unperturbed internal

spin Hamiltonian Xi which characterizes the system whose total spin
nt

angular momentum components are I , I , and I
x y z

are of the raising or lowering operators.

I :t iI
x Y

In the usual high field limit

The matrix elements

(2.2)

a (2.3)

and



I Ii>
z M I">. 1.

1.
(2.4)

7

The Zeeman quantum number M. is a good quantum number and the only non­
1.

zero matrix elements of I+ are between eigenstates with

n.. - f>M.. - M. - M.
1.J 1.J 1. J

equal to ±l. Thus I+ are single quantum operators and the spectrum

described by (2.1) is a single quantum spectrum.

Figure 2 shows a schematic energy level diagram for a system of

(2.5)

coupled spins in a large magnetic field. The particular Zeeman quantum

numbers are appropriate to a system of N spin ~ nuclei. The solid arrows

indicate allowed single quantum transitions, the matrix elements of which

appear in (2.1). The dashed arrows indicate those transitions not ob-

served in the usual experiments. In fact the majority of the transitions

are multiple quantum transitions and their observation may be desirable

for a number of reasons. The single quantum spectrum may be ambiguous;

it might arise from any number of Hamiltonians or may be insensitive to

some quantity of interest. The single quantum spectrum may be too

complex; the number of lines may be so great that resolving or assigning

individual lines becomes impossible. The single quantum spectrum may

not contain sufficient information to fully characterize the Hamiltonian

or the relaxation of the system. In each case the difficulty might be

resolved if we were able to observe the transitions which are forbidden

by the n - 6M = ±l selection rule.

In OW NMR the single quantum selection rule arises from the assump-

tion that the perturbing rf field HI is small. The expression (2.1)

arises then from first order perturbation theory. If the rf power is
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M = N-- •2
I
I
I

N I
-- + 1 -j

2

•

- ~ +2~~~~~~~~
J
I
I
I
I
I
I

··•

o
I
I
I
I
I
I
I

~ -I

N
2-L..-------~--

XBl 7710-10019

Figure 2. Schematic representation of the high field energy level

diagram for N coupled spins 1/2 . The energy levels are grouped into

manifolds according to their Zeeman quantum number M. The energy dif­

ference between adjacent manifolds is hwO where Wo is the Larmor

frequency used for irradiation and detection. The structure within

each manifold is due to the chemical shifts and the couplings between

spins. The solid arrows indicate some of the magnetic dipole allowed

single quantum transitions which are detected in conventional NMR. The

dashed arrows indicate dipole forbidden transitions which are, however,

allowed in the Fourier transform multiple quantum experiments.



increased, the single quantum lines become broad and new absorption

lines appear with intensities proportional to higher powers of HI. This

phenomenon of CW multiple quantum NMR was observed over twenty years ago

9

(22-23)
It has been extensively analyzed by high order perturbation

(24)
theory. .

(13) "
While some few applications have been made , CW multlple quantum

NMR is both difficult and clumsy. Line shapes and positions depend on

the amplitude of HI as well as on the chemically interesting unperturbed

Hamiltonian and relaxation processes. Perhaps the greatest single dif-

ficulty is that the different resonant processes occurring in a given

frequency range are distinguished only by the dependence of their line-

shapes on rf intensity. Consequently, they are not easily sorted out

from one another in a complex system.

These problems would vanish if we could observe the multiple quantum

transitions without the complications of the perturbing rf field. In

the usual Fourier transform experiment, the single quantum transitions

are observed in just this way. The perturbing field is absent during

the time that the system is ~xhibiting its eigenfrequencies through a

f.i.d. The principal subject of this work is experiments which allow

the measurement of multiple quantum interferograms analogous to the

single quantum f.i.d.

To describe first the single and then the multiple quantum Fourier

transform experiments we will use a rotating frame density operator

f I
" (25,26)

orma lsm .

2. The Hamiltonians and the Density Operator

The resonant rotating frame is the interaction represen-

tation where the large average interaction of the spins with the applied



static field has been transformed away. This has the consequence that

the trivial evolution (precession) of the system at the Larmor frequency

and its harmonics is demodulated leaving only the much slower evolution

due to rf irradiation, chemical shift differences, couplings between

spins and, in the case of spins I ~ I, couplings between the nuclear

quadrupole moment and the molecular electric field gradients.

The Hamiltonian describing these interactions for a single spin

species may be written

10

j{' =:K +:K.
tot rf ~nt

(2.6)

The term describing the interaction of the spins with the rf field is

= -w (I cos\jJ - I sin\jJ) - lIw1
p x y z

-w I - lIwI
P tJ; z

(2,7a)

(2. 7b)

where \jJ is the phase of the radiation with respect to a spectrometer

reference frequency and w
p

= yH
l

if the linearly polarized rf irradiation

has amplitude 2H
l

. The internal Hamiltonian of the system consists of

two sets of terms.

:K.
~nt

(2.8)

The terms linear in the individual spin angular momenta are

-I w .
i Z1.

~

I . - w (r)I
2~ 2 2

(2 .9)

where w . are the chemically shifted resonance frequencies of the indi­
21.

vidual spins relative to the spectrometer reference frequency defining



the rotating frame.
-+

The spatially dependent offset w (r) is included in
z

11

the internal Hamiltonian as a reminder that even in the absence of

chemical shifts, all molecules in the sample are not isochronous. The

\ -+ -+
convention used will be that L w = ° and J w (r)dr = 0, which iszi z

i
consistent with the incorporation of any net offset into (2.7).

The terms which are bilinear in the spin angular momenta are

(2.10)

The first two transform as second rank tensor operators. The direct

dipolar interaction

~I - I
i<j

I

D.,OI ,I ,
1J Zl zJ

1. • 1.)
1 J

(2.11)

is the single most important term for most of the applications to be

discussed. For I < 1 it is the largest internal term. Furthermore it

has a straightforward geometric interpretation (Sec. IIF3). The primes

-1
will be used to denote parameters written in radians sec when the

unprimed symbol is conventionally expressed in Hz.

For I 2 1 the quadrupole term

~
I

(2.12)

will usually dominate the single quantum dynamics. The possibility of

sidestepping this large term with multiple quantum transitions forms the

basis of some of the earlier applications of the technique (Sec. IIe2).

The indirect or scalar coupling

xl
II - I

i<j
(2.13)



is at once the smallest and most recalcitrant term. The impossibility of

manipulating this interaction with intense rf fields is both a rationale

for and a complication in the excitation of high quantum coherence.

The density operator of the system of spins will usually start off

at equilibrium in a static field H
O

. This may be expressed as

12

p(O) bI ,
z

b
kT(2I+l)N

(2.14)

The high temperature (Curie law) limit has been assumed and the term pro-

portional to the identity operator has been dropped since it has no

dynamics. Furthermore, the high field limit has been assumed; the only

ordering of the spins at equilibrium is along the field direction and

this ordering is far from complete. The constant b in (2.14) is appro-

priate to N nuclei of spin I and gyromagnetic ratio y.

A consequence of dropping the identity operator is that in this

notation

Tr pet) a (2.15)

(rather than unity) expresses conservation of probability. For periods

of time over which relaxation is negligible the traces of higher powers

of 0 are also conserved. For example

(2.16)

expresses conservation of the norm (squared) of the density operator

viewed as a vector in a Hilbert space called Liouville space, which is

the phase space of the spin system.



In nearly all of the examples to follow, the sample will consist of

an ensemble of isolated groups of coupled spins. Such groups occur on

molecules in liquids and often in liquid crystals because the couplings

between molecules are motionally averaged to zero by diffusion. In

solids such isolated groups occur through chemical or isotopic dilution,

aided in some cases by spin decoupling. The techniques discussed are in

many cases not limited to such isolated groups, but do find their most

elegant applications in such samples, because of the possibility of

observing resolved transitions.

3. The Single Quantum Fourier Transform Experiment

The simplest time domain experiment begins with a resonant

pulse of intense rf magnetic field sufficiently brief that the internal

Hamiltonian may be neglected during the pulse. The time development

during the pulse is described by

13

oCt ) = exp(-iw t 1)1 exp(iw t I )
P ppy z ppy

I
x

(2.17)

where w is the nutation frequency and w t = n/2. The system now
p p p

develops under the influence of the unperturbed Hamiltonian so that

p (t) exp (-iX. t)I exp (iX. t)
1nt x lnt

(2.18)

The operator for the observable transverse magnetization is

M yh I yh (I - iI )
x Y

(2.19)

The operator is non-Hermitian because it actually represents two quantum

mechanical observables. Suppressing the constants, the complex f.i.d.

signal in the two audio frequency channels of the phase sensitive hetero-

dyne detector is



(2.20)

14

Expanding the density operator given by (2.18) in the eigenbasis of a

spatially homogeneous X. gives
1.nt

where w..
lJ

p (t)

w. - w. and
1 J

L
i,j

<ill Ij>/i><jl exp(-iw .. t)
x 1.J

(2.21)

J( ,. >
int 1

w.1 i>
1

(2.22)

have been used. Taking the trace (2.20) in this basis gives the single

quantum free induction signal without any decay

S (t) 1 L I <ill+ I j > 12
exp (- iw .. t)

2 i>j lJ
(2.23)

Fourier transformation shows the equivalence to (2.1).

This derivation demonstrates that the restriction to single quantum

transitions, an apparent linear response, occurs despite the fact that

w during the pulse was arbitrarily intense. There are two significant
p

aspects to this well-known result.

The first is that the density operator pet) contains only single

quantum coherence: superpositions of states coherent over the sample

and satisfying n ..
lJ

~l for all finite P.. CT). This is a corollary of
lJ

the high temperature approximation. The ini tial operator I is the n = 0
z

(27) Q.a
component of a spherical tensor operator T of rank Q. = 1. The

n

label a is needed since generally more than one tensor operator of the

same rank is required to form a complete basis in Liouville space. Any

rotation can only result in other components of the same tensor operator.



The only other components are n= ±l, since Inl ~ £. The result of a n/2

rotation, as in (2.17), is the sum of the n = ±l components, which is I .
x

. (28 29)
Since n is conserved by both X. and by any relaxat~on processes ' ,

~nt

only single quantum coherence exists at any time after a single brief

pulse.

Thus it is the particular initial condition of equilibrium at high

temperature which assures the identity of the relative line intensities

(19)
for the CW and FT experiments . Other nonequilibrium initial condi-

tions and their consequences for single quantum NMR have been discus-

d (20,21,30,3l) Th i I d h h bse . ese nc u e systems whic ave een adiabatically

demagnetized to a state of dipolar order(30) or dynamically polarized to

spin temperatures sufficiently low that the quasi-equilibrium density

. (31)
operator is nonlinear 1n the spin angular momenta . Such initial

conditions contain tensor operators with rank £ > 1 and give multiple

quantum coherence upon a single pulse. This has been demonstrated for

(32)
the case of dipolar order .

Aside from the nature of the initial condition, the second aspect of

the one pulse experiment which makes it single quantum is that the expec-

tation value of transverse magnetization in (2.20) indicates the measure-

ment at successive times of .a single quantum operator. Because of our

inability to measure any spin observables of the system other than

oscillating magnetization, only single quantum coherence is directly

detectable. Thus even for an arbitrary initial condition, free evolution

offers no direct evidence of any multiple quantum coherence which may

exist. The multiple quantum coherence is invisible.

15



B. Multiple Quantum Fourier Transform NMR

1. The Three Pulse Experiment

Although n is conserved under free evolution. the tensor

operator rank £ is not. in general, conserved if X. contains terms
l.nt

which are bilinear in the single spin angular momentum components. These

are just the terms collected as ~z in (2.10). In liquids. where Xi and

~I vanish, the chemical shifts of (2.9) are necessary in conjunction

with ~I to cause evolution away from the £ = 1 operator present after a

single brief pulse. This is so since ~I (2.13) is a scalar operator.

For arbitrary values of its parameters it commutes with I.

Thus some time after the initial pulse, on the order of the inverse

of the couplings. the density operator expanded as a sum of tensor opera-

tors has the form

16

p (t) (2.24)

where the time dependence is in the coefficients P n (t). All values
'" n.n

£ $ 2NI. the total spin of the system. are possible.

. (9) (15)
If at time t = T a second brief rf pulse is gl.ven ,then

(2.25)

with no restrictions on the indexes other than Inl ~ t. The second pulse

need not differ in any way from the first pulse. which gave only single

quantum coherence. The appearance of all orders n of coherence after

the second pulse is a result of the internal Hamiltonian having brought

the ensemble to a state capable of engaging in coherent exchange of

several photons with the radiation field.



9,a.
The relationship between the operators T and the off-diagonal

n

eigenoperators li><j I of an eigenbasis expansion is easily discerned from

h d f · . (27)tee lnlng property

17

and the related property

[I li><j/Jz, n .. /i><j I
lJ

(2.26)

(2.27)

which follows from (2.4) and the definition (2.5). Thus the operators

£a.
T span that part of Liouville space consisting of coherent superposi­

n

tions of states with n .. = n. Operators in either basis set will be
lJ

called n-quantum operators. The eigenoperator basis will prove most

convenient, but the tensor operators will make occasional appearances

because of their particularly simple transformation properties under

rotations.

Having prepared multiple quantum coherence we are still faced with

the problem of how to follow its free evolution in analogy to the way

that the f.i.d. follows the single quantum evolution. The detection

system is only sensitive to oscillating magnetization whic~ corresponds

to the rotating frame operators I and I. Thus a third pulse is re-
x y

quired to convert the unobserved multiple quantum operators into n = ±l

operators which may then evolve into a signal.

Th . h I ( 9). h . F . 3 Th .lS tree pu se sequence lS s own In 19ure. e preparatlon

time T is fixed and, in the simplest version, the components of the

oscillating magnetization are sampled at a fixed time t
2

. The evolution

time t
l

is incremented after each shot and the pulse sequence is repeated.

The resulting signal in the two channels of the phase sensitive detector
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Figure 3. The three pulse sequence. A sequence of three n/2 pulses

is perhaps the conceptually simplest method of obtaining multiple

quantum spectra. For this purpose the sequence is repeated with

increasing values of the evolution period t
l

and the magnetization is

sampled at one or more points in t
Z

. Fourier transformation with

respect to t
l

gives a spectrum containing in general the rotating

frame frequencies of lines of all multiple quantum orders. However,

the sequence is frequently inadequate in that it does not lead to the

greatest possible line intensities.



is a one dimensional complex function
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(2.28)

This signal traces the evolution of that multiple quantum coherence which

can be prepared in a time T and detected at a time t
2

. It is a multiple

quantum interferogram and the complex Fourier transform with respect to

t l of each component Sa(T,tl,tZ) is a multiple quantum spectrum

Sa(T,wl,t Z)' a = (x,y). More generally, the data is recorded at many

points t z, leading to a two dimensional data array and the possibility of

a two dimensional Fourier transform with respect to the variables t
l

and

t z(9). Aspects of two dimensional data analysis are· mentioned in Section

IIF3 and Section IIIBZ. The nature of the parametric dependence on T is

discussed in Section IIIBI.

2. The General Form of the Pulse Sequences

Figure 4 shows schematically the general form of most of

the experiments which will be discussed. The preparation period extends

for a time T and may contain two or more strong pulses or any irradiation

sequence extending over a time comparable to or greater than the inverse

of the bilinear coupling frequencies. The density operator at the end of

preparation will be referred to as peT) = p(t
l

= 0).

The evolution period t
l

is characterized by some secular high field

Hamiltonian Xl which may be free evolution under X or may be an ef­
int

fective Hamiltonian resulting from a pulse sequence during t l . It will

prove convenient to define Xl as containing no net offset; like Xint it

is in the rotating frame in which the sum of the chemical shifts is zero.

Formally, its energy level diagram differs from that of Figure 2 in that

the large splittings between different Zeeman manifolds are absent.
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PREPARATION EVOLUTION MIXING DETECTION

JPROPAGATOR: U exp(-U/, I,) V exp (-[»212)

TIME VARIABLE: T t I T' t2

X8L 8112-1304)

Figure 4. General form for most Fourier transform multiple quantum

pulse sequences. The preparation and mixing periods, are characterized

by the propagators U and V respectively. They contain one or many pulses

and extend over a period comparable to or longer than the inverse of the

couplings between spins or the electric quadrupole couplings. The

evolution and detection periods are described by effective Hamiltonians

Xl and X
2

respectively and often consist simply of free evolution under

the internal Hamiltonian. The period t
l

is incremented to give suc­

cessive points in the time domain signal. The multiple quantum transition

frequencies observed in the Fourier transform with respect to t
l

are

differences between pairs of eigenvalues of Xl.



Section IIDl describes the role of the offset term on the multiple

quantum experiment.

The number N
l

of different points t
l

for which the pulse sequence

is repeated is determined by the range of transition frequencies and

the attainable or desired resolution. The sampling rate theorem states

that each sinusoidal component of the time domain signal must be sampled

more than twice per cycle to avoid losing information or aliasing high

(33)
frequency components to lower frequency • This may be expressed as

N
l

= 2VN/R. The Nyquist frequency v
N

is chosen to be greater than the

expected line frequencies and will depend on Xl and on offset terms.

The resolution R is in Hz per point. The increment in t
l

between shots

-1
is 6t

l
= (2v

N
) .

(34)
The mixing period T' will be a useful concept in those experiments

where the irradiation after t
l

consists of more than a single short

pulse. As will be shown in Section IIA, the requirements of the mixing

period mirror those of the preparation period. For this reason they

will usually be referred to jointly as excitation periods. If mixing

consists of only a short pulse at. time t
l

, then the detection period

variable t
2

will have its origin after that pulse,as in Figure 2,anci the

variable T' is not needed.

The detection period requires little special comment. Since only

single quantum transitions are directly detectable the filters are set

as in a single pulse Fourier transform experiment, so that all single

quantum (magnetic dipole) radiation can contribute to the signal. Mani-

pulation of the detection period Hamiltonian X
2

in order to maximize

signal energy is discussed in Section IIIB2.

21



3. Notation

For later reference a notation is set down here which

indicates a convenient approach to calculating the signal resulting from

any sequence of the general type of Figure 4. Consider one component of

the magnetization at time t
2

. This is

22

a=x,y,z (2.29)

The density operator needed (neglecting relaxation) is

(2.30)

Define the operators

and

(2.31)

I (-t -T')
a 2'

(2.32)

The signal becomes

(2.33)

This expression is useful when expanded in the eigenbasis of Xl as

L p .. (T)a .. (-t
2
-T') exp(-iw .. t

l
)

1.J J1. 1.Ji,j
(2.34)

The subscripted coefficients may be viewed as the matrix elements

(2.35)



(2.36)
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or equivalently as the expansion coefficients in the eigenoperator basis;

P (T) I P .. (T)li><j!
i,j lJ

I (-t -T') L ex .. (-t
2

,-T') Ij ><i Iex 2'
ij Jl

(2.37)

(2.38)

The notation of (2.29) - (2.38) incorporates several biases which

will permeate the remaining sections. In (2.29) the possibility is

allowed that the z component of magnetization is measured. This will

prove to be a convenient fiction for calculation although the actual

experiment would include a rr/2 pulse to convert this to precessing

magnetization. The definitions in (2.31) and (2.32) and their use in

(2.34) focus attention on the evolution period eigenfrequencies w.. and
lJ

collect all other time development into an operator accounting for prior

time (preparation) and another accounting for subsequent time (mixing

and detection). The expansion in the non-Hermitian eigenoperators

li><j I satisfying

[K ,I i><j I]
1

w.. Ii><j I
lJ

(2.39)

rather than the Hermitian pseudospin 4 operators(35,36), reflects a

preference for phase factors over sines and cosines. For typographical

and conceptual simplicity, all relaxation effects are omitted wherever

practical.

4. Comparison with Single Quantum NMR

Comparison of the multiple quantum signal (2.34) and the

single quantum signal (2.23) reveals a number of fundamental differences.



The most important difference, of course, is that the coefficients of

(2.34) will be finite for pairs of states with n .. # fl. The question
1J

of which such pairs occur will depend on the symmetry of Xl (Sec. IIFI)

and on the particular excitation sequences (Sec. III ).

2
While the Fourier coefficients l<ilI Ij>1 - are real and positive

+
for all lines in the single quantum experiment, the coefficients

P .. (T)a .. (-t
2
,-T'), which are the line amplitudes of the multiple quantum

1J J1

spectrum, are generally complex quantities with phases which differ from

line to line. The result is that such spectra usually cannot be pre-

sented in absorption mode. The usual expedient is to present magnitude

spectra. Magnitude spectra of realistic line shape functions have

broader wings than the properly phased absorption spectra. Methods of

obtaining certain lines properly phased are discussed in Sections IIE4,

IIIA4, and IIIe8.

A third difference is that while (2.23) describes with a single set

of coefficients the complex signal formed from the two orthogonal channels

of the phase sensitive detector (2.34) requires, in general, a different

set of coefficients for the two channels. In Section IIE3 experiments

will be described for which the multiple quantum signal in the two

. (33)
channels as a function of t

l
comprise a Hilbert transform pa1r ,just

as they do in a single quantum experiment.

A final difference is that while the coefficients of (2.23) are

readily calculated after solving for the eigenvalues and eigenvectors of

K. ,the coefficients of (2.34) require a dynamical calculation including
lnt

the interaction with the radiation. This means that predicting intensi-

ties of individual multiple quantum transitions quantitatively is often

difficult. For large spin systems excited by complex irradiation sequences

24



such prediction is impractical. One exceptionally simple recourse is

discussed in Section 11E4. Computational and approximation methods are

reviewed in Section IIIBI.

c. Frequency Selective Excitation

1. Background

The emphasis so far and in most of this work is on experi-

ments using only strong pulses. These are rf pulses for which the

condition Iw 1>lw .. I is met. This inequality states that the nutation
p 1J

frequency is greater than any of the frequencies associated with the

rotating frame internal Hamiltonian. All transitions are simultaneously

resonant in the sense that the spectral intensity of the pulse is large

over the spectral width (transform limited bandwidth) and the net number

of photons exchanged is limited by the system, not by the source intensity

(highly nonlinear interaction). The power of the strong pulse approach

is that it leads to excitation methods of great generality and simplicity,

which are largely independent of the details of the internal Hamiltonian.

Most importantly, they are applicable to large systems with closely

spaced transition frequencies. Strong pulse methods of selectively

excitating certain transition orders are the subject of Section IIIe.

In this section, frequency selective, or narrow-band, excitation is

reviewed. The restriction on rf field strength in these experiments is

roughly that Iw
p
I < Iw

ij
- wkll. This states that the radiation is suf­

ficiently weak that it may be tuned to be resonant with transitions

between particular pairs of states, while not perturbing the populations

of or coherence between other states. These methods are principally of

interest in systems with onlv a few levels. This is because the transi-

tions are more likely to be well resolved and, as importantly, because

25



states.

one would not know where to begin doing frequency selective experiments

on a system of many like spins. For spins with large quadrupole split-

tings the frequency selective methods are indispensable, since even the

strongest pulses available cannot satisfy Iwp/>/wQI.

The theoretical description of weak rf with a spin system starts out

by treating the rotating frame rf term using perturbation theory. The

result in the limit of well resolved transitions and weak irradiation is

that the two levels, which are resonantly connected by the radiation,

behave like an isolated spin~. An effective gyromagnetic ratio may be

associated with this pseudo-spin, which will differ for each pair of

Bloch equations(18) and the associated model of the density

operator as a vector in three dimensions are used to describe the excita-

tion dynamics. In the following section a brief review is given of the

elegant ways in which such two level problems have been strung together

to observe multiple quantum coherence and other multiple quantum phenomena.

2. Applications

a. The three level system. A system with three unequally

spaced energy eigenstates has received nearly exhaustive attention as the

prototype multilevel system. Several detailed presentations of the results

(35-41)
have appeared . In high field NMR any three successive Zeeman

levels which can be radiatively connected without involving other levels

will be amenable to the approaches of this section. The m = 1/2, -1/2,

27
and -3/2 levels of AI(I = 5/2) in a simple crystal of Al

2
0

3
were the

(5 6 42-44)
basis set for several early developments " .

A spin I nucleus in a molecular electric field gradient is the

simplest system on which time domain multiple quantum experiments can be

(7 45)
performed ' . An isomorphic problem is that of two isochronous spin ~2

nuclei with a direct dipolar coupling. Here the triplet states comprise

26



a three level system, which is unconnected by the radiation to the

singlet state. The energy level diagram labelled for the spin 1 system

is shown in Figure 5. The convention used here is to label the states

11>, 12> and 13> in order of ascending energy. The dipole allowed single

quantum transitions are 11> + 12> and 12> + 13>. The dipole forbidden

transition 11> + 13> is double quantum.

b. Sequential two frequency excitation. One approach to

preparing the double quantum coherence involves successive irradiation

27

h f h . 1 f . (5,46)at eac 0 t e two slng e quantum requencles . A TI/2 pulse at the

Since a selective pulse

12>+ 13> frequency (n/2(w23 )) is followed by a n(w12 ) pulse. The first

pulse creates coherence between 12> and 13> and the second transfers

this to coherence between II> and 13> since it interchanges the coeffi-

cients of states 11> and 12>.

It might seem that such an approach would be faster than the method

of two hard pulses separated by a delay, since here no delay between

pulses is necessary. This is, of course, not the case since while the

strong pulses could be arbitrarily short, the two weak pulses must be of

-1
order be selective. Thus the preparation time isduration -w

Q
in to

comparable.

After the evolution period a selective TI mixing pulse at one of the

allowed frequencies leads to a detectable f.i.d. at the other allowed

frequency.

Various combinations of two selective pulses in AX , AB, and AA'XX'
n

systems have also been demonstrated(8,47-49).

An interesting view point for discussion of experiments which de-

tect forbidden transitions by sequential irradiation at two frequencies

i h . f"" f ,,(8,50-52)s t e notlon 0 spln lnter erometry .
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Figure 5. Energy level scheme and spectra for a spin 1 nucleus in an

electric field gradient. This is the simplest system which can support

multiple quantum transitions in the sense of this work. At left is a

schematic illustration of the orientation with respect to a vertical

magnetic field of the nuclear charge distribution (ellipsoidal) and

magnetic moment (arrow) in each of the three Zeeman eigenstates. The

sum of the Zeeman and electric quadrupole terms gives the energy levels

at the right. The single quantum spectrum at lower right is a doublet

with splitting 2w
Q

while the double quantum transition at lower left is

independent of w
Q

in high field and measures only the Zeeman interaction.

[By permission from A. Pines, S. Vega, and M. Mehring, Phys. Rev. B 18,

112 (1978).J



may leave a certain eigenstate temporarily unperturbed, the coefficient

of this state is viewed as a reference with respect to which the phase

of other coefficients are measured.

Various combinations of frequency selective and nonselective pulses

for exciting muitiple quantum coherence have been discussed(~,38,53,54).

The motivations vary from simple experimental convenience to a desire to

introduce a level specific label into an otherwise broadband experiment.

c. Selective multiple quantum pulses on resonance. A

second approach to exciting double quantum coherence is a weak pulse at

29

(6 7)
the center frequency (4)w

13
' A double quantum pulse nutation angle

may be defined for the pseudospin 4 system consisting of levels 11> and

/3 h · 1 h'· (38)>. For t e spln system t lS lS

2
(w /wQ)t ,

p p
W «w

p Q (2.40)

A n/2(4w13) pulse or double quantum n/2 pulse completely transfers the

initial longitudinal magnetization into_n = ±2 coherence. If the same

pulse is used for mixing, then the magnetization must be brought into

the transverse plane for detection by another pulse, preferably intense.

In practice quadrupolar echoes are sometimes incorporated into the mixing

period in order to remove the signal from the immediate region of the

1
(38,54)

pu se .

Resonant population inversion by a selective double quantum pulse

has been demonstrated in 33Na (I = 3/2) (55). The triple quantum selective

/2 h . 11 (35,36)resonant pulse for the I = 3 case has been discussed t eoretlca y

. (53)
and demonstrated experlmentally . In this case there is a single

quantum transition which is simultaneously resonant.



d. Simultaneous weak irradiation with two frequencies.

The central single quantum transition for half integral spins is often

the only detectable one since the satellites are spread over a large

range of frequencies by inhomogeneity in w
Q

' For large w
Q

the transfer

of coherence between the triple quantum coherence and this detectable

line is inefficient. For this reason methods were developed for modula-

ting the central frequency to create sidebands which irradiate and in-

directly detect the satellites. This allowed efficient preparation of

the triple quantum coherence from the equilibrium magnetization and

ff ·· . i b k h ·1 d d I .. (53)e 1C1ent m1X ng ac to t e eaS1 y etecte centra trans1t10n .

Even in the three level system interesting effects are seen for

simultaneous but unequal weak irradiation at the two single quantum

... (44,51) Th d· d 1 .trans1t10ns . e vector ens1ty operator mo e appropr1ate to

this situation has the coefficients of the three coherences as the three

orthogonal components. The rotation axis, about which the vector pre-

cesses, depends on the ratio of the amplitudes of the two frequency

components. In this way the three coherences are continually intercon-

nected during the irradiation.

e. Double quantum rotary phenomena. Frequency selective

pulses are not only useful in the excitation periods of experiments of

the type depicted in Figure 4, which lead to spectra of the unperturbed

internal Hamiltonian. They have also been used to demonstrate various

analogs of rotary phenomena normally associated with the dynamics of long

(18)
intense pulses .

The upper trace of Figure 6 shows the rotary decay under frequency

selective double quantum irradiation(7). The amount of longitudinal

magnetization remaining after increasing periods of such irradiation is

30



31

Double Quantum Rotary Decay
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Figure 6. Double quantum rotary decay of the carboxyl deuterons of

crystalline oxalic acid dihydrate. The experimental points represent

the magnetization remaining after the indicated period of double quantum

nutation as measured by the signal after a final hard pulse. The solid

line is the theoretical sinusoidal dependence on the angle 8
DQ

given by

(2.40) with damping added. In the lower figure the sense of nutation was

reversed at 165 wsec by a phase shift of IT/2, thus demonstrating the

proportionality of the apparent phase shift to number of quanta. By

permission from S. Vega and A. Pines, in "Magnetic Resonance and Related

Phenomena" (H. Brunner, K. Hausser, and D. Schweitzer, eds.), p. 395.

Baltz Offsetdruck, Hemsbach, 1976.]



assessed by measuring the single quantum signal immediately after a

strong TI/2 pulse. The cos8
DQ

dependence of (2.40) is evident. This is

h d bl 1 (6) f ' . (56)t e ou e quantum ana og 0 tranSlent nutatlon .

In the lower trace of Figure 6 a similar experiment is shown in

which the rf phase of the double quantum pulse was shifted by TI/2 for

(7)
times greater than 165 ~sec . The direction of double quantum nuta-

tion clearly reverses, which for ordinary nutation requires a phase

shift of TI.

This is the first demonstration of a concept which has been central

to the development of multiple quantum spectroscopy: phase shifts of ¢

in the radiation appear effectively as shifts of n¢ for an n quantum

process. This notion is crucial to methods for separately detecting

(Sec. lID) and exciting (Sec. IIIe) specific orders of multiple quantum

coherence in large systems. In addition it is used in multiple quantum

32

spin 1 k ' (7 ,43 ,5 5 ) h' h '11 b k 'S' VC4oc lng w lC Wl e ta en up lnectlon .

O h h
(42-44) d ,(43),

t er rotary ec oes an rotary saturatlon experlments

have been performed on the A1
2

0
3

three level system with the different

types of frequency selected radiation already mentioned.

f. Double quantum decoupling. Another effect of double

quantum nutation is observed in the spectrum of a heteronucleus coupled

to the spin 1 nucleus. Resonant rf is found to decouple deuterons from

neighboring protons even though w is much less than the deuterium spec­
p

tral width which is proportional to w
Q

. Deuterium decoupling in aniso­

tropic phases is thus much easier than might have been anticipated and

this is due to the greater allowedness of double quantum over single

quantum transitions for weak resonant fields. This observation was first

d I , 'd 1 1 (57) dId b b' h (58)rna e in a lqul crysta samp e an ana yze y pertur atlon t eory

d d ' I' i (58,59)an computer lagona lzat on .
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The extension to solids allowed high resolution chemical shift

(60)
spectra of dilute protons to be measured . This is an alternative to

the multiple pulse line narrowing techniques used on fully protonated

. 1(61-63)
rna terla . Quantitative theoretica~ expressions for the decoupling

efficiency as a function of internal and rf Hamiltonians have been de-

. d d d· h 1· d f 1"·d h (64,65)rlve an compare Wlt so l state measurements 0 proton lneWl t s .

Figure 7 shows the dependence of the linewidth of residual protons

in perdeuterated dimethyl sulfoxide on the deuterium rf field strength(64).

The sudden onset of decoupling takes place when the double quantum nuta-

tion frequency of (2.40) is comparable to the heteronuclear coupling.

g. Chemical shift powder patterns. One of the principal

applications of multiple quantum spectroscopy of quadrupolar nuclei is

the measurement of the chemical shift in inhomogeneously oriented

(45)
samples . The orientation dependence of w

Q
in the first order high

field quadrupole Hamiltonian (2.12) leads to single quantum powder pat-

terns hundreds of kHz in width. It does not, however, affect the double

quantum transition frequency since the M = ~l levels are shifted in the

same

term

way by w
Q

. Thus its spectrum is dominated by the chemical shift

. (18)
If second order quadrupole terms can be neglected. Since the

excitation of the multiple quantum coherence is a sensitive function of

W
Q

(and thus of crystallite orientation) some care is needed to obtain

d " f h h . 1 shl·ft (38,54)a power pattern representatlve 0 t e c emlca tensor .

Figure 8a shows a simulation of the double quantum powder pattern

of d-l benzene (54) h·d t" b t th " f Idat a temperature were rapl mo lon a ou e SlX- 0

axis is occurring. Gaussian broadening convoluted with the calculated

spectra increases from left to right. The most prominent feature in the

intensity pattern is the absence of double quantum coherence for those
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Figure 7. Double quantum decoupling of deuterium. The linewidth of the

residual protons in perdeuterated dimethyl sulfoxide is plotted as a

function of the deuterium nutation frequency (WI here is w
p

in the text).

The sudden onset of effective decoupling is characteristic of the double

quantum process, which depends quadratically on the rf field strength.

The solid curve is a fit to the detailed theory. By permission from

A. Pines, S. Vega, and M. Mehring, Phys. Rev. B~, 112 (1978).]
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Fourier Transform Double-Quantum Powder Spectra
Pulse Sequence 8

rT, Chemical Shift
X8L 766-8172

Figure 8. a) Simulated double quantum deuterium powder patterns of d-l

benzene undergoing rapid motion about the six-fold axis. The simulation

is for a preparation pulse of amplitude w /2n = 20 kHz and length 25 wsec.
p

~lixing consisted of two orthogonal pulses with w /2rr = 50 kHz and lengths
p

3 and 4.5 wsec separated by 100 wsec. Sampling was at the quadrupolar

echo 100 wsec after the last pulse. Three convolutions of the computed

stick spectrum with increasingly wide Gaussian broadening functions

appear from left to right.



-1
molecules whose six-fold axis is oriented at the "magic angle" cos

(1/13'). For these molecules, w
Q

= O. No double quantum coherence is

possible without help from some bilinear coupling.

The experimental spectrum is shown in Figure 8b(54) and closely

matches the right most simulation in Figure 8a. Though this is not a

very sensitive test of the simulation it was possible to measure the

chemical shift anisotropy of 6.5 ± 1.0 ppm. The uncertainty is pre-

sumably due to residual dipolar broadening.

h. Double quantum deuterium spectra with magic angle

36

spinning.
-1 r.::

Rotation of the sample at the magic angle, 8 = cos (1/t3),
m

has long been used to reduce those anisotropic terms of the spin

(66)
Hamiltonian which transform spatially as second rank tensors . The

extension of this technique to deuterated compounds offered a method of

obtaining hydrogen isotropic chemical shifts from polycrystalline

(67)
compounds . Because the principal purpose of the sample spinning is

to average away the large first order quadrupole interaction, the tech-

. (68)
nique is very sensitive to rotor allgnment .

Despite the averaging to zero of the quadrupole interaction over a

rotor cycle, it is still possible to observe the double quantum coher-

ence since its excitation takes place in a fraction of a rotation

(69)
period . Figure 9 illustrates an advantage of the double quantum

method for obtaining the isotropic chemical shift of deuterium in powder

samples. Small rotor alignment errors which destroy the single quantum

line narrowing have little effect on the double quantum spectrum. This

is because the double quantum transition is invariant to the first order

quadrupole interaction and the rotation need only be accurate enough to

diminish dipolar and chemical shift anisotropy broadening.
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Figure 8. b) Experimental double quantum spectrum of 10% d-l benzene

in protonated benzene at 4.2 Tesla with proton decoupling. The pulse

sequence is that simulated in a). The spectrum reveals the chemical

shift anisotropy to be 6.5 ± 1 ppm, while the single quantum spectrum

would be dominated by the much larger first order quadrupole terms.

(Figures 8 a) and b) by permission from D. E. Wemmer, "Some Double

Resonance and Multiple Quantum NMR Studies in Solids", Ph.D. Dissertation,

University of California, Berkeley, 1978, published as Lawrence Berkeley

Laboratory Report LBL-8042.]
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Figure 9. Sensitivity to rotor misset of single and double quantum

deuterium spectra with magic angle sample spinning. The sample is 28%

randomly deuterated polycrystalline ferrocene rotating at 1.1 kHz. The

single and double quantum spectra are shown in a, b, and c for increas­

ingly large missets of the spinner axis from the magic angle e. Even
m

slight misadjustments lead to reintroduction of the quadrupolar broad-

ening in the single quantum spectrum. The double quantum transition is

inherently insensitive to the quadrupole interaction and remains sharp

for small rotor missets, allowing easy measurement of the isotropic

chemical shift.

[By permission from R. Eckman, L. MUller, and A. Pines. Chem. Phys. Lett.

l.!!.... 376 (1980).]



i. Multiple quantum spin tickling. In most of the

schemes reviewed so far, the frequency selective irradiation was used

during the preparation and mixing periods. An exception was double

quantum spin decoupling (Sec. IIC2f). Another case where frequency

selective irradiation is used during the evolution period is in time

domain spin tickling. The effect of such weak irradiation on the spectra

obtained from multiple quantum interferograms has been discussed in some
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d '1(70)etal . It is suggested that such experiments will prove useful in

elucidating the assignment of lines to an energy level scheme.

D. Separation of the Transition Orders

1. Transition Frequencies in the Off-Resonance Rotating Frame

In order to interpret the profusion of transitions which

arise with the breaking of the selection rule, it is convenient to

separate them according to their transition order n :: liM. In terms of

the energy level diagram (Fig. 2) this would appear to be a simple

matter since the frequency differences of order nw insure that lines of
o

one order will be separated from those of a neighboring order by the

Larmor frequency. In practice this large difference is unavailable,

since it is precisely the Larmor terms which are removed in the rotating

frame. In fact an energy level diagram properly drawn for the resonant

rotating frame would show overlap of the different Zeeman manifolds. In

this frame, transitions of all orders have a similar spectral range

determined by the spin couplings and the chemical shifts which lift the

degeneracy of states with the same M. Since all of the coherences are

necessarily detected only through their modulation of the magnetic dipole

radiation near w
o

' they are not readily distinguishable in this frame.



One method of changing the spectral range of the different orders

is to move the heterodyne detector reference frequency off resonance.

This introduces the term -~wI into the rotating frame Hamiltonians (2.7).
z

This term commutes with the evolution Hamiltonian Xl so the eigen­

operators li><j I do not change, but the eigenfrequencies are shifted.

If the eigenfrequencies on resonance were given by
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[Xl' Ii><j I] w.. li><j I
1J

(2.41)

then by (2.27) they are given off resonance by

(W'
j

- n .. ~w) ji><j I
1 1J

(2.42)

In the time domain, this corresponds to multiplying each term of (2.34)

by exp(in .. ~wtl)' The offset ~w is chosen to be large enough so that
1J

the lines of each order do not overlap with adjacent orders. Typically

the required offset is about the full width of the single quantum

spectrum, but other orders may be somewhat wider. Note that the Nyquist

frequency, determined by the increment ~tl in the evolution period, must

be greater than 2I~w.

This method of separating transitions according to n has a number

of disadvantages which render it quite unsatisfactory. On most spectrom-

eters the irradiation frequency and the reference frequency are the same

and setting the latter off resonance would lead to ineffective excitation.

This is not a profound problem since a resonant irradiation frequency

separate from the reference could be generated. A second problem is that

by centering the pass band at the edge of the single quantum spectrum it

is necessary to digitize at least twice as rapidly in t
2

as would be



necessary on resonance. Again this is not a fundamental objection, but

only an experimental inconvenience. The crucial objection to using an

off-resonance detector frequency for separating transition orders is that

it cannot work in those experiments which use spin echoes during the

evolution period. The full treatment of these experiments is postponed

until Section lIE. At this point it is only necessary to note that the

+
offset term also includes the inhomogeneous term -w (r)I of (2.9).

z z

Since experiments designed to remove this inhomogeneity from the evolu-

tion also remove the modulation needed to distinguish the transition

orders, other methods of separation are needed. These methods are the

subject of the next section.

2. Labeling of Coherence by the rf Phase of the Preparation
Period

a. Order dependent phase shifts. What is desired is a

method of separating coherences of different order in those experiments

where an offset is not present during evolution. The clue to such

(7)
methods lies in the dependence of the coherence on the rf phase .

Consider some arbitrary irradiation sequence during the preparation

period of Figure 4. The propagator is
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T exp(-i JT X(t)dt)
o

with

(2.43)

X(t) (2.44)

T orders the products of operators so that those with earlier time argu-

. (71)
ments are to the r~ght . X is the secular, internal, time inde­

int

pendent spin Hamiltonian (2.8). The time dependence is all from the rf



term (2.7) and enters through the experimental quantities w (t), wet),
p

and 6w(t) which allow for arbitrary variation of the rf amplitude and

phase and of the resonant frequency (within the rotating wave approxi-

mation). Next consider preparation by the same irradiation sequence,

but with all rf phases shifted by an angle ¢. The new Hamiltonian is
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obtained by the substitution

to substituting the operator

of I\jJ(t)+q, for

exp (i q, I ) Je( t )
z

IW(t)" This is equivalent

exp(-i¢I ) for Je(t). The
z

new propagator is U(T,q,) = exp(iq,I )U(T) exp(-iq,I ) and the new density
z z

operator prepared is

(2.45)

Suppose that 0 (0) contains only n = 0 operators. This is the case for a

system initially at equilibrium as well as for those non-equilibrium

initial conditions which are specifiable by population differences in the

eigenbasis of a secular Hamiltonian. Then

O(T,q,) = exp(iq,I )O(T) exp(-i¢I )
z z

If the density operator is decomposed into parts transforming as

(2.46)

n-quantum operators so that peT) = I P (T), then
n

n

and (2.37) becomes

p(T,q,) L exp(in¢)p (T)
n

n
(2.47)

p(T,¢) L P ij (T) expCinij ¢) I i><j I
ij

(2.48)

This demonstrates that the rf phase of the preparation period tags the

coherences prepared with a phase factor distinct for each order n. These



factors show up as phase dependent modulation of the signal expressed by

(2.34) and may be used to sort out the different contributions to the

signal by order. There are two methods for performing this sorting.

b. Phase Fourier transformation. The first is the method

of phase Fourier transformation (PFT) (14,72) . This requires the collec-

tion of a data set Sa(T,tl,T' ,t2'~) in the manner described in Section

lIB, but repeated for different values of ¢ between zero and 2n. This

data set is at least two dimensional, since t
l

and ¢ are varied indepen­

dently. A Fourier transformation may now be performed in each of these

dimensions: a transformation with respect to t
1

with wI as the conjugate

variable and a transformation with respect to ¢ with n as the conjugate

variable. In Section IIB2 the number of points required in the t
l

dimen­

sion was discussed in terms of a Nyquist frequency. The sampling rate
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(33 )
theorem may be applied in the ¢ dimension as well. If n is the

max

highest order coherence, then ¢ must take a minimum of (2n + 1) values
max

to retain all information in the transform with respect to ¢.

c. Time proportional phase incrementation. An alterna-

tive approach is the method of time proportional phase increments

(TPPI)(lS,73). Suppose that in (2.48) the angle is set to ¢ = ~wtl'

In practice this means that the phase of the radiation used for prepara-

tion is incremented by ~¢ = C6W)(~tl) when the evolution time is incre­

mented by ~tl' The effect is a phase factor in (2.34) of exp Cin
ij

6wt
1

).

This is precisely the same modulation which was found in Section IIDI to

be caused by a homogeneous offset term - 6wl
z

appended to Xl' Now,

however, it appears as an artifact of the preparation period and the

offset may be eliminated during evolution without collapsing the lines

of different n into the same frequency range. The separation of lines by



order is achieved in the Fourier transform with respect to t
l

. The phase

Fourier transform and the additional dimension in the data array are elim-

inated. The total amount of time and data storage required is nearly the

same for either method. This is because the apparent offset requires

that the evolution period increment ~tl be decreased by a factor 2n
max

or more to accommodate the spectra of all orders without overlap or ali-

asing. An example of a TPPI spectrum is shown in Figure 1.

TPPI results in a t
l

interferogram which is 2n as long as a
max

single quantum FID at the same resolution. Hybrid experiments can be

useful for keeping within the capacities of the available Fourier trans-

form software. For example, a pair of TPPI signals with initial (t
l

= 0)

preparation phase differing by IT can be added and subtracted to give,

respectively, the even quantum signal and the odd quantum signal. This

allows 6w to be half as large without overlap of orders occurring. Thus

6t
l

can be twice as long and each t
l

transform has half as many points.

The precise formal equivalence of TPPI with a homogeneous offset

term added to K
l

allows the treatment of various preparation periods

without explicit mention of TPPI. The fictitious offset may always be

accounted for as if due to a homogeneous offset during the evolution

period and the preparation propagator rf phase is then treated as though

it were constant for all t
l

.

d. Implementation of small phase shifts. The increments

in rf phase of IT/n or less which are needed for the PFT and TPPI
max

experiments are not as yet common capabilities of commercial spectrom-

eters. Digitally addressed 8-bit variable delay lines are commercially

available and have been successfully used(15). A method based on digital

. (74)
synthesis of phase shifted waves has also been lmplemented .
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Another method of generating phase shifts, illustrated in Figure 10,

is to switch the frequency of the spectrometer reference wave for a

period of time between pulses. Phase coherent frequency switching is a

commonly available feature of commercial rf synthesizers. The phase

shift obtained is ¢ = ~wt, where now ~w is the frequency shift which is

maintained for the time t. This suggests a particularly simple imple-

mentation of TPPI, in which the frequency shift is made during the free

. (75)
evolution perlod t

l

e. Related approaches to separation of the transition

orders. In the two approaches discussed above, PFT and TPPI, and the

various hybrid versions, the phase shifting is restricted to the pulses

of the preparation period. It is possible to achieve a similar labeling

of coherence by variation of the phase of other pulses.

If a 'rr pulse is used in t
l

, it alone may be phase shifted on suc-

cessive shots to give a modulation of what was n quantum coherence at

time t
l

= 0 by exp(i2n¢). This is a consequence of the general fact that

a coherence transfer from order n to order n' is accompanied by an extra

phase factor exp(i(n-n')¢), where ¢ denotes the phase of the rf effecting

the transfer relative to some arbitrary reference. For a perfect rr

pulse n' = -n only. Systematic variation of the phase of the pulse at

t
l

/2 has been used to eliminate artifacts due to other coherence trans-

f 1 · fl' f . (73)ers resu tlng rom pu se lmper ectlons .

An entirely different way of labeling the n quantum coherence with

(76) .
a factor exp(in¢) has been demonstrated whlch only requires the usual

four equally spaced rf phases. A familiar result of angular momentum

theory is that a rotation about an arbitrary axis can be achieved by a

series of three rotations about two orthogonal axes, which may be chosen

45
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Figure 10. Implementation of phase shifts of the rf. In a) the

phase shift 6¢ takes place suddenly as, for example, by digital

syllthesis or by switching to a carrier wave which has followed a

different pathlength. In b) the same phase shift is obtained by

shift in frequency by 6w for a time 6t.



as fixed. In the usual Euler rotation angle convention these are chosen

to be the y and z axes. Since the rotations which describe intense

resonant rf pulses are rotations about axes in the transverse plane, the

axes x and yare the convenient choice here.

The trick is to use pulses of the canonical phases to achieve an

effective rotation about z, which serves to label according to n. The

result needed is(76)
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exp(i (1T/2)I exp(-i8I )exp(-i(1T/2)I )= exp(i6I )
x y x z (2.49)

The sequence of three pulses indicated on the left (composite z-pulse)

can be given at any time during the evolution period. In practice they

were combined with the final rr/2 pulse of the preparation period.

Instead of 2n values of rf phase, one needs 2n pulse angles 6
max max

which are used on successive shots.

The limitations inherent in this method need to be noted. The first

-
is that the nutation frequency w must be much greater than the spectral

p

width. This is implicit in the neglect of the internal Hamiltonian

during the composite pulse. This condition can be difficult or impos-

sible to attain, particularly in anisotropic systems.

Secondly, inhomogeneity of w over the sample volume is translated
p

linearly into a misset of e and thus of the modulation factor exp(in8).

While rf phase accuracy of 1% is routine, rf field strength inhomogeneity

of 1% is only obtained with samples which fill a fraction of the coil

volume. Thus the method of composite z-pulses is not as generally

applicable as methods based on phase or frequency jumps.



A coherence which evolves

E. Consequences and Uses of Static Field Inhomogeneity

1. Spin Echoes in the Evolution Period

In Section rIDl the dependence of the multiple quantum

transition frequencies on the frequency offset term ~wI was considered_ z

as a way of separating spectra of different orders n. 'The problem with

this approach is that due to variations in the static field strength the

offset is inhomogeneous over the volume of the sample. The consequence

of this inhomogeneity is a line broadening proportional to n. This is

, (54)
depicted in Figure 11 for the six proton system of or1ented benzene .

The solutions to this problem include the technically difficult one

of improving the field homogeneity until it is not linewidth limiting

or the relatively simple one of incorporating a spin echo(l) into the

1 . 1 I" d(6,15,73)mu t1P e quantum evo ut10n per10 .

during the first half of the-evolution as an n quantum operator accumu-

-+
lates a phase factor exp(inwz(r)tl/2). A rr pulse at t

1
/2 converts this

-
operator to a -n quantum operator which at time t

l
has accumulated a

-+
factor exp(-inwz(r)tl/Z). Neglecting diffusion, these factors cancel and

-+
the evolution at t 1 is independent of wz(r).

While correct, this description neglects other possible effects of

the rr pulse on the evolution. The propagator for the evolution period

. -+ -+
exp«-1X

i
+w (r)I )tl/Z) exp(irrI ) exp«-iJ(. + w (r)I )t

l
/2) (2.50)

nt z Z x 1nt z z

Implicit in (2.50) is that w is much greater than the range of offset
p

frequencies so that a good rr pulse is delivered over the entire sample

volume. Defining the operator
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Figure 11. The effect of magnet inhomogeneity on multiple quantum

linewiciths. The widths of individual transitions of partially oriented

benzene are linear in the order of the transitions. This inhomogeneous

broadening is eliminated by sequences with a TI pulse at t
l

/2.

( By permission from D. E. Werrnner, "Some Double Resonance and Multiple

Quantum NMR Studies in Solids", Ph.D. dissertation, University of

California, Berkeley, 1978 published as Lawrence Berkeley Laboratory

Report LBL-8042.)



,
JC. = exp(-i7TI) JC. exp(i7TI)
lnt x lnt x

the propagator (2.50) can be rewritten as

,
exp(i7TI ) exp(-iJ(. t1/2) exp(-iJC. t1/2)

x lnt lnt

(2.51)

(2.52)
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JC. is obtained from JC. by simply changing the sign of all the linear
lnt lnt

z
(Zeeman) terms ~ (2.9). As desired, the dependence on 6w(r) has vanished.

The factor exp(i7TI ) may be thought of as part of the mixing period and
x

is of no concern here.
,

If [Xint,K int] = 0 then these exponents in (2.52) may be added.

The resulting evolution is equivalent to that resulting from an average

Hamiltonian

K
1

(2.53)

There are two common cases where the commutator is zero. One is the weak

coupling limit, which occurs when chemical shift differences greatly·

exceed the spin couplings. This situation occurs often in liquids and

(77)
is the basis of J spectroscopy . The second case for which the commu-

tator effectively vanishes is the other extreme where the chemical shift

differences between pairs of spins are negligible compared to the

couplings of the spins. This situation occurs for some solids and for

some molecules oriented in liquid crystal phases where the direct dipolar

couplings or electric quadrupole couplings dominate the spectrum. Both

situations can occur for the same system if for every pair of spins the

difference in Zeeman terms is either negligible or much greater than the

coupling.



A more complicated analysis is required for an echo spectrum in a
,

system for ~hich [X. ,X. ] is significant (comparable couplings and
lnt lnt
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chemical shift differences). This case has been treated for single

(78a). (l8b)
quantum spectra • The generallzation to multiple quantum spectra is

straightforward in principle. Each frequency observed in WI is the

average of two frequencies which would be observed in a perfect magnet:

one frequency of order n and one of order -no A computer program for

calculating such spectra has been written(79).

Figure 12 sho~s how this averaging comes about. On the left the co-

herence before the rr pulse is represented on an energy level diagram by

arrows connecting states in coherent superposition. Only two coherences

are shown for simplicity. In the center the result of a rr pulse is shown
,

for the case [Xi ,Jf. ]
nt l.nt

o. Because there is a one-to-one ~orrespon-

dence between coherences before and after the TI pulse, an average

Hamiltonian (2.53) suffices. On the right, the result of a TI pulse on

the same two coherences is shown when the commutator does not vanish.

There is a one-to-many correspondence between the coherences present

before and after the pulse. The spectrum obtained in WI is the super-

position resulting from one such correspondence for each prepared eigen-

operator. The net result is far more apparent transition frequencies

than there are eigenoperators.

This proliferation of line frequencies could possibly be an aid to

line assignment, since only transitions belonging to the same irreducible

representation and having the same value of (m. + m.) as well as (m. - m.)
1 J ]. J

give rise to average frequency lines. However, in general the multi-

plicity of lines observed is counterproductive to our goal of high resolu-

tion. Spectral analysis is complicated and the signal-to-noise ratio is

reduced.



52

-m

-m'

m'

m

(0) Initial Coherence

Tr-
, 1f

·
·
·

, ,

"
11

Figure 12. Coherence transfer due to a n pulse. In part a) two

coherences exisiting before the n pulse are indicated by the single and

the double arrow. In part b) each of these has been transferred to

a single other coherence having the opposite value of the Zeeman

quantum numbers. This occurs when the spin Hamiltonians X and X'

(2.51) commute. When they do not commute, the situation in part

c) occurs after the n pulse. This leads to a spectrum with many

lines corresponding to the averages of the frequencies occurring

before and after the n pulse.



A related proposal for removing inhomogeneity which does not in-
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crease the number transitions is the use during evolution of a train

of n pulses. For closely spaced pulses an effective Xl containing only

bilinear terms is achieved. This will not be discussed further here.

An easier approach, total spin coherence transfer echo spectroscopy, is

taken up in Section IIE4.

2. Coherence Transfer Echoes

The different rates of dephasing and rephasing for each

order, which were noted in the previous section as a source of inhomo-

geneous line broadening, lead also to a more useful phenomenon, the

coherence transfer echo(3,5,80).

This differs from the familiar spin echo in that it depends on a

change in Inl, rather than only a change in the sign of n as occurs with

an ideal n pulse. The result is that the echo may be retarded or

advanced according to the difference in n before and after the pulse.

Figure 13a sketches the pulse sequence for a simple demonstration

(80)
of the phenomenon . The preparation period contains a n pulse at 1/2

so that a normal single quantum spin echo occurs at the time of the

second n/2 pulse. This insures that the density operator existing after

the second n/2 pulse is independent of magnet inhomogeneity. Evolution

~

for a period t
l

results in an accumulated phase factor exp(inwz(r)t
l

) for

n quantum coherence. The mixing pulse converts some of this coherence to

~

n = ~l operators which accumulate during t
2

a phase factor exp(~iw (r)t)).z _

At times such that t
2

= Inltl the factors cancel for all wz(~).

Such an approach is not useful for obtaining multiple quantum spec-

tra. Although the signals from each n are separated, the times t
2

at

which the echoes occur vary with t
l

. The signal array formed by

sampling these echoes would be a function of both t
l

and t
2

and the points
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XBL 8112-12798
Figure 13. Pulse sequences involving coherence transfer echoes. In parts
a) and b) the magnet is assumed to be inhomogeneous. The preparation per­
iod of length T incorporates a ~ pulse to insure a coherent initial con­
dition. In part a) dephasing of n-quantum coherence during tl at a rate
proportional to n is followed by mixing to single quantum coherence and
rephasing at a common rate leading to separate echoes for each n at t 2
ntl' In part b) the inhomogeneity is compensated within the evolution
period by the ~ pulse at tl/Z, A dephasing of the n-quantum coherence for
a fixed time T leads to separated echoes at time tz = nT independent of tI'
Thus Fourier transformation with respect to tl gives homogeneous multiple
quantum spectra. In parts c) and d) the static field is assumed to be
homogeneous. In part c), pulsed field gradients are used to selectively
echo a single order n of coherence. Part d) is similar, but indicates that
fOl' lengthy mixing periods involving many pulses and indicated by the pro­
pagator V, the interval between dephasing and rephasing may become large
and eventually lead to loss of echo amplitude through diffusion.
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of constant t
2

needed for a Fourier transform with respect to t
l

would

Thus the inhomogeneity during evolutionnot be echo points for all t
l

.

leaves the multiple quantum lines broad. Sharp ridges occur in the 2D

Fourier transform at the angles tan-l(l/n) (80) .

3. Coherence Transfer Echo Filtering (CTEF)

Figures 13b shows a variation(81-83) which can be used

for obtaining separated multiple quantum spectra free of inhomogeneous

broadening. An extra constant period of multiple quantum evolution of

length T is inserted before the mixing pulse. In addition a TI pulse is

given at the center t
l

/2 of the variable evolution period. Now the

accumulated phase factor depends only on T and the echoes occur at

t
2

= InlT independent of tlo

Figure 14 shows the signal in t
2

for one value of t
l

using the pulse

sequence of Figure 13b and a sample of oriented benzene. Six equally

spaced echoes are visible at times t
2

= In/T. Significantly, the signal

is present in both channels of the phase sensitive detector and the

signal from a given order cannot be adjusted into one channel for all tlo

This is a characteristic of coherence transfer experiments: the signal

in t
2

is phase modulated, rather than amplitude modulated, as a function

To prove that this is generally the case recall that it is possible

to combine the two Hermitian observables I and I into the linear com-x y

binations 1+ I ~ i1. One linear combination or the other can
x y

arbitrarily be assigned to the phase sensitive detector. If we choose

to detect the combinations 1+ then the signal is Tr(pI_), due to the

nature of the trace operation as an inner product. The detected operator

(2.32) needed for the experiment of Figure 13b is
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Figure 14. Coherence transfer echoes in t
Z

' The detection period sig­

nal in the two audio channels of the phase sensitive detector is shown

for a sample of oriented benzene using the pulse sequence of Figure 13b

with the parameters T = 4 msec, t
l

= 33.Z8 msec, and T = 3 msec.

The phase difference between the first two TI/2 pulses was -TI/4 so that

all orders are prepared (Sec. IIICZ). The separation between echoes is

T. The decay of each echo in a few hundred ~sec is due to the static

magnetic field inhomogeneity. By sampling at a particular echo maxima

it is possible to obtain the signal due to a single order n. See Figure

15.



Vt(T) exp(LK, t
2
)I exp(-iX, t

2
)V(T)

lnt - lnt
(2.54)

57

where X
z

has been set equal to X, and the mixing propagator is
lnt

V(T) exp(-i(n/2)I) exp(-iX. T)
y lnt

(Z.55)

Note that the dephasing period T is formally part of mixing though it

precedes the mixing pulse. The dependence on the position in the sample

+
which is not noted explicitly in (2.55) is through the term -w (r)I

z z

ofJe (2.8).
lnt

Since this inhomogeneity term commutes with the rest of X. it is
lnt

possible to express (2.54) in terms of a primed detected operator which

would be relevant in a homogeneous field:

+ +'
exp(-iw (r)TI ) exp(+iw (r)t

2
)I (-(T+t

Z
»

z z z -
(2.56)

Expanding in the basis set of Xl gives

+' , +
I (-(T+tZ),r) = I (Xj,(-(T+tz»-iy,,(-(T+t2»exP(-iw (r)(n,.T-tz»/j><i/

- , , l J l Z lJ
lJ (2.57)

The signal (Z.34) becomes

, ,
I o,,(T)(x,,(-(T+t

Z
)-iy,.(-(T+t

2
»

ij lJ J l J l

+
exp(-i[w (r)(n .. T-t 2 )+w· .tlJ)

Z lJ lJ
(2.58)

+ +
If w (r)n.,T ranges over all angles then integration over r cancels out

Z lJ

the signal contribution from all orders except n .. > 0 and even these
lJ

only survive in the neighborhood of t = n,.T as evidenced by Figure 14.
Z lJ



The restriction to positive n .. has as a corollary that the depen-
1J .

dence on t
l

is through a phase factor exp(-iwijt
l

) since there is no

complex conjugate term in the sum to make this real. Thus both channels

of the receiver are necessary to collect the full signal, regardless of

whether this would have been the case without the introduction of the

coherence transfer echoes.

Figure 15 shows an example of what will be called coherence transfer

echo filtering (CTEF). In the upper trace all of the orders prepared

are detected by eliminating the period T of Figure l3b, placing a IT pulse

at t z = T/Z and sampling at t z = T. The separation of orders was achieved

with the TPPI method discussed in Section IIDZ. In the lower trace the

sequence of Figure l3b was used with T = t Z/4 = T/4 to detect only the

n = 4 spectrum.

The approach of Figure l3b is not generally satisfactory with re-

spect to signal-to-noise ratio since only the t z points near the echo

maxima may be used to construct the multiple quantum FID. As discussed

further in Section IIIBZ maximization of signal-to-noise ratio requires

use of the signal over as long a period in t
2

as the natural decay time

allows. Furthermore it is sometimes desirable to correlate the single

quantum and multiple quantum spectra by two dimensional display of the

(72)
spectra . For this a complete f.i.d. in t z is needed.

Th .. 1 . f h CTEF . (81 ) .e or1g1na verS10n 0 t e exper1ment • appropr1ate to

homogeneous magnets, is shown in Figure l3c. It is assumed ideally that

the only significant inhomogeneity of the static field is during the

shaded periods of length T and nT during which times a reproducible

current is delivered to a gradient coil intentionally dephasing or re-

phasing the ensemble. The full f.i.d. arising from one order is collected
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Figure 15. Coherence transfer echo filtering. The top trace is a

spectrum of oriented benzene obtained with the sequence of Figure 3

augmented with n pulses at T/2, t
l

/2 and t
2

= T/2. Sampling is at

t
2

= T = 4 msec. Note that only even orders appear (Sec. IIIC2).

The lower trace was obtained by removing the TI pulse in t
2

and adding

a fixed delay T = T/4 before the mixing pulse to give the sequence of

Figure 13(b). Now only the n = 4 spectrum contributes to the signal

at t
2

= T = 4T. The signals from other orders echo at other points

in t
2

. See Figure 14.



in t Z • Figure l3d indicates the generalization of this approach to the

situation where a more complicated preparation and mixing sequences are

used. As in Figure 4 these are indicated by their propagators U and V.

It is important to recognize that in the CTEF methods signal is

always lost. The sequence of Figure l3b suppresses signal for most

values of t z, while those of Figure l3c and d suppress signal for most

values of n. This is in contrast to the methods of Section lID which

separated the signal from particular orders without suppressing that from

any order.

There are auxiliary considerations which make the suppression of

coherence by field gradients a valuable tool despite the fact that some

signal energy is lost. Since only transitions of a single order appear,

there is no need to disentangle the signal from different orders by PFT

or TPPI. For a given resolution in wI' this reduces the minimum time

needed to obtain a spectrum by a factor of 2N for N coupled spin !2 nuclei.

This reduction in minimum experimental time is accompanied by an equi­

valent reduction in minimum data storage capacity required to obtain a

spectrum of a given resolution. Of course, the accumulated signal is

reduced by this same factor even for those transitions which are observed

and is reduced ideally to zero for the suppressed transitions. If

however, the signal-to-noise ratio is adequate and only one or a few

transition orders are of interest then a genuine time advantage is

achieved. This is particularly true if order selective excitation tech­

niques (Sec. IIIC) are used which enhance the signal intensity of the

selected order at the expense of others.

There is still another advantage to suppressing coherence with field

gradients which arises because of instrumental instabilities during the
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course of a two dimensional experiment. Such instability gives rise to

a noise contribution, the multiplicative t
l

noise, which is minimized by

suppressing extraneous transitions. Thus, a signal-to-noise gain may be

obtained in this way for the observed lines without increasing their

intensity or the experimental time. The achievable gain by this mechan-

ism is dependent on a complex of performance conditions including instru-

ment instability. The concept of multiplicative t
l

noise and its

suppression are treated in Section IIIB3.

4. Total Spin Coherence Transfer Echo Spectroscopy (TSCTES)

a. The problems which are solved by TSCTES. In Section
,

IIEI the difficulty was noted that if [XI,X
I

] # 0 the spectrum obtained

in wI by putting a n pulse at t
l

/2 contains lines at the sums and dif-

ferences of the frequencies which would be observed without a n pulse in

an ideally homogeneous magnet. Such a set of lines is not directly in-

terpretable in terms of an energy level diagram; indeed there are more

lines than would be expected for any reasonable model Hamiltonian. The

simulation of intensities for such a spectrum requires a calculation

based on the details of the excitation and the parameters of Xl. As

discussed in Section IIIBI there are practical limits on the complexity

of systems for which dynamical intensity calculations are feasible. One

feature of the method to be described is that it supplies relative line

intensities which are exactly calculable independent of excitation

dynamics. Exact knowledge of relative intensities is an aid to line

assignment during spectral analysis.

A second potential drawback of the usual spin echo method is that

the chemical shift differences are not readily measured from the resul-

ting spectra. Their effect on the transition frequencies either vanishes
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entirely or is muted, appearing only through their noncomrnutation with

the bilinear terms. The TSCTES line positions have full sensitivity to

chemical shift differences between coupled spins.

Finally, it is possible with TSCTES to obtain spectra of any order

n with properly phased lines. This applies not only to spin inversion

transitions (Sec. IIIA4), but also to the more interesting class of lines

which carry information on the bilinear terms of Xl' This phasing of

lines improves resolution relative to that obtained with magnitude

spectra and guarantees that spectral intensity is not lost through the

destructive interference of unresolved transitions.

b. The pulse sequence. The general form of the TSCTES

experiment is shown in Figure 16(84). It differs from the scheme of

Figure 4 in that the evolution period has been divided unequally into

two parts by one or more rf pulses indicated by W.

The total spin coherence (n = N for N spins ~) is prepared by the

preparation sequence indicated by U. Its evolution during time ntl/N

is determined entirely by the offset terms, as it commutes with all

chemical shift differences as well as with the bilinear terms of X. .
lnt

The propagator W transfers this coherence to lines of other orders in-

eluding some particular order n of interest. A coherence transfer echo

occurs after further free evolution for the period t
l

. For n F ±l this

is invisible and is mixed to magnetization by the mixing propagator V.

As for the case where a n pulse is employed at t
l

/2, the Fourier

transform with respect to t
l

is independent of offset terms and thus of

magnet inhomogeneity. The transfer of coherence by W is again a one-to-

many correspondence (Fig. 12), but now, because of the uniqueness of the

total spin coherence, the signal from only one such correspondence is
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Figure 16. General form of the pulse sequence for total spin coherence

transfer echo spectroscopy. The propagator U is designed to prepare

total spin (N-quantum) coherence. This dephases for a period ntl/N

at which time it is converted to n-quanturn coherence by W. This co­

herence evolves for a time t
1

during which it also rephases. Mixing

to observable single quantum coherence is accomplished with V. Fourier

transformation with respect to t
1

gives an n-quantum spectrum free of

broadening by magnet inhomogeneity, yet sensitive to chemical shift

differences.



observed. The resulting spectrum contains only one line for each eigen-

operator which is present during t
1

and which is connected by W to the

total spin coherence.

c. Single quantum TSCTES spectra. Figure 17 shows the

comparison between an ordinary one pulse single quantum spectrum and the

n = -1 TSCTES spectrum for oriented acetaldehyde (84) . Comparison of

parts a) and b) demonstrates the removal of magnet inhomogeneity. The

simulation in part c) demonstrates that a spectrum sensitive to chemical

shift differences and with calculable relative line intensities can be

obtained. The complex amplitudes of the lines are given to within a

common phase factor by
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(2.59)

The notation on the left is similar to that of (2.34-2.36), with t
2

= 0

and no mixing period. Both channels of the phase sensitive detector are

considered simultaneously for the same reason as in Section IIE3: the

echo condition holds only for transitions where the order of coherence

changes sign and the detector is here arbitrarily taken as measuring

n = -1. The factor Pij(T) on the left might also be written Pij(T+nt1!N)

since the n .. = -1 coherence is created at this time. However, the de­
1J

pendence on nt
1

!N is only dephasing and this is precisely what the echo

removes.

The first factor on the right is the coefficient of the total spin

coherence prepared by the propagator U. The second factor is a Wigner

. (27) .
rotat10n matrix element , wh1ch expresses the efficiency with which

single quantum coherence is prepared from the total spin coherence by a

pulse of nutation angle 8. These factors are common to all lines. The



65

I

rV
a I

I
I

__------.--1/

c

-2000
I I I

-1500 -1000 -500 o 500 1000 1500 2000
Hz 'Bc =.1--525

Figure 17. Removal of magnetic field broadening by total spin coherence

transfer echo spectroscopy (TSCTES). Trace a) is the normal single quantum

spectrum of acetaldehyde oriented in a nematic liquid crystal obtained by

Fourier tranformation of the f.i.d. after a single pulse. It indicates

inhomogeneous broadening of greater than 1 ppm. Trace b) is the TSCTES

single quantum magnitude spectrum which is free of inhomogeneous broadening.

Trace c) is the simulated spectrum which gives the paramaters JAB = 2.8 Hz,

v
AB

= 1360.9 Hz, DAB = -179.0 Hz, D
BB

= 458.6 Hz. The line amplitudes are

given by (2.59). Unlike the usual single quantum spin echo methods TSCTES

is sensitive to chemical shift differences and does not increase the number

of transitions over that expected from the energy level diagram. When

applied to multiple quantum spectra TSCTES gives phased lines of easily

calculable relative intensities.



third factor expresses the extent to which a particular line is repre-

sented in this coherence. The fourth factor is the usual magnetic dipole

detection period matrix element.

The phase of the lines is not indicated in the magnitude spectra of

Figure 17 nor obvious in (2.59). It turns out that within a common

phase factor all transitions are either absorptive or emissive, a point

demonstrated and discussed elsewhere(85).

d. Multiple quantum TSCTES spectra. The extension to

higher order spectra(85) is straightforward. The most useful form of

the experiment uses a mixing propagator V which forces the coherence of

interest back through the total spin coherence before the final mixing

to detectable coherence. In this case line amplitudes are given by

I I N 2 N 2
0ij(T)cxji(-T ,-tZ)=ON/2,_N/Z(T)CX_N/Z,N/ZC-T ,-t2 )(dN,n(8» l<iITnlj>1

(2.60)

The first three factors on the right are common to all lines of the

chosen order n. The last two factors are non-negative and real. This

is sufficient to give all lines with a common phase, if the only inhomo-

geneity in the ensemble is that of the static magnetic field. Since the

total spin transition is a spin inversion transition, the product of the

first two factors on the right can also in principle be made non-negative

and real for a wider class of inhomogeneities by the methods of Section

IIIA4.

e. Limitations. The most obvious limitation of the TSCTES

method is that it depends on excitation of the extreme coherence. The

theoretical limit on the magnetization available to this coherence is

discussed in Section Ille8. This small fraction of the total magnetization

66



is further divided up among the lines of the observed order n and in

addition much is wasted in unobserved orders, which do not satisfy the

echo condition. Quantitative expressions for the efficiency are given

(85)
elsewhere .

Another major limitation is that while the method preserves chemical

shift differences within a group of coupled spins, it is incapable of

measuring differences between isolated systems. Thus the shift dif-

ferences cannot be referenced to a standard with the same accuracy with

which they are measured.

Finally, the lines observed with TSCTES always belong to the totally

symmetric representation. This can be inconvenient since transitions of

other representations may be more sensitive to certain combinations of

Hamiltonian parameters which one would like to extract from the spectra.

5. Diffusion in Field Gradients

Translational diffusion along magnetic field gradients

has long been recognized as a cause of irreversible dephasing in NMR(1,86).

Since the motion of the molecule gives the offset term of the Hamiltonian

a random time dependence, a TI pulse in the middle of the evolution does

not lead to perfect rephasing of coherence. The decay depends on the

order of the transition. For a single TI pulse at t
l

/2 the signal due to

prepared n-quantum coherence decays as
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(2.61)

(86 )
This is the well-known single quantum result for a gradient G and

diffusion constant D, but the gyromagnetic ratio is effectively increased

by n. This ,greater sensitivity to diffusion has been used to measure the

anisotropic diffusion of methylene chloride(87a) (n= 2) and benzene(87b)

(n = 6) in liquid crystal solvents.



For diffusion measurements large field gradients are introduced in-

tentionally. Decay due to diffusion processes also can appear in the

presence of residual field inhomogeneities. For example, in the three

pulse sequence of Figure 3 (or the four pulse sequence obtained by

adding a ~ pulse at t
I
/2), the inhomogeneous dephasing which occurs

during the preparation period is echoed for t z = T. Diffusion may cause

this echo to be diminished in amplitude even at t
l

= O. Such interfer­

ence of diffusion effects with the performance of multiple quantum experi-

iments is only a problem if the magnet inhomogeneity is quite poor and

only then in liquids. It is mentioned here only because it does set an

upper bound on the degree of inhomogeneity which can be effectively re-

moved by the various echo phenomena of the preceding sections.

6. Zero Quantum Coherence

a. Introduction. Coherent superpositions among states in

the same Zeeman manifold have a number of features which distinguish them

from their higher quantum analogues. These unique properties make the

n = a spectra of coupled spin systems accessible with somewhat simpler

instrumentation than required for the full multiple quantum experiment.

In addition, the zero quantum coherences may be prepared not only by the

rf pulse sequences discussed so far, but also by methods which in prin-

ciple need not involve any irradiation. One other zero quantum

peculiarity, an extra quantum number, is taken up in Section IIle3.

b. Relaxed performance conditions for zero quantum NMR.

The three pulse sequence of Figure 3 suffices to give the n = a transi­

tions with linewidths unaffected by magnetic field inhomogeneity(9).

As noted in Section IIDl (2.42), the dependence of the transition energy

on the offset term is proportional to n and thus vanishes for these
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transitions(9). The only remaining dependence of these line positions

on the field strength in the high field limit is through the differences

in chemical shifts. These differences (w . - w .) = (a. aJ.)w
O

are
Zl ZJ 1

linear in the Larmor frequency but with coefficients (a. - a.) of parts
1 J

per million instead of unity as with the offset term. The limiting

fractional resolution then is the product of the fractional inhomogeneity

2
and the fractional shift difference (a. - a.)«lO ppm). Thus even

1 J ~

casual conditions of field inhomogeneity (1 ppm) would give an inhomo-
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'b' f b . lOlageneous contr1 ut10n 0 a out one part 1n This is almost always

This allows zero quantumnegligible compared to broadening due to T
2

.

spectra to be recorded at high resolution without a IT pulse at t
l
/2,

thus avoiding the complications of simulating the effect of this pulse

(Sec. IIEl).

Since all other coherence will rapidly decay during t
l

in an inhomo-

geneous field, it is possible to make use of this decay to observe only

the n a contribution to the signal py starting t
l

at a value several

*times the inhomogeneous decay time T
2

. This obviates the need for the

many rf phases required by the PFT and TPPI methods of separating signals

of different order (Sec.IID2). This may be viewed as a special case of

the CTEF methods discussed in Section IIE3.

Zero quantum spectra of weakly coupled liquid systems have recently

been discussed(88).

c. Alternative excitation and detection methods for zero

quantum coherence. The close kinship between zero quantum coherence and

populations, which is evidenced by their similar indifference to magnetic

field gradients, has consequences also for possible means of creating

zero quantum coherence. Suppose that a system of spins is suddenly sub-

jected to a change in its Hamiltonian. Suppose furthermore that



(2.62)
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so that a different set of eigenstates is needed for each Hamiltonian.

Let these states be solutions to the Schrodinger equations

Je Ii> = w. Ii>new 1

,
Je Ii'> = w.li'>old 1

(2.63a)

(2.63b)

If the system initially has no coherences, then its density operator can

be expressed as a sum of number operators for the old eigenstates

p(O) = I
i'

P.,. ,(0) li'><i' I
1 1

(2.64)

Immediately after the sudden change from Je
old

to Je
new

the density opera-

tor is the same, but now it is appropriate to rewrite it in the basis of

the new eigenstates. Thus

p (0) I I Pi'" (0) T .. , T . 'k Ij ><k I
i' j,k 1 J1 1

(2.65)

where T is the transformation operator relating the two bases. For free

evolution under Je ,pet) is 'given simply by multiplying each termnew

Ij><kl by exp(-iwjkt). Such off diagonal terms (j # k) will exist so

long as [peO), X ] # O. Thus a sudden change between noncommuting
new

Hamiltonians may induce oscillating terms in the density operator without

the application of any rf. An early example of this phenomenon is the

oscillations in the magnetization induced by rapid switching between low

magnetic fields(89).

If the experiment takes place in high field then



I ]
z

o (2.66)
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and both Hamiltonians and the transformation operator T block factor

according to Zeeman quantum number. Thus the sum in (2.65) is restric-

ted to terms with mi , = m
j
=~. The result is that only zero quantum

coherence can be created by a change from one high field spin Hamiltonian

to another in a system originally lacking coherence.

One of the earliest observations of zero quantum coherence was, in

. (20 90)fact, made with such a preparat10n method ' . The change in

Hamiltonian was due to a chemical association between photo-fragments,

which during their history as free radicals had developed nuclear spin

polarizations (chemically induced dynamic nuclear polarization) (91).

In principle, this means of preparing zero quantum coherence by

reaction is more general and need not involve free radical reactions.

If reactants A and B with different magnetizations combine rapidly in

such a manner that strong couplings between spins on A and spins on B

are created then zero quantum coherence will be created. The differ-

ence in magnetization could be achieved simply by bringing one species

into the magnetic field immediately before mixing so that it would be

initially unpolarized. It is worth noting that n = 0 coherence exci-

ted in this way is created instantaneously, while if the evolution

Hamiltonian Xl = X did commute with X or p(O) a finite preparation
new old

period would be necessary.

Zero quantum coherence has also been detected in an unorthodox

(92)
manner After preparation by large angle pulses, small fractions of

the coherence were mixed to n = I operators by small angle pulses at

regular intervals. In this way the mixing and detection processes co-

exist with the continued evolution of the bulk of the coherence and the



experiment becomes one dimensional. Because field gradient pulses were

used before each mixing pulse to eliminate interferences, the method is

peculiar to n = 0 coherence.

F. Information Content and Symmetry Considerations

1. The Number of Transitions

a. The general case. The most striking feature of

multiple quantum spectra, such as that of Figure 1, is that the number

of transitions of a given order n falls rapidly with n, while the spec-

tral range is roughly constant. The combinatorial origin of this effect

is evident from Figure 2. The density of states falls with M and the

high order spectra consist of transitions connecting these sparse mani-

folds. In the absence of permutational symmetry in X. ,all transitions
lnt

are allowed in the sense that some sequence of pulses can be found which

will excite the corresponding coherence. For the vast majority of co-

herences li><j I, the sequence of three n/2 pulses (Fig. 3) will lead to

a finite line amplitude o .. 0 .. in (2.34). Special cases of lines which
lJ J 1

are allowed, but not with this sequence, are mentioned in Section IIIC3

and IVC. Various other aspects of line intensity are treated in IIIB

and rIIC.

The number of transitions for the general case, where there is no

permutational symmetry, serves as an upper bound for any particular sys­

tem. For N spins ~ there are 2
N

states and the density operator may be

viewed as a vector in a 4
N

dimensional Hilbert space (Liouville space).

The number of operators characterized by each value of n is a well-known

combinatorial problem(28,29).

There are N!/(N/2+M
i

)! (N/2-M
i

)! kets with eigenvalue M
i

of 1
z

to

which may be appended any of the N!/(N/2+M
j
)! (N/2-M

j
)! bras with
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eigenvalue M. to form an outer product operator li><jl characterized by
J

n .. (2.5). The same difference TI •• may be obtained by other combina-
1J 1J

tions of M. and M. so that the total number of n quantum operators is
1 J

the sum
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Z
n = I

M-M'=n
(2.67)

2N
The case n = 0 is special in that the eN) zero quantum operators con-

sist of 2
N

number operators describing the populations (diagonal elements

of p) and the other

z
o

(2.68)

are coherences between pairs of states in the same Zeeman manifold. In

reference 29 Z was defined as one half this quantity in recognition of
a

the fact that the zero quantum transition frequencies for wI < 0 are

mirrored for w > O. The definition (2.68), on the other hand, counts
I

off-diagonal matrix elements. The sum of all such elements is

N

L
n=-N

Z
n

(2.69)

b. The role of permutation group symmetry. The selec-

tion rules of magnetic resonance are particularly simple since the inter-

action with the radiation acts only on the spin degrees of freedom. The

full Hamiltonian including the rf term has the same symmetry as the in-

ternal Hamiltonian with regard to permutation of nuclear indices. A

consequence is that no transitions are induced by the rf fields between

states belonging to different irreducible representations of the permuta-

tion group. This is as true for multiple quantum as for single quantum



NMR. The initial condition p(O) has the permutation symmetry of X and
int
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this is preserved through any sequence of pulses, This requires that

all finite terms of the density operator have matrix elements only be~

tween states of the same irreducible representation. This restriction

reduces the number of possible coherences when there is permutation

symmetry.

Neglecting relaxation mechanisms, which may have a lower sYmmetry

than X. , it is possible to treat the dynamics within each irreducible
lnt

representation as a separate problem. In any case, the eigenstates of

Xl have at least the sYmmetry of X
int

and the enumeration and/or con­

struction of sYmmetry adapted states is a usual prelude to detailed

consideration of a particular system. There is nothing peculiar to

multiple quantum NMR in these steps, since the states are the same as

enter into the single quantum calculations. The applications of group

(93-95)
theory to these problems are reviewed in numerous texts . A

minor wrinkle in practice is deciding, ultimately by spectral simulation,

which molecular motions are sufficiently fast to increase the sYmmetry of

X by motional averaging.
int

If the number of states belonging to each irreducible representation

has been enumerated for each value of M, then the number of possible

transitions is easily arrived at by allowing all transitions within the

irreducible representation. Examples for different values of nand

. (29 96-99)
various permutation symmetrles have appeared' .

An enumeration of transitions for only the few highest orders often

suffices in applications, since these are the best resolved and most

easily assigned spectra. A rule for counting n = N-2 quantum lines in

spin ~ systems without chemical shifts has been proposed, which does not



require the enumeration of the number of states in the relevant manifolds

which belong to each irreducible representation(97,98). It is not re-

pea ted here as at least one counterexample is known: the case of two

(100)
inequivalent correlated methyl groups . The usual group theoretical

methods give the correct answer.

2. Time Reversal and Spin Inversion Parity

a. Symmetry operations. That time reversal symmetry

should play any role in magnetic resonance is at first glance unlikely,

since it is the difference in Zeeman energy of states differing only in

the sign of their spin angular momentum which makes the technique

possible. However, since the effect of transformation to the rotating

frame is to remove to a good approximation the terms linear in spin

angular momenta, many of the spin Hamiltonians which arise are, in fact,

invariant to the simultaneous reversal of all angular momenta. This will

be the case when the residual Zeeman terms, the chemical shifts and

magnet inhomogeneity, are negligibly small on the time scale of interest

or when pulse sequences are so designed that on average these terms do

not contribute to the dynamics.

Consider a system characterized by a Hamiltonian Xl without Zeeman

terms. All the other terms in the resonant rotating frame Hamiltonian,

collected as xZ Z
in (2.10), are bilinear in spin angular momenta. A

consequence is that such a Hamiltonian has an extra sYmmetry element

which does not depend on the particular value of the Hamiltonian para-

meters nor involve permutation of spin labels. One such spin-space sym-

metry element is already familiar: any high field spin Hamiltonian is

invariant to rotation about the magnetic field direction (Eq. 2.3).
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The extra group element for a bilinear Hamiltonian can be taken to

be the time reversal operation. The conventional definition of this

. . (101)
operatl.on l.S
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(2.70)

For a spin system, K
O

has the effect of complex conjugation and of

changing the sign of all I . operators. The form (2.70) is useful for
yl.

operations on bracket notation expressions. For operator expressions

written in terms of the components of spin angular momenta it is suffi-

cient to remember that

and

where i = ;:y in (2.72).

-I
~i

-i

(2.71)

(2. 72)

Time reversal is clearly very closely associated with the operation

of giving TI pulses. In fact, it turns out to be useful to introduce

additional operations which may also be symmetry operations for a bi-

linear spin Hamiltonian. These are

IT _ exp (- i TI I )
x x

IT - exp (- i 1T I )
Y Y

(2.73)

(2.74 )

A useful labeling scheme for eigenstates of bilinear Hamiltonians

is to define spin inversion pairs by the operation

IT Ii> - Ii>
x

(2.75 )



which is reciprocal. In terms of the simple product basis, Ii> is

obtained from Ii>, or vice versa, by replacing all the individual spin

states Is> by la> and all the la> by Is>.

b. Degeneracy of bilinear Hamiltonians. A secular bi-

linear Hamiltonian (2.10) is invariant to all three of the operations

introduced. For such an operator, Xl = ~z,
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A corollary is that if

IT X ITt
x 1 x

(2.76)

then

[Xl' li><j IJ = w •• Ii><j I
1J

w.. /i><3'1
1J

(2.39)

(2.77)

This states that the transitions associated with these spin inversion

eigenoperators are degenerate. Note also that if

then

[I,li><jIJ
z

[1 ,li><3'1 J
z

n .. Ii><j I
1J

-n .. / i><j I
1J

(2.27)

(2.78)

Thus these transitions are only degenerate if the different orders ±n

are not separated by any of the various schemes of Section lID.

Similarly, there are repeated eigenvalues even in orders with dif-

ferent Inl. These are of the form

= w.'7
1J

(2.79 )



which states that for a bilinear Xl' there will be a line at distance
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W
ij

from the center of order n
ij

= M.
~

M., and an identically placed
]

line in order n.7
~J

M. + M. 0

~ ]

Co Operators with definite parity. Because of the de-

generacy (2.77) it is reasonable to consider sums and differences of

these operators which transform in a particularly simple way under the

transformations associated with IT , IT and K. Table 1 lists Hermitian
x y

combinations of the eigenoperators of [Xl'] which have the properties:

and

IT Ant =
E: E:

E: = x,y (2.BOa)

KAJ(t= (2. BOb)

These operators form an alternative basis for expanding the density oper-

ator at various points in a multiple quantum pulse sequence. No explicit

use of the basis, however, is necessary to exploit the symmetry arguments.

Notice that each operator is characterized by a definite value of Inl,

but contains operators with n having either sign. For even values of n,

(p~A) = 1; for odd values (p~A) = -1. These are the same factors by
x y x Y

which even or odd operators, respectively, are multiplied when rotated bv

rr around the z spin axis.

The operators r ij and r ij
are coherences, while r ij

are population
x:t y:t z:t

differences.

d. Dynamic constraints on parity. Since the numbers

pA take values of ±l, they will be referred to as parity quantum
x,Y,K

numbers. Their usefulness derives from the constraints on these quantum

numbers during time development under Hamiltonians of definite parity.



Table 1. Operators of Definite Parity

A Relation to pA pA pA
Pseudo-Spin Operators Operator Definitions x y K

rij = r ij
+ r ij

1<!i><jl + Ij><il) + 1<11><31 + 13><11)
n n

= 1 <_) ij (_) ij
x+ x x

r ij = r ij - Ii} 1C!i><jl + Ij><il) - iCli><31 + 13><11) -1
nij+1 n

ij
+1

= C-) C-)x- x x

r ij = r ij
+ r ij

= -4<!i><j! - Ij><il) - 4<1 1 ><31 - 13><1\) 1 <_) nij n
ij

+1

y+ y y <-)

r ij = r ij - II} = -j<\i><jl - Ij><il) + j<li><31 - 13><11)
nij+1 n

-1 <_) ij
y- Y Y

<-)

r ij = r ij
+ r ij

= %<\i><i\ - Ij><j I) + %<1 1><11 - 13><31) 1 1 1z+ z z

r ij = r ij _ r ij = 1<li><il - Ij><jl) -1<1 1><11 - 13><31) -1 -1 -1z- z z

-..,J

1.0



Suppose that at some point pet) contains an operator A with parity

80

given by the numbers pAx' If time development now occurs

under some Hamiltonian X, we would like to know what parity quantum

numbers characterize A(t) defined by

A(t) = exp(-iXt)A exp(iXt)

Lemma 1. Assume that

(2.81)

or equivalently

Then it follows that

rII ,X]
x

11 jffi t
x x

...
II A(t)II'

x x

o (2.82)

(2.83)

(2.84)

Thus pA . of the motion. An identical proof holds for pA.lS a constant
x y

Lemma 2. Assume that

KJ{l(t = -J{ (2.85)

Then

K exp(-iXt)K t = exp(-iXt)

and

(2.86)

(2.87)

Thus time reversal parity is a constant of the motion under Hamiltonians

of odd time reversal parity.



Theorem: For X = -w I (a strong e pulse), the parity pB of an
p x x y

operator B which appears in A(t) (2.81) and is of the form defined in

Table 1 is given by
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(2.88)

The quantity 6 is +1 if A and B are both even quantum or both odd

quantum. If one is even and the other odd, then 6 -1. The proof of

the theorem is most easily obtained by inspection of Table 1. Starting

B A
in any row, we are confined by Lemma 1 to set P = P and by Lemma 2 to

x x

value of

A
PK. With these restrictions an operator B with a different

(_)n then the operator A must also have a different parity under

a TI pulse. An identical theorem holds with x and y interchanged.
y

e. Applications. Time reversal arguments are used in

Section IlIA to develop relationships between preparation and mixing

periods. Parity considerations are used in Section IIIC2 to predict in

which channel of the phase sensitive detector a signal resulting from a

given order of coherence will occur and in Section IIIC3 to develop

selection rules for n = 0 transitions. Operators with definite parity

are used in Section IIIC9 to describe an excitation sequence in which a,

population inversion of two levels Ii> and Ij> takes place selectively

without the appearance of a corresponding coherence li><j I.

3. Information Content in Multiple Quantum Line Positions

a. The questions. There are a number of issues which

might come under the heading of information content. Some of these have

been raised already. It is abundantly clear that there exist situations

where the increased resolution or the simplicity of interpretation make

the multiple quantum spectra of a given system preferable to the single



quantum spectrum. The number of such situations will surely grow as the

technique becomes more widely considered by practicing spectroscopists.

The motivation in a given situation may be unresolved or unassignable

lines due to a short T
2

or an accidental degeneracy or the chemical

heterogeneity of the sample. Other crucial uses of multiple quantum

spectra appear when magnet inhomogeneity (Sec. IIE4) and relaxation ef-

fects (Sec. 5) are considered. This section begins with a considerably

narrower question: Are there spin Hamiltonians for which analysis of

the multiple quantum spectra is able to supply information which is

absent even in the ideal single quantum spectrum? The answer in principle

is yes and two such situations are discussed. This is followed by a re-

view of some of the areas where multiple quantum techniques have proven

in practice to be valuable for obtaining easily interpreted resolved

spectra.
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powder samples.

b. The relative orientation of chemical shift tensors in

(61-63) .
Multiple pulse line narrowing sequences result ln

the effective removal of the direct dipolar couplings between homonuclei.

The average Hamiltonian which suffices to explain the spectrum for many

applications is

(2.89)

The chemical shift terms are scaled down by a factor K and quantized

along the direction in spin space of a unit vector~. Both effects de-

pend on the particular pulse sequence used. The scalar parts of the

indirect or J couplings do survive these pulse sequences, but are usually

negligible at the resolution attainable in rigid solids. In this limit,



the single quantum spectrum consists of a discrete line for each chemical

shift. The sample is effectively a collection of isolated spins during

the multiple pulse sequence. The frequencies of these lines are propor-

tional to the component of the individual chemical shift tensors along

the magnetic field;
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w .
Zl

i
w a

o zz
(2.90 )

The rotating frame frequency has been taken as coincident with the zero

of the chemical shift scale.

The measured component depends on the principal components and the

orientation of the molecule fixed chemical shift tensor in the laboratory

(63 )
frame according to

i
a

zz (2.91)

The Euler angles (ai' 8
i

) relate the principal axes of the tensor to

the laboratory frame. They can be extracted by rotating a single crystal

about one or more axes. This information can be combined with knowledge

(from diffraction studies) of the molecular orientation with respect to

the crystal axes to yield the orientation of each shielding tensor in

the molecular frame. This molecular frame orientation is essential for

the interpretation of the observed chemical shift in terms of electronic

structure or partial molecular ordering.

A drawback of this single quantum multiple pulse approach is the

requirement for single crystals. It is only through the rotation plots

that the orientations of the individual spin chemical shift tensors can

be related to one another or to a common molecular frame. This is a



consequence of the fact that both the coherence for the single quantum

experiment and the Hamiltonian (2.89), are sums of single spin operators.

Since many molecules cannot be obtained as crystals sufficiently

large for rotation studies, a means of determining the relative and

molecular frame orientations of the shift tensors in powder samples is

desirable. The powder patterns resulting from the unperturbed Hamiltonian

including direct dipolar couplings in principle contain this information,

since the dipolar coupling tensors have an obvious relation to the molec-

ular frame. This approach is of limited usefulness as the single quantum

powder spectrum of even a small spin system has few resolved features.

Multiple quantum NMR might make possible the extension of such analyses

to larger molecules, since the spectral structure due to ~ diminishes

in the high orders.

An intriguing possibility is to combine the multiple pulse

Hamiltonian (2.89) with a multiple quantum initial condition at t = O.
1

Although the spins evolve effectively independently during t
l

, their

preparation as a coupled system guarantees that this evolution is much

more informative than the single quantum multiple pulse experiment. In

order to simplify the analysis of such an experiment, discussion will be

restricted to the case where n of (2.89) is z. Such multiple pulse line

. (61)
narrowlng sequences are known . The case of £ 1 z is similar, but

leads to a greater number of superimposed powder patterns in the

spectrum of a given order, because n is then not conserved during t
l

.

The eigenstates of (2.89) with £ = z are simply the simple product

states. This fact makes it convenient to analyze the evolution during

t
l

directly in the operator basis
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l+i
la. ><8.1

l l

I
-i 'B. ><a./

l l

+
la. ><a./l

Oi l l

10i = lB. ><B '/ (2.92)
l l

Any product of these operators consisting of one operator for each spin

i constitutes an eigenoperator. For example the total spin coherence

(n = N) evolves according to the symmetric sum of the individual chemical

shifts:
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N
-K( LW .)

i=l 2l

N

II l+ i
i=l

(2.93)

The same result with K 1 applies even without the multiple pulse se-

quence and so provides a method of measuring K. The n = (N-I) spectrum

consists of N-I contributions determined by the sum of all but one

chemical shift:

+
(Xl' l o- l

' II I +J' ]
j/i

+
-K (I W j) r. IT I +J'

j/i 2 Ol j/i
(2.94 )

This analysis can be extended to smaller absolute values of n, to obtain

eigenfrequencies proportional to all sums and differences of the W "
21

However, the number of lines becomes large rapidly.

The significance of measuring the shifts as sums or differences

becomes apparent when the rotation patterns or the powder patterns are

considered. The relevant spatial factor is now the laboratory field

component of a molecular tensor formed by the appropriate sums or dif-

ferences of individual spin tensors. The sums in (2.94) for example are



I
j#i

W .
ZJ

h
- Wo azz

(2.95)
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Such a molecular N-l chemical shift tensor is, like the individual spin

tensors, second rank. Both its orientation in the molecule and its

principal components depend on the relative orientations of the single

spin tensors.

The complete characterization of the Hamiltonian (2.89) requires

the specification of all these relative orientations as well as the

overall orientation in the molecule. In simple situations where some

symmetry element restricts the possible orientations, this information

will be accessible even from powder spectrum. Multiple quantum spectra

supply the orientational information implicit in summing shift tensors

and single quantum spectra supply the principal components of the indi-

vidual spin shift tensors. For the general unsymmetric case, correlation

with bilinear couplings (hamonuclear or heteronuclear) appears to be

necessary to specify the shift tensor orientations in the molecular frame

from a powder sample. This correlation may be accomplished by allowing

the bilinear couplings to act simultaneously or in a separate epoch of a

multidimensional experiment.

c. The relative signs of J couplings in weakly coupled

systems. A common situation in liquid state NMR in high magnetic field

is the limit of weak coupling where (w . - w .) » J .. for all spins
Z1. zJ 1.J

which are not fully equivalent. The effective Hamiltonian may be written

X
1

,
-I W i I . + L J i . I . I .

i Z Z1. i <j J Z1. ZJ
(2.96 )

The single quantum spectrum is first order; it consists of symmetrical

multiplets centered at the frequencies w i. It contains no information
- Z



on the signs of the J ... The eigenstates of (2.96) are still the simple
1J
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product states and so in analogy to (2.94) the n

equation is

(N-I) eigenoperator

+
[Xl' 1

0
-

1
. II I +J. ]

jfi

, +

-I (w.:!:J .. /2)r. II 1+
J
.

jfi ZJ 1J 01 j#i
(2.97)

This corresponds to a spectrum of N doublets centered at the frequencies

- I
jh

w .
ZJ

N

= - I
j=l

w . + w .
ZJ Zl

(2.98 )

Thus the shifts differ from the single quantum spectrum only by a sign

and a constant. Since each doublet splitting is the algebraic sum of

all the couplings to a given spin, information on the relative signs is

available, which was absent in the single quantum spectrum.-

An analogous situation of weak coupling, involving at least one

heteronucleus, occurs in oriented systems where the sign of the coupling

contains geometric information. This is discussed in Section 1VC.

d. Isolation of signals from components of mixtures. A

commonly encountered difficulty in NMR spectral interpretation is the

interference between signals from different molecular species or isolated

spin species. Some help is provided by the simple fact that a multiple

quantum spectrum of order n can only arise from a spin system with total

spin I ~ n/2. Thus the creation of a high order coherence can be used

to label a part of the magnetization as arising from a coupled group of

spins above a certain size and to discriminate absolutely against signal

arising from smaller spin systems.
. (15)

It was early recognlzed that

this fact would make possible proton multiple quantum spin labelling

experiments in liquid crystals, even in partially deuterated host species



For some applications incrementation of the period

having levels of proton impurity so high that the single quantum spectrum

of the protonated guest would be obscured. Multiple quantum studies of

liquid crystals are reviewed in the following section.

In liquid state NMR the mixed nature of even chemically pure samples

has long been apparent from the small satellite lines seen in both IH

13
and e spectra within about 100 Hz of most strong resonances. These

satellites are due to those molecules having a 13e nucleus near the

nucleus associated with the so-called parent resonance. In l3e spectra

a given satellite thus belongs to the spectrum of one of those rare

molecular species (about 1 part in 10
4) having two l3 e nuclei in a

particular pair of nearby sites. Aside from the sensitivity problem

associated with the scarcity of these molecules at natural abundance,

there is a dynamic range problem, since the parent lines due to species

13
with one e are a hundred times larger. This problem has been nicely

1 d (102-l07) bid bl h' h .so ve y prepar ng ou e quantum co erence In t ose speCles

having nearby 13e nuclei and using the properties of this coherence

under phase shifting (Sec. IID2) to isolate signals from such pairs.

The correlation of the double and single quantum spectra leads to 2D

spectra from which the connectivity of the carbon skeleton is easily

d d d (105,106)
e uce •

of double quantum coherence is unnecessary since double quantum fre-
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i ffi
(102,103)

quenc es su ce . The double quantum period then serves only

to label the magnetization observed as having come from spin pairs.

Rl d 1 ·· 'h h b ., d (02 )e ate app lcatlons Wlt proton spectra ave een antlclpate .

Additional possibilities for isolating signals from mixtures arise

when the multiple quantum spectra of systems of two different spin

species are considered. This is taken up in Section IVe.



phases.

e. The measurement of molecular order in anisotropic

The form of the various terms of X. (2.8~2.13) derives from
lnt

89

the decomposition of the Hamiltonian into double tensor operators ac-

cording to its transformation properties under the distinct sets of

rotations associated with the spatial and spin angular momenta of the

1 1
(18,62,63)

mo ecu e . The spatial factor takes the form of an expectation

value of a spherical harmonic over the non-spin degrees of freedom

(e.g., 2.91). For the purposes of calculating the unitary time develop-

ment or the line positions this is usually just a motionally averaged

constant. In this section a review is made of those few multiple quan-

tum studies of anisotropic media where the information content of these

constants is a principal finding. Chemical shift investigations of

quadrupolar nuclei have already been mentioned in Section I1C2, while in

Section IIF3b the possibility of obtaining the relative orientation of

shift tensors in powders was discussed. Studies involving two nuclear

species are deferred to Section IVC.

The single quantum NMR of anisotropic interactions is the subject

(62 63 95). . (108-113)
of several textbooks " and lS frequently revlewed . The

systems studied include solids, absorbed species, liquids partially

oriented by electric or magnetic fields, and liquid crystals. The study

of liquid crystals and guest molecules dissolved in and oriented by

liquid crystal solvents has been a particularly active field of study

for over a decade and continues to be so. The questions studied are the

domain structure of the various mesophases, the structure and probability

of different molecular conformers, and the ordering of the molecules with

respect to the symmetry axes of the liquid crystal and of applied fields.



The principle interactions measured for the purpose of answering

these questions are the same ones that make multiple quantum coherence

so accessible in oriented systems: the electric quadrupole (2.12) and

the direct dipolar (2.11) interactions. The quadrupolar coupling

parameter of (2.12) and Figure 5 is given by
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i
wQ1" = 3eQ.V /41.(21.-1)

1 zz 1 1

where

(2.99)

(2.100)

This expression indicates how the measurable field gradient vi depends
zz

i
on the principal values in the molecular frame, which enter as V

33
and

through the asymmetry parameter

(2.101)

The bracketed spherical harmonic functions describe the time averaged

orientation of the principal axes of the field gradient tensor with re-

spect to the magnetic field. Implicit in the form (2.100) is the assump-

tion that the magnitude of the field gradient tensor is not also

significantly time dependent as a result of the molecular motions which

average its orientation.

In most quadrupolar nuclei in partially ordered systems, the relax-

ation due to the time dependence of the interaction broadens the spec-

troscopic lines to the point where their observation is both difficult

and of little interest. The most notable exception is deuterium, which

has been intensively used as a spin label. In the majority of such

studies the resolution is only sufficient to resolve a pair of lines for



each orientationally distinct spin. The spectral substructure due to

the dipolar couplings
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= -
hy.Y. 1 2 -3

12
J <-2 (3cos e.. -l)r

i
·>

4'lT 1J J
(2.102)

These were found

1s usually unresolved. This may be due to an inhomogeneity of X
Q

over

the sample or to irreve~sible dephasing. In both cases the spectral

splittings due to the dipolar couplings may be better resolved in those

high quantum transitions which are insensitive to X
Q

. This is because

for such transitions the linewidth is independent of secular quadrupolar

terms which are frequently the greatest source of broadening in the

single quantum spectra. This concept is taken up again in Section VC.

The first measurements of dipolar couplings between deuterons by

double quantum NMR were made on selectively labeled solids(54). These

were followed by sim{lar experiments on liquid crystals in which the

dipolar couplings among at most three specifically deuterated chain

. .. b d' h d 1 d (114)pos1t1ons were 0 serve w1t protons ecoup e .

to be consistent with a model of molecular ordering based on the meas-

. (114)
urement of quadrupole couplings at a greater number of s1tes .

Though a marked improvement in the ability to resolve dipolar

couplings between deuterons was obtained in the double quantum spectra,

it was soon realized that the amount of synthetic chemistry necessary to

pursue this approach in liquid crystals was prohibitive. Furthermore,

the dipolar interaction is far stronger and the dephasing times longer

for protons. Thus protons give higher resolution information for greater

internuclear distances r
ij

than do deuterons. A major disadvantage of

any proton dipolar spectrum is that the assignment of lines is difficult

since there are no quadrupolar splittings nor large chemical shifts to

give rise to subspectra for individual sites.



The analysis of single quantum proton dipolar spectra of liquid

crystals is a well-developed technique based on computer simulations in

h · h h D d . db·· (115-117)w 1C t e parameters .. are eterm1ne y 1terat1ve processes .
1J

A spectral width of several kHz and individual- linewidths of several Hz

are typical for solutes dissolved in liquid crystals. For the liquid

crystals themselves. which are somewhat more ordered, the ratio of

spectral width to linewidth is also in the range of 102 - 103 . From

(2.67) it is found that 2
1

= 10
4

for N = 8. The consequence is that for

systems of more than about eight coupled protons the single quantum

spectrum has little resolved structure and consequently yields little

information on the D...
1.J

The role for multiple quantum spectroscopy in this field is clear.

By making accessible the far simpler high order spectra, it makes pos-

sible the analysis of larger systems of coupled spins. This reduces

the requirement for isotopic labeling since larger protonated molecules

or parts of molecules may be examined in a single experiment. The

applications to studies of molecular conformation and ordering by proton

multiple quantum NMR are as yet few.

Figure l8a shows the multiple quantum spectra of the eight proton

(16 96,118)
system of the liquid crystal 4-cyano-4'-n-pentyl-d

ll
-biphenyl' .

The line positions were interpreted(96) in terms of dipolar couplings

motionally averaged over the energetically equivalent conformers obtained

by independently flipping either phenyl ring by 180°. The fitting para-

meters were bond distances, order parameters describing the equivalent

biaxial ordering of the conformers, and the dihedral angle between the

rings at the potential mini~Jm. This angle was found to be 32°. Figure

l8b d 18 . iIi f h Ii i .. (118)an care approx1mate s mu at ons 0 t e ne ntenS1.t1.es

and are discussed in Section IIIBI.
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Figure 18. Simulation of experimental multiple quantum line intensities
by approximate methods. Part a) is the experimental spectrum of the
eight proton system of 4-cyano-4'-n-pentyl-d

ll
biphenyl (Ref. 96). The

pulse sequence (n/2-T-n/2-t
l

/2-n-t
l

/2-n/2-T-sample) was used to collect
16 K interferograms in t for each of six values of T between 0.4 and
1.4 msec. The upper halt (500 kHz) of the Fourier transform with respect
to tl is displayed. The strongest lines in the ~ = n = 0,1,2, and 4
spectra are off scale. The simulation of part b) was obtained by calcu­
lating the rotation operator matrix elements which determine the average
of the transition magnitude over all values of T with the restriction
tz = T (ref. 126). The statistical model of part"c) assigps unit strength
to each transition.{ By permission from S, Sinton and A. Pines. Chern. Phys.
Lett. ~, 263 (1980) and J. B. Murdoch. "Computer Studies of Multiple Quantum
Spin Dynamics". Ph.D. dissertation. University of California, Berkeley, 1982].



Another application of multiple quantum NMR to molecules oriented

in liquid crystals is a study of the six methyl protons of 2,3 dimethyl­

maleic anhydride in a nematic solvent (119) . The spectra of different

orders were simulated for the case that the methyl groups are correlated

by gearing and for the case that on average no positional correlation

exists. Even consideration of only the number of lines in the n = 4

spectrum enabled long time correlation effects to be ruled out.

A considerably more complicated problem of motional averaging is

posed by the alkane region of liquid crystals and dissolved molecules.

At each carbon-carbon single bond three local minima are found in the
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. 1 . 1(120)torslona potentla . Two of these, the gauche conformations, are

mirror images, while the third is the lower energy trans conformation.

The full specification of the time averaged conformation in terms of

rotamer probabilities, structure and ordering is a subject of much cur-

rent inquiry. Proton nuclear magnetic resonance can provide the value

of the time averaged dipolar coupling (2.102) for every pair of protons

within about four methylene units of one another. This provides a far

larger and more diverse data base for model building than can be pro-

vided by deuterium quadrupole splittings. This base can be further

augmented by measuring carbon-proton dipolar couplings by the methods

of Section rvC.

The proton multiple quantum spectra of CD3 - (CH2 ) 4 - CD3 dissolved

in a nematic liquid crystal has recently been obtained(99). Preliminary

spectral simulation consisted of fitting the n = 5,6, and 7 quantum

spectra by assuming the geometry of the conformers, calculating Boltzmann

probabilities for "feasible" conformers according to the number of gauche

bonds, and varying a single uniaxial order parameter. Even this simple



approach appears to distinguish between sets of feasible conformers,

the best fit being found when only nearly linear conformers are

included. Excluded were those conformers with adjacent gauche bonds.

In the applications so far of proton multiple quantum NMR to

conformational problems in liquid crystals, only the simple pulse

sequence of Figure 3 has been used, augmented with rr pulses to remove

effects of magnet inhomogeneity. The practical limits to the number

of spins using this approach appears to be about n = 8. For larger

systems the high quantum signals become prohibitively weak. The

reasons for this problem are discussed in Sections lIB and IIB2 and

techniques for overcoming it by efficient order selective excitation

are taken up in Section IIIe.
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III. EXCITATION DYNAMICS FOR MANY LEVEL SYSTEMS

A. The Similarity of Preparation and Mixing

1. Motivation

It has been emphasized since (2.34) that the amplitudes

and phases of the multiple quantum transitions are a product of a

factor from the preparation period and another from the mixing period.

In the TSCTES experiment discussed in Section IIE4, the relative phases

and intensities are easily calculated. In the next few sections

questions of line intensities and phase are examined for more general

cases. The principal concerns are how the excitation periods can be

designed to give the largest signals and when they can be expected to

give phased lines. The results will be useful in deriving estimates of

the signal available in nonselective (Sec. IIIB) and order selective

(Sec. rIrC) experiments on large spin systems.

2. Time Reversal Experiments

Consider the following gedanken experiment. A system

initially at equilibrium is prepared by a propagator U(T), evolves for

ttime t
1

and is mixed with propagator V = U. The z-magnetization im-

mediately after mixing is by (2.34)
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(3.1)

The assumption V - Ut allows this to be rewritten

(3.2)

since

(3.3)



This signal could be measured by giving a n/2 pulse at t
2

= 0 and re-

cording the initial transverse magnetization. For notational purposes

though, it is preferable to leave the "signal" along z. The multiple

quantum expression (3.2) is a Fourier series with positive coefficients

as was the single quantum expression (2.23). It differs in that it is

a real signal (one channel) and thus it does not distinguish positive

and negative frequencies. The signal at zero time is however identical

in each case. This is so because
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2
Tr(p (-r» (3.4)

and

I
i<j

(3.5)

This is the largest instantaneous signal which the system can emit. It

is the sum of the line intensities and the first point in time both for

the single quantum f.i.d. and for the multiple quantum interferogram

when V = ute Nothing has been specified about the distribution of inten-

sity among the different transitions. The sum in (3.2) may contain any

or all of the system matrix elements, including diagonal elements which

contribute signal only to WI = 0 upon Fourier transformation with

respect to t
l

.

The condition V = U
t

is equivalent to a reversal of time or, in

practice, a change in the sign of the effective Hamiltonian responsible

for the excitation. It is an idealization which can be experimentally

approached in certain ~ircumstances. It has little to do with the

mathematical operation of Section IIF2. Reversal of the sign of the
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is well-known from the "magic echo"

the rapid decay of the f.i.d.

-~M
2

' the inverse square root of

direct dipolar Hamiltonian ~I (2.11)

. (121) Th d d h
exper~ments • ese emonstrate t at

in a rigid solid in a time comparable to

the second moment of the spectrum, is in fact not an irreversible

phenomenon.

There is another approach to devising effective Hamiltonians whose

sign can be changed. Suppose that the preparation propagator can be

written as

U(T) exp( -iJf'r) 0.6)

and that furthermore

exp(i~I )X exp(-i~I ) = ~z z 0.7)

for some~. In such a case it would easily be possible to obtain

experimentally

0.8)

since U and V are related simply by a phase shift through ~ of all the

irradiation. Pulse sequences which give effective Hamiltonians which

approximate (3.7) are discussed in Section IIIC6.

3. General Approach to Matching Mixing and Preparation

In this section a proof is developed which shows that for

an arbitrary preparation period pulse sequence, there is an experimen-

tally realizable mixing period sequence, which guarantees maximum average

signal intensity at the end of the mixing period. Unlike the case of

the previous section where time reversal was invoked to obtain the lines

in phase, here the lines will for the most part have unknown phases.



This has the consequence that overlapping lines in w
l

could cancel out.

Thus it will be necessary to assume that the transitions of interest

are resolved in w
l

. A corollary of the existence of the different

phases is that the signal maximum need not come at t
l

= O. Thus an

average of the signal over t
l

is the quantity which is maximized.

As a starting point recall the general preparation period propa-

gator of Section IID2:
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with

U(-r) T exp(-i JT X(t)dt)
o

(2.43)

X(t) (2.44)

Here there is no general way of reversing,the sense of time, but it is

certainly possible to reverse the experimental manipulations of ampli-

tude (w (t», phase (~(t) and offset (6w(t») which define U(T). For
p

each of these define a starred function such that

*W (t) - W (T - t)
P P

*~ ( t) - -Ij! (T - t)

*6w ( t) - 6W(T - t)

(3.9a)

(3.9b)

(3.9c)

and let the mixing period propagator be dictated by these such that:

VeT) IT *
T exp(-i X (t)dt)

o
(3.10)

*X (t) is obtained from (2.44) by substituting the starred for unstarred

functions.
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The relationship between these two time dependent Hamiltonians may

be written as

+ *K X(t)K' = X (t - t)
o 0

where from (2.70) it can be seen that

K = ITtK
o y

Thus

(3.11)

(3.12)

K U(T)K
t

• T exp(i
o 0 fT *

X Cr - t)dt)
o

(3.13a)

(3.13b)

The relationship between the prepared and detected operators

(2.31-2.32) is now seen to be:

-'- -'-
K V(T)1 V (T)K

o Z 0
(3.14a)

.. I (-T)
Z

Therefore

(3.14b)

(3.14c)

The star here indicates complex conjugation. In this last step it was

assumed that Ii> and !j>. the eigenstates of Xl' have real coefficients

when expressed in the simple product basis. This is always the case.

or for degenerate states can be made so. since all of the terms in X.
~nt

which might appear in Xl have real matrix representations in the simple

product basis and are diagonalized by unitary transformations.
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Since both p(T) and I (-T) are Hermitian (2.34) becomes
z

2
= I p .. (T) exp(-iw .. t

l
)

ij 1J 1J
(3.16)

The magnitudes are the same as if V = Ut as in (3.2), but now the phases

are not obvious since the numbers P .. (T) are in general complex.
1J

Equation (3.16) holds even for the three pulse sequence (Fig. 3) as can

be seen by considering that the addition of a fourth TI/2 pulse at t
2

= T

would put it into the form assumed here, in which each preparation pulse

is matched by a mixing pulse and the expectation value of I is calcu­
z

lated at T' = T (Fig. 4).

Aside from the possibility of degenerate transitions destructively

interfering, the signal intensity averaged over t
l

is the same as if the

lines were all in phase. In the next section it will be shown that for

the most common type of degeneracy the transitions may be obtained in

phase and thus at least for these the problem of destructive interference

can be avoided.

4. Spin Inversion Transitions and Associated Echo Phenomena

a. Introduction. The results of the last section have

special significance for a small class of transitions which satisfy the

reciprocal relationship

IT li><j In
t = Ij><il

x x
(3.17)

These spin-inversion transitions, between states which are interchanged

by inversion of all the spins, have also been called Class I transitions(73).

In any system, the total spin transition is a member of this class.

Other members of this class are found in orders differing from the

highest by multiples of two. In this section the properties of these
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transitions are developed including a prescription for obtaining them

all in phase under very general conditions.

b. Transition frequencies. An important property of

spin-inversion transitions is that their eigenfrequencies do not depend

on the bilinear terms of Xl. This may be proved as follows .. By definition

while the commutator with

w. ·li><j I
~J

(2.39)

is

Adding gives

X' ,. IT J( ITt
1 x 1 x

t
:or IT [Xl' Ij > < i I]ITx x

'"' -w
ij

Ii><j I

,
[(Xl + Xl) , Ii><j I] • 0

(3.18)

(3.l9a)

(3.19b)

(3.l9c)

(3.20 )

The sum of
, zz

Xl and Xl is just the bilinear terms X (2.10)

so w
ij

must be independent of these.

The dependence of w
ij

on the linear terms ~ (2.9) is somewhat more

subtle. The obvious situation where transitions satisfying (3.17) occur

is when there are no chemical shifts. In this case w
ij

depends only on

the off resonance and static field inhomogeneity terms(73). More gen-

erally transitions of this type may depend on those chemical shift dif-

ferences which commute with XZ z . For weakly coupled systems, this
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includes all the chemical shift differences. For strongly coupled sys-

terns, the difference between the chemical shift of a group of fully

equivalent spins and the sum of the shifts of all spins will be measur-

able from a spin-inversion transition frequency.

c. Prescription for obtaining spin inversion transitions

in phase. It has been recognized from calculations on anisotropic sys-

(122) (123) .terns of coupled protons and deuterons that the baslc pulse

sequence of Figure 2 with or without a TI pulse at t
l

/2 and with arbitrary

pulse phases produces transition amplitudes with phases independent of T

for spin-inversion transitions.

A related observation is that the same pulse sequence applied to a

powder sample of deuterons gives a sharp maximum or echo in the signal

This echo is not the familiar stimulated echo(l)(124,125)= T ,at t
2

which is mediated by population gratings during t
l

, but rather is due to

double quantum coherence during t
l

. It represents a refocussing during

t
2

of the loss of coherence which occurred during T as a result of a

distribution of quadrupole frequencies. The existence of this echo

demonstrates that the phase of the double quantum spectrum S(T,w
l
,t

2
=T),

obtained by t l Fourier transformation of the double quantum interfero-

gram, has a constant phase for all WI' Here coupling between deuterons

is assumed to be negligible.

By a simple extension of the results of Section IIIA3, the spin

inversion transitions can be obtained in phase for an arbitrary prepara-

tion period pulse sequence. Suppose that the mixing period specified by

(3.10) is supplemented by a IT
x

pulse. This may come at t
l

if chemical

shifts are being measured or at t l /2 if Zeeman terms are to be removed.

In either case the defining property (3.17) guarantees that the coeffi-

cients of ji><j I and Ij><il are exchanged, Since these coefficients are



complex conjugates (3.15) is replaced by
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(3.21)

for all spin-inversion transitions. Thus these special transitions are

in phase with coefficients Ipij(T) 1
2

in the same way that all transi­

tions were in phase for the hypothetical case of perfect time reversal

in Sec tion IIIA2.

An i?teresting feature of this result is that the phase of the lines

is invariant to inhomogeneities of the internal or rf Hamiltonians, with

the exception that a satisfactory ~ pulse was assumed to be delivered to

the entire ensemble. For the three pulse sequence of Figure 2, the ~

pulse is equivalent in this regard to a change in phase of the mixing

pulse and is therefore unnecessary. A corollary of this persistence of

the phase in spite of possible inhomogeneities is that there are echo

phenomena associated with each of the spin inversion transitions.

One application where this property of the spin inversion transi-

tions is relevant is in the use of high order transitions to measure the

sums and differences of chemical shift tensors in powders. This is dis-

cussed in Section IIF3. In such a case there is an orientational inhomo-

geneity leading to an inhomogeneity of all anisotropic terms in ~'. .
1nt

This does not prevent the recording of absorption phase powder patterns

for the spin inversion transitions even for a general preparation period.

B. Statistical and Computational Aspects of Multiple Quantum
Excitation

1. Line Intensities for Nonselective Excitation

a. The statistical model of equal average line intensi-

ties. Once some sequence of irradiation has been settled upon for use

during the excitation periods, it is in principle possible to calculate
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the coefficients of (2.34). Some such calculations have been performed

and are reviewed in the following sections. For many spin systems and

pulse sequences of interest calculations are impractical. This may be

because they require as input the very parameters which the experiment

is designed to reveal or because the complexity of the spin system or

the pulse sequence makes them impractical with current computing tech-

nology. For these reasons a rough statistical picture of the line in-

tensities is a valuable guide. A statistical view is particularly appro-

priate for those sequences for which p .. (T) has a complicated dependence
1J

on T. The prime example is the three pulse sequence of Figure 3 with a

system of strongly coupled spins. Since most or all of the single quantum

frequencies enter the dynamics, the experimental reality is that a given

line will appear with widely fluctuating phase and amplitude as T is

varied. This suggests that the quantities P .. (T) be treated as random
1J

variables, with the parameter T specifying different events. In order

that these events be plausibly independent, the interval between values

of T should be greater than a correlation time related to the inverse of

the frequencies characteristic of U. A plausible choice of the corre-

-~lation time is M
2

where M
2

is the second moment

spectrum. For differences in T of several times

of the single quantum

-~M
2

the elements of

p(T) will appear largely uncorrelated and can be taken as independent

events providing information on the unknown distributions governing each

P .. (T). For times T greater than a few correlation times these distribu­
1J

tions are approximated as stationary or independent of T.

There may be any number of constraints on these distributions, de-

pending on the dynamical symmetry of the propagator U and the symmetry

of the initial condition. For example, the dynamics factors rigorously

into a separate problem for each irreducible representation of the



permutation group as discussed in Section IIFI. A common situation is

that there are NT elements P .. (') which, on the basis of symmetry con­
J.]

siderations may be nonzero. In the absence of relaxation these are

constrained by conditions of the form
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(3.22)

where the prime indicates a restricted summation, as for example within

an irreducible representation. C is the norm squared of some known part

of the initial condition. An example of such a relation is (3.4), which

is the unrestricted case which holds even when no particular dynamical

sYmmetry is present.

Given such a constraint, the simplest statistical hypothesis is

that as long as , is greater than a few inverse spectral widths then all

transitions are equally probable. For the unrestricted case, where all

the magnetization is dispersed among NT matrix elements, this means

(3.23 )

where the bar indicates an average over many values of ,.

For the case of preparation and mixing matched so that (3.2) or

(3.16) holds, (3.23) expresses the assumption that on average all lines

have the same intensity. This will be called the statistical model.

It is worth recalling for a moment the suppressed constant b of

(2.14) which appears on the right hand side (3.23) if that equation is

interpreted as an estimate of magnetization per matrix element prepared.

With this in mind. the numerator of (3.23) increases linearly with the

number N of spins in the coupled system. Alternatively stated, the

numerator is independent of N if the total number of spins in the sample
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N

The denominator NT however typically grows as 4 for
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spins ~ leading to a rapid decrease in signal-to~noise ratio with N for

statistical excitation. The statistical model then is that on average

equal fractions of the equilibrium magnetization detected in t
2

will

be found to be oscillating as a function of t
l

at any frequency w...
1J

This hypothesis was tested for an eight spin system as depicted in

. (118)
F1gure 18c . The variation in intensity comes from the piling up of

degenerate and nearly degenerate transitions. Comparison with the

experimental spectrum of Figure 18a shows that, while some of the spec-

tral intensity features are reproduced, the hypothesis does not hold up

well for individual lines. Moreover the intensity of the high order

lines are systematically underestimated by as much as an order of magni-

tude. This latter feature is largely a peculiarity of systems in which

most of the dipolar couplings have the same algebraic sign. It is

discussed further elsewhere(126).

Another view of the statistical model is obtained by summing the

line intensities within a given order and plotting these sums as a

function of order n. This is depicted by the broad line in Figure 19(98)

for the six spin system of partially oriented benzene. The approximately

Gaussian decline in spectral intensity with order n is accounted for by

the statistical model since the quantitites Z of (2.67) approach a
n

Gaussian distribution for large N.

The success of the statistical model is not a quantitative one.

Its importance is as a simple model which is independent of the particu-

lar system. As shown in Figure 19, the model suffices to frame the

essential problem of nonselective excitation sequences: the vast bulk

of the magnetization appears in the numerous low order transitions. In
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Figure 19. The problem with nonselective excitation. The closed circles

are the intensities of different orders n integrated over all lines in

the order for a nonselective experiment on partially oriented benzene

using the sequence of Figure 3 with a n pulse at t
l

/2. The roughly

Gaussian decrease in intensity with n is due to the decrease in the

number of transi tions wit~l n. The bulk of the magnetization appears

in the more numerous lower order transitions. The open circles are from

an order selective sequence like that used to obtain Figure 31 and dis­

cussed in Sections IIICS through IIICB. Here the magnetization is con­

centrated in particular orders.



large systems where these spectra are unresolved, the magnetization is

wasted. What is needed is a means for causing the signal intensity to
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peak in the high order spectra as shown by the narrow curve of Figure 19.

This subject is deferred to Section IIIe.

b. Analytical expressions for line intensities for

sequences of several hard pulses. For spin systems whose single quantum

spectrum and f.i.d. are readily calculated by hand, the multiple quantum

spectrum obtained with a series of hard pulses is also straightforwardly

derived, but the calculation is tedious for more than a few spins and a

few pulses. Various results have appeared for the three pulses sequence

of Figure 3 and analogues of it formed by adding IT pulses or modifying

the pulse angles. Spin ~ systems treated include the AB system with

(9) (127) tl.08b) .three pulses , and the AB system with IT pulses in T and

A
Z

(35,36), A
3

(35,36) and ~ (126) systems with dipolar coupling have been

discussed. The use of IT pulses with these systems does not complicate

the problem since there are no chemical shift differences.

For deuteron (spin 1) systems hard pulse line intensity calcula-

. h b d f ' (35,36,38,41,73) 'd' 1t10ns ave een reporte or one sp1n , two 1 ent1ca

(54)
spins , two and three nonidentical spins with dipolar couplings

neglected during preparation and mixing periods(114), and three identical

i ihd'l 1" ldd(123)sp ns w t 1pO ar coup 1ng 1nc u e .

c. Exact computation of line intensities. It is normally

possible to ascertain the parameters of the internal spin Hamiltonian

from the spectral frequencies alone. Intensity information does not

explicitly enter in the iterative analysis of the most widely used

, (115)
computer rout1nes . Rather, the intensities are calculated after

the final determination of the eigenvectors and eigenvalues and used to

confirm that the assignments are reasonable. The same philosophy has



been applied to the analysis of proton multiple quantum spectra of

oriented molecules, but the situation is complicated by the dependence

of the line intensities on T. This has led to t~o different approaches

for the nonselective experiments.

The first approach is to define a line intensity ~hich is indepen-

dent of the excitation time. This is done for the three pulse sequence

by formally averaging over the single quantum time development of the

preparation and mixing periods to obtain analytical expressions for

rp .. (T)!
2 (126).

When the limits of the integration are taken to infin­
~J

ity such an average is dependent only on the eigenvectors and the nuta-

tion angles of the pulses at the beginning and end of the evolution

period. This type of calculation is illustrated by Figure l8b(118) and

is called an ultimate T average. In its agreement ~ith the experimental

spectrum of Figure l8a, it is considerable more satisfying than the sta-

tistical model. The remaining discrepancy is largely due here to the

statistical nature of the experiment rather than the calculation~ The

. (96) f d f . 1 f h 0 4exper~ment was per orme or s~x va ues 0 T over t e range . to

1.4 msec and thus only approximates the ultimate T average.

Such an ultimate average is an idealization which can never be

realized experimentally for a complex system ~ith recurrence times greater

than T
2

. A more relevant calculation is needed. This is an exact dynamic

calculation for those particular values of T used in the experiment.

Computer programs for performing such calculations have been ~ritten

which are capable of simulating even quite complex pulse sequences for

. (ll8)
small groups of sp~ns . For the three pulse sequence, eight spins

~ is practical and an example of such a calculation is compared with

(16)
experiment in Figure 20 . The spin system is again the ring protons

no
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Six Quantum Spectrum
04 Symmetry Model

0)

b)

c)

XBl8111-12400

Figure 20. Exact calculation of line intensities for nonselective

excitation. The spectrum is the n = 6 region of the nematic liquid

crystal 4-cyano-4'-n-pentyl-d
ll

biphenyl. The experiment used to

obtain part a) is similar to that described in the caption of Figure 18.

Part b) and part c) were obtained by exact computer simulation of the

preparation and mixing using the actual experimental values of T and

spin couplings obtained from an initial simulation of frequencies only.

In part b) a broadening function was convoluted with the stick spectrum

of c). [ By permission from S. Sinton, "NMR Studies of Oriented Hole­

cules", Ph.D. dissertation, University of California, Berkeley,l9Sl,

published as Lawrence Berkeley Laboratory Report LBL-l3604.]
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of 4-cyano-4'-n-pentyl-d
ll

biphenyl. Experiment and simulation are the

sum of magnitude spectra for six values of T. The agreement is much improved

over that found with the ultimate average. Residual error is presumably

due to certain symmetry constraints placed on the parameters D.. , which
1J

are only approximately correct for the actual molecule.

Additional computer calculations have been performed for order

selective excitation sequences. Discussion of these is deferred to

Section IIIC.

d. Experimental determination of excitation functions.

The computations discussed in the last section require as input the para-

meters or the eigenvectors of X . Since these are often the object of
int

the experiment, they are not usually available a priori to guide the

choice of excitation times. It has been common to repeat the experi-

ment several times using equally or randomly spaced values of T and then

summing the resulting magnitude spectra. The spectra of both Figure 1

and Figure 18 were obtained in this way. This approach becomes ineffi-

cient if only the transitions of the high order spectra are desired.

This is because a given value of T may result in little or no intensity

for the desired lines. The extreme case is when only the total spin

coherence in peT) is of interest as in the TSCTES experiment of Section

IIE4.

In order to avoid performing the full experiment over all values of

t
l

only to find that the excitation is inefficient, it is desirable to

have a quicker way of evaluating Ipij(T)1 for the lines of interest over

a range of T or over some other excitation period parameter. One

approach to this is the method of parameter proportional phase increments

(PPPI) (128). This experiment is performed with a fixed value of t
l

, but

a variable excitation period parameter. With each increment in the



excitation parameter, the phase of the preparation period radiation is

incremented. In the example of Figure 21, the parameter is the length

of the excitation periods which are incremented together. The pulse

sequences is that of Figure 3, but augmented by n pulses at T/2, t
l

/2

and t z = T/2. Sampling was at t z = T.

The Fourier transform of the resulting signal is shown in Figure

21b. The signal from different orders is clearly separated in analogy

to TPPI (Sec. IID2), but now the frequencies present are sums and dif-

ferences of those characteristic of U and V. The only reason for per-

forming this Fourier transform is to allow the signal from all but one

order to be deleted. Inverse Fourier transformation again gives a signal

as a function of the excitation parameter. The magnitude of this complex

excitation function is shown in Figure 21d. It is an experimental meas-

urement of the amount of the magnetization which has been excited to a

particular order. For the case of the total spin coherence it is pro-

2
portional to IPN/Z,-N/Z(T) I .

As is evident from Figure Zld, the signal intensity at the best

values of T is considerably larger than the average intensity one would

obtain with arbitrarily chosen values of T. This result holds in systems

(lZ9)
of a few spins even for the lower order spectra . For systems of

more than about eight coupled protons, it is experimentally difficult to

locate times for which the simple nonselective sequence used here gives

line intensities much greater than the average values.

2. The maximization of signal energy in the detection period.

a. Signal power and signal energy. So far the discussion

has been in terms of the line amplitudes which are the Fourier coeffi-

cients of (2.34), or the average magnitude of these quantities as given

in (3.23). These quantities are proportional to magnetization. Another

113
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Figure 21. Data manipulation for the PPPI search procedure. The

sample is the N = 4 proton system of partially oriented acetaldehyde

also used in Figure 17. The signal in a) was obtained with the

sequence (TI/2 - T/2 - TI - T/2 - TI/2 - t
l

/2 - TI - t
l

/2 - TI/2 - T/2 - TI - T/2 ­

sample)by incrementing the excitation periods and simultaneously incre­

menting the phase. Fourier transformation separates out the signal

contributions from each order just as in TPPI (Sec. IID2c), however the

frequency information in b) describes how each order is excited rather

than how it evolves. This is put into useful form by excising the signal

from one order as in c) and examining the magnitude of the inverse Fourier

transform in d). This excitation function of the original parameter

T/2 shows for which values the n = 4 coherence magnitude is maximized.



useful measure is the signal power associated with a given transition or

group of transitions. This is proportional to the square of magneti-

zation. The relevant measure of signal power for a given point in t 2

is the average over t
l

. This may be defined as

U5

2
<S (T T' t ) >a ' , 2 (3.24a)

(3. 24b)

The second equality is the Rayleigh (or Parseval, or Plancherel)

(33)
theorem , which states the equivalence of the time and frequency

averages.

The integral of signal power over the detection period variable t
2

is the signal energy. Signal energy is proportional to the time required

to achieve a given signal-to-noise ratio(J30), barring instrumental in-

stabilities, the effect of which is considered statistically in Section

IIB3. . (130
The signal energy enters naturally when we~ghting procedures '

131)
are used to optimize sensitivity with a given data set.

The expression (3.24) for the signal power can be evaluated using

(2.34) in the limit of resolved lines in wI and negligible relaxation:

(3.25 )

The equality holds if there are no degeneracies and the contribution on

the right from a given transition is correct if that w .. is not degen­
1.J

erate. The possibility of inequality arises from interference between

degenerate transitions. The relation (3.25) for the total signal power

can be taken as a sufficiently accurate estimate, as long as the fraction



of the power associated with degenerate lines in wI is small. Often

only a limited number of multiple quantum transitions are of interest

and then the sum on the right may be restricted, for example to those

terms with a common value of n .. o In this and subsequent expressions
1J

2
for signal power and energy a factor of b (2.14) is suppressed on the

right hand side.

It was noted in Section IIIA3 that when preparation and mixing

periods are similar so that (3.16) holds, then the magnitudes of transi-

tions resolved in wI are as great as for the hypothetical case of (3.2),

where reversal of the excitation dynamics during mixing is assumed. For

this special case (t
2

= 0 for sequences of the form of Fig. 4) the

average (3.25) of the signal power over t
l

becomes
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(3.26)

b. The signal power for nonselective excitation. For

sequences like Figure 3 where mixing consists of a single pulse, the

mixing period variable T is omitted. In this case (3.25) and (3.26)

become, respectively,

(3.27)

and

(3.28)

The question then arises of how, in a statistical sense, the signal at

t
2

= T compares with that at other values of t
2

. This question may be

addressed by contemplating a simultaneous averaging of signal power over

T and t
2

so that (3.27) becomes



</s/t2) 12
> :e I

ij

2 2Ip .. (T)! Iz .. (-t2)/
1J J1

(3.29)
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The variable t
2

= t
2
-T is seen to be relevant by considering the two

- -~cases t
2

= 0 and t
2

» M
2

- _k
For t z » MZ 2 the two factors in each term are uncorrelated and so

the mean of the product is the product of the means. Thus

L
ij

2 2Ip .. (T)/ Iz .. (-t2 )1
1J J1

-----=-2 2
(Ip .. (T)I )

1J

(3.30a)

(3.30b)

If the statistical model of equal average line intensities is assumed

then this sum of NT terms may be estimated from (3.23) as

(3.31)

-1
This is just NT of the signal power after a n/2 pulse delivered at

equilibrium.

To put this into more familiar light it may be compared to the

average signal power in a similarly idealized single quantum f.i.d. cor-

responding to a spectrum Sew) containing 2
1

resolved lines of equal

amplitude. This is

2 2
(Tr (p » I; (3.32)

Another useful quantity is the signal power per line which is ob-

tained by dividing (3.31) by NT and (3.32) by 21 . Thus the totally non-

selective experiment with sampling of all the signal power in t 2 should

with these considerations, take about



4N (3.33)
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times as long to obtain the same signal-to-noise ratio for some resolved

transition as the single quantum Fourier transform experiment on the

same system.

Neglected so far is a further loss of signal in the multiple quantum

experiment due to its two dimensional nature(131). In averaging over the

evolution period in (3.24) to obtain (3.25) relaxation was neglected.

This is an unrealistic approximation since, while the excitation periods

may well be shorter than T
2

, the evolution period must extend to several

times T
2

in order to measure the natural linewidths. This leads to an

extra reduction of

(3.34a)

(3. 34b)

in the average signal power. This factor is typically about 0.1 to 0.5

depending on the resolution desired.

On the other hand, large improvements are possible in the signal

power over that of the nonselective multiple quantum experiment. These

are discussed at the end of this section and in Section IlleS.

c. The peak in signal power for matched preparation and

mixing. In making comparison with the single quantum experiment, the

signal power at some typical value of t
2

, as given by (3.30) and (3.31)

was used. The estimate (3.30b) may be viewed as the sum of the squares

of the second moments of the distributions characterizing the quantities

1_ (T \ III-' • • J I •
1.J

However, at t
2

= 0, the same process of averaging over T gives



(3.35 )
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which is the sum of fourth moments for the same distributions. Since

fourth moments are greater than or equal to the square of second moments,

a peak in signal power is expected at t
2

= T relative to other values of

The magnitude of this peak has been examined by exact computer

. 1 . (126)Slmu at10n . It is found that for most transitions the decrease in

intensity away from t
2

= T is consistent with a model where P .. has a
1J

Gaussian distribution in the complex plane:

2 -1 2 2
= (rra) exp(-Ip .. lla)

1J
(3.36 )

Such a result is consistent with a view of nonselective excitation as a

random walk in Liouville space. More specifically, (3.36) is a natural

estimate if the attainment of a particular value of P .. after prepara­
1J

tion is viewed as the result of a large number (ll) of steps, one for

each single quantum transition frequency which enters the excitation

. (126)
dynam1cs . The various powers of Pij which enter into the signal

magnitude and power are evaluated over the distribution by equating

10 .. r = r and performing the two dimensional integrals:
1J

k rr k
P (r)rdrd¢r r

o 0

The resul ts are

IPij 1
2

/1 Pij I 4/7T z 1. 27

4 2
IPij I II Pij I = 2

(3.37)

(3.38a)

(3. 38b)



The ratio of (3.38a) gives the average signal magnitude at t
2

= T rela­

tive to other values of t
2

. This value was confirmed by calculation for

a variety of dipolar coupled spin systems at many values of T and

t
2

(126). The ratio of (3.38b) is the ratio of (3.30) to (3.35) and thus

-describes the peak in signal power at t
2

= O.

For the spin inversion transitions, the two dimensional Gaussian
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of (3.36) is replaced by a one d " . 1 G "(126)1menS10na aUSS1an . This is con-

sistent with the fact that the phase of the spin inversion transitions

is independent of T.

The peaking of signal power at t
2

= T in the nonselective experi-

ment is not a large effect typically amounting to about 1.27 in magnitude

or 2 in power relative to that signal found at other values of t
2

. A

corollary of this is that for a nonselective experiment, in which most

matrix elements of peT) have about equal probability, the particular

Hamiltonian effective during t
2

has little effect on the total signal

energy. In the next section this will be seen to be an exceptional and

undesirable situation, though it corresponds to the way in which most

experiments have been performed until recently.

d. Signal power for an optimally excited group of lines.

As discussed in Section IIIBl, it can be very inefficient to perform the

full multiple quantum experiment with arbitrarily chosen excitation para-

meters. It is possible to find excitation sequences which are far better

than the statistical average for some limited set of transitions. Let G

be the ratio of the greatest possible signal magnitude per line obtain-

able for some group of lines and the average value (3.23) (with NT =

N
(4 -1) for N spins ~) obtained with many values of T using the stat is-

tical model. For larger systems the practical attainment of highly

nonstatistical 10 .. (T) I requires the order selective methods of Section
1J



IIIC and the calculation of G is deferred to Section IIIC8.

At the point of matched preparation and mixing, the signal power for

such a hypothetically optimized excitation is increased over that in

(3.31) by a factor of G
Z

. However, this point of maximum signal power

is fleeting, lasting only for a time on the order of the inverse single

quantum spectral width. This behavior is clear in Figure Zld where each

peak in signal magnitude vanishes in ~lOZ ~sec. In practice the prepara-

tion period would be fixed at the favorable value and the decrease in

signal power as t
z

progressed would be by a factor of G to G times the

statistical value. For optimized sequences of the form of Figure 4,

the signal power averaged over t
l

as a function of t
z

is thus expected

to have the approximate form

lZl

z
</Sz(T,T,tZ)!Z> ~ N

T
(Tr(pz)/4

N
) (G

Z
eXP(-Mzt;)+G) exp(-ZtZ/T

Z
) {3.39)

The first factor is the number of transitions NT « 4
N

which are optimally

excited. The second factor is the estimate of the statistical model for

the signal power per transition when NT ~ 4
N

. The third factor expresses

the way in which the signal power exceeds this estimate at different

points in t
z

when such optimal excitation is assumed. The fourth factor

is the irreversible decay of the f.i.d. at a rate TZ-l.ln writing (3.39),

-~the possibility of a recurrence at t
z

»M
Z

of a signal power compar-

able to the maximum at t
z

= 0 has been excluded by construction. Thus

this expression is only applicable for larger systems. The symmetric

four spin system of Figure Zld is eVidently too small, since it shows

substantial recurrence in a few milliseconds. The probability of signi-

ficant recurrence in a time ~TZ clearly depends on the complexity and

resolution of the single quantum spectrum, but will usually be negligible

for N > 8.



e. Spatial removal of X
2

• The peak in signal power,

which results from a favorable mixing period, could be prolonged if the

free rotating frame evolution of the system could be halted at the point

of matched preparation and mixing. This requires the effective removal

of the nonscalar part of the detection period Hamiltonian X
2

• In aniso­

tropic systems this entails removal of the dominant terms X
Q and~. In

many liquid crystal systems, diffusion causes rapid molecular rotation

about a unique direction in the sample. In principle, it is possible

-1
to reorient this crystal axis during t

2
to the magic angle cos (1/3)

with respect to the static field. If this is done, diffusion motion-

ally averages the anisotropic terms of X
2

to zero. Such a sample re-

orientation would be impractical to achieve mechanically in a time

-~H
2

Another possibility for samples with an anisotropic electric

ib "I "" i h "h 1 "f' ld (132)suscept ~ 1ty 1S to rear ent t em W1t e ectr1c 1e s .

f. Pulsed spin locking in t
2

. Instead of trying to

remove X
2

by manipulation of its spatial part, the spins themselves may

be manipulated by rf to achieve the same end. Perhaps the simplest

d f 1 1 d i 1 k · (133,134)
metho 0 eliminating eva ution in t

2
is pu se sp n oc 1ng .

Th " i id "1 M.T " 1 ki (135-137) h h f"1S S ent1ca to vW sp1n oc ng except t at t e r ~s

repetitively gated off to allow sampling of the nuclear magnetization.

The method is nearly immune to the subtle pulse errors which limit the

popularity of the more elaborate line narrowing sequences needed to

observe chemical shifts in anisotropic systems. Spin locking eliminates

the disappearance of the magnetization into unobservable coherence. The

only remaining evolution is the irreversible decay characterized by an

exponential time constant T,
1.0
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To see how pulsed spin locking can increase the signal energy avail-

able in a two dimensional experiment, consider the case of optimal

excitation where the signal power is approximated by (3.39). Only the
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-~« T2/2 is relevant since M
2

is a lower bound on T and

relaxation during preparation and mixing is being neglected. Further-

more, unless this inequality holds there will generally be no time to

efficiently excite high order coherence (Sec. VA). In this limit,

integration of (3.39) gives the average signal energy per shot for a

group of NT optimally excited lines as

(3.40)

Now suppose that instead of allowing free evolution in t
2

, X
2

is

effectively removed by pulsed spin locking. The signal power replacing

(3.39) becomes

2
~ N

T
(Tr(p2)/4N) C2 exp (-2t

2
/T

lp
) (3.41)

and the signal energy becomes

Es . l .
opt

(3.42)

The factor a is the fraction of time that the receiver is actually

available during the pulse sequence, taking into account both the pulse

duty cycle and any period after each pulse needed for ring down. At

high Larmor frequencies it should be possible even in rigid protonated

solids to keep a > 0.2 with the typically achieved probe quality factors



As will become clear when G is calculated in Section IIICS, the

second term of(3.40)will often be negligible compared to the first. In

such a case the relative time advantage of detection of multiple quantum

coherence with pulsed spin locking is the energy ratio
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Es.l·/Ef.i.d. - aTliJ(M2/~)~
opt opt

" 0.43)

This may exceed 10
4

in a protonated solid as has been confirmed in pre-

. (138)
liminary stud1es .

I 1 · . d I . f 102 103 . " dn 1qU1 crysta s a rat10 0 - 1S ant1c1pate . Here di-

electric heating can be expected to change the molecular ordering during

high duty cycle spin locking. This is not necessarily a problem as the

evolution period is unaffected and the temperature can equilibrate before

the next shot.

Another possibility is to minimize heating by spin locking at high

duty cycle only for as long in t
2

as it takes to accomplish a reduction

of X
2

by rotation of the sample to the magic angle.

There are situations where it is desirable to correlate(9,72) the

multiple quantum lines in WI with the" single quantum lines in w
2

through

2D Fourier transformation. One of these is mentioned in Section VC. In

these cases elimination of the t
2

dynamics must be forgone, along with

any subsequent gain in signal energy. In such cases that the single

quantum spectrum is well resolved this gain will be less than that given

by (3.43) and will be proportional to 2
1

.

As an aside, it should be noted that the notion of increasing

sensitivity by line narrowing in t
2

is not restricted to multiple quantum

mom. Other areas which would benefit from it are single quantum wide

line studies of spectral moments, powder patterns, diffusion or spin-

lattice relaxation times. In each case it is only necessary to put the



usual evolution in t
l

and augment it by a detection period t
2

incorpora­

ting line narrowing. The time advantage given by (3.43) is appropriate

also to T
l

applications. For comparison to single quantum studies it

should be multiplied by r
2D

given by (3.34) since a lD experiment is

being made into a 2D experiment.
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3. Fluctuations in the Excitation Function - t Noise
1

a. The phenomenon. Elsewhere in this work statistical

arguments are used in order to estimate expectation values which are,

in principle at least, exactly calculable and whose thermodynamic fluc-

tuations are negligible. In this section the practical difficulties are

examined of magnetization measurements which depend not only on the

initial state of the spin systems, but on the experimental ability to

reproducibly perturb the system and record its response.

The statistics of the reproducibility of experimental manipulations

enters into 2D spectroscopy in a fundamentally different and more trouble-

some way than in the more familiar lD experiment. As a simple·example

consider the effect of a small rf pulse instability. In the single

pulse Fourier transform experiment the only effect of a small change in

pulse amplitude is to slightly decrease the magnitude of the f.i.d. frOID

the maximum value it attains with a well-adjusted n/2 pulse. Similarly,

a small jitter from shot to shot in the pulse phase relative to the

spectrometer reference only leads to some slight cancellation of signal

when successive shots are averaged together. In both cases the fluc-

tuation is likely to go unnoticed if it is small, since it leads to no

spurious frequency components in the spectrum and only a marginal in-

crease in the performance time needed to obtain a desired ratio of signal-

to-noise. Even in a more elaborate one dimensional experiment in which,



for example, only certain transitions are excited by a tailored sequence

of pulses, the magnetization which is excited, whether intentionally or

otherwise, is certain to be found only at its eigenfrequencies.

The situation changes qualitatively in any experiment in which a

Fourier transform is performed on an interferogram, collected point by

point on successive shots. Fluctuations in the phase or amplitude of

the magnetization are now converted to the frequency domain, whether or

not these fluctuations are due to the systematic and intentional vari-

ation of the evolution time or to the vagaries of the apparatus.

The manifestations of these instrumental fluctuations in a two

dimensional spectrum is a ridge of noise running along the WI axis at

each value of w
2

at which there is a transition. This effect has been

noted previously and has been termed t
l

noise(129,140). In this section

a simple and largely phenomenological formalism for t
l

noise is developed.

This leads to a crucial distinction between additive noise and multipli-

cative noise and a demonstration that t
l

noise is multiplicative.

Finally some strategies are discussed for the minimization of t
l

noise,

particularly in multiple quantum experiments.

b. Simple formalism for t
l

noise. As a starting point,

reconsider (2.34), the general expression for the signal as a function

of the experimental time variables. For notational simplicity we will

take just one term from the sum and suppress all but the evolution time

as explicit variables. A new quantity
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,
s .. (t

l
) - o.. a .. (l+a .. ) exp(-iw .. t

l
)

1J 1J J 1 1J 1J

s .. (t r ) + N.. (t
l

)
1J 1J

0.44 )

0.45 )



is defined which represents the signal from a single coherence present

during t
l

. This differs from one term of (2.34) in that a random

variable a .. has been introduced to account for the possibility of
~J

fluctuations other than those due to the oscillation exp(-iw. ,t
l
).

~J

In principle the fluctuations could be due to nearly any part of

the spectrometer: the static magnetic field, the rf pulses reaching the

spins, or even the receiver itself. Except perhaps for receiver insta-

bilities, it is easy to imagine a given instrumental fluctuation having

greater or lesser effects on different lines, so a possibly different

random variable is allowed for each pair of subscripts. The random

variable is likely to depend on other implicit variables as well, mo~t

notably the design of the excitation sequences.

For our purposes here however, it will suffice to make some

statistical assumptions about the random variable. The fluctuations

are taken to be small
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and of zero mean

2 ~
<la,.I> «1

~J

(3.46)

<a >
ij

a (3.47)

Since we are interested in the WI spectrum, (3.44) needs to be

Fourier transformed:

=a/2~)r
o

(3.48a)

= Pij"ji [6 (wij-w1 ) +r
o

aij(tl)exp(-i(Wij-Wl)tl)dtlJ

(3.48b)



- S.. (wI ) + N.. (wI)
1.J 1.J

0.49)
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This is the sum of the desired signal, represented in (3.48b) by the 6

function, and a noise term. The random variable has been written as a

function of ~l' which is only meant to indicate that each successive

value of t l is an event at which a .. may take on a new value.
1.J

By definition, the noise has no systematic dependence on t
l

.

Experimentally, this means that it averages incoherently during repeated

accumulation. The best that can be done is to calculate its spectral

densi ty. For this the Wiener-Khintchine theorem is appropria te : the pO\ver

spectral density is the Fourier transform of the autocorrelation func-

tion. The latter is given by

(3.50a)

The brackets indicate an average over t
l

or over many experiments. The

factoring of this average in (3.S0b) follows if the instability of the

instrument is not caused by the signal level.

At this point another assumption about the nature of the fluctua-

tions is convenient. Each successive shot is separated in real time by

a delay, on the order of a spin lattice relaxation timES Tl,during which

the longitudinal magnetization tends toward equilibrium. There will be

no correlation between the value of the random variable at successive

values of t l , if the fluctuations responsible for the t
1

noise occur on

a time scale much shorter than this delay. This assumption corresponds

to a 0 function correlation function for a... The required power spec­
lJ

tral density is then



(3.51a)

(3.S1b)

(3.S1c)
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The square root of this quantity is the r.m.s. noise in the spectrum.

The noise is proportional to the signal; it is multiplicative. The noise

associated with a line at any frequency wI = w
ij

' is spread over the

entire range of wI; it is white.

c. Demonstration of the multiplicative nature of t
l

noise.

A convenient way to assess the contribution of t
l

noise to the total noise

is to perform the pulse sequence of interest with a fixed value of t
l

.

On successive shots only the storage address of the signal is incremented.

The resulting data array is, in the absence of noise, completely flat in

one dimension. The r.m.s. deviation in this dimension of the actual

signal from its mean value is a measure of the noise.

In order to test the hypothesis of multiplicative noise it is

necessary to vary the signal size. A convenient way to do this, while

holding other aspects of the experiment constant, is to vary the repeti-

tion rate of the pulse sequence. After a period of several times T
I

, the

initial condition for each further repetition of the sequence reaches a

steady-state, even though the repetition period may be less than T
I

.

The steady-state value of the initial density operator, and hence of the

signal size, increases with increasing delay between repetitions until

this delay is sufficiently long to allow full equilibration.

The result of such an experiment is shown in Figure 22. The pulse

sequence is that of Figure l3b. The sample is acetaldehyde in a nematic



solvent. The linear relationship between signal magnitude and r.m.s.

noise is confirmed.

The point at zero signal magnitude was obtained by sampling after

the echo train (see Fig. 14) had passed. In other experiments it was

confirmed that the noise at zero signal is the same for an array of data

points sampled at a rate equal to the audio filter cut off frequency or

at intervals on the order of one second. This demonstrates that the

intercept in Figure 22 is just the usual additive (detector-limited)

rf noise.

The extra noise due to the 2D nature of the experiment is entirely

multiplicative. This rules out the possibility of a slow spectrometer

baseline drift contributing to the t
l

noise, since such a mechanism

would be additive, that is, independent of the signal magnitude.

Finally, the receiver noise figure was shown to be independent of

-13
signal magnitude, by injecting test signals in the size range (10 -

-1010 watts) of the nuclear signals. This strongly suggests that the

instability is in the excitation of the spins and not in the detection

process.

d. The minimization of t
l

noise. Many of the usual

remedies for poor signal-to-noise ratio are futile in the limit where

multiplicative noise is dominant. Increasing the sample size, lowering

the sample or the spin temperature, or working at a higher static field

all increase signal size, but the noise increases proportionally. The

t
l

noise is nuclear magnetization out of control. Decreasing the detector

noise is also of no use, when it is already a negligible contribution.

Obviously the most direct and desirable way to minimize t
l

nOlse

would be to identify and correct the instrumental instabilities responsible
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Figure 22. The multiplicative nature of t
l

noise. The signals are

from the n = 2 coherence transfer echo of oriented acetaldehyde using

the pulse sequence of Figure l3b. The intervals were fixed at the

values (in msec) T/2 = 25, t
l

/2 = 21.28, T = 3. In order to obtain

the different points, the signal magnitude was varied by changing

the delay between repetitionsofthe sequence to different values < T
l

.."u

The root-mean-square deviation of the steady-state signal magnitude

from its mean is proportional to that mean. The intercept at zero

signal is just the usual additive (detector limited) rf noise, ,,rhich

is present even in a one dimensional experiment.



or, if possible, design pulse sequences less sensitive to instability.

There is no fundamental reason to believe that for any given situation

the problem cannot be made negligible relative to detector-limited noise.

On the other hand, the problem does exist and due to its multiplicative

nature is most likely to be dominant under precisely those conditions

where excellent SiN would otherwise be anticipated. For this reason it

is worthwhile to consider strategies for its minimization.

e. Repetition rate. At any point on the line of Figure

132

22, the r.m.s.
1

noise will accumulate as (N)~ where N is the number of
s' s

shots. This is true regardless of the mixture of additive and multipli-

cative noise so long as both are random variables with zero mean (by

definition) and smooth spectral·density (by assumption). The signal

magnitude, at any particular level per shot, accumulates linearly with

N .
s

Thus it is evident that there is an optimum repetition rate in the

neighborhood where additive an~ multiplicative noise are comparable.

At higher repetition rates the ratio of signal-to-noise per shot de-

creases rapidly toward zero; at lower repetition rates there is a re-

duction in total shots per unit of time without significant gain in

signal-to-noise ratio per shot. This argument is necessarily qualita-

tive since the line in Figure 22 is obtained with a fixed value of t
l

.

2
If the coefficients </a

ij
I> of (3.51) do vary from line to line a

somewhat different line would be found for another t
l

or for the full

2D experiment.

Nevertheless, it is certainly true that the usual recommendations

. (141)
for choosing repetition rates for lD exper1ments or for 2D experi-

(131)
ments with t

l
noise neglected lead to less than optimal time per-

formance when t
l

noise dominates. More rapid repetition is desirable.



As repetition rates are increased, closer consideration must be

given to the interaction between successive shots. Coherence of all

orders n ~ 1 can in principle be destroyed by field gradients between

shots. Nonequilibrium population differences and n = 0 coherence, on

the other hand, will in general be part of the steady-state initial

condition achieved with rapid repetition rates. This is not necessarily

a problem, but would alter slightly line intensities predicted on the

basis of p(O) = I .
z

f. Reduction of t
l

noise by coherence transfer echo­

filtering. According to (3.51) there is a contribution to the t
l

noise

associated with each spectral line. It follows that, other factors

being equal, the fewer lines detected, the smaller tha noise will be.

The CTEF methods discussed in Section IIE3 allow only that signal from

a single order to reach the receiver. Thus only that multiplicative

noise associated with the observed transitions can possibly appear in

the spectrum.

An example of this effect is shown in Figure 23, which is an

expanded view of the n = 4 region of Figure 15. The noise magnitude is

reduced by a factor of about 2 by preventing the signal from other

orders from reaching the receiver.

Even in an ideal n-quantum selective experiment (Sec. IlleS), there

is always a large undesirable contribution to the magnetization at the

receiver. This is due to that part of the equilibrium magnetization in

the nonselected Zeeman manifolds which is left unperturbed by the pre-

paration propagator, but which finally appears as transverse magneti-

zation after mixing. Since it does not evolve during t
l

, it corresponds

to a line at wI - O. If however, its amplitude fluctuates because of

instabilities, it becomes a source of t
l

noise and could fruitfully be

eliminated by CTEF using the pulse sequence of Figure 13d.
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Figure 23. The reduction of t
l

noise by CTEF. Parts a) and b) are

expanded images of the n = 4 regions of the upper and lower traces

respectively, of Figure 15. TIle seven line spectrum is identical,

but the noise, magnified in the insets, is reduced by about a factor

of 2 with CTEF. This is a consequence of the filtering out of the

t
l

noise associated with transitions of other orders.



C. Order Selective Excitation

1. Motivation

In the previous sections a recurring theme has been the

spectral simplification and the increase in resolution which characterize

the high order spectra of coupled spin systems. The practical realiza­

tion of this resolution enhancement requires that the desired spectra be

obtainable with adequate signal-to-noise ratio. In Section IIIB2 the

dependence of signal power on.the number of transitions was noted for

the statistical limit in which all line intensities are assumed to be

equal. While this limit is never precisely realized, it is approximately

applicable when the excitation periods are of adequate length to excite

the highest order coherences and are not specifically designed to favor

particular transitions. Regardless of whether the intensity distribu­

tions of different transition orders are equal, they do share in the

same initial magnetization.

The excitation sequences to be discussed in this section are de­

signed to narrow the accessible part of Liouville space to that charac­

terized by restricted values of n. In this way the density operator is

forced to proceed more directly to regions in which the initial magneti­

zation is distributed predominantly among the desired coherences.

It is important to distinguish this notion of channeling the magne­

tization into coherence with certain values of n from methods discussed

in earlier sections. An analogy to synthetic chemistry will clarify the

relationships among the different approaches. The isolated spectrum of

a certain order n is the goal. Its chemical analog is a sample of a

certain pure compound.
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In Section IID2 methods were reviewed of sorting out the signals

resulting from different orders of coherence on the basis of their charac­

teristic modulation as the relative phases of the radiation within a

pulse sequence were varied. The requisite variations in phase were be­

tween one shot and another. The roughly analogous chemical procedure

would be the chromatographic separation of a complex reaction product

mixture into its pure components.

In Section IIE3 the use of field gradients for suppressing coherence

was discussed. This had the advantage of reducing the minimum time needed

to perform the experiment. but did not increase the signal energy per

shot associated with a given order n. The analogous chemical separation

might be the precipitation of a single low yield product from a reaction

vessel and the disposal of the remaining products.

In Section IIIBld a method was noted of searching for relatively

good excitation times. In principle a simple excitation sequence can

result in the maximum possible signal power for a given transition or a

given order. This is routinely achieved in simple systems for which the

form of the excitation dynamics can be calculated in advance. As the

size of the system and the complexity of the single quantum spectrum

grows, the occurrence of significantly non-statistical maxima in the

excitation function becomes increasingly brief and rare. The search over

T in the nonselective excitation sequence becomes essentially a random

walk in a large fraction of the entire Liouville space. A time T ~ T
2

is available for searching before irreversible dephasing destroys all

coherence. The probability of achieving significantly non-statistical

intensities for the relatively few high order transitions of interest de­

creases rapidly as the dimension of the Liouville space increases. A



certain orders n.
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chemical analogy would be an attempt to optimize the yield of a reaction

by systerr~tic variation of reaction conditions. Some measure of success

is likely, but when there are many possible products the chances of a

very high yield are poor.

In the order selective sequences of this section an activist approach

is taken to the problem of bringing the system to that small region of

Liouville space characterized by large intensities for coherences of

Trains of pulses with spacings comparable to IIJr, 11-1
~nt

are applied during the preparation and mixing periods in order to create

an effective Hamiltonian under which the initial density operator can

only evolve by the exchange of groups of n photons with the radiation

field. The result is that high order coherences can be excited with

nearly ideal efficiency without prior detailed knowledge of the internal

Hamiltonian. The analogy would be synthesis by enzymatic catalysis.

The reaction proceeds swiftly and selectively to the thermodynamic limit.

2. Even or Odd Selection

The simplest order selective experiments are those which

(54 142)
prepare only even quantum coherence or only odd quantum coherence ' .

In a system with a bilinear internal Hamiltonian, the simplest resonant

two pulse preparation sequence (Fig. 3) is even selective or odd selective

depending on the relative phases of the two TI/2 pulses. In order to re-

move the effects of static field inhomogeneity, resonance offset and

chemical shifts, the practical even or odd selective experiment involves

one or more TI pulses during T. As discussed in Section IIEl, one pulse

,
suffices unless [Jr, ,Jr. ) ~ a (intermediate coupling) in which case a

~nt l.nt

train of TI pulses serves to remove the Zeeman terms.



138

Assuming that a bilinear effective Hamiltonian has been achieved

the preparation propagator can be written without loss of generality as

(3.52)

The first n/2 pulse has been chosen to be of arbitrary phase y (2.7) and

the second n/2 pulse is an x pulse. Since we already know that variation

of the overall phase of the preparation period only has the effect of

modulating phase factors in peT) (2.48), it is only the relative phase of

the preparation pulses which is of concern here.

The last factor in (3.52) can be rewritten as

exp(-i(n/2)I )
y

exp(iyI ) exp(-i(n/2)I ) exp(-iyI )
z x z

= exp(-i(n/2)I ) exp(iyI ) exp(-iyI )
x y z

(3.53a)

(3.53b)

With the further substitution

exp (-i'XYYT) _ exp(i(n/2)I ) exp(-~zT) exp(-i(n/2)I )
x x

(3.54 )

the prepared density operator becomes

(3.55 )

This has the form of a two term initial condition acted upon by an

effective Hamiltonian x
yy

. This Hamiltonian is of the same form as (2.10)

except that I
yi

and I
zi

are interchanged for all spins. Since xZ Z
con-

sists of tensor operators of rank two and rank zero, x
yy

can contain

n = ~2 terms as its highest order components. In fact, it can contain

only terms with n = 0 and n = ~2, since it is invariant to a rotation of

TI about I and thus is even quantum.
z
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This same invariance to a rr rotation holds for the entire first
z

term of (3.55). Thus it contains only operators with even n. All pos-

sible eVen values of n may appear for all Inl ~ 2NI.

Similarly the second term contains only odd quantum operators since it

inverts under a rr rotation.
z

Even selection then is simply a matter of choosing siny o (rr/2

pulses with a phase difference of rr/2), while odd selection corresponds

to cosy = 0 (rr/2 pulses with a phase difference of zero or rr). An example

of an even quantum selective spectrum appears in Figure 15.

If both even and odd quantum coherence are prepared, for example,

by choosing y = rr/4, then it is still possible to detect them separately

even without labeling the coherence by the overall preparation phase

(Sec. IID2) or by coherence transfer echo filtering (Sec. IIE3). This is

because under the conditions that X
2

conserves spin inversion parity

(Sec. IIF2) and a rr/2 pulse is used for mixing, the signal resulting in

t
2

from even and odd coherences will be out of phase by 90°. Therefore

it is adjustable into separate channels of the phase sensitive detector.

To see this, consider that ~he detected operators (2.32) for a

(rr/2) mixing pulse are:
x

I (-t ) = exp(-i(rr/2)I ) exp(~Zt2)I exp(-i~Zt2) exp(i(rr/2)Ix ) (3.56a)
x 2 x x

(3.56b)

and

(3.5 7b)
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Comparison with the two terms of peT) in (3.55) demonstrates the

segregation of even and odd signals into separate channels. Setting

t 2 = T exemplifies the concept of similar preparation and mixing dynamics.

3. Excitation of Zero Quantum Transitions of Definite Spin
Inversion Parity

In Section IIF2 the definition (2.75) was introduced of

states Ii> and Ii> which are interconverted by a IT pulse. This inter-
x

conversion is associated with a change of M. to -M .• The set of states
l. l.

in the M = o manifold is therefore closed under the action of a TI pulse.

If Xl commutes with the spin inversion operators, then states within

this manifold can be chosen as simultaneous eigenstates of internal

energy, Zeeman energy and spin inversion parity. They satis.fy the

condition

0.58)

This fact was noted in an early analysis of the single quantum spectrum

f . d b (17) b hi" 1 b I ha orl.ente enzene , ut t e sp n l.nverSl.on symmetry a e as no

consequences for the single quantum selection rules.

The transitions between these states also have definite spin

inversion parity:

+ I' ><'1- l. J 0.59)

The plus sign (gerade) applies for transitions between states of the same

parity and the minus sign (ungerade) for transitions between states of

opposite parity.

Recall that for preparation by a bilinear internal Hamiltonian and

two TI/2 pulses (3.55) the even quantum terms have the same spin inversion

parity as I , which is ungerade. We immediately can conclude that such a
z
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preparation sequence does not prepare gerade even-quantum coherence.

The only off diagonal operators li><jl which occur exclusively in gerade

Hermitian operators (Table 1) represent gerade M = 0 zero-quantum transi-

tions. Thus these are forbidden with the usual preparation by two n/2

pulses.

The simplest way to violate this selection rule is change the pulse

angle of the second preparation pulse to (n/2 - e). This may be viewed

as giving a e pulse to the density operator of (3.55). The question is
x

whether this new density operator will contain the gerade M = 0 zero-

quantum coherence which was forbidden for a precise n/2 pulse.

A prediction is easily made on the basis of parity arguments. The

first term in (3.55) has the spin inversion parity of I , which is. z

pulse cannotSince a: edescribed by the ordered pair (P P) = (-1 -1).x' y ,
x

change P , this term does not contain the desired coherence, which is
x

described by (1,1).

The odd quantum term in (3.55) has the spin inversion parity of I ,
x

which is given by (1,-1). The e pulse acting on this term can create
x

even-quantum terms of the type (1,1). Thus the prediction is that the

gerade M = 0, n = a coherence will be maximized at siny = ±l and the last

preparation pulse must not be a multiple of n/2. In fact, the previously

allowed ungerade transitions now become forbidden. As usual the mixing

must match preparation for optimal signal intensity. These predictions

have been confirmed by both experiment and computation on partially

oriented benzene using a n/4 pulse at the end of preparation and for

.. (126)
m:LX:Lng

4. Average Hamiltonian Theory (AHT)

The development of more highly order selective excitation
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sequences relied heavily on the theoretical machinery of coherent

averaging theory, also known as average Hamiltonian theory (AHT) (61-63) .

This formalism provides a recipe for replacing the time dependent

Hamiltonian describing a complex irradiation sequence with a time inde-

pendent effective Hamiltonian. The effective Hamiltonian produces,

within limits, the same dynamics. This formalism has been presented

(62 63)
pedagogically in two highly recommended monographs ' . The barest

of reviews will be presented in this section in order to introduce nota-

tion essential to later discussion. More recent developments of the

theory will be introduced as needed .

.Coherent averaging theory is designed for those situations in which

a periodic and cyclic perturbation is applied to the spin system. For

the purposes here, this will always be a sequence of rf irradiation

described by Krf(t). The total Hamiltonian is

(3.60)

The requirement for periodicity, if K. is constant, is
lnt

0.61)

where t is the period or cycle time and N is some integral number of
c c

cycles. Cyclic means that

1 (3.62)

where T is the Dyson time-ordering operator. The calculation proceeds

by transforming to the interaction representation defined by Urf(t).

When Krf(t) consists of a sequence of pulses, this representation is

known as the toggling frame. It is the representation in which the
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action of the pulses survives only in so much as they render the trans-

formed internal Hamiltonian time dependent. This Hamiltonian in the

toggling frame is then

j( = -1 ( ) Jf ( )
int Urf tint Urf t (J.63)

The next step is to use the Magnus expansion to replace this time

dependent Hamiltonian by a time independent Hamiltonian

j( = X,(O) + X(l) + X(2) + ...

This is the effective Hamiltonian. The leading term is the average

Hamiltonian given by

(3.64 )

-(0)
1f

t

·ro X. (t)dt
1nt

(J. 65)

For many purposes it is a good approximation to j(. The higher order

-(k) k
terms j( are correction terms proportional to t. They have the form

c

of integrals over commutators of the operator j(. (t) evaluated at dif­
1nt

ferent times. If such commutators do not vanish, then (3.64) is roughly

an expansion in 1/ Xi 1/ t which largely restricts its usefulness to
nt c

short cycle times for which the leading terms dominate.

The cyclic con~ition (3.62) implies that at times t = Nt
c

' the tog-

gling frame and rotating frame coincide. With the restriction that we

only consider the density operator at these times, its rotating frame

dynamics may be calculated using the leading term or terms of (3.64),

rather than the time dependent Hamiltonian.

In practice it is often desirable to perform a nested series of AHT

expansions. This is useful whenever there are several different
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periodicities present in the time dependent Hamiltonian. The most rapid

time dependence is dealt with first leading to a piecewise constant ef-

fective Hamiltonian. Each successively slower periodicity takes the form

of a continuous or sudden switching of this effective Hamiltonian. It in

turn is removed by a subsequent expansiQn. This process results in a

sequence of effective Hamiltonians which may be used to calculate the

dynamics on successively longer time scales.

This approach of nesting has computational advantages over the alter-

native of calculating a single effective Hamiltonian for the longest time

scale. The number of distinct time intervals or different modulation

frequencies appearing in the integrals of each expansion is minimized.

In practice, each expansion is rapidly convergent so the effective

Hamiltonian carried on to the next step consists of only the leading

terms of (3.64) which are relatively easy to calculate. Most importantlv,

physical insight is gained of the approximations and dynamics of each

time scale. This approach is implicitly used whenever one starts with

rotating frame Hamiltonians, which themselves are derivable by ART(62,63).

5." Phase Cycling

a. Frequency domain picture.
. (143-145).

Phase cycllng 1S

the term used to describe an irradiation sequence which consists of n

sub cycles which are identical except that the phase of the rf is shifted

by 2rr/n in going from one to another. Each subcycle, as well as the

entire sequence, is a cycle in the sense of ART. Phase cycling is the

most fundamental architectural theme in the often baroque order selective

excitation sequences.

. (98)
Figure 24 is a schematic diagram of phase cycllng . On the left is

depicted an infinite irradiation sequence consisting of a carrier at the



Larmor frequency Wo which is instantaneously shifted in phase by 2n/n

at intervals of ~T . The average frequency with which the phase advances
p

is w = 2n/n~T . The right side of Figure 24 sketches the relationship
c p

of the spectrum of this phase modulated irradiation to the absorption

line of the spin system at w00 The nearest Fourier component of the

irradiation is at (w
O

- w
c
). The next nearest component is at wO+(n-l)w

c

and is weaker by a factor of n. Now consider what energy conserving

processes are possible which exchange photons between the spin system

and the radiation field. The lowest order such process is that involv-

ing (n-l) photons at (wO- w
c

) and one photon at Wo + (n-l)w
c

. This sums

to an n photon process resonant at nw
O

•

This frequency domain picture of how phase cycling can lead to

order selective excitation is satisfyingly simple, but misleadingly so.

The notion of lower order processes being nonresonant is not compelling,

since in the actual sequences to be described intense brief pulses will

be used having transform limits in excess of nw and of the absorption
c

line. Furthermore, the irradiation within each subcycle ~T will not be
p

continuous, but will itself consist of trains of pulses (Sec. IIIC6).

Finally, the cycle of n phases will not always be the longest period,

but will become a unit within a longer cycle (Sec. IIIC7). In order to

deal with these exigencies another viewpoint is needed.

b. ART of phase cycling. The subcycles themselves are

AHT cycles with cycle time ~Tp « T2 and have effective Hamiltonians

(detailed in Sec. IIIC6)

145

The overall phase ~ of the radiation, which takes the values ~

(3.66)

(0, 2n/n,
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Figure 24. Phase cycling and the frequency domain interpretation of order selective

excitation. On the left t constant amplitude radiation at frequency wQ is phase shifted

by 2TI/n every 61 = 2n/nw seconds. On the right t the single quantum spectrum centered
p c

at Wo is shown flanked by arrows at the two dominant frequencies in the Fourier trans-

form of the irradiation. A resonant n-quantum process at nw
O

results from a combination

of (n-1) quanta at frequency Wo - W
c

and one quantum at frequency Wo + (n-l)w
c

' Lower

order processes are nonresonant. Practical sequences use more complex sequences of pulses

within each subcycle of length 61
p

t-'
+:­
0\
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4n/n ... 2n(n-l)/n), is all that distinguishes one subcycle from another.

The relationship between the subcycle Hamiltonians is easily appreciated

by evaluating an arbitrary matrix element of O.66)in a high field

eigenbasis:

exp(in .. ¢)<i!X olj>
1J ¢=

(3.67)

The subcycle Hamiltonians of interest are, of course, largely off-

diagonal (nonsecular) in this basis. They are designed to cause excita-

tion of multiple quantum coherence when the initial condition is secular.

In this regard they are analogous to the excitation Hamiltonian x
yy

which appeared in the analysis of the even or odd selective experiment

(Sec." IIIC2).

ART can be used to obtain an effective Hamiltonian for the phase

cycled sequence using the effective subcycle Hamiltonians of (3.66) as a

starting point. The time dependence which is to be removed by this pro-

cedure comes only from the phase shifting between subcycles. Thus ~
~=O

is playing the role of X. in (3.60-3.65). This is an example of
1nt

nesting.

The first term or average Hamiltonian is readily expressed in terms

of (3.66) since the integral appearing in (3.65) is just .the sum over

subcycles:

-(0)
X = (~T It )

p c

n-l

I exp(i(2n£/n)I) X 0 exp(-i(2n£/n)I )
z ¢= z

£=0
(3.68)

Evaluating a particular matrix element using (3.67) gives

(3.69)

The significance of this is that the phase cycled sequence has an average



Hamiltonian which only connects states differing in Zeeman quantum

numbers by nk, where k is any integer. In other words, this average

Hamiltonian only allows the system to exchange photons in groups of n

with the radiation field, which is ultimately responsible for the non­

-(0)
secular character of X .

A couple of notational comments are needed here. The symbol n,

which has been used to denote the order of coherence excited, is here

being used to indicate a property of the excitation process; specifi-

cally, it indicates here the multiple by which the order of coherence

can be changed by this excitation process. With this in mind, the

meaning of n should be clear from context. An operator is called nk-

quantum (selective) if its expansion in spherical tensor operators (2.25)

148

1 d 1 T
£a

inc u es on y terms nk. This term may be applied to Hamiltonians, the

propagators constructed from them or the density operators resulting

from the action of such propagators.

The other notational comment concerns a second use of the word

"order". An excitation sequence whose average Hamiltonian satisfies

(3.69) will be called zero-order nk-quantum selective. Sequences selec-

tive to higher order are discussed in Section IIIC7.,

The role of phase cycling can now be clarified by using this average

Hamiltonian to make an approximate propagator

U(O)() - (~v(O»
T = exp -.Lc1l T (3.70)

which implies repetition of the phase cycled sequence until T has elapsed.

If the initial condition is, as usual, Curie law magnetization, the

prepared density operator is
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L P .. (T)<'i(nk-n .. )li><j/
ij lJ lJ

as is easily seen by noting that the set of nk-quantum operators is

(3.71a)

(3.71b)

closed under multiplication. An alternate way of viewing this result is

th b h I d 'ir(O) .. . f 2 1 b Iat ot an ~ are lnvarlant to rotatl0ns 0 ~ n a out
z z

thus so is this approximation to peT).

and

Figure 25 graphically illustrates the constructive and destructive

interference of the subcycles at this level of approximation. The case

depicted is zero-order 4k-quantum selective preparation. Each arrow

represents the complex coefficient P .. of a particular coherence li><j I
lJ

of a given order n .. excited by a single subcycle. The phase shift
lJ .

between arrows placed head to tail is 2~n . . /4. The trajectories from
lJ

left to right correspond to respectively, n .. = 1, 2, 3, and 4. Only
lJ

for the 4-quantum coherence is there any net excursion from the initial

condition after the four subcycles.

It is worth emphasizing that the cancellation of the excitation which

occurs for n .. F nk is not a dissipative process associated with an in­
lJ ,

crease in entropy or reduction in the norm of p. Rather it is a closed

trajectory in Liouville space. It is akin to a round trip. A familiar

analog in a restricted region of Liouville space is the nutation which

the magnetization undergoes when four closely spaced ~/2 pulses are

applied. The great simplicity of the average Hamiltonian approach arises

largely from the fact that such extraneous cyclic processes are suppressed

from view leaving only the net dynamics in the foreground.
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IJ IJ

XBL 8112-12908

Figure 25. Schematic illustration of the excursions in Liouville space

of the coherence of different orders n
ij

= 1,2,3, and 4 during one cycle

of zero-order 4k-quantum selective excitation. The rf phase of each

subcycle is indicated by the numbers in units of TI/2, the phase shift

necessary to select for n .. = 4 coherence. These rf phase shifts appear
~J

as rotations of n . .TI/2 between the increments to the coherence amplit-
~J

udes from successive subcycles. The instantaneous coherence magnitude

is the distance from a point on the trajectory to the origin near the

dot. Only for the selected n .. = 4 coherence is there a net magnitude
~J

after a full cycle of four subcycles.



is imprecise in an important respect.

6. Subcycle Design

a. The requirements for a successful subcycle. The

comparison of a cycle of four phase shifted subcycles to four rr/2 pulses

The return of the n., # 4 tra­
lJ

jectories to the origin in Figure 25 depended on the approximation that

the excursion due to each subcycle was small. A better analogy in the

three dimensional Liouville space of a two level system is to visualize

the excursions of the equilibrium magnetization vector as four equal

angle pulses are given in rapid succession with a phase shift of rr/2 in

between pulses. For small pulse angles the tip of the magnetization

vector will trace out a square on the unit sphere. For larger pulse

angles, the square will distort and the net trajectory will no longer

be zero.

Figure 26 sketches the analogous situation in some subspaces of the

larger Liouville space which is needed to describe a many level system

subjected to four phase cycled subcycles. Here the dynamics is assumed

to proceed to a greater degree than in Figure 25. The cycle has started

to become nonselective; even for the coherences with n,. # 4, there is a
lJ

net excursion at the end of the cycle.

Mathematically, this comes about because the subcycle Hamiltonians

(3.66) do not cammute. This leads to significant correction terms in

the series of the form (3.64) descri~ing the effective cycle Hamiltonian.

When these terms are too large then (3.68) is no longer the only impor-

tant term and (3.70) is a poor approximation to the actual propagator.

This can be expected to occur when IIJf<j>IIL1T
p

becomes comparable to unity,

The obvious expedient then to preserve selectivity is to keep LIT
p

small. The trouble with this approach is that a subcycle sequence

151
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!

r•

2 n.. = 3 n.. =4n.. =n.. = IJ IJ
IJ IJ

XBL 8112-12805

Figure 26. Illustration of a failure 6f selectivity of a zero-order

selective excitation sequence. When the effect of a single subcycle

becomes too large, the linearization of the dynamics is no longer a

good approximation. TIlis is indicated by the slight curvature of the

arrows for each subcycle. The result is a net excitation of the non­

selected coherences n.. 1, 2, and 3, indicated by their failure
1J

to return to the origin after a full cycle. Compare with Figure 25.
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-~extending in time for less than ~M2 will tend to be selective without

being effective. Tnis is illustrated by Figure 27. A subcycle which is

too short will excite preferentially low order coherence. At the end of

the cycle the selected high order coherence is hardly present. Within

limits, this can be remedied by repeating the cycle. The relaxation times

of the system set a bound however on the length of the excitation periods.

This is discussed further in Section VA. In the remainder of this section

some specific schemes are described which lead to effective subcycle

Hamiltonians, which successfully tread the thin line between a cycle

which is nonselective and one which is ineffective.

b. Time reversal sandwiches(143-l45). One scheme for

designing a useful subcycle sequence is sketched in Figure 28a(145).

The first peri~d T of the subcycle consists of a pulse sequence having an

average Hamiltonian X which is time reversible in the sense of Section
p

,
IIIA2; by some manipulation the sign of X must be reversed to give ~K

p P

in the period T', such that X'T' = ~ T. This condition states that in
p p ,

the limit that the central period of length ~T vanished, the subcycle
p

would have a propagator of unity. An example of this limit is the magic

. (121)
echo exper1ment for which

X
P

xD,yy
II

(3.72)

is achieved by a pair of rr/2 pulses as in the even selective experiment

of Section IIIC2, while

X'
P

-(~) ~,yy
II

(3.73)

is obtained by a train of equally spaced rr/2 pulses. For this case

T' = 2T is required. Note that in writing (3.72) and (3.73) the small
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fIfJ o. t• • •

n·· = n.. =2 n.. = 3 n.. =4
IJ IJ IJ 1J

XBL 8112-12808

Figure 27. Illustration of the failure of an order selective excitation

cycle to prepare high quantum coherence. If the subcycle inadequately

excites the desired high order coherence, then the cycle is ineffective,

though formally selective. To some extent this problem can be alleviated

by repeating the cycle or incorporating it into more complex cycles

(Sec. lIIC7). Eventually irreversible relaxation sets an upper bound

on the length of the excitation periods (Sec. VA2). Compare with

Figure 25.
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Figure 28. Subcycle architecture for order selective excitation in

anisotropic systems. Two different ways are shown of causing the

dipolar couplings between the spins to act in a nonlinear fashion in

the effective subcycle Hamiltonian. In a) a time reversal sandwich is

depicted. The two clos€ly shaded regions T and T' have average Hamil­

tonians of opposite sign and act as a multiple quantum rotation (3.75)

on the Hamiltonian X' of the central interval. In b) one cycle of
w

the WAHUHA or WHH-4 line narrowing sequence is shown. By using an

interval T too large for effective line narrowing high rank correction

terms are made significant in the effective Hamiltonian.
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term ~I is neglected. Since these scalar operators are unaffected by

the pulse sequences, the time reversal is only approximate.

An alternative pulse sequence for obtaining a reversible X is
p

that shown in Figure 29. Here the spacing between TI/2 pulses is alter-

nately 2T" and Til. The phase alternation corrects for pulse angle

(145,146)
errors . This sequence gives (with <1>' = 0)

X
P

(3.74)

where again ~I is neglected as small. This Hamiltonian contains no

diagonal operators, but is rather a 2-quantum operator. A consequence

is that a phase shift of all the pulses by TI/2 gives X' = ~ .
p P

To see why the time reversal sandwich is a useful form for the sub-

cycle of an order selective sequence, consider its average Hamiltonian

which can be written

-(0)
X

<1>=0
(.:h' I tH ). exp (iX T)X exp (-iX T)

P P P w P
(3.75)

The norm of this is just

"x(O)" = (flT'IM )"X"
<p=0 p p w

(3.76)

and thus it can be kept small by keeping In «liT. Typically J( = J( •
p p w int'

that is liT is free evolution.
p

Unlike~. however, the operator (3.75) has been transformed by
lnt

the time reversal sandwich so that it contains operators of all ranks

when "Xp" T .2: 1. In effect, the dipolar terms ultimately responsible for

creating high order coherence have been forced to act nonlinearly. This

is the trick necessary to prevent the situation of Figure 27 in which the

subcycle creates too little high quantum coherence.
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XBL B112-13041A

Figure 29. Pulse sequence for creating 2-quantum average Hamiltonian.

This sequence of n/2 pulses gives an average Hamiltonian (3.74)

linear in the dipolar couplings, but containing only the nonsecular

n = ±2 operators. The sign of the average Hamiltonian is reversed

when all pulses are shifted in phase by n/2,making it a useful ingredient

when time reversal is called for. It is used, for example, in the shaded

portions of Figure 28a and Figure 30b.



c. (145 147)
Stretched line narrowing sequences ' . One
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of the principal applications of ART has been the development of sequences

whose effective Hamiltonian is to a good approximation independent of

~I (61-63,148,149). The simplest such sequence ,WHH-4 , (61) is shown in Figure

28a. While the ~otivation for these sequences has been to observe chemi-

cal shifts in solids they can also be contorted to serve as subcycles for

order selective excitation. The most important modification is to stretch

out the intervals between pulses so that ~I is not effectively removed,

but shows up in significantly large correction terms. Since these cor-

rection terms involve commutators of X. (t) at several different times,
1nt

~I is once again forced to act in a highly nonlinear fashion. As with

the time reversal sandwiches, this gives rise to an effective subcycle

Hamiltonian X¢ whose norm is small and adjustable and which is rich in

high order operators. An advantage of such sequences over the time

reversal sandwiches is the relative simplicity of the pulse programmer

needed to implement them and the lower duty cycle, which minimizes sample

heating.

d. Selecting against n = 0 terms in the excitation

Hamiltonian. The method of phase cycling as described so far (Sec. IlleS)

selects out of the subcycle Hamiltonians X¢ the nk-quantum operators

which then become the average Hamiltonian ~(O) for the cycle as describ-

ed by (3.69). In the typical application, n > N/2 so that the only

values of k possible are k = 0, il. Given such an nk-quantum selective

Hamiltonian it might seem that the kn x ° transitions would acquire the

bulk of the magnetization since they are by far more numerous. This is

not necessarily the case for two reasons. First of all the zero quantum

operators never appear to first order in T since zero quantum operators



in X commute with p(O) = I. Secondly, it is only a subset of the zero
z

quantum transitions which are accessible even to higher order in T. This

is discussed in greater detail in Section IIle8.

There are, however, two quite distinct reasons for designing se-

quences which are n-quantum selective, rather than only nk-quantum

1 t · Th f' hi h h b d' d . 1 (145) . hse ec ~ve. e ~rst, w c as een ~scusse prev~ous y , 1S t at

by reducing the number of finite matrix elements in the leading terms of

the effective Hamiltonian expansion, the size of nonselective correction

terms may be reduced. In this view n-quantum selection is primarily

important when the selectivity would otherwise be dubious. It is a form

of good housekeeping. A chemical analogy would be the wisdom of starting

with pure reagents, particularly when the possible reactions of the

impurities are not well understood.

The second reason for selecting against zero quantum terms in the

effective excitation Hamiltonian is that for many cases, the dynamics

becomes qualitatively simpler in their absence. This has nothing to do

with selectivity itself. It is as if the removal of a certain reagent

led to a totally different and more straight-forward reaction mechanism.

These dynamical simplifications are taken up in Sectioffi 111C8and 111C9.

The trick needed to obtain cycles that are n-quantum selective is a

combination of phase cycling and time reversal. It is sketched in Figure

30(145). In part a) an overview of one n-quantum selective cycle is

indicated. Each of the 2n blocks is a subcycle obtained from the one to

its left by incrementing the overall phase of the radiation by n/n and in
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addition reversing the sign of the subcycle Hamiltonian, which may require

additional phase shifts within the subcycle. The idea here is that the

phase shift by n/n gives an extra sign change to the n-quanturn terms
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Figure 30. Cycle for zero-order n-quantum selective excitation. This

cycle combines phase cycling with time reversal in order to select

for orders e2k + l)n as described in the text. In this way the zero

quantum terms are eliminated from the average Hamiltonian X eO ) of the

cycle. Part a) shows the block diagram of 2n subcycles indicating

phase shifts and time reversals. Part b) shows how the first two

subcycles of part a) could be implemented using the 2-quantum pulse

sequence of Figure 29.
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(and generally n (2k + I)-quantum terms) which cancels the overall sign

change experienced by all orders. Thus the n = a operators average to

zero and only orders n(2k + 1) survive in the average Hamiltonian for the

cycle.

Figure 30b is an expanded view of the first two blocks in Figure 30a

showing how this cycle can be implemented. The closely spaced lines

represent the 2-quantum sequence of Figure 29 repeated for the periods

of time indicated. The phase ~' in that figure is indicated below each

use of the sequence in Figure 30b. The relative change of ~' by TI/2

between successive periods labeled X and ~ creates a time reversal
p p

sandwich just as in Figure 28. The relative change of ~' by TI/4 between

X and X insures that they do not commute and thus high rank operators
p w

are created. To date no experiments with this sequence have been reported.

e. A subcycle for liquids. To date homonuclear multiple

" 'l'"d (9,12b,29,70,72,80,8l,88,92,102-107,127)quantum experlments In lqul s

have been done with nonselective sequences, with frequency selective

sequences (Sec. IIC) or at best with sequences selective for even or odd

coherence. A subcycle appropriate for liquids has been proposed and

demonstrated by computer calculation on the four spin AB] system of

The subcycle pulse sequence is simply (rr/2) - TI - (rr/2)
x x x

A pulse spacing of 12 msec was found to be adequate for n = 4 in the

simulation of the sequence at 270 MHz. Nearly ideal (Sec. IIIC8) prepar-

ation of the total spin coherence was found after 576 rnsec,



7. The Order of Selectivity

a. Overview. The process of phase cycling with some

increment of 2rr/n between subcycles was shown in Section IlleS to give

an effective Hamiltonian X whose leading term, the average Hamiltonian

-(0) .
U ,1S an nk-quantum operator. This fact alone does not guarantee

that any such zero-order selective cycle is useful, since it does not

establish that X(O) has the desired off-diagonal matrix elements nor

whether X(O) is large relative to the other, possibly nonselective terms

in the series (3.64), nor even that this series is convergent. To a

great extent these concerns are the province of the subcycle design,

which was taken up in Section 11IC6.

In this section an experimental example of zero-order nk-quantum

selective excitation will be discussed and then a brief review made of

sequences which are selective to higher order. A sequence is said to

be j-order nk-quantum selective if in the AHT series expansion of its

effective Hamiltonian all terms up to and including x~j) are nk-quantum

operators.

b. Zero-order selectivity. An experimental ex·ample of
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(98)
order selective excitation on the N= 9 proton system of l-bromo-butane

is shown in Figure 31. The upper trace was obtained with the three

pulse sequence of Figure 3 supplemented with a IT pulse at t
1

/2. A

single value of T = 4.0msec was used for this spectrum, but extensive

exploration of other T values up to several times this value failed to

discover substantially more favorable distributions of the magnetization

among the lines. As in Figure 18, this is a case where the statistical

model of equal average transition intensities gives an approximate

picture of the spectral intensity. The lower trace shows a zero-order



163

,l.:, L..• .., .., t., t.•

t.'t.,t.,

I
,

.~-,_'i_"-""'_';'''''''_.~rl1_.. --:.•.~l_.l .,..-...-__.._.........j _.~....
"·2 ",.,

Figure 31. Experimental demonstration of zero-order 4k-quantum selective

excitation on an N = 9 proton system. The sample is n-butyl bromide dis­

solved in the nematic phase of p-octylphenyl-2-chloro-4- (p-heptylbenzoylo},.-y)

benzoate (Eastman 15320). For the upper trace the pulse sequence is the

nonselective one of Figure 3 with a TI pulse at t
l

/2 and with T = 4.0 msec.

For the lower trace the order selective pulse sequence is of the form of

Figure 4 with a TI pulse at t
l

/2. The excitation (preparation and mixing)

periods each consist of two cycles of four phase cycled subcycles. The

subcycle form is in Figure 28a with the sequence during T and T t given in

Figure 29. The intervals are T = T t = 720 ~sec, l11' = 15 ~sec and T" =
P

4.2 wsec. The TI/2 pulses are 3.5 wsec long. The order selective experi-

ment restricts the magnetization to the n = 0, 4, and 8 coherences, thereby

increasing their sensitivity.
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4k-quantum selective experiment. The enhancement at n = 4 and n = 8 of

about an order of magnitude is qualitatively consistent with the order

of magnitude reduction in the number of transitions excited(98). Much

greater enhancements are possible when selecting for n closer to N, as

is discussed quantitatively in Section IIIe8. Both 6k-quantum and 8k­

quantum sequences have also been demonstrated(l46).

It is of some interest to note that though the same number of shots

were taken in the nonselective and selective experiments, the noise

appears to be somewhat greater in the more complex selective experiment.

. (146)
Thls was frequently observed and is a manifestation of the multi-

plicative t
l

noise discussed in Section IIIB3. This problem is not

fundamental and can certainly be minimized by the methods mentioned

there or eliminated by more stable instruments.

c. First-order selectivity. A well-known theorem from

AHT is that a cycle which is symmetric in the sense that

J{ (t) = J( (t - t)
int int c

(3.77)

has no contributions i(j) for odd j(6l). The selectivity of a cycle

can thus be extended to XCI) by symmetrizing it so that this term vanishes.

The sense of this symmetrization is shown in Figure 32(145). Part a)

shows again the block diagram of sub cycles for zero-order nk-quantum

selectivity. The first-order analog is obtained by repeating the same

set of subcycles in reverse order.

A schematic illustration of how this improves the selectivity is

shown in Figure 33. In part a) is a picture of the trajectory of a

n
ij

= 1 coherence amplitude during zero-order 4k-quantum selective
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Figure 32. Subcycle sequence for zero-order and first-order nk-quantum

selective excitation. Part a) shows the sequence of n phase cycled

subcycles needed for one cycle of zero-order nk-quantum selective

excitation, already shown on the left of Figure 24. Part b) shows

how the phases are repeated in reverse order to obtain a symmetrized

cycle twice as long, which is first-order nk-quantum selective. The

extension to sequences selective to arbitrarily high order is obtained

by additional levels of phase cycling and symmetrization. For example,

repeating the sequence in b) n times with the overall phase cycled

gives a second-order nk-quantum selective sequence.



(a) (b)
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Figure 33. Illustration of the advantage of higher order selective

excitation. Part (a) shows the excitation of a nonselected n .. = 1
1.J

coherence by two repetitions of a zero-order 4k-quanturn selective

cycle (8 subcycles). The distance AC is a measure of the failure of

selectivity. Part (b) shows the improvement of selectivity when the

eight subcycles are symmetrized to form a first-order selective

sequence. At point B' the phases of the first cycle are repeated in

reverse order. The resulting selectivity is greater as indicated by

the fact that A'C' < AC. Compare also with Figure 26.
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preparation as on the left side of Figure 26, but with the difference

that now the trajectory is followed through two cycles or eight subcyc1es.

The distance AC between the final point and the origin is a measure of

the failure of the sequence selectivity. In part b) the same eight sub-

cycles occur, but now as a single first-order 4k-quantum selective cycle.

Starting at the point marked B' the first four phases are repeated in

reverse order. The result is that after the eighth subcyc1e the selec-

tivity is better than with two zero-order cycles as indicated by the fact

that A'C' is shorter than AC.

d Hi h order 1
. i (144,145)

. g er se ectlv ty . By the use of

sYmmetrization and phase cycling, it is possible to construct sequences

which are j-order nk-quantum selective for arbitrary j. With the addi-

tional assumption of perfect time reversal as used in Figure 30, this

may also be done for n-quanturn selective sequences. The construction

procedure is an iterative one: a sequence which is (j-l)-order nk-

quantum selective is used as a subcycle to form through phase cycling

a longer cycle which is j-order nk-quantum selective.

. (150 151) .
Computer calculatl0ns ' comparlng cycles of different orders

of selectivity generally confirm the ART estimates(145) for the size of

nonselective terms. One interesting feature is that when the ART series

(3.64) is not rapidly convergent, it is possible for a sequence

which is selective to lower order to actually be more effective at

exciting only the desired coherence.

8. Subspace Dynamics and Line Intensities

a. Overview. As demonstrated in Figure 31 order selec-

tive excitation leads to greater line intensities than the nonselective

sequences. As alluded to in Section IIIB1,this is in part a consequence



of the reduction in the number NT of possibly finite matrix elements in

peT). At the same time, though to a lesser extent, the use of selective

excitation restricts the fraction of the equilibrium magnetization which

can appear in off diagonal elements. An estimate of achievable line

intensities requires an assessment of both of these effects. Previous

. (145)
efforts along these llnes are corrected here in two respects. The

fraction of the magnetization involved in the selective excitation se-

quences was overestimated for ordersinl< N by overlooking some constants

of the motion. On the other hand, a closer look at the dynamics reveals

an unforeseen simplicity which indicates that the available magnetiza-

tion may be effic~ently directed to a subset of the selected coherences,

thus increasing their magnitudes. The final result is a recalculation

of the magnetization per transition optimally available in the high n

spectra of systems of N spins 1/2.

b. The available magnetization. As noted in connection

with (3.71), the application of an nk-quantum effective Hamiltonian to

the equilibrium magnetization (itself an nk-quantum operator) results

in an nk-quantum prepared density operator. The reason is easily seen

by contemplation of an energy level diagram such as Figure 2. For con-

creteness ignore the ellipsis in that figure and let it represent an

N= 6 system. Now imagine that some diagonal initial condition (popula-
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tion differences only) is acted on by a 2k-quantum excitation Hamiltonian.

Any coherence prepared must be between states separated by 0, 2, 4, or 6

quanta. A corollary is that the problem decomposes into two independent

subspaces even if, as we will assume, there is no permutation symmetry.

One subspace involves states of even M (2,0,-2) and the other states of

oddM (3,1,-1,-3). No allowed processes connect states in one set with
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those in the other. The situation is similar to that of distinct ir-

reducible representations of permutation groups (Sec. IIF1) except that

here the extra symmetry is imposed by manipulation of the applied fields.

Now consider the same initial condition, but subjected to a 4k-quantum

selective excitation. There are now subspaces consisting of the Zeeman

manifolds (3,-1), (2,-2), (1,-3) while the M= 0 manifold is unconnected

to any other. There are now more subspaces but each is simpler. In

fact, there are no dynamics in the M= 0 manifold if p(O) = I , since
z

there are no population differences within this manifold. Thus any off-

diagonal elements in X which connect these equally populated states are

not manifested in the dynamics.

Formally, these situations are described by an excitation Hamiltonian

X which is the sum of commuting terms:

X = I G
q q

[G,G,] 0
q q

Each of the G is also an nk-quantum operator.
q

The initial condition decomposes in a similar way

(3.78a)

(3.78b)

p (0) I p (0)
q q

(3.79 )

and the dynamical problem of the preparation period (2.31) becomes

I exp(-iG T)p (0) exp(iG T)
q q q q

(3.80 )

Now consider one of the subspaces q of interest consisting of two

Zeeman manifolds M and M'. If p(O) = I , then
z



p (0)
q = M I

M =M
i

Ii><i I + M' I
M.=M'

J

Ij ><j I
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0.81)

Up until now, it has been possible to describe the terms of interest in

the density operator by traceless operators. This is a consequence of

having suppressed in (2.14) the term proportional to the identity.

However,

Trp (0)
q 'Vf + ~,M' (3.82)

where ~ and d
M

, are the dimensions of the manifolds M and M'. The fact

that (3.82) is not generally zero (unless M' = -M), means that the ini-

tial conditions p (0) will usually contain a constant of the motion,
q

which is the identity operator within the subspace. It represents

magnetization which will never show up as coherence and thus must be

disregarded in calculating line intensities.

In order to determine the actual available magnetization it is

necessary to discard this subspace identity operator and examine what is

left. In other words we are concerned with the subspace of traceless

operators SU(dM+~')' Define an operator within this subspace.

a (0) _ p (0) - a 1
q q

Its trace is

(3.83)

Tra (0)
q

(3.84 )

Setting this to zero and solving for a gives

(3.85 )
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The relevant magnetization is proportional to

2
Tr(cr (0»

q
(3.86)

These are objects of the form of (3.22). After some preparation period

has elapsed this quantity is distributed with the constraint

(3.87)

A convenient dimensionless way of expressing this quantity is as a

fraction of the total magnetization:

f
q

2 2
Tr(cr (O»/Tr(I )

q z
(3.88)

This quantity will now be evaluated for some of the cases relevant to

selective excitation of high n transitions.
(145) .

The simplest case lS

the total spin coherence n = N. The manifolds M = N/2 and M' = -N/2

contain only one state each and a = O. Setting the label q to N this is

(3.89)

The next simplest case is the subspace formed by the level M = N/2

and M' 2 -(N/2) +1 under (N-l)k-quantum selective excitation. Here

a = N(3-N)/2(N+l) (if there is no permutation symmetry) and the available

fraction of the total magnetization is

(3.90)

An identical result holds for the (M = -N/2, M' (N/2)-1) subspace.
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The next case is that of (N-2)k-quantum selection, Here there are

three contributing subspaces as already discussed above for the particu-

lar case N = 6. The two subspaces (M = ~N/2, M' = +«N/2)-2» give rise

to Inl = N-2 lines which all belong to the Al irreducible representation.

The calculation for these subspaces is similar to that above for n = N-l.

The other subspace (M = (N/2)-1, M' = 1-(N/2» will include lines

of other irreducible representations than AI' if such exist, and thus

allows location of IMI = (N/2)-1 states not involved in the Inl = N-l

spectrum. For concreteness, the case of no permutation symmetry (all Al

states) will be adhered to. The calculation is particularly simple since

M' = -M and a = O. From (3.86) and (3.88)

f N- 2 ,IMI=«N/2)-1) = 2N«N/Z)-1)2/(NZN/ 4)

= 8«N/2)-1)2/ 2N

(3. 9la)

(3.91b)

With the fraction f in hand for a given subspace the next step is
q

to consider how it is distributed among the accessible matrix elements

appearing in the sum (3.87). Without any further insight into the

dynamics, the parsimonious approach is to apply the statistical model

within each subspace. The number of independent operators is just

2
N = (ci + d ) - 1Tq ~ ~'

(3.9Z)

and, of course, includes in general more n = a operators than the high n

operators of primary interest. Dividing this into (3.86) gives a sub-

space analog of (3.23). Dividing it into (3.88) gives an estimate of the

fraction of the total magnetization at t z = 0, which will oscillate at

some selected w
ij

as a function of t
l

.
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c. Dynamical simplifications for n-quantum selection.

These statistical estimates assume that the subspace excitation dynamics

are sufficiently complex that using one value of T is as good as another.

In Section IIIBld a search method was discussed for nonselective excita-

tion and similar methods are also appropriate with selective excitation.

Since the Liouville space has been vastly constrained, the search becomes

much easier than for nonselective excitation and thus applicable to

larger systems.

In the remainder of this section it will be demonstrated that if the

excitation Hamiltonian is not merely nk-quantum, but n-quanturn (Sec.

IIIC6d) then the dynamics of certain subspaces undergoes a great-simpli-

fication.which guarantees a more efficient excitation of high order co-

herence after a very simple search.

The subspaces for which this simplification is possible are those

consisting of two Zeeman manifolds and for which ~ 1 and d
M

, has any

value. In the following M = N/2 will be assumed, but the same situation

could occur with other manifolds, if there is only one state belonging

to a particular irreducible representation.

Given these conditions the form of the effective excitation Harnil-

tonian within the subspace is

*G = L c IN/2><il + c. li><N/21
q i i ~

where (3.93b) uses the definition

(3.93a)

(3.93b)

= L c. Ii>
i ~

(3.94 )
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The states Ii> are the eigenstates

excitation and have been called

Radiation-matter interactions of the form (3.93) have already been dis-

f
. 1 (152-153)

o optlca

systems (QTLS) (153) .

cussed as models

quasi-two-level

of Xl in the M' manifold while IN/2> is the sole M = N/2 state. The

form (3.93a) simply states that there are no diagonal elements in G and
q

no off-diagonal elements within the M' manifold. These vanishing ele-

ments are zero quantum operators and are assumed to have been eliminated

by construction of the excitation sequence. The state IhO> is a linear

combination of some or all of the M' eigenstates. If it is taken to be

normalized then

(3.95)

The calculational device being used here is sketched in Figure 34.

Four states Ii> are shown on the left in the manifold M'. The restric-

tion M' < 0 is necessarY,since if M' is not more than halfway up the

energy level diagram there would be one or more manifolds above, which

would also be part of the subspace q. The case M' = 0 is treated in

Section IIIC9. In the center of the figure the transformation (3.94)

has been indicated. The many states Ii> are replaced by the one state

Ih
O

> effectively making the dynamics like that of a two level system.

This however, is not the basis relevant to the evolution period so a

transformation back to the eigenbasis {Ii>} of Xl is necessary to see

exactly what has happened. As indicated by the arrows on the right,

coherence between the manifolds has been created. Not indicated in the

figure is that n = 0 coherence within M' is also created.

To see how all this comes out further calculation is needed. The

form of (3.93b) is familiar. It shows that G is proportional to a
q
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Figure 34. Schematic illustration of how n-quantum selective

excitation leads to quasi-two-level dynamics. When the only matrix

elements of the excitation Hamiltonian are between a single state and

any manifold of states, the manifold can be replaced by a single state

Ih
O

> as in the center and the dynamics occurs with a single frequency.

Final expansion in the eigenbasis of the evolution period is indicated on

the right and shows that coherence has been created between the single

state and all those within the manifold which made finite contributions

to Ih
O

>.
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single pseudo-spin operator:

N/2,h
O

I x
(3096 )

The other operators needed to form an angular momentum are

and

(3.97)

0.98)

N/2,h
O

This suggests rewriting the initial condition (3.83) to include I
z

This may be done using (3.81) and the subspace identity operator in the

form

d -1
n'

L
k=O

Ih ><h I + IN/2><N/21
k k

(3.99 )

Here the set {jhk>} is any orthonormal basis spanning the M' manifold and

including Iho>. The desired form is

a (0)
q

d -1m'
«N/2)-a) IN/2><N/zl + (M'-a) i

k=O
Ih ><h Ik k

(3 .100a)

~,-l

+ (M'-a) I
k=l

Ih ><h Ik k
(3.l00b)

It is easy to see that the last t~c terms of C3.l00b) commute with

G and thus are constants of the motion. Only the first term develops
q

in time and this is simply:



N/2,h
O

exp(-iG T)I exp(iG T) =
q Z q

N/2,hO N/2,hO
I cosw T + I sinw T

z eye
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0.101)

Using this identity and rearranging terms gives

N/2,h
a (T) = «N/2)-M')I 0 sinw T

q Y e

+ ~[«N/2)-M')(cosw T-l) + (N-2a)J IN/2><N/21
e

~,-l

+ (M'-a) L
k=O

Ih ><h I
k k

0.102)

The remarkable result for this QTLS model is that excitation dynamics

occur with a single frequency w. The time T may be chosen as (n/2w )
e e

to simultaneously maximize all of the Inl «N/2)-M') coherences in

the first term. At twice this length the n = a coherence within M' are

maximized. These are contained in the Iha><hal term. The summation

term is the identity operator within the M' manifold and contains no

coherence.

In fact if preparation and mixing are identical (within a phase

shift) then the n = (N/2) - M' lines arising from this subspace have

magnitudes

2
IOqi(N/2) (T) I

2 2 N/2,ha 2
= n sin (w T) I<ilr IN/2>1

e y

222
n sin (w T)c./4

e 1.

(3.la3a)

(3.l03b)

The relative line intensities for these transitions are independent of T

and specify the magnitude of the coefficients c., which usually will not
1.

be known in advance because of the complexity of the pulse sequences

giving rise to G •
q
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Also, since (3.93) satisfies (3.7) with ¢ = rr/n. the lines can be

obtained in phase.

A computer simulation of excitation dynamics of the type expressed

in (3.102) is shown in Figure 35. The system is three dipolar coupled

spins and the effective excitation Hamiltonian is X = (1/3)(~'YY _ xD· xx)
II II

obtained by the sequence of Figure 29. The program, which is described

(118)
elsewhere , actually calculates directly from the input pulse sequence

and does not use ART. The curves of Figure 35 are exactly what would be

seen in an excitation function experiment (e.g., Fig. 21d) performed with

this 2-quantum sequence and fixed t
l

, as T is incremented from 0 to 25

cycles. The solid line shows the sum over all n = 2 transitions. This

is twice the sum over i in (3.103b) because the isomorphic (M = -3/2,

M' = 112) subspace is also included. The dotted line shows the

2
(l-cosw T) dependence of the n = 0 signal magnitude.

e

d. Optimum line intensities. It is important to note

that the Inl quantum transitions all arise from the first term of (3.100b)

and their sum is not Tr a
2

(0) but only the contribution to this quantity
q

from this first term. This is just n
2/2 and is shared by the 2d

M
,

matrix elements within the subspace which correspond to ±n-quantum

coherence

Similarly the n = 0 coherence comes entirely from the other two

terms of (3.l00b). An upper bound on its total intensity can be obtained

from the fact that the trace of the square of the third term of (3.102)

. 2
lS n when cosw T = -1. However, this term also contains population

e

operators when transformed back to the eigenbasis {Ii>} and the fraction

of its norm that corresponds to off-diagonal operators will depend on

the distribution of the c~.
l
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Figure 35. Computer simulation showing the simple dynamics for

n-quantum selective excitation when one of the two Zeeman manifolds

which form the subspace contains a single state. The system is three

coupled spin 1/2 nuclei with dipolar couplings in Hz of D
12

= -500,

D
13

= 1000, and D
23

= -750. The excitation pulse sequence is that of

Figure 29 with 0 function pulses and Til = 5 )Jsec. The curves are the

n = 2 (solid) and n = 0

and are proportional to

explained in the text.

(dashed) excitation functions (Sec. IIIBld)

sin
2

w T and (1 - cosw T)2, respectively, as
e e

Each curve is composed of 26 discrete points

connected by straight lines. This illustrates the restriction that

T must be incremented in units of a cycle time in order to apply

average Hamiltonian theory. The computer program calculates directly

from the pulse sequence and does not use average Hamiltonian theory.



To summarize this in a useful form Figure 36 shows the log of the

fractional magnetization per allowed transition for a system of N spins

1/2 with no permutation symmetry and assuming ideal n-quantum selective

excitation. For the n = Nand n = N-l curves the QTLS considerations of

the last paragraphs apply and perfect n-quantum ~/2 pulses are assumed.

This is also true for those n = N-2 transitions which involve the states

1MI = N/2 and these give the lower of the two lines labelled n = N-2.

The other n = N-2 transitions are between the manifolds M = ±(I-N/2) and

the statistical model was applied within the subspace as described in

Section IIIC8b. For these transitions the prediction would be the same

for n-quantum or nk-quantum selective excitation, since no ability to

preferentially direct coherence to particular operators within the sub­

space is assumed, though it seems likely the n-quantum selective dynamics

might be simpler than nk-selective here also.

For comparison the totally nonselective multiple quantum experiment

is also included in Figure 36. The ratios between the various high order

lines and the nonselective line are the gain factors G of Section IIIB2.

They grow exponentially with N.

The analogous quantity for n = 1 is also included in Figure 36.

The comparison to the single quantum experiment is complicated by the

fact that it is normally a one dimensional experiment and so does not

suffer from the factor r
ZD

given by (3.34). For the multiple quantum

and single quantum lines shown to be directly comparable, the single

quantum experiment would need to be done two dimensionally. As noted

in Section IIIA2 this could actually be advantageous for large N since

it allows pulsed spin locking in t
Z

. To obtain a measure of relative

experimental time needed for the different experiments, the quantities
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Figure 36. The logarithm of the fractional magnetization per transition

for various ideal types of excitation as a function of the number of

spins. In each case the ordinate is the logarithm of the observed signal

magnitude of a nondegenerate resolved transition expressed as a fraction

of the total magnetization of the coupled system of Nspins 1/2, which is

assumed to have no permutation symmetry. The highest curve is for the
-N

total spin transition n = N and is the function log (N2 ). The curve

(cont. next page)
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Figure 36 (cant.)

for n = N-l assumes n-quantum selective excitation as does the lower

of the two n = N-2 curves, which applies to the subspaces (M ±N/2,

M' = +«N/2)-2». These curves are log «N_l)2/N2ZN-l) and

log «N_2)2/ N2(N_l)2N- l ) respectively. The upper n = N-Z curve applies

to the subspace (M = «N/2)-1), M' = -«N/2)-1» and assumes only nk­

quantum selective excitation and gives equal weight to n = 0 operators
. 2 2 N-3within the subspace. The function ~s log «N/2)-1) /(4N -1)2 ). The

next lowest curve is for single quantum excitation by a single rr/2

pulse. The curve is log «N-l):(N+l):/(2N):). The lowest curve is

nonselective excitation with the statistical model. The curve is

log (1/(4 N-l». Comparison of the n = 1 curve with the curves for the

multiple quantum experiments is complicated by factors of the order of

unity, which arise from the one dimensional nature of the usual single

quantum experiment, but more importantly the density of single quantum

lines would prevent the observation ofa resolved transition over

nearly this entire range of N. Thus high order multiple quantum

experiments are the only alternatives for such observations.



here would need to be squared so as to be proportional to signal energy

(Sec. IIIA2).

Even taking into account the correction (3.34) needed to compare ID

and 2D signal energies, it is evident that the high order transitions

are observable with greater sensitivity than the average, resolved

single quantum transition in systems of several or more spins. This

contradicts the common notion born of perturbation theory that higher

order proces~es are in some sense always weak. On the other hand, it

really should be no surprise that a transition between states separated

by several times the Larmor frequency should be easier to detect than

one involving a lesser energy. Of course, the foregoing assumes that

the selective excitation can be achieved before irreversible relaxation

dominates. This is discussed further in Section VA.

9. Selective Population Inversion

a. Motivation. The emphasis in the previous sections

has been on the selective excitation of off-diagonal density matrix

elements since it is these that lead to spectral information in wI'

However, for T
l

studies (Sec. VB) it can be valuable to prepare various

diagonal nonequilibrium initial conditions. The selective preparation

of such conditions also serves as a simple model for optical frequency

systems where nonequilibrium population could be the basis for laser

action or selective photochemistry. Finally, it may prove possible to

use such selectively inverted states as an initial condition for a

single quantum experiment wherein only a small fraction of the lines

are observed.

b. Two level and quasi-two-level systems. Population

. (55)
inversion of two levels by a frequency select~ve double quantum pulse
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was already mentioned in Section IIC2. For any of situations where the

excitation dynamics is restricted to a subspace of two states, the inver-

sion of their populations is an n-quantum TI pulse and simply means

exciting for twice as long as is necessary to optimally transfer a

population difference to n-quantum coherence. In Figure 37 such a pulse

is illustrated schematically for the total spin coherence of N spins 1/2.

The equilibrium populations in the high temperature limit are suggested

on the left by the constant increment in the number of circles in going

from one Zeeman manifold to the next. Only one level is shown in each

manifold. The situation after an ideal N-quantum TI pulse is shown on

the right. The populations of the extreme levels are exchanged without

(145)
affecting those levels in between . No coherence is prepared.

The situation is somewhat more complicated in the QTLS discussed in
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the previous section. Substituting W T = rr into (3.102) shows that the
e

coefficients of IN/2><N/2J and IhO><hOI are exchanged, but this density

operator is not purely diagonal within the M' manifold.

c. The quasi-four-level system (QFLS). There is another

way of exchanging the populations of the extreme states which is illus-

trated in Figure 38. In part a) the N-quantum rr pulse already discussed

is indicated. In part b) an N/2 quantum process is indicated which

proceeds via the intermediate M = 0 states. As will be demonstrated

below, such a process .is also capable of exchanging the populations of

the extreme states. However, since there will be simultaneous N/2

excitation in other subspaces not indicated in Figure 38, this exchange

will not leave the system in the diagonal state suggested by the right

side of Figure 37. Rather there will be disturbances in certain of the

intermediate manifolds.
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Figure 37. Population inversion by an N-quantum pulse. Order

selective excitation ideally can exchange the populations of the

extreme states without disturbing those of intermediate manifolds.
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M=O

(0)

M = -N/2

M =N/2

(b)

XBL 8112-12901

Figure 38. Two methods of exchanging the populations of the extreme

states. In part a) N-quantum selective excitation is indicated as in

Figure 37. In part b) N/2-q~antum selective excitation is indicated.

This also exchanges the extreme populations, but acts in addition to

excite N/2 quantum coherence between other pairs of manifolds not

shown.
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The principle motivation for considering such a scheme at all is

that the complexity and duration of a high order excitation sequence

increases with N and maybe ineffective when a sequence selective for

n ~ N/2 is still practical. The N/2-quantum selective scheme discussed

below could, because of its very simple dynamics be a useful ingredient

in composite sequences for exciting high order coherence by juxtaposing

sequences selective for lower orders.

To start, consider the possible form for an N/2-quantum Hamiltonian

operator GN/ 2 within the Liouville subspace formed by the three manifolds

M = N/2, 0, -N/2. It will be convenient to use the operators of definite

parity of the form tabulated in Table 1 (Sec. IIF2). Since G
N

/ 2 is

N/2-quantum, only the off-diagonal operators are relevant. Since any

term involves either IN/2> or IN/2> = I-N/2>, we can set Ii> = IN/2>.

Now assume that G is not only N/2-quantum, but has definite parity.

For concreteness assume

(3.l04a)

(3.104b)'

This is not an unreasonable restriction, since for example, the subcycle

average Hamiltonian (3.75) (Fig. 28a) satisfies this condition and it is

easy to show that this property survives the process of phase cycling

and time reversal. The average Hamiltonian for n-quantum selective

cycles formed as in Figure 31 also can have definite parity.

Given (3.104) Table 1 shows that G
N

/
2

can be expanded in operators of

the form I N/ 2 ,j and I N/ 2
,j onlv. Recallin2 from Section IIIe3 that the

rl ~ - v

M = 0 states may themselves be chosen to have definite parity, it is
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convenient to use two labels within this manifold. Let j be used for the

gerade states, which satisfy

and k be used for the ungerade states, which satisfy

-nz;- = -Ik>

Thus GN/ 2 is a sum of the form:

(3.l05a)

(3.l05b)

I (x. r N/ 2 ,j + y. r N/ 2 ,j) + I <~ r N/ 2 ,k + Y
k

rN/ 2 ,k) (3.106)
J X+ J y+ k I< x+ y+

j

where together the indexes j and k span the M = 0 manifold.

With this understood, the relevant operators of definite parity

take the form

rN/ 2 ,j
x+

and similarly

<~)[<IN/2> + !-N/2»<j I + Ij>«N/21 + <-N!21)]

~ + += (2)- <IN/2> <jl + Ij><N/21 )

(3.107a)

(3 .107b)

r N/ 2 •k
x+

r N/ 2 ,j
y+

rN/ 2 ,k
y+

1

(2)-~ <IN/2>-<kl + Ik><N/21-)

1

-i(2)-~ <IN/2>-<kl - !k><N!Z!-)

(3.108)

(3.109)

(3.110)

The new combinations of states

(3.111)
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have been introduced t which are gerade (+) or ungerade (-). Now define

within the M = 0 manifold the combinations

and

(3.112a)

1

= (2) -~ L (~+ iYk) Ik>
k

(3.112b)

With this substitution (3.106) becomes

(3.113a)

2:.J
+

+ +
(N/2) tho

I + 2w
x

(N/2)
I

x
(3.113b)

This is a sum of two commuting terms t which already suggests the

dynamics will be simple. In order to make use of this form the relevant

part of the initial condition p(O) = I must be written in this basis
z

set. The desired operator is

0N/2(O) = (N/2)(IN/2><N/2!-I-N/2><-N/2!) (3.114a)

+ -
NI(N/2) t(N/2) (3.114b)

x

Notice that (3.ll4a) is the form that would be useful for treating the

two level problem of N-quantum selection. Here the form (3.ll4b) pro-

pagated under (3.l13b) leads to the prepared subspace density operator



+ -
= N(I(N/2) ,(N/2)

x
COSW+T COSW T
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+ -
(N/2) ,h

O
I COSW+T sinw T

y

- +
(N/2) ,h

O
sinw+TI cosw T

Y

+ -
hO,hO

T)+ I sinw+T sinw
x

The second and third terms of (3.115) are Inl = N/2 coherence

(3.115)

involving, respectively, the ungerade and gerade states in M = O. The

last term is n = 0 coherence between gerade and ungerade states. Since

there is no reason to expect w+ and W to be commensurable, it is not

necessarily possible to choose T so that only one term of (3.115)

survives. Nevertheless this situation can be closely approached.

The simplest example of such dynamics is provided by the effective

Hamiltonian (3.74) in an N = 4 system. Figure 39 shows the computed

dependence of the population difference between the extreme states for

a system of four dipolar coupled spins. The displayed points are cal-

culated at the end of integral numbers of cycles and closely trace out

the expected COSW+T COSW_T dependence. One of the frequencies happens

to be about 9 times the other. At the point indicated by the arrow the

slower function has proceeded through -n radians and the faster one

through -9n so that population inversion is nearly achieved.
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Figure .39. Inversion of the N-quantum population difference by

(N/2)-quantum selective excitation. The population difference

oscillates with only two Fourier components even though many inter­

mediate levels in the M = a manifold are involved. The dynamics may

be described in terms of a quasi-four-level system. The arrow,
indicates a point where the initial equilibrium population difference.

which on this scale is 2.0. has nearly inverted to become -1.94. The

system consists of four spin 1/2 nuclei with dipolar couplings in

Hz of D
12

= -500. D
13

= -1000. D
14

= -750. D23 = -625, D24 = -250 and

D
34

= 750. The population difference between the M = 2 and M = -2

levels was computed after each of SO cycles of the pulse sequence of

Figure 29 with Til = 5 )Jsec.



IV. MULTIPLE QUANTUM PROCESSES WITH TWO SPIN SPECIES

A. Motivation

1. Doubly Rotating Frame Formalism

The possibilities for fruitful multiple quantum experi-

ments multiply rapidly when two or more nuclear spin species are present

in a coupled spin system. The heteronuclear topics covered here have as

a common characteristic that at least one of the nuclear species evolves

in a state of multiple quantum coherent superposition. Excluded are the

many double resonance studies where the multiplicity of quanta is only a

consequence of using a second frequency to tickle or decouple. The

technique of double quantum decoupling was already reviewed in Section

IIC2f. Included are the study of transitions in which one species flips

in the field of another, in which the two coupled species flip indepen-

dently, and in which the two species are coherently driven to exchange

spin order in a concerted fashion.

In order to discuss these matters some additions to the notation

introduced in Section II are needed. The starting point is the doubly

rotating frame. This is the interaction representation in which the

time dependence of the irradiation at or near each of the Larmor fre-

quencies is removed. In typical applications the presence of two rf

fields causes no particular complications; to a good approximation each

spin species only responds to the one field which is nearly resonant.

At high applied fields or in high resolution experiments, Bloch-Siegert

shifts(62,154,155) of order w 2 j (w I _w S) may cause a noticeable shift of
p 0 0

resonance of one species as the other is irradiated. Setting these

aside, the Hamiltonian which replaces (2.7) is

191



(4.1)
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Similarly (2.9) is replaced by

(4.2)

The applied magnetic field is assumed to be homogeneous over molecular

dimensions, so the spatially dependent part of the field is proportional

for the two species in the ratio of their gyromagnetic ratios (YS/YI)'

The all important bilinear terms (2.10) become

(4.3)

Only the last term is new in form. This is the coupling between unlike

pairs

-I Y
i j

2F .. I . S .
1.J Z1. ZJ

(4.4)

where F .. = (1/2)(J .. + 2D .. ). It is particularly simple since the
1.J 1.J 1.J

flip-flop terms, which are present in the homonuclear couplings, are

absent here. They are truncated for heteronuclei at high field by the

large difference in Larmor frequencies.

The consequence is that there are independent Zeeman quantum numbers

for the different spin species, which are conserved during free evolution.

I I S
For the states i> these are M. and M., while for the density operator

1. 1.
I S

the two labels nand n will be useful. The generalization of (2.27) is

rT /;><;/1 n:.li><jl (4. Sa)
L- Z ' I ~ .J I J

1.J

[S , li><jIJ S I' ., (4.5b)
Z

n
ij

1.><J



The relative size of the gyromagnetic moments is of great importance

in the design of heteronuclear NMR experiments. Recall that it enters

in several related but distinct ways. First of all it determines the

difference between Larmor frequencies wI = y Hand wS = YSH
o

. It has
o I 0 0

already implicitly been assumed that the difference in these frequencies

is much greater than any of the terms appearing in the doubly rotating

frame Hamiltonians. The possible detection frequencies for the trans­

verse magnetization are wI and wS and the induced voltage(lB) is propor-
e- 0

tional to the frequency through Faradays law. Furthermore a second

power of y enters the detection process through (2.19); regardless of

the frequency, the magnetic moment is proportioned to y. Finally the

initial condition (2.14) now has two terms
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p (0) (4.6)

whose norms are also proportional to the respective gyromagnetic ratios.

2. Outline

Section !VBl begins with a historical overview of the

notion of multiple quantum spin flips in the communication between spin

species in solids. This is followed in Section IIB2 by a proposal for a

new method of cross polarization (SPETTERS) which clarifies the relations

between number of quanta and thermodynamic constraints and may prove

superior to existing methods in some circumstances. Section IVB3 returns

to the more central issue of multiple quantum coherence as a chemical

probe by reviewing several studies in which the multiple quantum coherence

of quadrupolar nuclei is observed by way of proton magnetization.

Section IVC carries the applications further with a discussion of a

variety of experiments in which both spins may be involved in the coherent
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superposition during the evolution period. This class of heteronuclear

multiple quantum (HMQ) NMR experiments shows promise of delivering infor-

mation on molecular geometry and ordering with a simpler analysis than

is possible for the homonuclear case.

B. Cross Polarization and Multiple Quantum Coherence

1. Background

a. Static fields. Multiple quantum processes have long

been recognized as a mechanism for exchange of spin energy between nuclear

species. In nearly every scheme where a flip-flop of one I spin and one

S spin can occur through their mutual coupling, a small change in experi-

mental conditions has been shown to lead to a flip of two or more I spins

and a flop of one S spin. The discussion here will be limited to the

common case where the two spin species are thermally isolated from the

lattice by relaxation times TI considerably longer than that needed for

them to interact with one another.

At very low static fields it is possible for the heteronuclear

dipolar couplings alone to exchange energy between two spin species. At

applied fields larger than these local fields, the simple flip-flop is

forbidden by energy conservation. However, the 7Li and 19F magnetiza-

tions of LiF still approach a common spin temperature in several seconds

at applied fields several times the local fields(156). An explanation

was found in a mechanism wherein two 7Li spins, with their smaller gyro-

f "h fl f 19 F . (157)magnetic ratio, compensate or t e ip a one spln .

b. Hartmann-Hahn matching. At very high static fields

thermal contact between I and S spins requires strong rf fields. These

create a new quantization axis perpendicular to the static field when w
p

exceeds the couplings between spins. One way of satisfying energy con-

servation for a flip-flop with such "rotating frame" or transverse
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quantization is to simultaneously irradiate both spin species on

resonance with matched nutation frequencies. This is the Hartmann-Hahn

d "" (158)con l.t1.on :

I
w

p
8w
p

(4.7)

I 11 h f · 1 k dId S ." (8L h d) (158-t a ows exc ange a sp1.n oc e an magnet1.zat1.on met 0

162)
and is the most commonly used means of cross polarization, particu-

larly of l3 C (8) by protons (I).

With respect to the transverse quantization axis, the cross-polari-

zation proceeds by a single I spin flipping for each S spin which flops.

b f be ~I d ~8 1This can e stated in terms a quantum num rs n an n ana ogous to

those of (4.5), but now with the transverse, spin-locked components of

magnetization I and 8 replacing I and 8 in the defining roles. The
z z z z

. important difference between this transverse frame and the longitudinal

. " ~(O) (160-162)
doubly rotating frame is that the average Ham1.1ton1.an K ,

which remains after truncation by the rf terms, contains heteronuclear

flip-flop terms arising from (4.4). Thus

[(I + S ), X(O)]
z z

0, (4.8)

but the individual operators I and 8 are not constants of the motion.z z

(-I _8) f 1 dIn other words, n + n is a good quantum number or evo ution un er

intense resonant fields at the Hartmann-Hahn condition.

- ~

If (I + 8 ) is the only invariant having a finite projection on the
z z

initial condition, then the cross polarization dynamics are easily

sketched. It is usual to assume that the equilibrium S magnetization is

negligible or has been destroyed at the beginning of the experiment.

Then the initial condition of spin locking for a system of N spins I 12



and one spin S = ~ is

p(O) = I
z

= N/ (N + 1) cI + S ) + (1/ (N + 1)I - N/ (N + 1)S )
z z z z

(4.9a)

(4.9b)
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The term in the first parentheses is a constant of the motion by (4.8),

or more precisely a quasi-constant, good for times less than -TIp' The

other term develops in time under XCO ). If it undergoes a monotonic

development into other unobserved degrees of freedom, then in a period

of several times the cross polarization time T (158-160) the only
IS '

magnetization remaining is from the first term. This gives the quasi-

'l'b' Ii' f h ilk d S " (158-160) . hequl 1 rlum mlt or t e sp n- oc e magnetlzatlon Wlt

Hartmann-Hahn matching:

Mas is the thermal equilibrium S magnetization. The enhancement approaches

(YI/YS) for large N. In the limit of a large system this result is

usually derived using the concept of spin temperature and the last factor

is the ratio of the I spin heat capacity to the total heat capacity.

For finite systems the S magnetization is often observed to oscillate

(158,161,162)
This is a result of a change of sign in the coefficient

of the terms in the second parentheses of (4.9). In the limit that this

coefficient reaches a value equal and opposite to that in (4.9) then one

attains the adiabatic (isentropic) limit for Hartmann-Hahn matching

(4.11)

This is just twice the magnetization in (4.10).



Here we are concerned with multiple
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c. Multiple quantum cross polarization by spin-locking.

There is a considerable body of literature on the study of multiple quan-

tum transitions in transversely quantized systems; typically one strong

resonant rf field determines the quantization axis and some number of

photons from a second field is absorbed or emitted (163) . Such "multiple

quantum" processes are possible with a single spin 1/2. Further refer-

ences and the extension of such notions to time domain experiments may

be found in a recent work(164).

quantum processes with respect to a transverse quantization axis only

in the context of cross polarization.

The generalization of the Hartmann-Hahn condition to one in which

energy conservation is met only for multiple quantum processes has been

h 1 1 d 1 ·· h (165-170)s own a so to ea to po arlzatl0n exc ange .

condition is

The generalized

Im'w
e

, S
n w

e
(4.12)

for some integers m' and n'. Generalization to the effective frequencies

2 2
w = I w + (llw) instead of w is necessary, since off-resonance irradia-

e p p

tion was used in these studies.

d. Cross polarization by ADRF. An alternative approach

to the energy conservation requirement is to match the nutation frequency

wS
of the S spins with the dipolar eigenfrequencies of the I spins, which

e
. (171)

have been adiabatically demagnetlzed (ADRF method) . The I spins

are ordered not with respect to any quantization axis, but with respect

to one another (dipolar order). The broad range of frequencies charac-

teristic of the dipolar Hamiltonian mitigates against resolved matching

conditions analogous to (4.12). The methods are more fruitfully compared

according to their thermodynamic efficiency.
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e. Total cross polarization. This problem is an old one:

how can the magnetization of an abundant spin species I be transferred

most efficiently to a dilute species S? For clarity it is convenient to

assume that the equilibrium S magnetization is negligible or that it has

been intentionally destroyed at the start of the experiment. Then, as

usual, p(O) = I. The quantity to be maximized is Tr(p(t)S ) where p
z p

indicates the arbitrary direction of the S spin angular momentum vector

operator.

An underlying constraint on any experiment designed to transfer

order from one system to another is that the final order can be no

greater than the initial order. This is the second law of thermodynamics:

at best, entropy is conserved. Another form of this constraint was

already encountered during the consideration of the maximum efficiency of

excitation of coherence within various subspaces (Sees. IIIBI and IlleS).

There the conservation of the trace of the square of the subspace density

operator under unitary (and hence isentropic) evolution was used as a

bound on the possible dynamics.

The best that can be done then in cross polarization is to convert

the entirety of p(O) to S
p

so that at some time t:,

pet) = cS .
p

(4.13)

The maximum value of the constant can be evaluated from the constraint:

2
Tr(p(t) )

2
Tr(p(O) ). (4.14)

If there are N times as many I nuclei as S nuclei and all their spins

are equal, then c = IN. Tois result is illustrated in Figure 40 for

N= 3. It is nothing more than The Pythagorean Theorem in N dimensions.
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Figure 40. Geometric representation of the constraint on the maximum

S magnetization obtainable by cross polarization. The case shown is
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that of N = 3 I 1/2 spins coupled to a single S = 1/2 spin. An

initial condition of I = I A + I B + I C can at best be converted toz z z z
13 S as suggested by this construction where each of these vectorsz

has the length of the body diagonal of the cube. The same constraint

holds in N dimensions for arbitrary N and gives the adiabatic limit

for cross polarization.



200

The initial condition p(O) consists of three or thogonal vectors in

Liouville space each having the same norm. The norm of their sum is 13

times their individual norms and this is the largest coefficient possible

for any spin angular momentum component. This isentropic or adiabatic

limit ~d of the cross polarized magnetization of the S spin can be

. (159)
WT1tten as a multiple of the equilibrium S magnetization without

cross polarization, Mas:

(4.15)

The problem is that the rate of cross polarization decreases

Comparison with (4.11) shows that this about !N/2 better than is possible

with Hartmann-Hahn matching.

The possibilities for realization of this total cross polarization

in a complex spin system have been discu~sed theoretically(159,160) and

explored experimentally. To date the closest approach to this limit for

a solid appears to be by the ADRF method with adiabatically increasing

S(172,l73)
w

e

d h d ·· h .. l' . (160)un er t ose con 1t10ns were 1t 1S most near y 1sentrop1c . The

cross polarization process competes with irreversible T
l

processes in

the SL method and TIn processes in the ADRF method. If these times are

comparable or shorter than the cross polarization time TIS' then total

cross polarization is not possible.

2. Spin Polarization Exchange with Total Transfer of Entropy
by Resonant Selection - (SPETTERS)

a. Motivation. In this section a possible approach to

cross polarization is outlined which differs considerably from the SL or

ADRF methods used to date. Here it is presented as a gedanken experiment

in that details of the possible pulse sequences will not be pursued. It

is of interest in that it clarifies the relationship between number of
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quanta and cross polarization efficiency. We have seen in (4.10) and

(4.11) that the Hartmann-Hahn condition (4.7) cannot lead to the total

transfer of entropy necessary to obtain the total cross polarization limit

. b (4 15) Th . b f (~I ~S) .glven y . . 1S can e traced to the act that n + n 1S a

good quantum number so each S spin only flips one I spin. When the

chemical ratio N of I spins to S spins is greater than one this wastes I

spin magnetization. The multiple quantum generalization (4.12) seems to

offer an adjustable exchange rate, but is expected to become prohibi-

tively slow as the integer ratio n'/m' increases. This is because the

average Hamiltonian for any such spin locking scheme is still linear in

the coupling terms derived from XIS' Sp the higher order energy conserving

processes which are needed appear either as correction terms in the ef-

fective Hamiltonian or nonlinearly in time.

b. Heteronuclear phase cycling. This problem is remin-

iscent of that encountered in order selective excitation (Sec. IIC) where

it was found desirable to make the coupling between spins appear non-

linearly and with restricted combinations of raising and lowering opera-

tors in the average Hamiltonian. The principle trick needed there was

phase cycling.

Figure 41 shows an extension of the phase cycling concept to the

heteronuclear problem of cross polarization. The abundant I spins are

put through a sequence of phase cycling with some increment 6¢I = 6¢ in

rf phase distinguishing successive subcycles. Within each subcycle the

dilute S spin is also irradiated near its Larmor frequency, but the phase

increment between subcycles is

(4.16)
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Figure 41. Phase cycling for SPETTERS. By incrementing the phase

of the irradiation of the dilute S spins at K times the rate of the

incrementation for the abundant I spins an average Hamiltonian is

obtained under which cross polarization proceeds only by way of

nS = ±l, n
l = +K coherence. The possible subcycle details, not shown

here, are analogous to those discussed for order selective excitation

in Section IIIC6.
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Let each subcycle be characterized by an effective Hamiltonian

X Then in analogy to (3.66), these are related to one another by
<PI,<PS ·

For a particular matrix element with <P
S

= K<P
I

(4.17)

eXP(i(n7·<PI+n~·<PS» <ilJCo olj>
1J 1J ,

exp(i(n~. +Kn~·)<jJI) <i/XO olj>
.1J 1J ,

(4.18a)

(4.18b)

Summing over Q different phases at intervals of 6<P
I

orders such that

2rr/Q leaves only

(4.19)

If there are N spins I ~ and one spin S ~ then

Thus, if the choice

(4.20)

Q>N+K (4.21)

is made, only k = 0 is possible in (4.19). This means that for all terms

in the average Hamiltonian for the cycle

(4.22)

A smaller value of Q may suffice in practice, since statistically there

are fewer operators which can satisfy (4.19) with Ikl > a than with k= 0

for the range of K which will be of interest below. There is a close

connection with the homonuclear order selective methods of Section IlleS
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to Sec. IIIC9. In analogy to the trick discussed in Section II1C6d.

time reversal in conjunction with a phase shift of ~ on the S spin could

S
be used within the subcycles of Figure 41 to help keep n = 0 processes

in check.

Assume then that an effective Hamiltonian X with all terms satis-

fying (4.22) is achieved. Evidently it can be used to excite heteronuclear

coherence in an order selective manner starting from either I or S

magnetizations. The focus here however, is on the cross polarization

process in which the selected coherence plays only an intermediate role.

The heteronuclear phase cycling amounts to a truncation of the subcycle

Hamiltonian with respect to the operator (I + KS ), which is the generator
z z

for the propagator in (4.17) describing the phase shifts. Thus

[(I + KS ) ,X]
z z

o (4.23)

This should be compared with (4.8), which aside from the tilt to the

tr"ansverse frame indicated by the tilde, is the K=l limit of (4.23).

The generalization of the cross polarization dynamics is now

straightforward. Instead of (4.9) we have

p (0) I
z

(4.24a)

If the dynamics of the second term causes its inversion at some time

t ,then
opt

p (t )
opt

+ (2NK/ (N+ K
2
»S

z
(4.25 )

Choosing K = IN gives SPETTERS: spin polarization with total transfer

of entropy by resonant selection. It is total cross polarization as



This not only saves
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described by (4.13) and (4.15). Of course, since K is integral, it cannot

always be set to /:N, but the nearest integer values are nearly as good.

If only the constant term of (4.24) contributes to the S magneti-

zation, then one obtains the quasi-equilibrium limit, which is half as

great. Figure 42 shows the quasi-equilibrium magnetization in units of

(YI/YS)MOS as a function of K for N = 1, 12, and 144.

The Hartmann-Hahn condition (4.7) has the same efficiency as K = 1.

In the language of spin temperature theory, it suffers from a mismatch

of heat capacities. When the I and S reservoirs have reached the same

temperature most of the coolth or negentropy still resides in the I spin

order. A transverse frame analog of K ~ /:N is formally possible as a

particular case of (4.12) with (n'/m') ~ /:N. The difficulty is in pre-

venting decoupling of the two species in the presence of different nuta-

tion frequencies. By replacing nutation frequencies by phase shifts,

SPETTERS increases the flexibility for designing a sequence with effective

contact between reservoirs. In addition, by using the longitudinal

magnetizations as reservoirs it offers the possibility of having the

sometimes rapid I spin relaxation toward thermal equilibrium serve to

replenish, rather than deplete, the I spin reservoir during cross po1ari-

zation.

3. Multiple Quantum Cross Polarization of Quadrupolar Spins
(174-178)

In the preceding sections the goal of the cross po1ari-

zation processes discussed was to transfer magnetization on one spin

species to magnetization on another. If the target species has S ~ 1,

then it is useful to transfer the order of the I spins directly to

1 . 1 h the S . (174-178)mu t1P e quantum co erence on sp1n •

steps, but is often the most practical scheme since the large spectral
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Figure 42. The dependence of the quasi-equilibrium magnetization on

K and N for SPETTERS. The quasi-equilibrium magnetization in units

of (Yr/Ys) Mas is shown as a function of K for N = 1, 12 and 144 r

spins per S spin. For comparison, the Hartmann-Hahn condition is

equivalent to K = 1.
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range of quadrupolar nuclei frequently precludes spin locking of the

entire magnetization.

The methods for direct cross polarization of the double quantum

coherence of a several level system directly parallel those already

discussed in Section IVEI for S = 1/2. It is only necessary to substi-

tute the S = 1/2 system by the pseudo-two-level system formed by the

outer two levels. For a spin 1, the Hartmann-Hahn condition analogous

to (4.7) is found by replacing w
S

by the effective double quantum
p

nutation frequency in (2.40) thus obtaining

I
w

P
(4.26)

With this condition met, the spin locked I spin magnetization is found

to quasi-equilibrate with spin locked double quantum coherence on the S

spin. Multiple quantum spin locking is discussed further in Section VC.

The analog of the ADRF method has also been demonstrated(174,175,177).

This has the advantage of cross polarizing effectively over a broader

range of w
Q

and of being applicable to larger values of w
Q

. Furthermore,

relative to the SL method, it is capable of more closely approaching the

isentropic limit, just as is the case with ordinary cross polarization.

Applications with S = 1 have been made to both deuterium(174,175)

and 14N(176,177). With S = 3/2, the cross polarization of both double

(178)
and triple quantum transitions has been analyzed and demonstrated

in sodium ammonium tartarate.

C. The Spectroscopy of Heteronuclear Multiple Quantum Coherence

1. Overview

In the following sections a review is made of heteronuclear

multiple quantum (HMQ) studies of systems with a well-defined number of



spins. A single S spin andN I spins will comprise the system in all the

examples, but this will not be an important restriction for most of the

techniques. What is important is that the number of spins in the coupled

system be small enough so that there are at least some resolved high

order spectra. This will allow a richer interplay among the spin species

and in particular allow the parameters of XIS to be measured with high

resolution. This is in contrast to the situation of the preceding

sections where the I spins only served as a source of magnetization for

the dilute S spin, which then would usually be observed with I spin

decoupling.

Several of the experiments reviewed here have in common with the

cross polarization experiments the goal of obtaining chemical shift

information on the S spin with the sensitivity of the I spin. They

differ in one or both of two respects. First, spin locking is not

necessary to transfer magnetization back and forth between nuclear

species in small spin systems with resolved spectra. This may instead

be achieved by rf pulses to both species preceded and followed by periods

of free evolution of duration comparable to the inverse of the hetero-
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. (179)
nuclear coup11ngs . Second, even for S 1/2 it is not necessary

for net S spin magnetization to be present at any time in order to

h S h i 1 h Of (8,83,180)measure t e c em ca s 1 t . Such magnetization is a

I S(n = 0, n = ~l) operator. It can be advantageous to observe instead

operators with various n
I

and with n S ~ 0, whose evolution frequencies

are also sensitive to S chemical shifts.

The experiments may also be compared to cross polarization experi-

ments and to pure S spin experiments with regard to signa1-to-noise

ratio(82,180,181). A general comment is that whenever the coherence



Tables of sequences and further discussion can

during the evolution period is both prepared from I spin magnetization

and mixed back to I spin magnetization for detection, the signal-to-noise

ratio no longer has a necessary dependence on Y
S

as is the case when S

magnetization is· detected and line intensities depend on magnetization

transfer in one direction. Instead, Y
S

enters only through the hetero­

nuclear couplings, which determine the timing of the excitation periods.

So long as these periods can be optimized, while still remaining short

compared to irreversible relaxation times, then Ys does not figure in

the line intensities.

In such a case, the line intensity considerations are little changed

from the homonuclear case; the magnetization available to a certain

order must be assessed according to the excitation dynamics and appor-

tioned among the lines (Secs. IIE4, IIIB1, and IIIC8). Several cases of

HMQ spectroscopy with I spin magnetization have been discussed where

absolute or relative line intensities can be calculated(82,83,85,180).

2. Pulse Sequences for HMQ Spectroscopy

The similarities and differences between the homonuclear

and heteronuclear time domain multiple quantum experiments can be

brought out by examining some of the pulse sequences which have been

used. The survey here will not be exhaustive. Some heteronuclear

sequences involving frequency selective pulses were already mentioned

in Section 1IC2(47,48).

209

be found in several of

Figure 43 shows a

h f
(83,180,181)

t e primary re erences .

. (82)
typlcal example of a HMQ pulse sequence .

The approach is closely analogous to the homonuclear sequences of

Figures 3, 4, and 13. For the most part, there is a pulse on the S

spins for each one on the I spins. These strong pulses may be given
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Figure 43. Simple pulse sequence for HMQ spectroscopy in an inhomo­

geneous field, Except for the (optional) absence of the first n/2

pulse on the S spin the two species are treated symmetrically, The

phase shifts between shots indicated by ~ on the S preparation pulses

would in other applications be on the I preparation pulses or on

b h . d' IdS Th ... 1at sp~ns to separate spectra accor ~ng to n an n, e ~n~t~a

and detected magnetization here is that of the I spins. A hetero­

nuclear coherence transfer echo is also incorpo~ated and the part­

icular coherence observed selected by choice of the periods 6 1 and 6 2 ,



simultaneously or in rapid succession without changing the propagator,

since the rotation operators for the different species commute. The

excitation and evolution periods include rr pulses to eliminate effects

of static magnetic .field inhomogeneity. The rr pulses in the excitation

periods also serve to make the sequence even (or odd) selective (Sec.

IIIC2 and Ref. 180) if the I spins are fully equivalent or if the weak

coupling limit between inequivalent spins pertains. In this context

I S
the even (or odd) character refers to the quantity (n + n ) and not to

the individual quantum numbers. The initial (rr/2)S pulse is omitted,

so the even or odd selection does not apply to coherence arising from

the equilibrium S magnetization. It contributes here only to orders

(n
I = 0, n S = ±l), as can be seen by noting that the first rrS pulse

merely inverts it and the first (rr/2)S pulse gives S¢+rr/2 transverse

magnetization at the beginning of the evolution period t
l

.

The phase ¢ of the S spin preparation pulses was incremented

between shots to differentially label orders (n
I

, n
S

) with different

Svalues of n. In the general case, independent incrementation of the

preparation phase at the two applied frequencies is necessary to separ­

ate by all values of n I and nS using extensions of either PFT or TPPI

(Sec. IID2).

The sequence of Figure 43 also includes a heteronuclear coherence

(80 82 83)
transfer echo " to separately echo the signals in t 2 from dif-

ferent orders as is illustrated for the homonuclear case in Figure 14.

The echo condition for detection through the I magnetization is
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(4.27)

This sequence was used to obtain the l4N double quantum (n
I = 0,

Sn = 2) spectrum of the I
4

S system of the ammonium ion in isotropic



(82)
solution using only the proton magnetization . The lack of quadru-

polar splitting in liquids makes it impossible to excite such multiple

quantum coherence by irradiation of the S spin alone. This problem had

earlier been approached by spin tickling of the protons, which allowed

the l4N magnetization to be interconverted with the same coherence(182).

Other HMQ sequences involving coherence transfer by (nI2)I S pulses,
have been demonstrated on the 1

3
S system of l3CH

3
1 in isotropic solu-

, (180) and hIS f d "1' d' ' Ii 'dtlon t e 2 0 l-acetonltrl e orlente ln a nematlc qUl

(181)
crystal .

A somewhat different approach to exciting HMQ coherence is exempli­

fied in Figure 44(83). Here the heteronuclear interaction XIS is ini-

tially eliminated by S spin decoupling, while the homonuclear interactions

are used during T to prepare coherence characterized by one or more
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values of
I

n , but with n
S

= O. The simplest two pulse preparation se-

±l quantum number to what had been I spin coherence. The mixing

natural abundance of ~l%.

quence on the I spins is depicted, but for more than a few I spins the

order selective methods of Section IIIe should be used during the de-

coupling. Preparation is completed by a period of free evolution 'IS

followed by a n/2 pulse to the S spin. This has the effect of appending

S
the n

period is similar and simply reverses the two step procedure.

This approach is particularly valuable when the sample consists of

a collection of systems differing only in the terms of the Hamiltonian

involving the S spin. The most important such situation is that of

13
organic molecules where the protons (I) are accompanied by C (5) at a

, 13
A typical molecule will have a slngle C

located in anyone of the carbon positions. The decoupling renders

these isomers equivalent to a good approximation, so the I spin



213

I ."./2 ."./2 7T ."./2

j T ~
t,

~
t,

~ T- -2 2

S ."./2 7T ."./2JDecouple~ ~ ~DeCOUPle
~Bl 8112-13045

Figure 44.

coherence.

S
Pulse sequence for sequential excitation of n = ±l ffilQ

The decoupling of the S spins during the periods T leads

to simplif.ication of the excitation dynamics. The heteronuclear

couplings are necessary and are allowed to act during the periods



excitation is simultaneously optimized for all of them. This optimiza-

tion does not require any S participation, so even the unlabeled mole-

cules contribute their signal at this preliminary stage. Decoupling of

the S spin during excitation can also lead to simpler line intensity

calculations (83) •

3. Techni~ues for Determining XIS in Anisotropic Phases

One of the most promising avenues for the application of HMQ

spectroscopy is in the determination of molecular geometry in anisotropic

phases. This information is contained in the direct dipolar coupling

between spins as noted already in Section IIF3e. Systems of two nuclear

species, usually protons and a chemically dilute nucleus, offer impor-

tant advantages over the purely homonuclear case.

The first of these advantages is simply that the number of unknowns

is smaller. Instead of the N(N- 1)/2 homonuclear couplings determining

~I' one has only N couplings in XIS for a system of N spins I and one

spin S. Because these Hamiltonians do not in general commute, these

problems are only separable if ~I is eliminated by multiple pulse homo-

. (61-63 148 149)
nuclear decoup11ng techniques " .

A second advantage is that the various candidates for the role of S

2 13C 14N, l5N, 3lp 29Si ) dspin (e.g., H" , have either a range of qua ru-

pole splittings or a large chemical shift range. By correlating the di-

polar spectral structure with either of these quantities, the job of

assigning the parameters D
i

" to particular pairs of nuclei is made far
J -

easier than in the case of nearly isochronous protons.

These advantages motivated a number of studies over the past decade,

which are often referred to as local field spectroscopy(52,llO,183-l95).

These were among the earliest applications of two dimensional NMR. By
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combining homonuclear decoupling in one time dimension with heteronuclear

decoupling in a second, the correlation of XIS with the spreading para-

meters is achieved.

Possibilities for combining homonuclear decoupling with HMQ spec-

troscopy and comparison of such methods with the single quantum local

field experiments have recently been discussed at some length(83).

Figure 45 is a schematic comparison of the way in which the local-fields

are probed by the single quantum and multiple quantum experiments. In

part (a) the situation ideally attained in single quantum local field

i " d Th DC" " h 2N "blexper ments lS suggeste. e splns experlences t e POSSl e

local fields of the N protons. While the resulting spectrum of 2N
lines

is a simplification over that obtained with couplings between the protons

present, it is still growing exponentially more dense with N. Further-

more, such a picture only holds rigorously when all couplings between I

spins are absent, while in fact the homonuclear J couplings are not elim-

inated by multiple pulse methods. The consequence is that in practice

. 13
only the nearest or next nearest protons are resolved in the C local-

field spectrum. The accuracy with which even these are measurable is

well below that set by irreversible relaxation, since one is in fact

observing not single transitions but unresolved multiplets.

A somewhat more favorable situation prevails in principle if the I

spin single quantum spectrum is observed. Here in the local field limit

13
one predicts only 2N lines, since each proton sees only the lone C and

it may be up or down. Again homonuclear J couplings spoil the picture,

b d " h f h 1"· 1 d 1" I (83)roa enlng eac 0 t ese lnes lnto unreso ve mu tlP ets .

The situation encountered in HMQ spectroscopy is very different.

Even if the couplings between protons were completely absent during the

evolution period, the prior coherent preparation is such that their local
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Figure 45. Schematic representation of the single quantum random local

13
field and multiple quantum ordered local field for a system of one C

and N protons. (a) In the single quantum experiment the protons are

assumed to be uncoupled from one another. A total of 2
N

different proton
13

configurations are possible, one of which is shown. The C heteronucleus

may experience any of these different proton local fields. (b) In the

heteronuclear multiple quantum experiments the protons are excited as a

coherent group. One of the six possible groups of 5 protons is illus­

trated. This fewer number of ordered local fields enhances spectral

resolution by reducing the number of possible transition frequencies.

These frequencies measure sums and differences of individual heteronuclear

couplings, thus providing information on relative signs to which the

single quantum spectra are insensitive.



13
fields appear to the C as being ordered in only a small number of ways.

The grouping sketched in Figure 45~) shows one of the N ways in which

(N - 1) of the I spins can be singled out. Thus, for example, the

(n
I = (N-l), n

S = 1) spectrum has in general 2N lines. This number is

not affected by the unavoidable J couplings between the I spins and so

resolution at the level of single transitions is possible.

Another feature of the HMQ spectra is that the line positions are

sensitive to the relative algebraic signs of the heteronuclear couplings.

This is analogous to the case of weak coupling in liquids discussed in

Section IIF3c. These signs are crucial to geometric interpretation of

the direct dipolar couplings, but are not manifest in the local field

limit of the single quantum I or S spectrum.

Figure 46 shows the partial energy level diagram of partially ori­

13
ented 1- C-benzene which is necessary to.explain the high order HMQ

(83)
spectra . The case depicted is relevant to the case where Xl is the

unperturbed Hamiltonian X. or, with a change in the exact positions
lnt

of the levels, to the case where the effective multiple pulse Hamiltonian

commutes with both I and S (61,83). Transitions between states on the
z z

left or between states on the right correspond to n S = 0 transitions and

13may be observed without any irradiation at the C frequency. Those

217

transitions between states on different sides of the figure are character-

S
ized by n = ±l and are excited, for example, by the sequence of Figure

44. Only the Al states of the extreme Zeeman manifolds are shown. Their

I S
positions are determined by the spectra (n = 6,5; n 0,1) which in

turn is the minimum data necessary to characterize the heteronuclear

couplings F
iS

' Usually lower order spectra will also be desirable.
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13
Figure 46. Partial energy level diagram of the Al states of C

benzene. This is a typical heteronuclear energy level diagram.
I S

The states may be grouped according to both M and M (lower case

m in the figure). Transitions within a column are characterized

by n
S = 0 while those between columns are n

S
±l transitions.

217b



V. RELAXATION

A. Overview

1. Reversibility and Irreversibility

The resolution and the sensitivity of multiple quantum

experiments is ultimately constrained by irreversible processes of

relaxation. In some ways these constraints are looser than those of the

single quantum experiments and in other ways they are more severe.

Before making these comparisons it is useful to review some notions of

reversibility and irreversibility in NMR.

Consider once again the fundamental phenomenon of the f.i.d. after

a single strong pulse. The decay of this transient is often loosely

referred to as transverse relaxation and characterized by a time T
2

,

but it has long been recognized that in fact the observed disappearance

of the signal can in different circumstances be due to a number of

distinct phenomena. The most trivial cause of decay, static magnet

inhomogeneity, has already been discussed in relation to the multiple

quantum experiments (Sec. lIE). It is the most obviously reversible

cause of transverse decay.

A more subtle case is the decay of the f.i.d. for a large system

of coupled spins with an unresolved single quantum spectrum. Here the

-~f.i.d. vanishes on a time scale set by M
2

That such a system is not

necessarily undergoing rapid irreversible dephasing on this time scale

is clear from several types of experiments.

One of the earliest and experimentally simplest demonstrations of

218

h . h h f' 1 ki (133-137)t is lS t e p enomenon 0 spln oc ng . The spin locked

magnetization decays with an exponential time constant TIP which is

-~often orders of magnitude longer than M
2

. The consequences of this



fact for signal energy were discussed in Section IIIB2. Another class

of experiments which demonstrate long lived coherence in broad line

systems are the various multiple pulse dipolar line narrowing sequences

(61-63,148,149)

In the spin locking and multiple pulse experiments the intense

continuous or rapidly repeated irradiation might be thought to be

preventing irreversible dephasing by decoupling the spin system from the

very processes responsible for relaxation. An analogy would be the

irreversible dephasing in liquids which arises from random diffusion in

a field gradient. Such relaxation is indeed eliminated by spin locking

(86)
and also by the more familiar rapid sequence of TI pulses .

h
(121)

That this analogy is flawed is demonstrated by the magic ec 0

(145 196) .
and other time reversal experiments ' already mentloned in

Sections IIIA2 and IIIC6. In these experiments the system may evolve

far from the observable initial condition of transverse magnetization

and still be retrieved. This single quantum evolution was described in

Section IIA3 as a unitary conversion of the "visible" £ = 1 tensor

operator into "invisible", multipolar single quantum operators charac-

terized by higher values of the angular momentum quantum number £.

On the other hand, loss of coherence due to translational diffusion

in a field gradient is truly irreversible; to recover it would require

reversing the spatial trajectories of the molecules themselves.

The viewpoint taken here then is that any evolution of the system

due to a static spin Hamiltonian is in principle reversible; it is not

described by a reduction in Tr(p2). The entropy of the spin system is

conserved under unitary time development of its density operator,

regardless of the complexity of this time development. Thus there is no
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thermodynamic inconsistency. The practicality of actually reversing the

spin dynamics in a particular case is a separate matter.

This still leaves the question of the mechanism of the various

truly irreversible relaxation processes. Radiative mechanisms both

coherent and spontaneous, are almost always negligible in NMR. In

nearly all cases the irreversible decay is due to fluctuations of

diagonal or off-diagonal terms of the spin Hamiltonian due to random

motion of the lattice. The theory of this relaxation is well established

(18,26,28,197-201) d d f
an is totally applicable without fundamental mo i i-

cation to any observation made with multiple quantum NMR.

This is not to say that there is nothing new in multiple quantum

relaxation studies. Novel features arise because of the greater variety

of observables which are measurable in practice. This is the subject of

S ' VB d VC d f . d' . (13,29) I h ' dectlons an an 0 prevlous lSCUSSlons . n t e remaln er

of this section we consider the role of the familiar phenomenological

relaxation times as constraints on the multiple quantum experiments

already discussed.

2. Relaxation Times as Constraints

In the many level systems necessary for multiple quantum

phenomena there are of course a great number of different relaxation times.

In this section it will be useful to refer to exponential time constants

T
I

, T
Z

' and TIp even though the closer analysis, which will be necessary

subsequently, shows that there are many times of each type.

The spin lattice relaxation time T
l

is the longest of these times

and limits the repetition rate and thus the sensitivity of the multiple

quantum experiment much as in the single quantum case. The major dif-

ference is that the two dimensional nature of the experiment and the
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greater complexity of the pulse sequences can lead to subtle line amp1i-

tude anomalies when the repetition period is less than several T
l

. On

the other hand, these are frequently not a concern and more rapid repe-

tition is common and particularly advantageous in the presence of multi-

plicative noise (Sec. IIB3).

The transverse relaxation time T
2

constrains the multiple quantum

experiment in diverse ways. The most obvious is that it sets an upper

limit on the useful length of t
l

, which must vary over several times T
2

to allow accurate linewidth. The more difficult question is the way in

which T
2

processes limit the length of the preparation and mixing periods

and consequently the number of quanta n. It is evident from the discus-

sions of the preceding sections that the length of the excitation periods

can not be much longer than some T
2

since off diagonal elements dominate

in p during these times. For the simplest sequences, only single quantum

coherence is relevant during T and T'. In general, however, the various

orders are rapidly interconverted by rf pulses and no easy prescription

for the relevant decay time is available, though the ordinary TIp is of

the right magnitude and is experimentally accessible.

If some such estimate of the maximum length allowed for excitation

is made one is left with the problem of how long it takes to excite lines

of a certain order. Again, there is no simple rule, but some rough

guidelines have emerged. The greatest number of calculations have been

(lIB 126)
done for dipolar coupled systems of up to eight protons ' .

For the sequence of three n/2 pulses the high order coherence typically

-~
reaches a first maximum in a time T of less than several times M2 .

This maximum will usually be far less than the ideal order selective

maximum (Sec.llleB), which in larger systems becomes increasingly unlikely
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to be approached nonselectively even in a time T
2

. For such systems, the

-~quantity M
2

serves as an approximate correlation time, in the sense of

Section IIIBI. An effective subcycle of an order selective sequence

(Sec. IIIC6) will also extend for comparable time or longer, so that a

period T ~ n Mi is an optimistic lower bound on the time needed for a

selective excitation period. Since higher order sequences (Sec. IIIC?)

. (145)
are antlcipated to be increasingly necessary for larger systems a

2 -~more cautious estimate is T ~ (4n) M
2

.

this suggests a maximum n in the neighborhood of 15.

Lacking still is a comprehensive understanding of how the production

of higher order coherence depends_on the distribution of dipolar couplings

so it is not clear that an estimate in terms of a single parameter like

-~M
2

will be generally useful. Roughly speaking, the smaller the range

of the parameters D.. the easier it is to create high order coherence.
1J

In the limiting case of an ~ system where all D
ij

are equal,then n = N

quantum coherence is created with perfect efficiency in a time T = (n/3D)

with two pulse preparation(126). In adamantane, where ~I is dominated

by only a few near neighbor intermolecular couplings, spectra with n> 20

. (196)have been observed using a two-quantum select1ve sequence .

B. Longitudinal Relaxation Times

1. Master Equation Description for the Individual Populations

The relaxation of the populations of an ensemble of spin

systems has the form of a set of coupled first order differential equa­

tions with constant coefficients(lB)

P .. (0))
JJ

(5.1)

The number of independent rates is constrained by the conservation of



and differences of Larmor frequencies may also enter.

Tr(p), by detailed balance, and by the particular mechanisms responsible

for the coupling to the lattice. In high field the only significant

mechanisms involve an exchange of phonons at Wo or 2w
O

between the spins

and the lattice. For heteronuclear systems, energy exchange at the sums

The rates W.. are
1J

particular sums of spectral densities at these frequencies. These spec-

tral densities are the Fourier components of the various correlation

functions between nonsecular terms of the spin Hamiltonian. The time

dependence is a result of the motion of the lattice.

The applications of this formalism to spin systems with several

(202 203)
levels have been reviewed ' . One approach to making sufficient

measurements to measure all the independent rates is to prepare the

system with a variety of different nonequilibrium population distribu-

tions and monitor the recovery of these populations toward equilibrium

by transferring population differences to coherence in a known way.

To date, multiple quantum excitation techniques have heen used to

prepare nonequilibrium population distributions for relaxation studies

. .(5 55)
only in nearly isolated quadrupole nucle1 ' . In principle, both the

order selective excitation of Section rrre and the simple nonselective

excitation sequences can be used to prepare various nonequilibrium

population distributions in more complex systems. The efficiency of

these schemes is low, particularly in systems of many spins. This is

because most of the equilibrium population differences are either un-

perturbed (with high order selective sequences) or are converted to

coherence (with nonselective sequences). Nevertheless, the strong pulse

excitation methods offer an alternative means of preparing combinations

of population differences which are not attainable with frequency

223
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selective inversion when the single quantum line density becomes great.

Once some nonequilibrium population difference has been prepared

the next step in any spin lattice relaxation experiment is to convert

it to coherence after a variable delay. Usually this is single quantum

coherence, since this is directly observable as magnetization. Further-

more the single quantum lines have the great advantage of being linearly

dependent on individual population differences for small pulse angles (21) .

These individual measurements become inaccessible when the single quantum

lines are unresolved. One possibility, mentioned already in Section IIIC9,

is to label population differences by a prior period of high quantum

evolution so that the single quantum coherence resulting from them is

separable from the bulk of the single quantum coherence.

Of course, the nonequilibrium population differences are also in

principle measurable through the particular multiple quantum line inten-

sities which result from them when they are used as initial conditions.

The analysis is highly nonlinear in general and requires a quantitative

characterization of the excitation propagators as is obtained by exact

dynamical calculation for well characterized internal and rf Hamiltonians

(Sec. IIIBl).
<

2. Other Descriptions of the Quasi-constants

The use of the individual state populations to describe

the diagonal part of the density operator loses much empirical import

when the system is too complex to resolve individual lines. It is well-

(18 31 204) .
known " that even 1n macroscopic spin systems, as occur for

abundant spins in solids, there are at least two experimentally access i-

ble constants of the motion. These are the longitudinal magnetization

or Zeeman order and the energy of interaction between the spins or dipolar

order.
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An experimentally convenient way of preparing and monitoring dipolar

(205 )
order is the three pulse sequence (~/2) -T-(~/4) -t -(n/4)-t For

x y 1 2

short t
l

the measurement is complicated by interference from double

(206 207)
quantum coherence ' . In fact such a sequence is a nonselective

multiple quantum experiment and must be expected, in "general, to monitor

a variety of coherences and nonequilibrium population differences. The

coherence, including n = 0, is easily avoided in systems with unresolved

spectra by keeping t
l

long. Signal arising from Zeeman order during t
l

is also easily accounted for since it appears immediately after and ortho-

gonal to the final pulse. These are the usual considerations for using

the sequence to measure the decay time TID of the dipolar order(205).

The more subtle question is whether the sequence does not also

monitor other non-equilibrium population differences which, like dipolar

order, are nearly constants of the motion for times t
l

much greater than

-~the inverse spectral width M
2

. Some evidence for such other quasi-

(208 )
constants has been seen in the proton signals from liquid crystals

and partially deuterated solids(209). In each case, even for long t
l

,

the signal evoked in t z by the final pulse was found to depend not only

in size, but also in shape, on the length of the preparation period T.

Such observations suggest that the density operator contains during

t
1

quasi-constants orthogonal to ~z and 1z and that these have different

dependences on T and t z than either dipolar or Zeeman order. The change

in their relative contributions to the signal with T, leads to the dif-

ferent signal shapes in t z or wZ.

That such quasi-constants exist can be easily seen from the fact that

any operators of the form (I )p (U
i

" )q with integers p and q contain
z nt

only diagonal elements regardless of the size of the system. Though not



an orthogonal basis~ this set certainly contains operators which are

neither linear nor bilinear in the individual spin operators and which

are orthogonal to I and ~z. The unanswered question is whether such
z

terms can be experimentally isolated and theoretically analyzed in

systems with unresolved single quantum spectra so as to provide addi-

tional relaxation parameters. The principle difficulty~ of course~ is

that the ratio of diagonal to off-diagonal density matrix elements de-

-N
creases as (21+1) for N spins I. Any nonselective approach soon runs

into problems of signal to noise as N increases, since the greatest part

of the original order Tr(p2) becomes coherence.

C. Transverse Relaxation Times

1. Complete Characterization of the Spectral Densities

Perhaps the most fundamental fact about time domain mul-

tiple quantum studies is that they allow one to measure more quantities

on a given system. Even for systems of only several levels this becomes

invaluable for a complete characterization of the relaxation. Once a

model of the relaxation process has been adopted any Lorentzian line-

width can be expressed in terms of some number of independent spectral

densities. The number of independent spectral densities will generally,

exceed the number of single quantum lines. In some cases the multiple

quantum linewidths will suffice to complete the characterization. In

any case, they provide a fuller picture. This point has been a motiva­

tion for a number of multiple quantum relaxation studies in liquids(8,

29,47-49)

The relaxation of deuterons on small molecules dissolved in liquid

crystal solvents has been the subject of a number of studies using mul-

tiple quantum techniques in order to obtain a complete characterization

226
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of spectral densities. The advantage of deuterated systems is that the

relaxation is dominated by the fluctuating quadrupole Hamiltonian. Inter-

molecular dipolar relaxation is often negligible, allowing a model based

on the orientational dynamics of a single molecule.

Expressions needed for a single deuteron, for the various relaxation

rates in terms of spectral densities were given even before the value of

the time domain multiple quantum experiment for such studies was appre-

. d(210-213)c1ate . In a series of studies combining both spin lattice

relaxation time measurements and various single and multiple quantum

(73,214-216) (217218) d h (123,219)transverse measurements, one , two ' an tree

deuteron systems have been examined. The measured spectral densities are

modeled in terms of rapid anisotropic reorientation and slower fluctua-

tions in molecular ordering due to director fluctuations of the liquid

crystals and translational diffusion of the solutes.

2. Enhanced and Reduced Sensitivity to Fluctuations

The different sensitivity of various lines to particular

relaxation mechanisms is particularly easy to visualize for the adia-

batic contribution to the linewidths. This is the pure dephasing contri-

bution, which is proportional to zero frequency spectral densities and

which originates from fluctuations of diagonal terms of the Hamiltonian.

Figure 47 illustrates the way in which certain transitions can have an

enhanced or a reduced sensitivity to particular relaxation mechanisms.

The energy level diagram in the center (part b) is that of the time

averaged Hamiltonian which determines the line centers. In part a) the

energy level diagram is redrawn with some dipolar terms varying from left

to right over some small range. The slope of each energy level is a

measure of its sensitivity to the terms which vary. Note, for example,
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(a)

no
fluctuations

(b) (c )

XBL 8112 -12900

Figure 47. Enhanced and reduced sensitivity of transitions to linear

and bilinear fluctuations. The sensitivity of the transverse relaxation

times of particular transitions to low frequency fluctuations is apparent

in the extent to which the transition frequency changes as a term in

the Hamiltonian is varied. In part a) the dipolar terms vary from

left to right. In part b) the average energies are shown. In part

c) the total Zeeman energy varies. Single arrows represent transitions

which are insensitive to the particular fluctuation. Double arrows

represent transitions which are particularly sensitive.



that the extreme energy levels vary in the same way with any change in

dipolar couplings. Transitions connecting energy levels which vary

identically with the changing Hamiltonian have a constant frequency.

These are indicated by single arrows. Thus the spin inversion transi­

tions (Sec. lIIA4), such as the total spin transition, are insensitive

to dipolar fluctuations. This applies not only to their line positions,

but also to the adiabatic contribution to their linewidth. Other

transitions, indicated by double arrows, are particularly sensitive to

dipolar fluctuations, because the energy levels which they connect move

in opposite directions as these terms change.

In part c) a similar picture is drawn for the case of a fluctuating

Zeeman term, as would be experienced by a molecule diffusing through an

inhomogeneous field (Sec. lIES) or diffusing with respect to a distant

paramagnetic center. For a fluctuating field which is homogeneous over

the dimensions of the observed spin system, the sensitivity of the line

positions to the time average field is proportional to n (Sec. IIDI),

while the sensitivity of the adiabatic dephasing rate to the fluctuations

in the field is proportional to n2 (220). Thus the total spin transition

which is insensitive to bilinear intramolecular fluctuations is most

sensitive to external fluctuations.

3. Correlations in Fluctuating Fields

A more interesting case arises when the fluctuating field

may vary across the system dimensions. This occurs when this dimension

is comparable to the distance of closest approach to a paramagnetic

center. In such a situation the relaxation rates may be used to evaluate

the degree of correlation of the fluctuating field at the different spins

of the system(29,220). This effect has been studied in the AB proton

229
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system of 2,3-dibromothiophene in the presence of either dissolved 02 or

the bulkier paramagnet 1,1-diphenYl-2-picryl-hydrazyl(29). It was found

using single and double quantum linewidths that the correlation in the

fluctuations was greater for the larger relaxation agent.

This question of the degree of correlation in paramagnetic relaxa-

tion has also been investigated in the oriented system of acetonitrile

and di-t-butylnitroxide in the liquid crystal EBBA (p-ethoxy-benzylidine

n-butylaniline). Figure 42 shows the ratio of the transverse relaxation

rates of the n = 2 and n = 3 transitions to that of the n = 1 transitions

for the acetonitrite methyl group as a function of a correlation factor

~(220). This factor is a measure of the extent to which the relaxation

process retains the C
3

symmetry of the time averaged Hamiltonian. The

various lines are for different limits of the electronic and nuclear

correlation times. The experimental dependence of the multiple quantum

linewidths on concentration of the paramagnet demonstrated that the

curves C and C' applied and that the relaxation was nearly fully symmetric

(~ = 1). (221)Calculations have also been performed for two methyl groups .

4. Spin Locking of Multiple Quantum Coherence

In Section IIIB2 spin locking of transverse magnetization

was discussed as a way of stopping the dynamics of the system due to X
int

in order to prolong a state of high signal power in the detection period.

The more usual motivation for such single quantum spin locking with

intense fields is the measurement of the irreversible decay of coherence,

characterized by TIp' without the complication of reversible, unitary

dynamics. In addition, it is sometimes possible to characterize the

spectral densities of low frequency motions by measuring TIp as a function

H
(26)

of the rotating frame frequency w
p

= y 1 .
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Figure 48. The ratios of transverse relaxation rates of an oriented

methyl group (I) due to a fluctuating paramagnetic center(s). The

unprimed letters indicate the ratio of double to single quantum

rates. The primed letters indicate the ratio of triple to single

quantum rates. TIle three letters distinguish different regimes for the

correlation time T
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» Ws . Each

function of a correlation factor ~ which measures

the extent to which the fluctuating field of S is the same at each of

the three methyl protons over periods of -T . [By permission from J.
c

Tang and A. Pines, J. Chern. Phys. ~, 3290 (1980).]



In Section IIC2 a variety of studies were reviewed involving fre~

quency selective double quantum irradiation on a three-level system.

Analysis of these experiments is conveniently approached by replacing

the usual Liouville space operators of a dipole allowed two level system

(I • I • and I ) by their double quantum analogs. The double quantumx y z

analog of w
p

is (W~/WQ)' which already appeared in (2.40). The double

quantum analog of spin locking is illustrated in Figure 49(7). The spin

system is the carboxyl deuterons of crystalline oxalic acid dihydrate.

The pulse sequence is shown in the inset. The first segment of 58 ~sec

is a n/2 (~13) pulse (Sec. IIC2) which prepares the double quantum co­

herence. A phase shift of the rf by 45° follows. This is analogous to

one of 90° for a two level system; it makes the effective radiation

interaction Hamiltonian proportional to the density operator. This weak

irradiation is sustained for a variable evolution time (T in Fig. 49)

followed by mixing and detection.

2
If the couplings between spins are less than (Wp/WQ), .they are trun-

cated with respect to the radiation operator during evolution and cease

to effect the dynamics. In this example this effect resulted in a decay

time of 2.2msec. This a factor of ten longer than the apparent decay of

the coherence in the absence of the spin locking.

The extension of this concept to the total SVin coherence of any

system is straightforward since an order selective pulse sequence will

always reduce the problem to a two level problem. Similarly, for all

QTLS (Sec. IIIC8c) and QFLS (Sec. IIIC9c), the form of the prepared high

quantum operator is related to the effective preparation period Hamil-

tonian by a phase shift of n/2n. Alternatively, multiple quantum spin-

locking could be achieved by adiabatically bringing an order selective
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Figure 49. Double quantum spin locking on a spin 1 nucleus. A double

quantum n/2 pulse is followed by a phase shift of n/4 in the rf phase

and continued irradiation. The effective radiation interaction operator

is proportional to the density operator, resulting in spinlocking of

the double quantum coherence. The decay time, which is a double quantum

analog of TIP' is measured through the signal which develops after a

mixing pulse. The system is the carboxyl deuterons of crystalline

oxalic acid dihydrate. [By permission from S. Vega and A. Pines, in

"Magnetic Resonance and Related Phenomena", (H. Brunner, K. Hausser, and

D. Schweitzer, eds.), p. 395, Bettz Offsetdruck, Hemsbach, 1976.]



sequence from far off resonance into resonance. In this case no phase

shift between preparation and locking is used. The subcycles of Section

IIIC6c are particularly applicable for adiabatic spin locking, since the

offset term is effective.

In all of these cases the selective multiple quantum spin locking

method is only of obvious utility for relaxation studies if there exists

some broadening mechanism, such as intramolecular couplings, to be

eliminated and if the effective multiple quantum nutation frequency is

large enough to truncate it. For a dipolar coupled system of spins 1/2

this nutation frequency is difficult in general to estimate beforehand,

but it is likely to be inadequate in many cases since it is comparable

to or less than typical dipolar couplings.

An alternative possibility for spin locking of multiple quantum

coherence is to use an intense pulse of constant phase as in ordinary

spin locking. Under such irradiation there must be a class of quasi­

constants since any operator of the form (I )p ~yy)q is in this class
y

for radiation of phase y. xyy
is given by (3.54). This class contains

coherence of all orders n, but it is not obvious without calculation

which particular linear combinations of lines would be spin locked

nor under what conditions the decay times observed would provide infor-

mation complementary to the ordinary TIp'

5. Exchange

A variety of rather different processes can be loosely

grouped as exchange phenomena. These have the common feature that

magnetization or coherence is transferred from one transition to another

during a period of free evolution. Thus the simple picture of resolved

transitions, each with its own T
2

is inapplicable. The different
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situations where this occurs are variously viewed as population processes

(spin diffusion) or off-diagonal processes (exchange broadening and

narrowing). Recently 2D Fourier transformation has been applied to

(222)
these problems .

A great many applications of NMR relaxation theory have been made

to the problem of chemical exchange and the field is frequently

i d (223-226)
rev ewe .

the lattice randomly exchanges spins between different environments

either within or between molecules. One application of time domain

multiple quantum NMR has been made to such a problem: the n= 6 proton

spectrum of cyclooctatetraene in a nematic solvent was used to

measure the rate of intramolecular bond shift exchange(150). This

process had previously been analyzed through the spectrum of proton

(227)
pairs in the partially deuterated compound . The motivation for

the multiple quantum study was that the relatively sparse high order

spectra provides resolved lines without isotopic labeling. A diffi-

culty encountered in practice is that the T2 due to the exchange process

itself limits the efficiency of multiple quantum excitation. This

decreases the signal-to-noise ratio sharply in the interesting region

of exchange broadening.

Another case where the simple analysis in terms of isolated lines

fails is when two transitions are degenerate. In such a case relaxation

mechanisms can transfer population differences or coherence between

(200)
pairs of levels . This may occur even between different irreducible

representations if the time dependent mechanism breaks the symmetry of

the average Hamiltonian. Exchange between degenerate multiple quantum

i i h b d b 1 h
(48,49,218)

trans tons as een note y severa aut ors . This is a

situation where representation of the data in two frequency dimensions
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is particularly useful, since exchanging transitions which are degenerate

in wI may be separable in w
2

by the single quantum frequencies which

carry their signals(73) .

Spin diffusion, either spatially or between different frequency

regions of a spectrum, is also a form of exchange phenomenon, but one

which persists even in the absence of random lattice fluctuations. It

is usually viewed as change in the populations of some localized system

of a few levels, but can also be viewed as zero quantum coherence within

the larger system. As a process dependent only on the static spin

Hamiltonian, it is not irreversible in the sense of Section VAl.

Recently spin diffusion between S =1 nuclei in solids has received

renewed attention. It is relevant to the effectiveness of cross

polarization of quadrupolar nuclei as the magnetization gained from

the I spins will be to some extent shared even by"those S spins not

d · 1 l' d(228)
~rect y cross po ar~ze . The surprising feature is that spin

J iffusion is reasonably effective" even between 1=1 spins with dif­

ferent values of w
Q

(228-230). This would appear to violate energy

conservation, since the single quantum transitions do not overlap.

1 (228) h 1 l' (229,230) h bSamp e rotation and eteronuc ear coup 1ngs ave een

implicated in mechanisms for making up this mismatch.

A simpler mechanism has been advanced(23l) which involves only

the homonuclear coupling among the I spins. The condition that the

quadrupolar satellites are well resolved turns out to be a poor

criterion for whether the Zeeman order associated with a particular

W
Q

is a constant of the motion. The coupling between such different

sites can be formulated as an effective double quantum flip-flop

operator with a reduced, but significant, coupling constant. Further



work is necessary to sort out the role of the various mechanisms in

the experimental situations of interest.
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