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ABSTRACT
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1. INTRODUCTION

The transverse coupling instability of relativistic stabilized beams
has long been a subject of intensive study (e.g. ref. 1-5). Recently, it
has been emphasized,5) that this two-stream instability can impose a severe
limit to the acceleration rate attainable in an electron ring accelerator
(ERA).

A similar type of instability can also occur in synchrotrons or

storage rings when particles of the opposite charge are trapped in the

main beam.6)’7)’8)
In the present note we extend the theory to include -- in an approxi-
mate way -- the influence of space-charge forces acting between particles

of the same beam ("species-species forces"), as well as image forces due to
the presence of walls. For simplicity, and because they are the most un-
stable modes, we shall concentrate on dipole oscillations.

We f£ind that species-species forces and images can considerably -- and
in many éases adversely -- affect the instability threshold. 1In fact, to
" explain the instability in the Bevatron it seems vital to include electron -
electron forces in the theory.

In an electron ring accelerator acceleration column, where axial
focussing is provided only by ion-electron forces and electron images, we
hoped that the inclusion of images would relax the ion-electron instability

threshold. We shall show this is not the case,

2. OUTLINE OF THE SOLUTION

We start with the equation of motion for a test particle of each
specles. We include three types of forces, a "single particle force", a
"coherent force" and a "coupling force". The single particle force is
proportional to the displacement of the test particle, the coherent force
is proportional to the displacement of the entire same beam of particles
similar to the test particle, and the coupling force is proportional to the
displacement of the other beam. FEach of these force coefficients is modi-
fied by images and/or species-species forces.

We assume harmonic oscillation of the beam centers and average the
single particle response over all beam particles. The averaging process
takes frequency spread into account. The eigenvalues and eigenvectors, of

the coupled system which describes the motion of the two beam centers,
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determine the mode frequency (and hence thresholds and growth rates) and

the relative amplitudes of the two beams,

3. EQUATIONS OF MOTION

To be specific, and clearly without loss of generality, we take the
beam species to be electrons (tbe replacements for proton beams is made in
Section 7). We normalize all frequencies to the average electron revolu-
tion frequency (Qg) and denote the beam (electron) frequencies by lower
case q's and the stationary cpecies (proton) frequencies by capital Q's.

The equations of motion of the two test particles are

N S + Q0 S X+ q° x 23 23 -0
2|5 S 9" x+q,x-q ¥y =0,
o
(1)
2

— 2 —
—i-éa—%+Q2y+Q2y—Q x =0,

u C
o, ot

where x and y are the transverse coordinates (ia the same direction) of

the test electron and test ion,
The quantities q2, Q2, qi, ete, will be discussed in more detail in
the examples given below. We remark, here, that in the absence of species-

species forces and of images:

2
2 2 2 Q 2 2 2
q:qc+qoe—é(=Qe=Ql+7\),
‘QO
2
q\u = O,
(2)
z 2
(qC =Ql))
2 2 ny 2 2
Q@ =Q, =5 Tq (= Q ) s
2
Q’u = 0,



5)

where we give in parentheses the notatlon of Koshkarev and Zenkevitch”:

The externzl focussing is characterized by qg, %? is the (relativistic)

mass ratio between electrons and ions, and f = the fractional ion

=
Ne
loading. The quantities qq and Q, are -- in this approximation -- the
electron and ion bounce frequencies in the potential well of the other beanm,
The quantities qﬁ and Qﬁ are in general closely related to the coeffi-
cient (U + V + iV) of Ref. 9) which determines single beam stability

(resistive wall effect, etc.). For the electrons ve have, e.g.,

qi z-eqofol(m vV o+ iV). (3)

4. SOLUTION
We solve (1) by assuming that the beam centers oscillate harmonically

in time and space:
X =t exp[i(no - va_t)],

(%)

I

¥ =T exp[i(no - vQOt)],

and regarding the x- and y- terms in (1) as driving forces, In finding
the response of the test particle we, as is usual in Landau damping calcula-
tions, ignore transients and take Tm(v) 2 + 0.-- hence concentrating on
the unstable range,

In the case where nonlinearity in the oscillation direction is negli-
gible the single particle response ¢ and § 1is simply the steady state
solution of a driven harmonic oscillator., In the case of important non-
linearity in the oscillation we use the results of Ref. 10) to obtain
approximate expressions for ¢ and { wvalid for smzll amplitude and small
nonlinesrity,

Ve iatroduce normalized distribution functioans (p), g(ag), h(bg)
for the electrons, and F(p), G(ag), i(b?) for the ions, that describe the
momentur distribution, and the distribution of the incoherent betatron
amplitudes of the particles, with b relerring to the direction of the
vecillation, We assume that the distributions are uncorrelated so that

the Lemn center is delermined by:

T [ e £(p)a(e?)n(b?) apas’an?, (5)
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T - [ ¢ F(p)c(a)H(b°) dpdatan®, (5)
Thus we cbtain: |

T(L+1)-Tig =0,

(6)
”g’(1+1u)-EIC=o,
where
;- f 2 f<p;[-b2n' (bing(a@) apda2a?,
qQ - (V—ﬂ'ﬁ—)
O
(7)

C q2A_ (v _ n.ﬁl
Qo

L= [ 2 02 (09)]6(a%)  apacar®

and Iu and I, are similar dispersion integrals for the ions (with

0 =0).

5. APPROXIMATIONS

We know that the values of dispersion integrals, such as (7), are
priuarily determined by the width of the distribution functions,?)s11)
Hence we approximate (7) by neglecting the variation of the qg-coefficients
in the numerator and keeping only the first-order variation of the co-
efficients in the denominator. Furthermore, we circumvent questions of
self-consistency and assume that the coefficients and the distribution

functions can be independently selected., Thus, we write the characteristic

equation, associated with (6), in the form
2 2 2 2 2.2
(2% + q )(2Q% +Q7) - a Q] =0 (8)

where:

1/nd? - j f(p)g(ag)[-beg/(bg)] dpda‘db® |
a~ - (v-n)

(9)

2 77,2
1/r02 - ‘/ﬁ F(p)c(a )[—SZH (b°)] apaslan?.

Q2 - v
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The combined effect of three spreads can be treated only with
difficulty. Double dispersion integrals have in fact been treated in Ref.
11). The result is that the spread effective for damping is not the sum
of the spreads, but rather the Landau damping is mainly determined by the
larger of the two spreads., Hence we shall consider only the effect of a
single spread; namely the largest.

Finally, one may make a further approximation which we call the "slow
wave approximation"; namely we expand the denominators of (9) in partial
fractions and keep the term which is largest when v = (n-q), and when
v ~ Q. In this approximation -- and by expanding q £ g, + s(09/3s),,
etc, -- (8) takes the form

[ ) ) 2.2
a. Q 9.9
(Aq-?;—o Beg| ¢ g =0 (10)
with (s) -1
by d
o4 = [ f (n-qOTS- 3+A(;SJ ’
11
F(s)ds -1 ()
@ [ i)
and
o= [2 (__u())]
(12)

/| oQ
Ai=(—a-g)o .

The quantity s 1is one of the spreading parameters p, a2 or bg, and

£(p)dp or
f(s) ds = g(a2)da2 or (13)

2
2 dh(g ) b2
db

'jhf(s)ds =1.

Alternatively, we employ the term "improved slow wave approximation" for

-b [see ref. 8],

the approximation in which we retain (8) but approximate the factors that
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arise from the fast-wave terms by the v-value (n-a) and Q.

6. STABILITY COHDITTONS

A. Analytic Results

Stability conditions can be obtained from (8) or (10), by finding the
boundary (on which v is real) of the unstable zone (in which the imaginary
part of v is positive). To this end, the integrals of (9), or (11), need
to be evaluated; and in Taeble I we summarize results, for the essential
component of (9) and (11), resulting from two differeat choices of distri-
bution functions, The Lorentzian distribution is studied, despite its
unphysically long tails, because the analysis is simple and because it can
be employed to establish an interesting general result (see Sect., 8). For
accurate results, a truncated distribution is required,

In the case of &functions for f(s) and F(s) (no frequency spreads)

the eigenfrequencies are determined from

[(v-n)® - a° - QE][VE - Q° - Qi] - qui = 0. (1)

For a Lorentzian line, [f(s)C:C(lLs2 + Ai)—l; F(s) oc (ks® + Ai)—l],
with equal slow wave and fast wave frequency spread and with 4 and &4
the full widthe at helf maximu, equation (1b) is valid with
vV - v 4+ 1 Az/2 in the first factor and v - v + 1 4A;/2 in the second
fector, If, in addition, A, EAYEE Ay the condition for stability is

AZQ(l/TO), (15)

where Tal is the growth rate in the absence of dispersion,
In the neighborhood of a resonance we may use the improved slow-wave
approxination, In the ebsence of frequency spread, (14) yields
qgac 2

v= Q+dz+iANl— -4 s (16)
Lag

(17)



P -d® 4+, (17)

and resonance occurs When d = O, For the Lorentzian line, and in improved

slow wave approximation,

3 Ae"'Ai qgQi Dg=Dy °
V:Q+d-i(———E—— + i Ll,’('id— [d—i B > (1.8)

with AP and Ab the full widths at half maxXimum in the frequencies Q
and ln éL - q‘. Stability of the solution (18) requires spreads such
o]

that
2 2 27 -1
4.9 4a
AN > =S |1 +(-——-—) ) 19
e 1l q@ Ae+Al ( )

To suppress an instabiiity that occurs within a narrow resonant frequency
band (where d will be close to zero), (19) provides the convenient

sufficient condition

2
a%Q
AN » =5

— (20)
¢ aQ

For values of qn etc, that are considered to be essentially known (gﬂg.,

from Table II). It is of interest to note, from (19) or (20), that both

Oe  and Ai must be non-zero to suppress the instability.s)

Finally we turn to the case of the semi-circular distribution (see
Table I). For this distribution the damping is very different for the
fast and the slow waves and hence it is not reasonable to assume A =4,
Rather, we employ the slow wave approximation and completely disregard the

non-resonant fast wave to obtain:

2
Q -
v =Q + T; +d; - % (B +4y)
2 2
1% Loooqe
£ 1 el [dl -3 (Ze-Al)] ,
with 2 2
1 b q
dl=§[(n-q——a - Q+—QB], (22)




= N/Ag - (n—q—v)2 )

A
e e
(22)
— P 2
Ay = 4f0] - (Q-v)= .

After considerable algebraic manipulation it can be seen that stability

requires:
2 a 271 -1
c 14 1

® Betdy

2
a°Q
c (23)

AD, >
e 1 —

Again within a narrow band of instability, associated with the resonance

dj 0 (where n-q- v ¥ qﬁ/q and IQ—V| = Qﬁ/Q), we may write

2.2
S kL
AN, 2
el aQ
or (24)
2,2)1/2 0212 1/2 202
A? _ _E) A? _._E) S e
e q i \Q ~ qq

as o sufficient condition for suppression of the instability. The second
of the forms (24) clearly implies that we must require
2

by

and (25)
2
u
Q

JAVP
i

The condition (23) is similar to the condition (19) found for the Lorentzian
distribution -~ or (2h) is similar to (20) -- but with the width parameters
modified to correct for the anomolous results arising from the extensive
tails of the Lorentz distribution [E'§" in the manner suggested by (29) of
Sect, 6B below], It is evident that for wave freguencies removed from the
central beam frequency there is reduced Landau damping. With the abruptly
terminated semi-circular distributions that led to (23) et seq., this limita-
tion is explicitly indicated by the conditions (25). Again we note that
both A and Zi must be non-zero to insure stability.

€
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B. Numerical Formulation

For numerical work we proceed directly from (8) and (9) and again
employ Lorentzian distributions in s, with &  denoting full widths at
half maximm in the quantities ‘n él iq‘ for the fast and slow waves of

o]
the electron component and A, correspondingly for the ions. If we then

let

x =v-(n¥Faq), X =v=*Q,, (26)
¥ +
and write
= X +18_. G’ =X +lA
7% e A T
(27)
h =g -8 -2 H=C -G -2R,
we then find
g (x +g )(x +g)+h2 Q (X +a¢)X +G)+HQ2
[ 0\ = - + + qu oY - - + + u
(28)

B} thng - 0.

The imaginary parts of the expressions written above for g_, G_ are seen
to imply a damping that is independent of the distance by which+the actual
frequency is displaced from the peak of the distribution. This results
from ﬁhe unphysically extensive tails of the Lorentz distributions that
were assumed for evaluation of qu and AQ2. For this reason we have
elected to replace, in the numeripél work, these expressions by
s%
g =x +1 ——e—— la_l P)
F

‘x_IE + 8?
I T

+i
+

(29)
o
X47+l 'X_!2+Af ‘Ai,
¥ +

G
o

il

in the expectation that a more realistic type of distribution will be

described in this way. With this replacement we obtain an equation for
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which roots have been sought computationally=12)

From computational tests that employed paramsters similar to those
introduced in the example of the following Section, it was found (i) that
the values of the fast-wave dispersion parameters 8+, A for the two species
had little effect on the stability threshold (although it may be necessary
that they be, for example, some 3% of the respective slow-wave quantities
5., &), and (11) that (19) [or (20)] can be safely taken as a stability
criterion to be applied to the slow-wave dispersion parameters after modifi-
cation in the manner indicated by (29). It was confirmed, moreover, that,
as expected,5) stabilization could not be obtained by introducing dispersion

into just one of the two species.

7. PROTON SYNCHROTRONS AND STORACE RING

We assume that electrons created by scattering with the background gas
remain trapped in the circulation beam, Further, we assume the electrons
to be uniformly distributed around the circumference, and we neglect the
influence of the background gas ions. We take the proton and electron minor
radii as equal,

The proton and electron frequencies relevant to this case are given in
Table II. In many situations of interest one can use, to a good approxima-
tion, simplified relations obtained by taking ¢ = vZo and neglecting images.

In this approximation the stability conditions (24t) and (25) are con-

veniently expressed in terms of the '"space charge g-shift", gq;, so that one

reguires
3
— — q ,i
A R L
e p VZ n
o
My
q,?
A > )
jo) 2
YV
%0
woere
5 NprpR
q,° = (2/x) S5(EET - (31)
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Let us, as an example, discuss the case of the Bevatron, where an in-
stability of the debunched beam at 6 GeV has been observed, and has been

cured by the provision of clearing fields,7)
For typical operating conditions at 6 GeV we find ql2 -4 x 103 and
vy, =~ 0.9. (More details may be found in Ref. 13.) Hence, for stability
)

we require

\ﬁ;i S ex10h)? LfE 6307 2 25x10%, (%)

If we assume the relatively large sprea&s Le = 1.5, Oy = 0.0k, we
Tind a threshold neutralization f = 0.24. Neglecting electron-electron
forces, the thrsshold f© would be a tolerable £ > 1, Hence, in the case
of the Bevatron, species-species forces appear to play a dominant role in
the determination of the threcshold, This situation ie generally the case
in a proton ring if the proton frequency spread is large and/or y 1is

small.

8. AXIAL STABILITY IN THE ERA

In the acceleration column of an FRA, or of any similar system in
which translationzl invariance of the configuration can be legitimately

assumsd, it follows from equation (1) that

2 2
q -+ qu - ch = Oy

(33)
2 2 2
Q+Q "~ -Q, =0
From (17), we may write
~? 2
¢} zz Clc 3
(34)
~2 2
Q7 = Qc .

As we shall see below, the invariznce condltions inply that images hardly
effect the axicl ctebility copnditions in an ERA,
Frequency parcmeters Tor an IRA have been derived in Ref. (14). They

are przsented in Tavle IIL. Thesc formulas can be simplified by assuming
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1> £ > Lz
v
(35)
2 €
R > p/8, —&_

2
b(a+b) (Se—l)2

in which case image contributions only appear in qu2 and qs.

For the Lorentzian distribution, equation (14) is valid with the re-
placement discussed just following equation (14). In view of (33), this
equation is independent of images, Thresholds are as has been discussed
in the literature,S) and above threshold we have the stability conditioan

(20), which takes the image-independent form:

AN >qQ . (36)

We note that the condition (36) will normally not be satisfied except
for working points with very small values of 4, and/or Qe+ Such working
points, however, are unattractive because both 4, and Q. are "figures
of merit" of an ERA device -- since ch is a measure of the holding pover
of the ring and ch determines the fractional ion loading.

For the semi-circular distribution, or the modified Lorentz distribution,
the thresholds and damping conditions depend slightly upon the image terms.,
We have undertaken numerical studies in order to asceritain the effect, on
the instability, of images and dispersion. We concentrate on then =1
(dipole) instability and we refer to Table III and postulate parameters

= (M R® -13
such that 7y = 40, ¢ = u(—ﬁ-) B{arp) = 5.0 x 1072,
e

=y E L 10713 - LM €e B -13
Co = k) g =go; 20777, and 03—4( ) ———— = 0.05 x 10”77,

(such coefficients might result, approximately, from R = 3.5 cm,
a = 0.30/42 cm, b = 0,152 cm, and |S_-1| = 0.625/3.5). Then, with
M/m = 1836, we write

(01/1600 +C, - 7{03)-1\1e

g°

e
!

= (cl + Cy - Hc3).Ni

Ny
n
Q
0
1
°



1

a,° = (40/1836)d

u
2
Q. = (40/1836)(Cy + Co -7{C3)-Ne
and
@ =q2.¢q°2 ,

where K is a "flag" that, if set equal to unity, introduces the effect
of a strong electrostatic focussing., The dispersion may be controlled by
means of a parameter 1 such that SL\= 64 = Nq and A = A; = 1NQ.

With these substitutions introduced into (28), as modified by (29),
one may solve for the roots computationally, along a trajectory on which
(for example) f = N;/N, is held constant, and so examine the variation of
the threshold Vs, the damping coefficient 7. With the ratio Ni:Ne equal
to one and one-half percent, and with images absent (H = 0), one finds in
this way virtually no change of the threshold until 17 > O.h, and even with
1 as large as unity the particle abundances are permitted to increase by
only 43 percent, Under similar circumstances dispersion is found to be
somewhat more effective when image focussing is present (H = 1), but the
gains are trivial until n > 0.4 and n should exceed 0,93 to achieve a
doubling of the permissible particle numbers,

In examining an alternative trajectory on which the ratio N; :Ng is
taken to be one-half of one percent, it appears desirable to have image
focussing present (H= 1) since the ion focussing can be expected to be
weak, Under these conditions the effect of the dispersion coefficient 1
has been found to be somewhat greater than was the case for the trajectory
mentioned earlier, although the effect rémains small until 1 exceeds 1/2.
Somewhat more striking effects do develop at the larger values of 1} -~
thus, with N;j/N, = 0.005, dispersion characterized by n = 0.88 permits a
doubling of the particle numbers and, at 17 =1 and Ng =5 x 1013, stability
is obtained for Ni < 4,67 x lOll, i.e. for f < 0.0093 (cf. the Figure on p.
5 of ERAN-177,Y2) o op
up a narrow stable corridor through a region of small Nj).

which suggests the ability of strong dispersion to open

In summary, the numerical studies have shown that with physically
achievable damping terms the stability threshold is only slightly changed
from that which obtains in the absence of damping; a result in accord with
(36) and with the conclusions of Zenkevich and Koshkarev.5) We conclude
that neither Landau damping nor image effects and species-species forces
are capable of any considerable extension of the stable working range in an

ERA-column,
- 14 -
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Table I - The Dispersion Inbtesral T

a.) DLefinitions

dq

a = q 4+ —= £
0 9Js
on

Q = Q -~ 8
o " s

9g , 1 o

A = S = +
+ 1/2 | 3s O 3s

5 /2 is the half width of f(s) (full width at half maximum or half width
at bottom).

b.) Lorentzian Distribution

S
£(s) = 2 1/2
I (52 " qu)
1/2 -
" [ 1 1 ]
R 5T A
O lv-(n-qy) + 5 v-(a+q ) + ~§i
If A=A T = r
+ - o iss 2
q —(v4—-é~ -n)
c.) Semi-circle Distribution
2 2 2 (sl < s
—— s - s — 7
7 1/2 L/e
/2
£(e) =
0 st > 51/2
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Table I (cont.)

1 1 1
I= — - - —
9 L-(n—qo) + iR v-(n+a,) + iA+]

g

=\/Af - [v=(ntao)1”

A = \/A? - [V-(n-qo)]2
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Table IT - Frequencies of Vertical Oscillation of a Coasting Proton Beam

Partially Neutralized by Electrons®

1. Proton frequencies:—r
2 1 1
‘1=VO+L‘“ \:ba.»rb (f’—é)
4
-2
€ €.
£ (£-1) - 2 :le
2 2
h g

2. Electron freguencies (Be = 0):

o w2 €1 2

Q = 4p " ['-b—('a:—-gj (l——f) + —k:é (l~f) R
ei-t1|.2 2 M
QM L 1AE1 R™ = q =X
u 10 blad+b) ne c m

. 2 My 1 ei-bife 2
Q. = u“‘?ﬁ’{b(a+ﬁ§ + = =Q /f

where:

Nr
PP

H = ok

4
I
o &
-

% Curvature effects are ignored, and the beam is assignea to be centered in
the vacuwa chamber,
- In writing the protcn freuuvencies, we have set B = 1, save in the last
‘i ol r 2 J
2

(magnetostatic) term of the equation for a, e

€15€55 gl: Image coefficients

h: Half height of wvacwies chamber
g: Half height of magnet gap

rp: Classical prctcon radius
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a 2 _ LHJ. R2 + P €e + 2 €m ]
- - 2
b b(aib)y® O (s -1)% (s -1)
e m
q 2 lﬂ_!_f[ RZ - 68 }
c b(a+b (s _1)2
e
2. TIon freguencies:
2 €
2 my R 2
Q=i B0 | iy - 2
(8,-1)
2 2 ny
Q= =L
‘u d W
2 2 ny
W =% 17’
vhere:
- YeTo £ _.Hi
HW=%2@Ry > ~ T T,
*
Uniform external guide field assuned,
T -
Be = O
P = 2 la[16R/{a+b)]
Se = Radius of Electric imzge cylinder/R
Spn = Radius of magnetic image cylinder/R
€, = &y = 0.125 inage ccefficieants
re: Classical electron radius

+} We are indebted to Prof. M. Reiser for a recent communication concerning
his analysis of toroidal field gradients [Max-Planck-Institute for Plasma
Physics Report IPP O/14 (Munich-Garching, July 1972)] that called to our attea-

tion the appropriate form of certain terms indicated in Table ITTI.
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