
Presented at III All-Union
National Conference on
Particle Accele rators,
Moscow, USSR, Oct. 2-4,1972

TRANSVERSE TWO-STREAM INSTABILITY IN THE
PRESENCE OF STRONG SPECIES-SPECIES

AND IMAGE FORCES

L. J. Laslett, A. M. Sessler, and D. Mohl

Septembe r 1972

AEC Contract No. W -7405-eng-48

LBL-1072



To be IJublished in the Proceedings of the
III All-Union National Conference on
Particle Accelerators, Moscow,
Oct. 2 - 4, 1972

Transverse Two-Stream Instability in the Presence

of strong Species-Species and Image Forces

L.J. Laslett, D. Mohl, and A.M. Sessler

LBL-I072



TRANSVERSE TWO-STRF'JJ,1 mSTABilJI'I"I IN THE PRESENCE

OF STROnG SPECIES-SPECIES AND mAGE FaECES

*L.J. Laslett and A.M. Sessler

Lawrence Eerkele;,,- Laborator'J
University of California

Berkeley, California 94720

and

D. Mahl

CERN
Geneva 23, Switze~land

ABSTRACT

The theory of cohe.·C'ent transverse oscillations of u;"e) particle

species is extended to include strong species-species and linage forces.

It is ShOWl that in g~neral the species-speci.es force can conside:C3.bly

alter the instability threshold. Conversely, it is shC>·~Tn that the limit

on the perfor:J!e,~ce of an cJ.2ctron ring accelerator im'po~ed by the

re~uireQent of stable ion electron oscillations, is not sigaificantly

Yicr~ sup:r:)ytc:2 by the U.S ..L;tor:.ic EC2rw CC':tG:~L:sion.



1. INTRODUCTION

The transverse coupling instability of relativistic stabilized beams

has long been a subject of intensive study (e.g. ref. 1-5). Recently, it

has been emPhasized,5) that this two-stream instability can impose a severe

limit to the acceleration rate attainable in an electron ring accelerator

(ERA) .

A similar type of instability can also occur in synchrotrons or

storage rings when particles of the opposite charge are trapped in the
main beam. 6),7),8)

In the present note we extend the theory to include -- in an approxi­

mate way -- the influence of space-charge forces acting between particles

of the same beam ("species-species forces"), as well as image forces due to

the presence of walls. For simplicity, and because they are the most un­

stable modes, we shall concentrate on dipole oscillations.

We find that species-species forces and images can considerably -- and

in many cases adversely affect the instability threshold. In fact, to

explain the instability in the Bevatron it seems vital to include electron

electron forces in the theory.

In an electron ring accelerator acceleration column, where axial

focussing is provided only by ion-electron forces and electron images, we

hoped that the inclusion of images would relax the ion-electron instability

threshold. We shall show this is not the case.

2. OillLINE OF THE SOLUTION

We start with the eQuation of motion for a test particle of each

species. We include three types of forces, a "single particle force", a

"coherent force" and a "coupling force". The single particle force is

proportional to the displacement of the test particle, the coherent force

is proportional to the displacement of the entire same beam of particles

similar to the test particle, and the coupling force is proportional to the

displacement of the other beam. Each of these force coefficients is modi­

fied by images and/or species-species forces.

We assume harmonic oscillation of the beam centers and average the

single particle response over all beam particles. The averaging process

takes freQuency spread into account. The eigenvalues and eigenvectors, of

the coupled system which describes the motion of the two beam centers,
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determine the mode frequency (and hence thresholds aQd growth rates) and

the relative amplitudes of the two beams.

3. EQUATIONS OF lil0TION

To be specific, and clearly without loss of generality, we take the

beam species to be electrons (the replacements for proton beams is made in

Section 7). We normalize all frequencies to the average electron revolu­

tion frequency (Do) and denote the beam (electron) frequencies by lower

case q's and the stationary species (proton) frequencies by capital Q1s.

The equations of motion of the two test particles are

1

D 2
o

2

(~ + D ~\x + q2
\ dt de

2- 2-
x + ~ x - qc y ;: 0,

(1)

1

D 2
o

2 2­+Qy+Q y
u

2-Q x;: 0,
C

where x and yare the transverse coordinates (in the same direction) of

the test electron and test ion.

The quantities q2, Q2, q~, etc. will be discussed in more detail in

the examples given below. We remark, here, that in the absence of species-

species forces and of images:

2 2 2 D2
( Q2 ;: Q2 2q ;: qc + q

D2
;: + A ),

0 e 1
0

2
0,

~
;:

2 2
(qc ;: Ql ),

(2)
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and Zenkevitch5~

the (relativistic)

mass ratio be~deen electrons and ions, and

The extern~l focussing is characterized by

where we give in parentheses the notation of Koshkarev
2 my
~, M is

Ni
f = ~ the fractional ion

e
loading. The quantities qc and Qc are in this approximation -- the

electron and ion bounce frequencies in the potential well of the other beam.

The quantities q~ and Q~ are in general closely related to the coeffi­

cient (u + V + iV) of Ref. 9) which determines single be~~ stability

(resistive wall effect, etc.). For the electrons ",e have, e.g.,

4. SOLUTION

We solve (1) by ass~~ing that the beam centers oscillate harmonically

in time and space:

x =1 exp[i(n8 - vQot)],

(4)
y = ~ exp[i(n8 - vQ t)],o

and regarding the x- and y- terms in (1) as driviGg forces o In finding

the response of the test particle we, as is usual in Landau damping calcula­

tions, ignore transients and take rm(v) > + 0-- hence concentrating on

the un::;table :cange 0

In the case "lhere nonlinearity in the oscillation direction is negli­

gible the single particle response ; and ~ is simply the steady state

solution of a driven harmonic oscillator. In the case Gf important non­

linearity in the oscilla.tion we use the results of Ref. 10) to obtain

approxim3.te expressions for s and ~ valid for sm.all amplitude and small

noill i [Fe c'. l' i ty 0

'de introduce norrrl3.lized disLrib1.1.tion ftwctions f(pL g(a2 )) h(b2 )

faT the electrons, and F(p), G(a2 ), n(b2 ) for the ions, that describe the

r!,omeotU},: clistrHn:tioD, and the distribution of the irlc;oherent betatron

wnpli~10es af UIC particles, with b referring to the direction of the

ou: illation" He aSSll:i12 tl18,t the distributi.ons are uncorrelated so tbat

trIe 'Lee,]:l cc:nter i.c~ d'2terminecl by:

( 5)
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Thus we obtain:

(6)

where

(7)

and I u and I c are similar dispersion integrals for the ions (with

12 := 0).

50 APPROXIMATIONS

We know that the values of dispersion integrals, such as (7), are

priraarily determined by the width of the distribution functions. 9),11)

Hence we approximate (7) by neglecting the variation of the q2-coefficients

in the numerator and keeping only the first-order variation of the co­

efficients in the denominator. Furthennore, we circumvent questions of

self-consistency and assume that the coefficients and the distribution

functions can be independently selected. Thus, we write the characteristic

equation, associated with (6), in the form

(8)

Vlhere:

1/6q2 J f(p )g(a2 ) [_b 2h' (b2 )]
dpda2db2

2 2 ,
q - (v-n)

(9)

1/5l := J F(p)G(a2)[_b~/(b2)J
dpda2db2 •

Q2 _ v2
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The combined effect of three spreads can be treated only with

difficulty. Double dispersion integrals have in fact been treated in Ref.

11). The result is that the spread effective for damping is not the sum

of the spreads, but rather the Landau damping is mainly determined by the

larger of the two spreads. Hence we shall consider only the effect of a

single spread; namely the largest.

Finally, one may make a further approximation which we call the "slow

wave approximation"; namely we expand the denominators of (9) in partial

fractions and keep the term which is largest when v ~ (n-q), and when

v ~ Q. In this approximation -- and by expanding q ~ % + s(2lqj2ls)O'

etc. -- (8) takes the form

with

L.q - [J f(s)ds
- (n-~) - v

== 0 (10)

and

The quantity s

,,~~ [dd
s

(n Q~:) -q (s))]

,,~ ~(~L
is one of the spreading parameters

(11)

(12)

2 2p, a or b , and

f(p)dp or

f(s) ds == g(a2 )da2 or (13)

_b2 dh(b2 ) db2 [see ref. 8],
db

2

Jf(s)ds == 1.

Alternatively, we employ the term "improved slow wave approximation ll for

the approximation in which we retain (8) but approximate the factors that
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arise from the fast-wave terrr"s by the v-value (n-~) and Q.

60 STABILITY COlTDI'l'IOl'JS

A. Analytic Results

Stability conditions can be obtained from (8) or (10), by finding the

boundary (on which v is real) of the unstable zone (in which the imaginary

part of v is positive). To this end, the integrals of (9), or (11), need

to be evaluated; and in Table I we sUIDID3rize results, for the essential

component of (9) and (11), resulting from two different choices of distri­

bution functions o The Lorentzian distribution is studied, despite its

unphysically long tails, because the analysis is simple and because it can

be employed to establish an interesting general result (see Sect. 8). For

accurate results, a truncated distribution is required.

In the case of 6-functions for f(s) and F(s) (no frequency spreads)

the eigenfrequencies are determined from

(14 )

For a Lorentzian line, [f(8) CC (4s2 + 6~)-\ F(s) ex: (4s2 + 6i)-lJ,

Hi th equal SlOl'1 wave and fast wave freCluency spread and ",ith 6e and ~

the full "Hidths at half maximum, eCluation (lL~) is valid with

v -7 v + i 4::./2 in the first factor and v -7 v + i ~/2 in the second

factor o If, in addition, 6 e ~ 6 i = 6, the condition for stability is

whe:ce 1 01 is the growth rate in the absence of dispersiono

In the neighborhood of a resonance wc~ IHay use the improved slOH-wave

approxir."""Ltion o In the absence of frequency spread, (14) yields

v Q + d ± i , (16)
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(17)

and resonance occurs when d ~ O. For the Lorentzian line, and in improved

slow wave approximation,

, (18)

the full widths at half maximum in the fre~uencieswith 6p and 6

,0 \ eand In no - ~. stability of the solution (18) re~uires spreads such

that

2 2 [ 2] -1~cQc 4d
6 6. ~ - 1 + (~ ~) •e ~ qQ + .

Q

To suppress an instability that occurs within a narrow resonant fre~uency

band (where d will be close to zero), (19) provides the convenient

sufficient condition

(20)

For values of ~ etc. that are considered to be essentially known (~.~.,

from Table II). It is of interest to note, from (19) or (20), that both

6e and 6 i must be non-zero to suppress the instability.5)

Finally we turn to the case of the semi-circular distribution (see

Table I). For this distribution the damping is very different for the

fast and the slow waves and hence it is not reasonable to assume 6+ = 6_.

Rather, we employ the slow wave approximation and completely disregard the

non-resonant fast wave to obtain:

with

(21)

(22)
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,
(22)

After considerable algebraic manipulation it can be seen that stability

requires:

Again within a narrow band of instability, associated with the resonance

dl ';t 0 (where n - q - v ~ Q~/q and \Q-v \ ~ Q~/Q), we may write

or (24)

as ~ sufficient condition for suppression of the instability. The second

of the forms (24) clearly implies that we must require

and

f':, >
e 1:;1

(25)

The condition (23) is similar to the condition (19) found for the Lorentzian

distribution -- or (24) is sinular to (20) -- but with the width parameters

modified to correct for the anon~lous results arising from the extensive

tails of the Lorentz distribution [~.~., in the wanner suggested by (29) of

Sect. 6B below] • It is evident that for 'dave freCJ.uencies removed from the

central be~u frequency there is reduced Landau d~ping. With the abruptly

terminated Semi-circular distributions that led to (23) et seq., this limita­

tion is explicitly indicated by the conditions (2?). Again we note that

both ~ and~. must be non-zero to insure stability.
e l
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B. Numerical Formulation

For numerical work we proceed directly from (8) and (9) and again

employ Lorentzian distributions in s, with o± denoting full widths at

half maximum in the quantities \n nn
o

±q\ for the fast and slow waves of

the electron component and ~ correspondingly for the ions. If we then

let

and write

x = v - (n -...= ~),
+

x = v ± Q.o ,
+

(26)

we then find

g- = x + i 8..t, G = X + W ,
+ + + + :+

(27)

h = g - g - 2q , H = G - G - 2Q.o'+ - 0 +

[qo(x_ + g_)(x+ + g+) + h~] [Q.o(X_ + G_)(X+ + G+) + HQ.~]

_ hHq~2 = O.
c c

(28)

The imaginary parts of the expressions written above for g_, G_ are seen
+ +

to imply a damping that is independent of the distance by which the actual

frequency is displaced from the peak of the distribution. This results

from the unpbysically extensive tails of the Lorentz distributions that

were assumed for evaluation of 6q2 and ~2. For this reason we have

elected to replace, in the numerical work, these expressions by

~

g- x + i +
1°+1 '=

Ix+1
2

+ 0:+ +
+

(29)

G X + i ~
1

6
+ I

= IX+1
2

+ 6~+: +:

in the expectation that a more realistic type of distribution will be

described in this way. With this replacement we obtain an equation for
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tion,

which roots have been sought computationally=12)

From computational tests that employed paraneters similar to those

introduced in the example of the following Section, it was found (i) that

the values of the fast-wave dispersion parameters 6, 6 for the tvTO species
+ -

had little effect on the stability threshold (although it may be necessary

that they be, for example, some 3% of the respective slow-wave ~uantities

0_, 6+), and (ii) that (19) [or (20)] can be safely taken as a stability

criterion to be applied to the slovT-wave dispersion parameters after modifi­

cation in the manner indicated by (29). It was confirmed, moreover, that,

as expected,5) stabilization could not be obtained by introducing dispersion

into just~ of the two species.

7. PROTON SYNCHROTRONS Arm STORAGE RING

We assume that electrons created by scattering with the background gas

remain trapped in the circulation beam. Further, we assume the electrons

to be uniformly distributed around the circumference, and we neglect the

influence of the background gas ions. We take the proton and electron minor

radii as e~ual.

The proton and electron fre~uencies relevant to this case are given in

Table 11 0 In many situations of interest one can use, to a good approxima-

simplified relations obtained by taking ~ ~ v ~~d neglecting images.
zo

In this approximation the stability conditions (2L~) and (25) are con-

venj_ently expressed in terms of the II space charge ~- shift ll
, ~l' so that one

re~uires

~ 3
rJl~Li6 > f 1

e p vz
,

0

6 > f ~l JI:: ' (30 )e

6 >
~12

P 2
,

)' v
zo

where

2 N r R
(2/n:)

p p
(31)~l == )'b(a+b)
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Let us, as an example, discuss the case of the Bevatron, where an in-

stability of the debuDched beam at 6 GeV has been observed, and has been

cured by the provision of clearing fields. 7)

For typical operating conditions at 6 GeV we find Cl12
= 4 x 10- 3 and

~ 0.9. (More details nay be found in Ref. 13.) Hence, for stabilityVzo
we require

If we aSSlL'1le the re12"tively large sp:>:'eads 4= == 1. 5, .0:P =c: 0004, we

fi~d a threshold neutr~lization f = 0.24. Neglecting electron-electron

forces} the threshold f Ilould be a tolerable f > 1. Hence, in the case

of' thc~ Devatron, species- species forces appear to play a dom.inant role in

the determination of' the threshold. This situation is generally the case

in a proton ring if' the proton frequency spread is large and/or )' is

small.

8. AXIAL STABILrl'Y IN THE ERA

In the acceleration colllIrm of an ERA, or of aDy similar system in

"I-!hich translational j,Dvari2.nce of the configuration can be legitimately

assumed, it follm{s from eCluation (1) that

Q2 + Q 2 _ Q 2 O.
u c

From (17), "l-7e wo.y \·:ri te

,.....2 2q -- Clc
,

(34 )

'2? Q
c

2 .

As ';Ie shall see h21o'1, the invari2.ncc conditione inply thut images hardly

effect tbe C:.:x:io.l c:tc'..bili ty cODcH tLons in an BFi." 0

FrE:C}uency pal';clrY::ters fOl' r,l0 ERr\. have been derived in R~f. (14). rrhey

nrc pr'2sented i:-l Table III. ~:hesc fOl1:'lulas C2n b,". shrplified by asswrJng

- 12 -



1 » f » 1
2

)'

b(a+b)
» p/8,

€
e

in which case image contributions only appear in ~2 and ~.

For the Lorentzian distribution, e~uation (14) is valid with the re­

placement discussed just following e~uation (14). In view of (33), this

e~uation is independent of images. Thresholds are as has been discussed

in the literature,5) and above threshold we have the stability condition

(20), which takes the image-independent form:

6.6.. ~~Q.
e l. c c

-130.05 x 10 •

We note that the condition (36) will normally not be satisfied except

for working points with very small values of qc and/or Qc. Such working

points, however, are unattractive because both qc and Qc are "figures

of merit ll of an ERA device -- since Qc
2 is a measure of the holding power

of the ring and qc2 detennines the fractional ion loading.

For the semi-circular distribution, or the modified Lorentz distribution:

the thresholds and da~ping conditions depend slightly upon the image terms.

vle have undertaken numerical studies in order to ascertain the effect, on

the instability, of images and dispersion. We concentrate on the n = 1

parameters(dipole) instability and we refer to Table III and postulate
, 4 I - 4( IJ. ) R2 -13such that ,= 0, Cl = He b(a+b) =5.0 x 10 ,

C2 - 4(~e) ~ = -d>. x 10-13, and C3 == 4 (rr;) E
e

2
(Se- l )

(Such coefficients might result, approximately, from R = 3.5 cm,

a = 0.30/[2 cm, b = 0.15/12 cm, and 18e-1\ = 0.625/3.5). Then, with

M/m = 1836, we write

2 (Cl /1600 + C2 - ]{C
3

)·Ne~

2 (Cl + C - JiC ) ·Hiqc = 2 3

2 2 2q = qc ~

- 13 -



Q 2 ::: (40/1836 )<1
2

u c

Q 2 ::: (40/1836)(Cl + C2 - Jl C
3

) .Nec

and
Q2 2 2::: Q - Qu 'c

where 7i. is a "flag" that, if set equal to lIDity, introduces the effect

of a strong electrostatic focussing. The dispersion may be controlled by

means of a parameter 1) such that 0 ::: 0 ::: 1)<1 and 6. ::: 6. ::: 1)Q.
- + - +

With these substitutions introduced into (28), as modified by (29),

one may solve for the roots computationally, along a trajectory on which

(for example) f::: Ni/Ne is held constant, and so examine the variation of

the threshold ~. the damping coefficient 1) • With the ratio Ni :Ne equal

to one and one-half percent, and with images absent (K::: 0), one finds in

this way virtually no change of the threshold until 1) > 0.4, and even with

1) as large as unity the particle abundances are permitted to increase by

only 43 percent. Under similar circumstances dispersion is found to be

somewhat more effective when image focussing is present (~::: 1), but the

gains are trivial until 1) > 0.4 and 1) should exceed 0.93 to achieve a

doubling of the permissible particle numbers.

In examining an alternative trajectory on which the ratio Ni:Ne is

taken to be one-half of one percent, it appears desirable to have image

focussing present (~::: 1) since the ion focussing can be eXpected to be

weak. Under these conditions the effect of the dispersion coefficient 1)

has been found to be somewhat greater than was the case for the trajectory

mentioned earlier, although the effect remains small lIDtil 1) exceeds 1/2.

Somewhat more striking effects do develop at the larger values of 1)--

thus, with Ni/Ne::: 0.005, dispersion characterized by 1)::: 0.88 permits a

doubling of the particle numbers and, at 1)::: 1 and Ne ::: 5 x 1013, stability

is obtained for Ni ~ 4.67 x lOll, i.e. for f ~ 0.0093 (cf. the Figure on p.

5 of ERAN_177,12) which suggests t~ ;bility of strong dispersion to open

up a narrow stable corridor through a region of small Ni).

In summary, the numerical studies have shown that With physically

achievable damping terms the stability threshold is only slightly changed

from that which obtains in the absence of damping; a result in accord with

(36) and with the conclusions of Zenkevich and Koshkarev. 5) We conclude

that neither Landau damping nor image effects and species-species forces

are capable of any considerable extension of the stable working range in an

ERA-column.
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Table I - The DL,:v~rsioD Inte;::ral I

a.) Definitio~s

q

I~q ±
os

sl/2 is the half Ylidth of f(s) (full Ylidth at half maximum or half width

at bottom).

b.) Lorentzian Distribution

f(s)

If !\
..;-

L"', : I
1

2 ( i/\.)2
q - v+ -2- -n

c.) Se~i-circl~ Distri~utjon

f(s)
o
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Table I (cant.)

I" ~ c- (n-'la~ + iLS
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Table 11- Frequencies of Vertical Oscillation of a Coasting Proton Beam

Partially Neutralized by Electrons*

1. Proton freQuencies: T

Electron frequencies (t3 == 0):e

2 L 1~)' [1 ( ) El ( )1 2
Q =.: '!J, -ill b{a-rb) l-f + h2 l-f'J R

Q, 2
u

My
m

where:

Q 2 4~t !.1z[d'c:\ -I- Er ~1}2== Q 2./f
c m b \ a+b ) h 2 u

N r
p p

~ == 2rrRy

7:- Curve.ture effects are ignored, and the beam is assigneci to be centered in

the vacuw~ ch~~b2r.

i In i'id,ting the proton frequencies) we have set (3

(mu[;nctostatic) teD:l of the equation for Qo
2 •

h: Half heiEht of 'fe-cnUl;l chamber

g: Half hei[ht of :rr::t£net gap

r p : Classical proten radius
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E (l-f)
e

+

[R2 F E
+ r')2 (8 ::)2]

2 e
qu =:: 4f-l +

b(a-rb):l (3 (S _1)2
e m

2 [ 2
(8

0
::)2J4 f Rqc =::

f-l b(a+b)

2. Ion frequencies:

2
- r')

my
11

'vihcre: N re e
f-l =:: 2nRy ,

Ni
f := N .

e

* Uniform external guide field assumed.

t l3e ~ 0

p =:: 2 In[16R/(a+b)]
Sc - Radius of Electric ~2ge cylinder/R

Sm Radius of magnetic i~3ge cylinder/R

E -- Em ~ 0.125 :i.1nge coefficientse
r e : Classical electron radius

tt \rJe are indebted to Prof. M. Reiser for a recent communication concerning

his analy~~is of toroidal field gradients [l'llax-Planck-Institute for Plasma

Physics Report IPP 0/14 (Munich-Garching, July 1972)] that called to our atten­

tion the appropriate form of certain terms indicated in Tatle III.
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