
LBL-10812 
TR-873 

NRCG 
NATIONAL 
RESOURCE 
COMPUTATION 
IN CHEMISTRY 

The XTAL System of Crystallographic Programs: 

PROGRAMMER'S MANUAL 

February 1980 

LAWRENCE BERKELEY LABORATORY 
UNIVERSITY OF CALIFORNIA 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 and for the 
National Science Foundation under Interagency Agreement CHE-772130S 

DISTRIBUTION OF THIS DOCUMENT IS UNUNITEO 



ACKNOWLEDGMENT 

This document was prepared in its final form by the 
authors listed on the title page. They could not have 
completed their work without the valuable advice of Richard 
Alden, University of California at San Diego; Arthur Olson, 
National Resource for Computational Chemistry; George Reeke 
Jr., Rockefeller University; Steven Sheriff, University of 
California at Los Angeles; Jurgen Sygush, University of 
Sherbrooke; Lynn TenEyck, University of Oregon; and Keith 
vfatenpaugh, University of Washington. 

The document was used in draft form at a workshop on 
multiple isomorphous replacement held November 10 through 18 
at the NRCC at Berkeley, California. 

Support of the NRCC and the University of Maryland 
Computer Science Center in the preparation and distribution 
of XTAL Programmer's Manual is gratefully acknowledged. At 
the University of California, San Diego, this work was 
supported by Research Grants GM 10928 and RR 00757. 

in 



ABSTRACT 

This document establishes the basis for collaborative 
writing of transportable computer programs for x-ray 
crystallography. The concepts and general-purpose utility 
subroutines described here can be readily adapted to other 
scientific calculations. The complete system of 
crystallographic programs and subroutines is called XTAL and 
replaces the XRAY (6,7,8) system of programs. The coding 
language for the XTAL system is RATMAC (5). 

The XTAL system of programs contains routines for 
controlling execution of application programs. In this sense 
it forms a suboperating system that presents the same 
computational environment to the user and programmer 
irrespective of the operating system in use at a particular 
installation. These control routines replace all FORTRAN I/O 
code, supply character reading and writing, supply binary 
file reading and writing, serve as a support library for 
applications programs, and provide for interprogram 
communication. 

The XTAL system of crystallographic programs is based 
upon the XRAY program system. Although every attempt is made 
to test each program of the XTAL system, no warranty, 
expressed or implied, is made by the authors or their 
institutions as to the accuracy and functioning of the XTAL 
system, its subprograms, related program material, or 
operating instructions. No responsibility is assumed by the 
authors in connection with the use, attempted use, or 
applications of these programs. 

It would be appreciated if acknowledgment of the U3e of 
XTAL be made in published work. 

iv 



Programmer's Manual 

1. INTRODUCTION 1 
2. LANGUAGE RESTRICTION AND RATMAC 3 
2.1 FORTRAN Restrictions 3 
2.2 MACRO Instructions 5 
2.3 MACRO: Definitions 5 
2.4 MACRO: Instructions 6 
2.5 XTAL Conventions for RATMAC 6 
3. SYSTEM FEATURES AND SPECIFICATIONS 8 
3«1 System Nucleus 9 
3.2 Program Naming Conventions 10 
3.3 Storage Utilization 10 
3.4 Protocol for Prog.am Intercommunication 12 
3.4.1 OVERLA: 13 
3.4.2 OVERNA: 13 
3.4.3 PROGRAM: 13 
3.4.4 PROGRETURN: 13 
3.5 Template for an XTAL Program 13 
3.6 System Commons /SYS/ and /SYSCH/ 15 
3.7 COMI:, COMF:, and COMC: 15 
3.8 Restrictions on INTEGER and REAL 16 
3.8.1 INT: and IFIX: 16 
3.9 Word Packing 16 
3.9.1 MOVEBITS: 17 
3.9.2 INTPAK: 17 
3.9.3 INUNPAK: 17 
3.10 Character Macros 18 
3.10.1 MOVEBYTE: 18 
3.10.2 MOVECHR: 18 
3.10.3 MOVECTOR: 18 
3.10.4 MOVERTOC: 19 
3.10.5 MOVEREAL: 19 
3.10.6 MOVERWORD: 19 
3.10.7 CHARACTER: and CHARS: 19 
3.11 QXMEMORY:, QX data array /QXDATA/ 20 
3.12 Dynamic Core Allocation 23 
4. LINE INPUT CONTROL 25 
4.1 HEADLINE:, DATASTORE:, and DATASTUFF: 25 
4.2 CHRLIMOUT:, The Concept of a Field 26 
4.3 Interpretation of Input Line Images 27 
4.3.1 REAL, CHARACTER, and Special Characters 27 
4.3.2 String Delimiter Character Equal( = ) 28 
4.3-3 Field Delimiter Characters ( ) and (,) 28 
4.3-4 Field Skip Characer ($) 23 
4.3.5 Field Position Character (*) 28 
4.3.6 Image Delimiter Character (:) 29 
4.3-7 Blank (or Void) Fields 29 
4.3.8 REAL Strings, Numbers 29 
4.4 Line Input Devices 30 
4.5 Formatted Input - Use of the FIELD Command 30 
4.6 Ordering Input Fields - Use of the ORDER Command.... 30 
4.7 System Input Images 31 
4.7.1 TITLE (Optional) 31 
4.7.2 REMARK (Optional) 31 
4.7.3 FILES (Optional) 31 
4.7.4 MEMSET (Optional) 32 
4.7.5 SETID (Optional) 33 

Updated February, 1980 v 



Programmer's Manual 

APPENDIX 4 

Glossary of System Common Variables 

The following list is designed to explain the meaning 
and use of the system variables used in the XTAL system. The 
letter preceding the description indicates the variable 
type, r is real, i is integer, and c is character (in the 
FORTRAN 77 type definition sense). If a variable is 
dimensioned, it is followed by a pair of parentheses (). 

BFIELDO i Buffer to hold pointers to ending columns when 
a "FIELD" line has been encounted by AA01. Used 
by AA02 in translating input line images. See 
FIELD control card. 

BFINFPO r Buffer to hold input floating point data. Each 
word corresponds to an input field. If the 
field is a number the buffer contains the 
number, if the field is void, the buffer word 
contains the signal VOIDFLG:. If the field is a 
character string the buffer word contains a 
packed pair of pointers which show where the 
character string actually starts and ends +1 in 
BFINIM. BFINFP is cleared to VOIDFLG: at the 
start of AA02. 

BFINIMO c Buffer to hold the input line image in packed 
READUOINl', 1,END = 2) BFINIM 
1 F0RMAT(20A4) 
is an example of how it may come to be filled. 
The subroutine AA01 issues the read command as 
specified by the macro LINEIN:. The subroutine 
AA02 translates the input line into the 
floating point buffer BFINFP. See macro 
LINEIN:. 

BFORDRO i Buffer to hold pointers to order in which data 
is to be placed in BFINFP from fields of input 
line images. See order control card in AA01 
used in AA02. 

BFOTFPO r Buffer to hold output floating point numbers to 
be translated into characters by subroutine 
AA07. 

BFOTLNO c Buffer to hold characters for output line. 
BFTITLO C Buffer to hold page title which includes 

current program, compound ID, page numbers, and 
date. 

Updated February, 1980 Page 90 



Programmer's Manual 

6. LR 6 (spare) 98 
7. LR 7 Scattering Factor Names 98 
8. LR 8 Atom-type Parameters 98 
9. LR 9 (spare) 99 
10. LR 10 Data Set Definitions 99 
11. LR 11 Experimental Parameters . 99 
12. LR 12 Data Set Information 100 
13. LR 13 (spare) 100 
14. LR 14 (spare) 100 
15. LR 15 Atomic Identification 100 
16. LR 16 Atom Parameters 101 
17. LR 17 Std Dev in Atomic Parameters 101 
18. LR 18 Refinement Constraints 101 
19. LR 19 (spare) 102 
20. LR 20 Reflection Information 102 
21. LR 21 (spare) 105 
22. LR 22 (spare) 105 
23. LR 23 (spare) 105 
24. LR 24 (spare) 105 
25. LR 25 End of File Record 105 
A-5.2 Physical Structure of the Binary Data File 105 

Updated February, 1980 vii 



Programmer's Manual 

1. INTRODUCTION 

This document contains the basic information about the 
structure, language and function of the XTAL System of 
Crystallographic Programs. It is intended primarily as a 
guide to programmers developing software for use with, or 
inclusion in, the XTAL system. 

The XTAL system programming language is RATMAC, a high 
level structured programming language with built-in MACRO 
features. RATMAC code is transformed into local FORTRAN by 
the portable preprocessor supplied with the XTAL system. The 
advantage this approach offers over the use of FORTRAN as a 
distribution language will become apparent in the sections 
below. A RATMAC Primer (5) has been written to aid the 
writing of structured code. 

In addition to the programming language there are a 
number of features fundamental to the XTAL system. The five 
most important of these are: 

(1) All I/O plus certain other essential operations are 
carried out with XTAL service primitives. 

(2) Inter-program communication of crystallographic 
data is done with the Binary Data File. 

(3) Dynamic memory allocation is used. 
(4) All crystallographic programs may be executed in 

either stand-alone or overlay mode. 
(5) Programming conventions that specifically avoid the 

ill-defined areas of FORTRAN have been adopted. 
» 

A fundamental premise of the XTAL system is that a number of 
different individual laboratories can contribute 
transportable computer codes if clear guidelines exist. 
Guidelines are essential because of the desirability of a 
collaborative programming effort. The cost of high-quality 
computer software is very high. Great care has been 
exercised in arriving at the conventions spelled out here. 
They are based on experience gained in the development and 
adaptation of the XRAY system over a 20-year period. In 
addition to this hindsight, a forward look at the changes in 
software and hardware which are taking place in the computer 
industry has been made. These two considerations 
collectively have led to this document. XTAL represents a 
major departure from XRAY in method of coding, and, we hope, 
will represent greatly improved system with many enhanced 
features. 

It should be stressed that this manual lays down 
precise but not mandatory rules for XTAL programmers. It 
attempts to cover the various system procedures, 
constraints, and programming conventions that should provide 
the essential framework within which all XTAL programs can 
coexist, communicate, and be transported from one machine to 
any other. Thus, as much opportunity as possible is left for 

Updated February, 1980 Page 1 



Programmer's Manual 

the individual programmer's ingenuity and skill to provide 
the most efficient and general crystallographic software 
possible. The idea is to supply subroutines that will aid 
the programmer in the long haul. 

As the XTAL system is expanded and improved, the 
programmers' documentation will no doubt also be improved. 
These guidelines should therefore be kept in a loose-leaf 
binder so that sheets can be added and replaced easily. 
Constructive comments on all aspects of the XTAL system are 
encouraged. 

Updated February, 1980 Page 2 



Programmer's Manual 

2. LANGUAGE RESTRICTION AND RATMAC 

The distribution language of the XTAL system is 
RATFOR (3) which will be processed by the preprocessor 
RATMAC (4,5). All program authors must refer to the latter 
document for details on the optimum use of this language. 

In simple terms, RATMAC provides a convenient means of 
structuring and compressing a FORTRAN program. Experience 
within the computer science community has shown that the 
facility for structured code leads to an improved 
algorithmic approach to calculations and a general increase 
in the efficiency of many programs. More importantly, 
however, the provision for defining a set of instructions in 
the form of a single MACRO instruction suitable for 
insertion into the FORTRAN code at preprocessor time, can 
provide the ability to introduce code that is specific to a 
given installation without compromising portability. On both 
counts, this makes the use of the RATMAC very convenient and 
efficient for distribution of programs. 

2.1 FORTRAN Restrictions 
Many of the restrictions placed on FORTRAN 

XRAY76 system have been removed in XTAL by use 
"RATMAC MACRO: instruction." Nevertheless, some 
features still remain taboo and should be avoided 
costs. The FORTRAN restrictions for XTAL now read: 

(1) Character set is restricted to the ASCII set: 
0123456789 the integers 
ABCDEFGHIJKLMNOPQRSTUVWXYZ the upper case alphabet 
abcdefghijklmnopqrstuvwxyz the lower case alphabet 
+-*/,.=:;#$()[] plus, minus, star (asterix), slash, 

comma, period equals, colon, 
semicolon, hash or sharp sign, 
dollar sign, left parenthesis, 
right parenthesis, left square 
bracket, right square bracket 

Additional special characters with significance in 
RATMAC, but best avoided in XTAL are: 

& ampersand logical conjunction 
! exclamation point logical negation 
| bar logical inclusive disjunction 
\ backslash logical inclusive disjunction 
" double quote string delimiter with macro expansion 
> greater 
{ left brace statement block delimiter 

for the 
of the 
FORTRAN 
at all 

Updated February, 1980 Page 3 



Programmer's Manual 

t left bracket macro protection 
< less 
} right brace statement block delimiter 
] right bracket macro protection 
; semicolon statement separator 
# sharp comment signal 
* caret logical negation 
\ backslash delimits non printing values in string 
Additional delimiters 
§ at sign 
% percent 
? question mark 
~ tilde 

(2) Columns 73 to 80 are reserved. 
(3) Complex numbers and arithmetic are not permitted. 
(4) Logical expressions should not use .EQ. or == 

relating two or more floating-point numbers (i.e. do 
not hope for exact equality between floating-point 
numbers. Use (ABS(Q-W).LT.SMALL)) 

(5) PAUSE is not used. 
(6) For final versions of code, the line input/output 

instructions, READ, WRITE, PRINT, and PUNCH must not 
be used, except in macros. 

(7) File control instructions, REWIND, BACKSPACE, 
ENDFILE, etc., must not be used, except in macros. 

(8) Carriage-control characters for lineout devices must 
not be used. 

(9) Multiple subscripts are to be avoided in number 
crunching algorithms. Contiguous single-dimensioned 
data array QX( ) should be used wherever possible. 

(10) Dimension statements containing adjustable 
subscripts may not be used. 

(11) Explicit type statements, INTEGER, REAL, and 
CHARACTER: should be used rather than DIMENSION. All 
variables should appear in a type statement. 

(12) Statement functions are not used. 
(13) Blank common should not be used and named common 

should only be used in a restricted way described in 
section 3.7. 

Updated February, 1980 Page « 



Programmer's Manual 

2.2 MACRO Instructions 
The macro instruction facility of the RATMAC 

preprocessor enables sets of instructions to be inserted 
into the FORTRAN code during processing. The use of macros 
is described in detail by Munn and Stewart (5), and typical 
examples of the different uses of this very powerful command 
are well-illustrated by the XTAL nucleus macros described in 
Appendix 2. 

All macro instructions are defined by the use of the 
mnemonic MACRO: followed by left and right parenthesis 
enclosing the macro name followed by its replacement string: 

ARG 
MACRO:(<macro name>:, 1 

<statement or instruction set>) 2 
A simple example is: 

MACRO: (NAME: ,PETER) // 
During preprocessing every reference to NAME: in the code 
would be replaced by PETER. Note that the use of a colon (:) 
as the last character of each macro name is mandatory. 

A slightly more complicated macro may be of the form: 
MACRO:(MAXL:,MAXL = MAX0($1 ,$2)) # 

$1 ,. d $2 are mnemonics for argument 1 and argument 2 in the 
macro as it appears in the RATMAC. For instance, MAXL:(L,LN) 
in the RATMAC code would appear in the FORTRAN as: 

MAXL = MAXO(L,LN) 
For more detailed examples of the use of macros, see 

reference (5). 
2.3 MACRO: Definitions 

Macro definitions of the type shown above must, of 
course, precede the code where they are to be applied. In 
the XTAL system, all macros pertaining to a given program 
should appear in one place at the start of statements in 
that program or subroutine. In this way, there can be 
absolutely no doubt that the definitions precede the 
applications and, at the same time, this makes them easy to 
identify. This is shown for the nucleus macros or in the 
test program EX01 supplied on the XTAL distribution tape. 
Another condition of the XTAL system, is that program macros 
must not be machine specific. If for some reason it is 
necessary to use a machine-specific macro, this will have to 
be transferred to the nucleus macros. In this way, 
machine-specific macros are kept to an absolute minimum and 
are located in one place for ease of implementation. 

Updated February, 1980 Page 5 



Programmer's Manual 

2.4 XMACRO: Instructions 
Just as the nucleus routines are available to every 

XTAL program, the nucleus macros are always active for 
insertion into program code. This is not the case for macros 
defined by codes for other programs, however. The MACRO 
table in the preprocessor containing the macro definitions 
is of limited length. It must therefore contain only the 
macro definitions that are required for the code being 
processed. 

To remove macro definitions from the macro table, the 
command XMACRO: is used with the name of the macro to bo 
deleted enclosed between square brackets. For example, the 
macro given above would be deactivated by the instruction: 

XMACRO:([MAXL:]) # 
It is strongly recommended that the XMACRO: instruction 

be used only in the RATMAC code just before the END image of 
the appropriate subroutine or program. It is absolutely 
essential that all program macros be expunged before the END 
statement of the program or subroutine, lest the macro 
tables be flooded. 

2.5 XTAL Conventions for RATMAC 
Certain conventions in the use of RATMAC are necessary 

for the XTAL system because it is a .collaborative package. 
It is necessary to adopt conventions to make updating and 
general diagnostic procedures consistent for the 
collaborating programmers. 

The following conventions must be adopted by XTAL 
authors if their programs are to included in the 
distribution library. They are established to assure 
portability: 

(1) All macros containing more than one statement must 
be surrounded by the digraphs $( and $) or { and }. 
Curly brackets may not be universally available. 

(2) An ELSE IF statement should not follow a statement 
containing a BREAK, NEXT, RETURN, or STOP to avoid 
the FORTRAN diagnostic, "a part of the program 
cannot be reached". 

(3) Character strings must be defined using the 
DATASTORE: and DATASTUFF: macros. 

ARG 
DATASTORE: (<mnemcnic of character string>, 1 

<cha*acter string>) 2 
DATASTUFF:(<mnemonic of character string as specified 

in a preceding DATASTORE: statements 

Updated February, 1980 Page 6 



Programmer's Manual 

See sections 4 and 5 for details. The routines on 
the distribution tape show examples. 

(4) Names assigned to character strings in the 
DATASTORE:/DATASTUFF: definitions may be a rational 
combination of the program code and a sequence 
number. The string name must not in any case exceed 
five (5) characters. This is because the length of 
the character string is automatically assigned a 
name by the DATASTORE: macro that starts with the 
letter N̂  and ends with the character-string name. In 
this way, conflicts with variable names in the body 
of the program are minimized. 

(5) The DATASTUFF: macro must follow all type 
definition, common, and equivalence statements. Many 
compilers demand all memory reservation statements 
before any data declaration statements. 

(6) All XTAL programs and subroutines must start with 
the SYSTEMHEADER: macro. This macro causes the 
generation of local operating system control lines 
when needed. 

(7) All program (entry-point) routines must contain, 
immediately after the SYSTEMHEADER: macro, the two 
macros OVERNA: and PROGRAM:. In addition, the macro 
PROGRETURN: must be inserted just before the END 
statement. These are the "main" programs of overlay 
segments. See section 3.3 for details. 

(8) Any time the $( or { or $) or } is used for 
multi-line statements, the brackets should be on 
their own lines. 

(9) Every statement line should end with a # or $# to 
stop the RATMAC scan as soon as possible. Comments 
may be placed after the # or $#. All pure comment 
lines should begin with a #. 

Updated February, 1980 Page 7 



Programmer's Manual 

3. SYSTEM FEATURES AND SPECIFICATIONS 

The XTAL system is designed to promote PORTABILITY and 
MODULARITY of code, so that COOPERATIVE PROGRAMMING of 
crystallographic software is possible. 

FORTRAN + RESTRICTIONS = PORTABILITY 
where 
RESTRICTIONS = definition and isolation of FORTRAN 

inconsistancies and data structure 
conventions. 

MODULARITY requires that each programmer work against a 
common data base and use standard inter-module communication 
conventions. 

COOPERATIVE PROGRAMMING means that code developed by 
individuals working in isolation can be incorporated into a 
set of programs that will achieve a common scientific goal. 
COOPERATIVE PROGRAMMING requires that the individual 
programmer submit to arbitraary conventions. The conventions 
embodied in the XTAL system insure that PORTABILITY, 
MODULARITY, and COOPERATIVE PROGRAMMING can be achieved with 
no sacrifice in program efficiency. 

In the 12 sections which follow, the XTAL tools, 
conventions, and restrictions are enumerated in some detail: 

The sections describe: 
(1) XTAL nucleus routines which provide essential 

primitives 
(2) program naming conventions which provide unique 

names for routines and permit easy assembly of the 
XTAL system 

(3) the storage allocation scheme which provides for 
efficient utilization of memory 

(4) inter-communication protocol which insures proper 
communication between XTAL routines 

(5) a template for a typical program which illustrates 
use of the communications protocol 

(6) SYSTEM common blocks which provide inter-routine 
communication within a single program 

(7) OVERLAY common blocks which provide communication 
between different XTAL program segments 

(8) specifications for integer and floating point words 
(9) word packing conventions and utilility macros 
(10) bit, byte, word, integer, real, and character 

manipulation macros 
(11) the QXDATA common block which provides storage for 

all I/O buffers and large arrays 
(12) a procedure for dynamic core allocation 

Updated February, 1980 Page 8 



Programmer's Manual 

3.1 System Nucleus 

The kernel of the XTAL system is a set of subroutines 
which perform basic service functions. Thest are referred to 
as the XTAL system "nucleus," and have subroutine names with 
the two-letter prefix AA, and sequence numbers ranging from 
00 to 99. 

The nucleus routines fall into five broad 
classifications: 

(a) Control and Line I/O Subroutines (AA00-AA19) 
(b) Binary file I/O Subroutines (AA20-AA39) 
(c) Memory/Error Subroutines (AA40-AA59) 
(d) Direct access I/O Subroutines (AA60-AA79) 
(e) Machine-specific macro-called 

subroutines (AA80-AA99) 
Subroutines currently in these classifications are 

supplied on magnetic tape. The contents of a tape is shown 
in Appendix 1. Subroutines of the nucleus are described in 
brief in Appendix 3. 

The programmer uses mnemonic macros to cause actual 
calls to the nucleus subroutines. However, it should be 
noted that the "entry point" names of these subroutines 
correspond to their deck names. The subroutine names have 
been chosen to eliminate the possibility of using the 
reserved names of an operating system. 

An example is: 
ARG 

READLINE:(<list of acceptable line identifiers>, 1 
<number in the list>) 2 

which a programmer uses to input the next line image. The 
macro READLINE: results in the correct CALL statement to 
AA01 being generated in the FORTRAN code. 

Because the nucleus routines will, in general, always 
reside in memory with each program, considerable effort has 
been made to keep them as small as possible, and yet 
flexible enough to perform most of the service I/O and 
memory manipulation functions that the XTAL programmer may 
wish to use. There is no question that programmers will 
occasionally meet situations in which a more elegant in-shop 
software facility will do a better job than a nucleus 
routine. It may also be possible to generalize the use of 
such a facility through the use of RATMAC macro statements. 
This must, however, be done with extreme caution, if the 
programs are to be part of the transportable library. It 
should only be done after consultation v-' th the authors at 
the University of Maryland to ensure that such a facility 
has an equivalent on other machines. 

Updated February, 1980 Page 9 



Programmer's Manual 

It is essential for a successful cooperative effort 
that programmers do not alter the function of the nucleus 
routines. 

3.2 Program Naming Conventions 
Each program in the system is cataloged by a two-letter 

code. There are two reasons for cataloging subroutines in 
this manner: 

(1) To avoid conflict with local machine system reserved 
entry points, such as EOF, SIN, etc., and 

(2) To oause a sort on program mnemonics to place the 
whole system in proper overlay order. 

So that there can be many different programs with 
non-conflicting names, a labeling scheme has been defined 
using two character - two number mnemonics. The table in 
Appendix 1 shows the character pairs (with their functions) 
that have been reserved so far. The numbers of the 
subroutines are assigned sequentially in order of the 
overlays of the given program. For example, the program to 
keep track of memory and time is called MT, the program 
which dumps the binary data file is TD, the Beever-Lipson 
Fourier is FS. 

In the descriptions below, the mnemonics XXOO, 
XX01,...XXNN will be used to refer to a general set of 
related subroutines which carry out a crystallographic 
calculation. 

Consider that XX is the chosen mnemonic for the 
cataloging of a given calculation. The main overlay is 
labelled XXOO, and the "entry point" which is called from 
nucleus subroutine AA01, is also XXOO. Then each overlay 
called by XXOO plus any subroutines attached to these 
overlays are designated XX01 , XX02, etc. The call to XXOO is 
always placed in AAOO of the nucleus. 

The first macro used in setting up a subroutine is the 
SYSTEMHEADER: macro. From the line SYSTEMHEADER: to the line 
END constitutes a subroutine. For example: 

SYSTEMHEADER:(<subroutine mnemonic>) # 
RATMAC statements 
of subroutine 

END # 

3.3 Storage Utilization 
The method for the utilization of storage in the XTAL 

system has been chosen both to facilitate the use of 
overlays in a fixed-memory machine and to minimize paging in 

Updated February, 1980 Page 10 



Programmer's Manual 

a virtual memory machine. The nucleus routines and system 
common form a "root segment" while each major 
crystallographic program forms a set of overlays that depend 
up^n the calculation at hand. These overlays consist of 
"trunk segments" called by subroutine AAOO of the nucleus. 
The "trunk segment" is given the mnemonic XXOO where XX is 
the indication of the function of the overlay (e.g. FC, FS, 
etc.) .The 00 overlay may have attached to it three common 
arrays: COMI: for integer, COMF: for real, and COMC: for 
character variables which must be passed among the branch 
overlays. The "trunk overlay" XXOO calls all of the branches 
XX01, XX02, XX03, etc. which make up the crystallographic 
task defined for the given overlay. The first routine of any 
program (XXOO) does not itself do any calculations other 
than managerial tasks that control the sequence of 
suboverlays. 

Updated February, 1980 Page 11 



Programmer's Manual 

The following diagram illustrates the overall storage 
utilization in XTAL; down the page corresponds to increasing 
addresses in a nonvirtual-memory machine. In a 
virtual-memory machine with individual programs, the XTAL 
nucleus insures that only one trunk plus its associated 
branches would be present in memory at one time. 

NUCLEUS 
CODE 

/SYS/ 
/SYSCH/ 

SYOO ! 

Routines AAAA, AAOO, AA01, AA02, 
AA03, AA04, AA05, AA06, AA07, 
AA08, AA21, AA22, AA23, AA24, 
AA25, AA26, AA41, AA42, AA89, 
AA99 

Nucleus data arrays 

MTOO . 0Z00 

intra-overlay data 
communication region 

multiple overlays as 
required to keep core 
requirements as small 
as necessary 

XXOO 

/COMCXX/ 
/COMIXX/ 
/COMFXX/ 

XX01 or 
XX02 etc 

The 
root 
segment 

The 
trunk 
segments 

The 
branch 
segments 

major dynamic data array, variable 
in length, depending upon the 
machine being used 

3.4 Protocol for Program Intercommunication 

A program or subroutine is integrated into the XTAL 
system through the use of the OVERLA:, OVERNA:, PROGRAM:, 
and PROGRETURN: communication macros together with the 
naming mnemonics described in section 2.2. The program or 
subroutine, a general XXOO routine shown as either a trunk 
overlay or a branch segment in the storage diagram of 
section 2.3, may not require all four communication macros. 
However, it is always required that the routine be numbered 

Updated February, 1980 Page 12 



Programmer's Manual 

in correct sequence to insure that it will be sorted into 
its proper place in the overlay scheme. A description of 
these communication macros follows. 
3.4.1 OVERLA: 

ARG 
OVERLA:(<mnemonic of the crystallographic subroutine>, 1 

<overlay number>, 2 
<sequence number of the overlay>) 3 
This command to overlay is used in subroutine AAOO 
of the nucleus or XXOO of the crystallographic 
program and nowhere else. 

3.4.2 OVERNA: 
ARG 

OVERNA:(<mnemonic of the crystallographic subroutine>, 1 
<overlay number>, 2 
<sequence number of the overlay>) 3 
This macro comes just after the SYSTEMHEADER: 
macro. In those subroutines which are designed to 
be overlayed. As pointed out above, the management 
of the suboverlays is always the business of the 
root segment, XXOO, of the given crystallographic 
program. 

3.4.3 PROGRAM: 
PROGRAM:(<mnemonic of the crystallographic subroutine>) 

This macro follows the OVERNA: macro in the 
subroutine. 

3.4.4 PROGRETURN: 
This macro is used in lieu of the FORTRAN RETURN statement 
in a subroutine which has the PROGRAM: macro at the 
beginning. 
The inclusion of a new program would require modification of 
AAOO to include the name of the program line identifier such 
as XXXXXX in the A001 DATASTORE: list and the addition to 
the conditional statements of subroutine AA01 a new line: 
ELSE IF(KCD.EQ.<entry number>) $( // 

OVERLA:(XXOO,<overlay number>,0) # 
$) # 
3.5 Template for an XTAL Program 

A prototype of a complete crystallographic program 
follows here showing the use of the macros required to form 
an overlay scheme. Of course, all calculation-related 
statements are omitted. 

Updated February, 1980 Page 13 



Programmer's Manual 

SYSTEMHEADER:(XXOO) it 
OVERNA:(XXOO,<overlay number>,0) it 
PROGRAM:(XXOO) it 

the dots represent any 
additional code depending on the 
complexities of control required 

OVERLA:(XXO'i ,<overlay number>,1) it 
, assuming overlay 1 has 3 subroutines 

then the next overlay will be XX05 
0VERLA:(XX05,<overlay number>,2) it 

PROGRETURN: it 
END it 

SYSTEMHEADER:(XX01) it 
OVERNA:(XX01 ,<overlay number>,1) it 
PROGRAM:(XX01) it 

common, data statements, 
calculations and calls to 
XX02, XX03, and XXOU 

PROGRETURN: it 
END it 

SYSTEMHEADER:(XX02) 
SUBROUTINE XX02 

it 
it 

a typical RATMAC 
subroutine 

it 
it 

a typical RATMAC 
subroutine 
which serves XX01 

RETURN 
END 

it 
it 

the other subroutines of 
overlay one 

SYSTEMHEADER:(XX05) # 
OVERNA: (XX05,<overlay number>,2) it 
PROGRAM:(XX05) # 

this is overlay 2 of XXOO 
PROGRETURN: # 
END # 

and so on for the 
subroutines of XX05 

No overlay scheme is ever more than two deep. No overlay 
ever calls another overlay at its own level. All calls are 
top down. AAOO calls XXOO; XXOO calls XX01; XX01 calls XX02, 
XX03, and XX04; XXOO calls XX05; XX01 and XX05 return to 
XXOO; XXOO returns to AAOO. 

Updated February, 1980 Page 14 



Programmer's Manual 

3.6 System Commons /SYS/ and /SYSCH/ 
All integer, real, and character variables commonly 

used by the nucleus and other XTAL programs reside in the 
labelled system commons /SYS/ and /SYSCH/. The length of 
these common arrays will vary from installation to 
installation according to the number of characters per word 
and the lengths of the I/O buffer arrays. The reason for 
separating type CHARACTER from types REAL and INTEGER, is 
the fact that FORTRAN 77 demands it. 

The macros which generate /SYS/ and /SYSCH/ are shown 
in detail in the XTAL distribution tape. A detailed 
description of all of the variables in common is given in 
Appendix 4. 

The macro SYSCOM: placed in a subroutine will cause all 
of commons /SYS/ and /SYSCH/ to be included in the 
subroutine as well as the /QXDATA/ common described in a 
later section. 

The length of the common is set at system generation 
time by the various word-size dependent macros (MXCHWD-. , 
MXCHLN:, etc.). The nucleus macros are summarized in 
Appendix 2. The /SYS/ and /SYSCH/ variable names (as opposed 
to the macros) must not be modified in any way by the 
programmer. These are an intrinsic part of the nucleus 
programs. 

In the overlay mode, /SYS/ and /SYSCH/ are available to 
all programs simply by the presence of the macro SYSCOM: 
statement. In the stand-alone mode, however, the contents of 
/SYS/ and /SYSCH/ would be lost between calculations were it 
not for the automatic storage and recovery of the variables 
on device ISAVE: by the main entry-point routine AAAA. This 
routine writes out the /SYS/ and /SYSCH/ arrays on the 
completion of each program, and reads it back into the same 
locations at the start of the next program. Since /SYS/ and 
/SYSCH/ are preserved on an external file in the stand-alone 
mode, the programs operate identically in all other 
respects. This feature is provided for use with 
virtual-memory operating systems. 

When a system is formed for ncnoverlay use, that is for 
stand-alone control, each routine will have to have a 
version of AA01 tailored to contain one and only one call to 
the crystallographic programs. 

3-7 Overlay Communication Commons 
/COMI:(XX)/, /COMF:TXX)/, and" /COMC:(XX)/. 
For many programs, such as a Fourier transform program, 

variables set up by the first overlay segment of the program 
are control parameters required by the later overlay 
segments (parameters such as grid sizes, numbers of layers, 

Updated February, 1980 Page 15 



Programmer's Manual 

etc.) For these special few quantities, up to three labeled 
commons may be specified. The one for integers is labeled 
/C0MI:(XX)/ where XX is the two-letter mnemonic of the 
particular program. Note that COMI: is an XTAL system macro. 
This means that the actual labeling may be controlled 
globally for machines with special restrictions on the 
numbers or kinds of labeled common that may be used. 
/COMF:(XX)/ is for real variables and /COMC:(XX)/ is for 
character variables. The programmer should take great care 
to use only the appropriate variables in each and keep the 
number of items to a minimum. The variables in common should 
never be used as running indices in loops. They should be 
used for communication of limits, total counts, etc. Only 
local variables should be used for running indices in loops. 
This practice allows FORTRAN optimizers the best chance to 
generate efficient code. 

3.8 Restrictions on INTEGER and REAL 
The XTAL system is designed to accomodate machines with 

a minimum-integer word size of 16 bits, and a minimum 
floating-point word size of 32 bits. If there is a problem 
with the 16 bit integer restriction, then this restriction 
can be ignored; however, comments indicating that this has 
been done should appear both in the code and in the 
documentation. 

The maximum permissible integer magnitude is 32,767 for 
16 bits and therefore care must be taken that 
floating-point-to-i^teger conversions do not exceed this 
value. Floating-point numbers are expected to range from 
-1.E+25 to +1.+25, although negative numbers with magnitudes 
greater than 1.E+20 are treated as special information (see 
section 1.2 on Line Input). 

3.8.1 BTT: and IFIX: 
Floating-point (real) to fixed-point (integer) 

conversion macros INT: and IFIX: are available for use in 
the system. The first is for positive numbers only and the 
second, which is slower, is for positive or negative 
numbers. They are used: 

<integer>=INT:(<real>), and 
<integer>=IFIX:(<real>) 

3.9 Word Packing 

Packed numbers may only be processed in words of 
floating-point length (i.e. 32 bits). The macro MXBTWD: is 
the actual bits in the REAL word of a machine. It was 
arbitrarily decided to make use of only 32 bits for packing 
purposes. The packing of numbers is performed through the 

Updated February, 1980 Page 16 



Programmer's Manual 

macros MOVEBITS:, INTPAK:, and INTUNPAK:. These macros pack 
each number according to a specified bit position and bit 
length. In the XTAL convention bit 0 is the right-justified, 
low-order bit. These macros should be defined with the most 
efficient bit-manipulation functions available on each 
machine (e.g. the FLD function on UNIVAC). Packed integer 
numbers are used extensively in the XTAL system to reduce 
memory demand and, sometimes, to increase computation speed. 
For an example, see record 20 of the binary data file in 
Appendix 5. The macros are described in the next section. 

3.9.1 MOVEBITS: 
MOVEBITS: Move bits among words ARG 
MOVEBITS:(<real or integer word for source of bits>, 1 

<low order bit position in source word>, 2 
<real or integer word for destination of bits>, 3 
<low order bit position in destination word>, 4 
<number of bits to be moved>) 5 

3.9-2 INTPAK: 
INTPAK: Pack intsgers into real words ARG 
INTPAK:(<integer for source of bits>, 1 

<real word for destination of bits>, 2 
<low order bit position in destination word>, 3 
<number of bits to be moved>) 4 

Example: 
INTEGER NFILM.IPT 
INTPAK:(NFILM,BUF(IPT+5),20,12) 
Take 12 bits from "NFILM" beginning with bit 0 and 
insert them into BUF(IPT+5), beginning at bit 20. 
This would take a 12-bit film number and pack it 
into the most significant bits of a buffer 
(presuming a 32-bit word size). 

3.9.3 INTUNPAK: 
INTUNPAK: Unpack integers from real words ARG 
INTUNPAK:Ureal word for source of bits>, 1 

<integer word for destination of bits>, 2 
<low order bit position in source word>, 3 
<number of bits to be moved>) 4 

Example: 
INTEGER OLDPAK.IPT 
INTUNPAK:(BUF(IPT+1),OLDPAK,0,MXBTWB:) 
Takes a complete word's worth of bits from a real 

Updated February, 1980 Page 17 



Programmer's Manual 

variable (BUF) and puts them into an integer 
variable (OLDPAK) . MXBTWD: is a macro defined to 
be the number of bits per word. 

3.10 Character Macros 
The whole problem of bits, bytes, words, integers, 

reals, and/or characters presents a messy problem for 
transportability of codes. There are in the XTAL system a 
number cf macros supplied to aid in keeping ail of this 
straight. The main rule is jdo everything possible in 
floating point (i.e. as reals). Because of the advent of 
FORTRAN 77, it is necessary to eliminate all equivalence 
statements which mix types. To this end, a series of macros 
make possible the operations needed in crystallographic 
coding, but avoid any equivalencing. They are described in 
sections 3.10.1 - 3.10.7. 

3.10.1 MOVEBYTE: 
MOVEBYTE: Move characters from one array to another ARG 
MOVEBYTE: (<array for source of characters)1, 1 

<index of 1st character in source array>, 2 
<array for destination of ->.haracters> 3 
<index of 1st character in destination array>, 4 
<number of characters to b" moved>, 5 
<key>) 5 
Character-by-character transfer from source to 
destination. 
Transfer first character of source array to all 
positions in destination array. This is useful 
for setting the destination array to blanks. 

3.10.2 MOVECHR: 
MOVECHR: Move characters in arrays as in FORTRAN 77 ARG 
MOVECHR:(<array for source of character>, 1 

<ind"ex of 1st character in source array>, 2 
<array for destination of characters>, 3 
<index to 1st character in destination array>) 4 
This is a machine specific function (see AA89 in 
its various forms) . 

3.10.3 M0VECT0R: 
MOVECTOR: Move characters to real words 
Note that it is MOVE C TO R, not M0 VECTOR. ARG 
MOVECTOR:(<array for source of characters>, 1 

<index of 1st character in source array>, 2 

Updated February, 1980 Page 18 

KEY = 0 

KEY = 1 



Programmer's Manual 

<real array for destination of characters>, 3 
<index to 1st character in destination array, 4 
<number of characters to be moved>, 5 
<key>) 6 
KEY is defined under MOVEBYTE:. 

3.1G.4 MOVERTOC: 
MOVERTOC: Move characters from real array into a character 

array. 
ARG 

MOVERTOC: (<array for source of characters)*, 1 
<index to 1st character in source array>, 2 
<array for destination of characters>, 3 
<index to 1st character in destination array>, 4 
<number of characters to be moved>, 5 
<key>) 6 
Key is defined under MOVEBYTE:. 

3.10.5 MOVEREAL: 
MOVEREAL: Move vectors of real words without altering bit 

patterns (i.e. no normalization). 
ARG 

MOVEREAL:(<array for source of reals>, 1 
<index to 1st word in source array>, 2 
<array for destination of reals>, 3 
<index to 1st word in destination array>, 4 
<number of words to be moved>, 5 
<key>) 6 
KEY = 0 Source and destination are different 

arrays. 
KEY = 1 Source and destination are the same 

array. 
KEY = 2 Clear destination array to value of first 

word of source array. 
3.10.6 M0VERW0RD: 
MOVERWORD: Move a real word from one location to another 

without altering bit pattern (i.e. no 
normalization). 

ARG 
MOVERWORD:(<word for source of real), 1 

<word for destination of real>) 2 
3.10.7 CHARACTER: and CHARS: 
CHARACTER: and CHARS: Control of Character Arrays 

Updated February, 1980 Page 19 



Programmer's Manual 

CHARACTER:(<symbol that defines the character array> 
CHARS:(<number of characters in a string>) 

Because of the conflict between the way that 
characters are treated in FORTRAN 66 and FORTRAN 
771 two special macros have been introduced. Both 
are used in data declaration statements. 
CHARACTER: emulates the FORTRAN 77 data type 
CHARACTER and allows it to be changed to INTEGER 
on machines using FORTRAN 66. CHARS: is used to 
make character definitions that are consistent 
with FORTRAN 77- If an array of 50 characters is 
to be stored in an array CH, the statement: 
CHARACTER:CH(CHARS:(50)) # 
is used. On a machine with FORTRAN 77 this is the 
same as: 
CHARACTER CH(50) 
On a six character per word machine using FORTRAN 
66, it is the same as: 
INTEGER CH(9) 
Note that there are four extra characters at the 
end of the array. The MOVEBYTE: and other 
character handling macros are consistent with 
this method of handling characters. 

3.11 QXMEMORY:, QX DATA ARRAY /QXDATA/ 
/QXDATA/ is the major common block of the XTAL system. 

It contains a one-dimensional array which is used for all 
I/O buffers and other large arrays. Data should be stored in 
it contiguously starting at the lowest address possible for 
any given calculation. This will give programs which are 
optimized with respect to speed and space. 

The common statement is part of SYSCOM: and is simply 
COMMON/QXDATA/QXO) on machines which allow dynamic core 
allocation. At load time, on these machines, it is forced to 
the end of the longest overlay where it is expanded and 
contracted as necessary. On other machines it is used as: 

C0MM0N/QXDATA/QX(<a number commensurate with available 
storage>) 

In the preparation of general codes to run on a variety 
of sizes of computing machines with various operating 
systems, it is very desirable never to have to specify 
exactly the number of words of memory which are required. To 
this end, the use of packed one-dimensional arrays for all 
large data manipulations is desirable. This means that to 
generate two, three, four, or more dimensional arrays, the 
program does not rely on statements, such as: 

DIMENSION RHO(10,10,10) 
Rather, the QXDATA array is used with a pointer system that 

Updated February, 1980 Page 20 



Programmer's Manual 

maps out the multi-dimensioned array packed as tightly as 
possible. This assures that whatever size machine is finally 
available, the nature of the calculation at hand will 
determine whether the problem will actually run, not an 
arbitrary choice in the multi-dimensioned variable 
definition. 

There are variables in common /SYS/ which are used by 
the programmer to manipulate the QX array for the given 
crystallographic calculation. These are: 

(1) QXSTAR - Certain overlay loaders (e.g. CDC) require 
that the lowest elements of the QX array be reserved 
for program code. In order that all data references 
to the QX array may take this into account, it is 
necessary to define a base pointer above which all 
data references to the QX array are made. Thus, the 
first location into which data are stored is 
QXCQXSTAR+1). The value of QXSTAR is initialized at 
the start of each calculation by the routine MTOO 
which sets it equal to the appropriate value in the 
QXSK array. The QXSK array (in MTOO) contains the 
"skip" indices appropriate to each overlay and 
operating system. For many machines these indices 
will be zero. In any case, absolutely no references 
may be made to the QX array without taking the value 
of QXSTAR into account. The value of QXSTAR should 
never be changed within a program. An example 
involving the use of QXSTAR is given in Section 
3-12. 

(2) QXWORK is an index which defines the minimum number 
of QX array elements required by a given program. 
The value of QXWORK is preset to QXSTAR + QXWK(KCD) 
by the routine MTOO prior to each program. The array 
QXWK contains the absolute minimum number of data 
words required for each program. Elements of the QX 
array beyond QXWORK are considered to form the work 
area, which is to be expanded and contracted 
according to the demands of the problem in hand. The 
index QXWORK represents the base pointer to the work 
area, and, in general, memory should never be 
reduced below this value. 

(3) QXREQU is the index passed to the memory allocator 
routine QXMEMORY: as a request for a new upper limit 
to the QX array. QXREQU may be set to an index value 
which is greater than or less than the current upper 
limit defined by QXAVAL. This dicates whether 
QXMEMORY: allocates more or less memory. All changes 
to the length of the QX array are made by setting 
QXREQU and then calling QXMEMORY:. See Section 3-12 
for examples. 

(4) QXAVAL is the index returned by the memory allocator 
routine QXMEMORY: indicating the upper limit to the 

Updated February, 1980 Page 21 



Programmer's Manual 

QX array currently permitted. Normally this index 
will be equal to (or for some 0/S slightly higher) 
than the upper limit requested via QXREQU. However, 
when the memory request defined by QXREQU cannot be 
met by QXMEMORY:, the value of QXAVAL will be set to 
the maximum QX index available. It is therefore 
always necessary to test QXAVAL against QXREQU and 
take whatever action is appropriate. This is 
'iscussed further in Section 3.12. 

XTAL programmers are encouraged to store all data in 
the single-dimensioned floating-point data array QX. The 
strategy for using this one-dimensional approach is given in 
Crystallographic Computing, Proceedings of the 1975 Summer 
School on Crystallographic Computing (1). 

In the XTAL system, each program may reserve an area of 
the QX array between QXCQXSTAR+1) and QX(QXWORK) in which 
inter-overlay communication (or reserved common) variables 
reside. On some machines, principally CDC, the value of the 
pointer QXSTAR may not be 0 because of the way the QX array 
is loaded in the overlay mode. This is discussed further in 
section 3-12 under dynamic core allocation. The pointer 
QXWORK is the last word of the "reserved-common area" of the 
QX array. Beyond this point, the programmer uses the QX 
array in the nay that best suits the calculation at hand. At 
any given time, the upper limit of the QX array is defined 
by the storage allocation pointer QXAVAL. Usually the area 
immediately following QXWORK is reserved for the binary file 
buffers (discussed under FILE INPUT/OUTPUT below), but the 
positioning of the I/O buffers is strictly under the 
programmer's control. 

In the working programs, it is necessary that the 
programmer calculate how much storage the calculation will 
require (see section 3.12). This can be accomplished in one 
of two ways. One is to simply decide on a value, say 20000, 
that will be needed for the task at hand. The other is to 
make a calculation based, say , on the number of atoms to be 
treated times the number of parameters per atom which are to 
be stored. In either case, once the number is arrived at, it 
is stored into QXREQU of COMMON /SYS/. 

QXREQU = <number of words required in QX array> 
Then the QXMEMORY: macro is invoked. Before any calculations 
are done, the values of QXAVAL must be tested to see if the 
amount requested is actually available. The programmer again 
must decide the strategy to employ if QXAVAL is less than 
QXREQU. If the calculation can not be carried out with any 
less memory, the following statement would be made: 

IF (QXAVAL. LT. QXREQU) IQUIT: (<encoded error message>) it 

The IQUIT: macro will be elaborated below. 

Updated February, 1980 Page 22 



Programmer's Manual 

3.12 Dynamic Core Allocation 
The content of this section may seem to be a moot point 

in virtual-memory machines. The practice of using packed 
core is, however, very important on these machines as well, 
since it tends to minimize paging during execution of the 
codes. Furthermore, all virtual-memory machines have some 
actual upper limit that can be exceeded by large programs 
with huge data arrays. 

In the XRAY76 system, a procedure was introduced for 
allocating memory to a program according to the size of the 
crystal structure and the type of calculation to be 
performed. This was done in a way that placed the onus on 
the user to decide how much memory should be allocated to 
each program. In effect, this meant that memory allocation 
was usually requested only at the start of each calculation. 

In the XTAL system the same basic memory-allocation 
procedure is used, but now the programmer may use QXMEMORY: 
in each program to continually request and release memory 
according to current memory demand. In this way each program 
retains the smallest memory in which it can operate 
efficiently and thus reduces the overall computing cost. 
Under normal circumstances, the XTAL user should not be 
aware that the "dynamic" nature of the memory allocation 
procedure is in progress, except from the memory summary of 
the various maxima put out as each program step is completed 
(see MTOO). The exception is when a priority line-out limit 
is set to 5. In this case, a message will be printed with 
every memory request. 

All memory allocation requests are made to QXMEMORY: 
(via the floating-point word QXREQU) for the number of words 
in the QX array (see 3.11). For example, setting QXREQU = 
1000. requests to QXMEMORY: to make available the words from 
QX(QXSTAR+1) to QX(QXSTAR+1000). This is, however, an overly 
simple example in a usual programming situation. In the 
various partitions of the QX array that occur in real 
programs, there will be regions for I/O buffers, data, 
matrices, etc.. The programmer must set up and maintain 
markers for these various variables which are stored in the 
QX array. 

Typically, a request to QXMEMORY: might first be with 
QXREQU = XMARK, where XMARK = QXWORK + A*STEP. Later, a 
further increase is made with QXREQU = XMARK + 5.*GR0UP. 
Still later, this may be reduced back to QXREQU = XMARK, and 
so on. See the test routine EX01 for a working example. 

As discussed in 3.11, QXSTAR + 1 is the pointer to the 
first "useable" word in the QX array. This is necessary 
because QXSTAR has a nonzero value in some machines (mainly 
CDC) representing the memory consumed by overlays. 

Updated February, 1980 Page 23 



Programmer's Manual 

The first request for memory allocation is always made 
in MTOO before each program is loaded. This provides both 
the memory for secondary overlays (in the case of CDC), and 
a minimum memory block necessary for program "start-up." 
This minimum block of words is in MTOO as QXWK(KCD) and is 
the boot-strap memory required to initialize the line input 
and estimate the memory really needed to do this particular 
independent calculation in addition to the QXSK values which 
set the skip over any programs. 

When the request to QXMEMORY: exceeds the memory 
available, then QXMEMORY: is designed to return the memory 
actually available in the variable QXAVAL. This requires 
that the machine-specific macros MEMMORE: and MEMLESS: 
either be capable of recognizing what core is accessible at 
the time of request or use the macro MEMMAX: to return to 
QXMEMORY: the maximum memory address available or possible. 
Programmers must always test the value of QXAVAL (not 
QXREQU) to be certain how much memory may be used. This 
allows the program to follow an alternative procedure such 
as give a message and exit, or use a scratch file as virtual 
memory. It should be noted also that at all times memory 
requests to QXMEMORY: are tested against the total physical 
memory limit specified by the macro MEMMAX:. 

To provide the user with information on both the 
largest QX and total memory (nucleus + overlay + QX array) 
requested and allocated in each program, values are stored 
in QXRQPG and QXAVPG. The maximum of these values for all 
programs is stored in QXRQMX and QXAVMX. 

It should be noted that if a system MEMSET image is 
input (see section 4.6) with a nonblank value, all program 
memory requests are deactivated until another MEMSET image 
is read containing a blank value. Note also that the request 
for QX data array on the MEMSET image is for "useable" 
memory so that QXSTAR is added to QXREQU in READLINE:. 

One further /SYS/ variable is available to the 
programmer for memory manipulation: QXUTMX. This word is the 
working pointer to the last word of the QX array being 
utilized at any one time. This is an important variable 
which, if tested against QXAVAL, signals when to request an 
increase or decrease in memory. It must be stressed that 
dynamical core allocation will be most successful when 
requests to QXMEMORY: are not too frequent (or too 
infrequent) and when reasonable blocks of words are 
involved. Repeated requests for small changes in memory, of 
say five words, will clearly be prohibitive overhead for any 
calculation to carry. Most machines, in fact, will only 
allot memory in 'pages'. These pages often are either 512 or 
1024 words in length. Applied intelligently, however, this 
procedure will keep memory demand, and thus coresidence 
charges, to a minimum without significant increase in CPU 
time. 

Updated February, 1980 Page 24 



Programmer's Manual 

LINE INPUT CONTROL 

In the XTAL system, input images are not processed 
under format control. A nucleus macro DCODEFLD: replaces the 
FORTRAN format scanner. This subroutine processes input line 
images from cards, VDU, teletype or any other line input 
device. Control is never lost no matter what input is 
encountered. 

4.1 READLINE:, DATASTORE:, DATASTUFF:, Input of Data 
In practice, the programmer does not use DCODEFLD: 

directly, instead the following macro is used: 
ARG 

READLINE:(<mnemonic of character string defined 1 
by a DATASTORE: statement>, 
<count of number of characters in the string>) 2 

The macro DATASTUFF: automatically produces the 
character count for the programmer. An example is the most 
straightforward way to show how the system is used. Consider 
the following skeletal program: 
SYSTEMHEADER:(XX01) 

DATASTORE:(X001fbATOMbbbSCALEbbMAXHKLbENDbbbb) 
it The lower case b's indicate "must be blanks". 
it There is always one leading blank followed by 6 
// characters, not all of which may be blanks. 
it (i.e. character strings of length seven). 
it This DATASTORE: statement sets up the list of 
it acceptable input lines expected by the program XX01 
it at some point. 

DATASTUFF: (X001) it this actually causes the data 
it to be placed in DATA statements 

it at the point where the logic dictates the actual 
it input to take place, the following statement appears... 

READLINE: (X001 ,NX001) it the integer variable NX001 is 
// generated by the DATASTORE: macro and 
it the actual count of characters in X001 
// stored in NX001 by the DATASTUFF: 
it macro. 

it In the COMMON/SYS/ there is an integer variable KCD 
it which is set by subroutine AA01 as a signal indicating 
it which of the 4-character line mnemonics have been 
it encountered. If none, an error exit has occurred. 
it In this example, KCD=1 for ATOM, 2 for SCALE, 
it 3 for MAXHKL, and 4 for END. 

Updated February, 1980 Page 25 



Programmer's Manual 

IF (KCD.EQ.1) # 
$( # 

# treat atom input 
$) # 
ELSE IF (KCD.EQ.2) # 
$( # 

# treat SCALE input 
$) # 
and so on 
Once the HEADLINE: has been invoked, the whole input line is 
automatically translated by the DCODEFLD: macro. 
This macro leaves all of the fields of the input line 
standing in two input buffers. The first BFINIM (BuFfer of 
INput IMage) is of type CHARACTER:, and is in 
COMMON/SYSCOM/. The second BFINFP (BuFfer of INput Floating 
Point), is of type REAL and is in COMMON/SYS/. 
The ramifications of DCODEFLD: will now be explained. 

DCODEFLD: scans an input line in two different ways. 
The first and most important way is as a free-format 
translator. In this case, each line is decoded, 
field-by-field, into an input buffer consisting of a 
collection of floating-point words. The concept of a field 
is delineated in the next section. The second way of 
scanning, is by input line columns that have been specified 
by previous input parameters. These parameters are entered 
in the input stream on a FIELD line and serve to define the 
delimiter of each field. Input lines like the FIELD line are 
detailed in section 4.5. 

4.2 CHRLIMOUT:, The Concept of a Field 
A field is a string of contiguous characters in the 

input line image. A field is scanned from left to right. A 
blank, comma, o'r equals sign is treated as the signal that a 
field has been spanned. Definite input columns may be- set to 
define the end of fields for lines that have no intervening 
blanks, commas, or equal signs. In either case, each field 
is tested for the kinds of characters present and, 
field-by-field, a floating-point number is stored in.an 
input buffer within DCODEFLD:. The size of this buffer is 
defined by the macro MXFDIM: 

MXFDIM:(<integer defining maximum number of fields per 
image>) 

Three distinct classes of floating-point numbers are stored. 
The first class is the actual floating-point representation 
of a real number. The second class is a signal number 

Updated February, 1980 Page 26 



Programmer's Manual 

indicating a void field was encountered. The third class is 
a floating-point number containing a pair of packed 
pointers. These pointers point to the beginning and end of 
character-string fields in the input image. The macro 
CHRLIMOUT: 

ARG 
CHRLIMOUT:(<integer argument which serves as field index>,1 

<integer returned which points to the first 2 
character in the field> , 
<integer returned which points to character 3 
just beyond field>) 

is used to fetch the beginning and ending + 1 character 
pointers. These pointers are used in conduction with 
MOVECHR: to move the character strings out of the input 
image buffer BFINIM. 

4.3 Interpretation of Input Line Images 
Input lines are read starting in the column following 

the image name which has been screened by macro READLINE:. 
Each input image is decoded either as a floating-point real 
number, as a character string, or as a special instruction 
signal. The FORTRAN type INTEGER is subsumed into the type 
REAL. When integers are required in subroutines, the macros 
IFIX: or INT: are used to move the reals into local integer 
variables. In general, in the XTAL system, integers are used 
only for counting purposes. The use of equivalence between 
integer and real is assiduously avoided because of the 
possibility of different word lengths. 

4.3-1 REAL, CHARACTER, and Special Characters 
Fields in the input stream which begin with characters 

0123^56789.+- are by convention, the signal to DCODEFLD: 
that the string shall be decoded into the input buffer as a 
floating-point number. The first blank or comma encountered 
defines the end of the field. 

Fields which begin with characters not including 
0123456789.+-$*: are, by convention the signal to DCODEFLD: 
that the string shall be treated as a character string. In 
this case, as in the case of numbers, the first blank or 
comma encountered defines the end of the field. 

The word in the floating-point buffer BFINFP is set to 
a packed number defining the beginning and ending of the 
character string in the BFINIM array. This is packed as 
XXYY. Packing is carried out by use of the macro CHRLIMIN:. 
The word is then scaled by -1.E+20 to make it identifiable 
from actual floating-point numbers. XX is the column number 
of the first character in the string and YY is the column 
number of the blank, comma, or equal delimiter character 

Updated February, 1980 Page 27 



Programmer's Manual 

that is one greater than the column of the last character 
(see 4.3.2). Note that (YY-XX) is the length of the 
character string. The macro CHRLIMIN: is responsible for 
packing up XX and YY and the macro CHRLIMOUT: does the 
unpacking of XX and YY. Note that the use of packed pointers 
places an additional upper bound on the magnitude of the 
negative numbers which may be read in via macro DCODEFLD:. 

4 .3 .2 S t r ing Del imi ter Character Equal (=) 

Sometimes it is necessary to input fields which have 
embedded blanks or that start with the characters 
0123456789.+-. The = is reserved to delimit such input 
cnaracter strings. Thus =23-APRIL 1974:JS= will be stored as 
a 16 character string and the corresponding input buffer set 
to the appropriate large negative number which points to the 
first and last character plus one in the input image. The 
equals signs are stripped on input; they are not part of the 
input string. An equal sign is therefore a reserved 
character which cannot be input. 

4.3.3 Field Delimiter Characters Blank ( ) and Comma(,) 
The general field delimiter is the blank or the comma. 

Either of these characters will terminate an alphanumeric 
string except when this string is bounded by equals (=) 
characters Csee above) . Strings of delimiter characters are 
interpreted differently. A blank character is treated as a 
field delimiter only if it is immediately preceded by 
character other than blank, comma, and equals. A comma is 
always a field delimiter independent of what character it 
precedes (except within equals). A series of N commas may be 
therefore used to delimit N fields and can be used instead 
of the skip parameter (see 4.3-4). The combination 
blank-comma after an input field is equivalent to 
comma-comma. 

4.3.4 Field Skip Character ($) 
A character string starting with a dollar ($) followed 

by a number, is interpreted as a field skip signal. The 
string $NN in the input image will skip the current field 
and NN-1 additional fields. That is, the field position 
pointer to words in the floating point buffer BFINFP is 
incremented by NN. The field skip string is not stored in 
the input buffer, BFINFP. 

4.3.5 Field Position Character (*) 
The character string starting with an asterisk (*) 

followed by a number is interpreted as a field position 
signal. The string *NN will position the field position 

Updated February, 1980 Page 28 



Programmer's Manual 

pointer at NN so that data immediately following will be 
placed in this field of the floating-point buffer BFINFP. 
For example, *10 places the next character string 
encountered in field 10 of BFINFP. Note that field position 
numbers do not have to be used in ascending order. Field 
position strings are not stored in BFINFP. Further note that 
once set, subsequent fields are stored in NN+1, NN+2, etc. 
unless other "NN or $MM directives are given. 

4.3.6 Image Delimiter Character (:) 
The character colon (:) is used to denote the end of 

field scan (except when enclosed in equals signs). This 
allows additional information which is not processed to be 
placed on the input image. For example, the image 
containing: 

ATOM C12 1 .5 .6 .9 3.5 : NEW SITE AT -X,-Y,Z 
is only scanned through the field containing 3.5. 

4.3.7 Blank (or Void) Fields 
All words in the input floating-point buffer BFINFP are 

initially set to a large negative number defined by the 
macro VOIDFLG: as -4.E+20. All fields input on BFINFP which 
contain nonblank information will overwrite the appropriate 
field word in BFINFP. In this way, fields containing 0.0 are 
distinguished from blank fields. The value of VOIDFLG: also 
represents a boundary between the pointers to packed 
character strings (of the form -XXYY.E+20) discussed 
earlier, and floating-point numerical data. The magnitude of 
an input negative number must not exceed 1.E+20. This is an 
important feature, since it allows the programmer to be able 
to tell the difference between void fields and zeroed 
fields, or even to know whether numbers or character strings 
have been encountered in a given string. 

4.3.8 REAL Strings, Numbers 
As noted above, any field, not bounded by equals signs, 

which starts with one of the characters 0123456789.+- is a 
numerical field. Furthermore, once the scan begins, no other 
characters but these may be placed in the field. No more 
that one (.) is allowed and no more than two signs. The 
first sign relates to the number itself, the second defines 
the start of the exponent field, if any. Consider for 
example the following fields: 

3 3-0 30.-1 +3 +3. +.3+1 +30.-1 30-1 .03+2 
All of these numbers are syntactically correct 
representations of the positive number three. Moreover, 

Updated February, 1980 Page 29 



Programmer's Manual 

since the type integer is subsumed into real, it does not 
matter where in the field the 3 appears. Trailing blanks are 
not treated as zeros. The range of numbers from -1.+24 to 
-1.+20 are used as a void field signal and for character 
storing purposes and are treated as out-of-bounds. Negative 
numbers greater than -1.+20 are stored as written. If this 
limit is exceeded, an error message results and the largest 
magnitude that the particular machine will hold is stored in 
the floating-point buffer. 

4.4 Line Input Devices 
Line input information is read by the macro READLINE: 

via the macro LINEIN:. Only the device number which resides 
in I0IN1: is actually used to access data. The other 
variable I0IN2: is for special input (eg input of HKL data 
from an alternate character file). In these cases 10IN2: is 
substituted for I0IN1: in the requesting program and 
READLINE: continues to input images on this device until an 
end-of-file is detected. READLINE: then automatically 
reverses the device numbers and inputs images from I0IN1: 
again. 

LINEIN: is a very machine-specific macro and requires 
reference to Appendix 2 for details. 

4.5 Formatted Input - Use of the FIELD Command 
If the use of free-format is unacceptable for any 

reason, one may use a 'FIELD' image in the input stream. 
This event signals the image processing macro, DCODEFLD:, 
that specified columns will now serve to terminate fields 
instead of blank, comma, or equal. The 'FIELD* image is read 
by macro READLINE: and numbers which are the ending columns 
of the fields are stored for use by DCODEFLD:. The image: 

FIELD 10 20 37 45 
implies that the first field is in columns 1 to 10, the 
second in 11-20, the third 21-37, the fourth to be 38-45, 
and the last to be the rest of the input line. A FIELD image 
containing following blanks will signal the macro DCODEFLD: 
to revert to free-format input as described above. 

4.6 Ordering Input Fields - Use of the ORDER Command 
In addition to the FIELD command, there is also an 

ORDER command. This is initiated by entering an 'ORDER' 
image in the input stream. This permits one to direct the 
interchanging of input fields. Thus ORDER 5 6 1 3 2 will 
result in the fields on input images following the 'ORDER' 
image to be processed as reordered data. The data in the 
first field on the input image is directed to word 5 of 

Updated February, 1980 Page 30 



Programmer's Manual 

BFINFP, data in field 2 to 6 , 3 to 1, 4 to 3, and 5 to 2. 
The rest go as usual. When this command is given 
incorrectly, grievous harm may ensue. The normal order may 
be restored by an input line ORDER followed by blanks. 

4.7 System Input Images 
The nucleus routine AA01 which is invoked by the macro 

READLINE: screens for special input lines. These lines 
supply the control parameters of the XTAL system and give 
the user the chance to direct input-output and.other system 
functions. 

The eight controls are: 
(1 ) TITLE page heading 
(2) REMARK listing identification 
(3) FILES input-output file control 
(4) MEMSET memory allocation control 
(5) SETID "stranger" data input control 
(6) FIELD input data format control 
(7) ORDER input data order control 
(8) FINISH end of run signal 

These lines are read free-format as described in section 4. 
A description of the data read in each input line follows. 

4.7.1 TITLE (Optional) 
This image contains a character string to be put out at 

the top of each printed page. It is stored in array BFTITL 
of /SYSCH/. when binary data files are being created, the 
current TITLE image is stored in the BDF as a packet of 
logical record 2. 
Field Contents Default 

1 Character string, starting in Blank 
column 7• 

4.7.2 REMARK (Optional) 
This image contains a character string to be put out 

directly on line output units 1 and/or 2, and is used to 
force "once-only" remarks. 
Field Contents Default 

1 Character string, starting in Blank 
column 8. 

4.7.3 FILES (Optional) 

Updated February, 1980 Page 31 



Programmer's Manual 

This image permits the user to specify device numbers 
for input/output units, and to change the priority limits 
and line-length for line output units 1 and 2 (I00T1: and 
I00T2:). Unspecified fields remain at the previously 
specified value (i.e., Value Remains Unchanged, VRU). 
Field Contents Default 

1 Device number for FILE A VRU 
2 Device number for FILE B VRU 
3 Device number for FILE C VRU 
4 Device number for FILE D VRU 
5 Device number for FILE E VRU 
6 Device number for FILE F VRU 
7 Device number for FILE G VRU 
8 Device number for FILE H VRU 
9 Device number for line input unit.1 VRU 
10 Device number for line input unit 2 VRU 
11 Device number for line output unit 1 VRU 
12 Device number for line output unit 2 VRU 
13 Device number for line ouptut unit 3 VRU 
14 Priority limit for line output unit 1 VRU 
15 Priority limit for line output unit 2 VRU 
16 Max. length (characters) for line VRU 

output units 1 and 2 

4.7.4 MEMSET (Optional) 
This image is to specify either the amount of usable QX 

array to be made available (i.e. beyond QXSTAR), or to 
request the total number of words required for nucleus, 
overlays, and QX array. The MEMSET request remains in effect 
until a blank MEMSET image is encountered and overrides all 
automatic memory requests. 

Field Contents Default 
1 Memory request for a definitive Blank 

number of floating-point words. resets 
Positive value specifies request MEMSET to 

Updated February, 1980 Page 32 



Programmer's Manual 

for usable QX array only. "program 
Negative value specifies request control" 
1'or total memory size. 

4.7.5 5ETID (Optional) 
This image permits the user to force the image reading 

macro READLINE: to treat images that follow as having a 
specific name. This command is used when reading stranger 
images. A blank SETID image switches off this condition. 

Field Contents Default 
1 One to six character mnemonic to be Blank 

assumed as the ID name of all non- resets 
system images that follow this image. SETID 

Condition. 

4.7.6 FIELD (Optional) 
This image is used to specify a fixed-input format for 

images that follow. The character (or column) values input 
define the low-order (right-justified) character position. 
The high-order (left-justified) position is the previous 
field value plus one. Note that the left-justified position 
of field 1 is 1, and care must be taken if an ID name is 
present (see ORDER image below). A blank FIELD image 
switches off the fixed format condition. Cautionary note: 
all fields expected as input must be specified on the FIELD 
image. 

Field Contents Default 
1 . Character postion (right-justified) Error 
2 As above for field 2. Error 
3 As above for field 3. Error 

As above for field N. (N input data Error 
are expected). 

4.7.7 ORDER (Optional) 
This image specifies the order in which fields, 

encountered on following images, will be interpreted. This 
enables fields in either fixed-format (using FIELD) mode, or 
the usual free-format, to be ordered according to the 
expectations of the program into which they are being read. 
This facility is particularly useful for inputting stranger 
images for which certain data must be reordered or ignored. 

Updated February, 1980 Page 33 



Programmer's Manual 

A blank ORDER image switches off this condition. 
Field Contents Default 

1 Word number of the input F.P. buffer 1 
that the first field encountered is 
to be placed. 

2 ditto for second field encountered 2 

ditto for the Nth field encountered 

4.7.8 FINISH (Mandatory for overlay mode) 
This image signifies the end of all calculations in the 

overlay operational mode, and it ensures a correct exit from 
the base overlay. The FINISH image has no additional fields. 

4.8 COMPCHAR: Checking for a_ Character-String Match 
The macro COMPCHAR: is used in programs to test for 

matches between character strings. The handling of character 
strings is described in section 2.4. COMPCHAR: utilizes 
subroutine AA06 which depends upon the machine-specific 
macro COMPCHR:. COMPCHAR: is invoked by: 

ARG 
COMPCHAR:(<character array to be searched for location 1 

of defined strings>, 
<index to first character in array to be 2 
searched> , 
<character array containing the table of 3 
defined strings>, 
<index to first character in defined strings 4 
table>, 
<length of every defined string>, 5 
<increment of defined strings table index 5 
between successive searches>, 
<total number of characters in the defined 7 
strings array>, 
<key>) 8 
key = 0 means no match was found 
key = N where N is the index showing which defined 

strings were found in the searched array 

This is a very powerful string comparing routine. One 
example of its use may be taken from AA02, the subroutine of 
READLINE: which does the free format decode of input lines. 

Updated February, 1980 Page 34 



Programmer's Manual 

In that routine a string search is made by: 
DATAST0RE:(A021, 0123M56789>-+$,*$:=$$ ) 
DATASTUFF:(A021) 
The digraphs $, $: and $$ are used to override the usual 
RATMAC interpretation of comma, colon, and dollar signs (2). 

In the loop over all of the input columns, the macro is 
invoked by: 

COMPCHAR:(BFINIM,N.A021,1,1,1,19,KEY) 
where BFINIM is the character array in COMMON /SYSCH/ which 
holds the input line image. N is the index to the column 
being investigated, A021 is the character array of allowed 
characters, the first 1 points to the first byte of A021, 
the second 1 indicates that 1 byte strings are to be 
compared, the third 1 gives the step to be taken on each 
successive compare to bytes in A021, the 19 gives the number 
o-f characters in A021. If the Nth character of BFINIM is a 
blank, KEY will be given the value 1; if it is a 3, KEY will 
be given the value 5, if $ 19, etc. 

NOTE that 19 could have been designated by NA021 from 
DATASTUFF:. 

The character strings are numbered starting from 1 at 
the left end of array A021. 

Updated February, 1980 Page 35 



Programmer's Manual 

5. LINE OUTPUT CONTROL 

As with input, the XTAL system does not use the FORTRAN 
line output control subroutines. The whole process of 
handling line output in XTAL is much more powerful than 
FORTRAN formatted output. Furthermore, it requires less 
computer storage and there are no fatal errors associated 
with its use. 

The two FORTRAN procedures associated with FORMAT and 
WRITE statements have been replaced with the three macro 
functions: 

(1) NCODEFLD: translates real numbers into output 
character strings and takes care of I, E, and F 
format conversions. 

(2) MOVEBYTE: moves character strings and takes care 
of A and H format conversions. 

(3) WRITLINE: causes the actual writing of the line 
including the possibility of extra blank lines, 
page titles, subtitles, and the lines encoded by 1 
and 2 above. 

At first, the macros described here will seem strange 
for those familiar with the use of standard FORTRAN 
statements. However, we feel the effort required to learn 
the new technique will be repaid in clean output. During 
check out, it is sometimes expedient to use PRINT or WRITE 
statements for dumping purposes. These can be removed when 
the program is ready to be used in production runs. The 
macro DEBUG: described in the RATMAC Primer TR-804 is an 
elegant way of doing this. 

The concept of output fields is identical to that 
already discussed for input fields, except that now data is 
encoded from a floating-point output buffer (usually BFOTFP 
in COMMON /SYS/) to a character output buffer (usually 
BFOTLN, in COMMON /SYSCH/). The size of the floating-point 
output buffer is set by the macro MXFDLN: (usually to 50) 
and the maximum length of the character buffer is set by the 
macro MXCHLN:. It should be noted, however, that the length 
of the output line is an input parameter, LINCHR (field 16 
on the FILES image), and may be varied to suit the output 
unit or calculation. 

5.1 NCODEFLD: Formatting 
All numerical data is translated from floating-point 

numbers to character strings using the nucleus routine 
NCODEFLD:. Because NCODEFLD: only encodes reals, integer 
numbers must oe made real before invoking it. 

Updated February, 1980 Page 36 



Programmer's Manual 

ARG 
NCODEFLD:(<array of reals to be encoded>, 1 

<index to first element of array to be encoded>,2 
<array of characters into which the encoded 3 
numbers are to be placed>, 
<array of reals which define the format control 4 
words to be used in the encoding process>, 
<number of items to be encoded>) 5 

The array of reals which define the format control 
words consists of packed words of the form CCCLLDT. They are 
used to specify the output format of each number. 
CCC is the right-justified column position in the output 

character array. 
LL is the total width of the numeric character string 

(including signs, decimal points, and exponent). 
D is the number of digits after the decimal point in E 

and F type formats, or the number of forced digits in I 
type format. 

T is the format type. 
NCODEFLD: treats nine types of output format types: 

T = 1 specifies E-format of the general form S.YYYYSZZ 
where S is the sign character ( -, +, or blank), 
YYYY are the most significant digits after the 
decimal point (in this case D = 4), and ZZ is a 
two digit integer exponent. The absolute minimum 
LL of an E-format is 4. For LL less than 4, an 
overflow is indicated by a field (LL long) of 
asterisks. 

T = 2 specifies F-format of the general form SXXX.YY 
where S is the sign character (- or blank) , XXX 
is the component of the number greater than one. 
The present length of YY, the fractional part, 
is defined by D in the format word. The value of 
LL must allow for a minimum width of D + 1 for 
positive or D + 2 for negative numbers An 
overflow of LL automatically changes T to 1 and 
rules for the E-format then apply. 

T = 3 specifies I-format (base 10) of the general form 
SXXXX, where S is the sign character (- or 
blank) and XXXX is the rounded-off integer 
value. The value of LL must allow for the width 
of t. le maximum integer if positive and the 
maximum integer + 1 column for the sign if 
negative, otherwise NCODEFLD: automatically 
changes T to 1 and rules for E-format then 
apply. The value of D in the format specifies 
the minimum number of digits to be output. This 

Updated February, 1980 Page 37 



Programmer's Manual 

may be used either to output a zero integer as 
blank (when D = 0), or as 0 (when D = 1), or 
force leading zeros. For example, the integer 
nine will be output as 09 if D = 2. 

T = 4 specifies I-format (base 2) of the form SXXXXX, 
where X is either the digit 0 or 1. All rules 
are identical to T = 3. 

T = 5 specifies I-format (base 8) of the form SXXXXX, 
where X is a digit = 0,1,2,...,7. Useful for 
memory addresses (e.g., in CDC). 

T = 6 specifies I-format (base 36) of the form SXXXXX 
where X is a digit - 0,1,2,...,Y,Z. Useful for 
population plots. 

T = 7 specifies unpacked binary digits of the general 
form XXXXX. A maximum LL value of 32 must be 
observed, since use of greater than 32-bit words 
is not permitted in the XTAL system. (0 or 1) 
are unpacked from the floating-point word. 
Unlike type 4, in which the actual integer or 
real value of the number is output in base 2, 
type 7 causes the actual bit pattern starting 
from bit-position 0 (right-justified) to bit 
(LL-1) to be output. Only LL bits are unpacked. 

T = 8 specif*z~> unpacked hexadecimal digits of the 
general form XXXXX. The values of X 
(0 ,1 ,2,...,F) are unpacked as 4 bit bytes from 
bit-position 0 (right-justified) to bit-position 
(LL-4). Only LL-4 bit bytes are unpacked. 

It should be noted that because the macro NC0DEFLD: is 
capable of encoding these words as either binary, octal, or 
hexadecimal character strings for output by WRITLINE:, the 
programmer may display packed information in an 
easily-readable form during program development. 
5.1.1 Formulation of NCODEFLD: Format Arrays 

The method of preparing the array of reals to be used 
as the format control words can be carried out by either 
forming the control words directly or by invoking the FMT: 
macro. In either case, a REAL array is specified and then 
followed by a DATA statement which loads the format control 
words into the array. For example, the array of format 
control words corresponding to the conventional FORTRAN 
FORMAT statement: 

100 FORMAT(10X,I5,2F12.6,E15.7) 
would be coded in XTAL as: 

REAL IFMT(4) # 

Updated February, 1980 Page 38 



P r o g r a m m e r ' s Manual 

DATA IFMT/150513. , 2 7 1 2 6 2 . , 3 9 1 2 6 2 . , 5 4 1 5 7 1 . / # 

or a l t e r n a t i v e l y , i f t h e FMT: macro i s u s e d : 

DATA I F M T / F M T : ( 1 5 , I 5 . 1 ) , F M T : ( 2 7 , F 1 2 . 6 ) , i # 
F M T : ( 3 9 , F 1 2 . 6 ) , F M T : ( 5 4 , E 1 5 . 7 ) / # 

The one after the decimal point in the 15.1 indicates the 
minimum number of integer figures to print. This provides 
for the printing of leading zeros. 
Later in the program, where one would write in FORTRAN: 

WRITE(6,100)(BF0TFP(J),J=1,4) # 
the following two statements would appear: 

NCODEFLD:(BFOTFP,1,BFOTLN,IFMT,4) # 

WRITLINE:C0,0,0,1,3) # 
The use of FORMAT words has been simplified for the 

most common format types, T = 1, 2, or 3, by making 
available the macro FMT: (<CCC> ,<TXLL>.<D>) 
NOTE WELL: the macro FMT: is a complicated one, so it has 
high overheads during preprocessing. 
5.1.2 DATASTORE:, DATASTUFF:, and MOVEBYTE: 

The use of the DATASTORE: and DATASTUFF: macros permits 
setting up character strings for output. The macro MOVEBYTE: 
may then be invoked to move these strings to the line output 
buffer in /SYSCH/, BFOTLN. The macro is invoked by: 

ARG 
MOVEBYTE:(<array which is the source of character(s)>, 1 

<integer which indexes character in source 2 
array>, 

<array which is the destination for 3 
character(s)>, 

<integer which indexes character in destination 4 
array>, 

<integer number of characters to go into 5 
destination array>, 

<key>) 6 
key = 0 means move character for character from 

source to destination 
key = 1 means move only the first character of the 

source to every character of the 
destination array 

If the destination array is BFOTLN and an array set up 
by DATASTORE: is specified as the source array, then 
MOVEBYTE: will load BFOTLN for printing. An example follows: 

Updated February, 1980 Page 39 



Programmer's Manual 

DATASTORE:(XX001 , NOW IS THE TIME FOR) it 
DATASTUFF:(XX001) // 
MOVEBYTE:(XXOO1,1,BFOTLN,1,NXOO1,0) # 
WRITLINE:(0,0,0,1,3) # 

5.1.3 NCODEFLD: Placing Data in DATASTORE: Arrays 
The XTAL method of carrying out the FORTRAN statements: 

100 FORMAT(5HOX = ,F10.5) 
PRINT 100, X 

would be: 
DATASTORE:(XX002, X = ) # 

The blanks will later be overstored by use of NCODEFLD: 
DATASTUFF:(XX002) # 
NCODEFLD:(X.1.XX002,151052.,1) # 
WRITLINE:(1,XX002,NX002,3,3) # 
The details of the arguments of WRITLINE: are given 

below. The purpose here is to show the use of NCODEFLD: in 
placing coded numbers into an array to be used for output. 

The total possibilities are very great and each 
programmer will develop various ways of taking advantage of 
the separation of these functions into the various macro 
procedures. 
5.2 WRITLINE: Output of Character Strings 

This macro is the standard line output function of 
XTAL. It provides pagination and titling of all output. The 
output may be flexibly controlled by a key described below. 
The output lines are taken from one explicit and two 
implicit sources: 

(1) An explicit character array specified in the 
calling sequence. These may be messages or column 
headings. 

(2) The character array BFTITL which contains the image 
of the current page title. 

(3) The character array BFOTLN which contains the image 
of the current output line. 

For simple line output with no headings, the characters 
may be placed in either the explicit array or in BFOTLN. The 
choice is a matter of convience to the programmer. When 
headings are involved, the heading is placed in the explicit 
array and the numerical output is placed in BFOTLN. There is 
a control which may be used to assure that two lines are not 

Updated February, 1980 Page 40 



Programmer's Manual 

split between two pages. Every page will have a title which 
is a distinct line that appears above the heading. Every 
line that is printed has an associated priority which allows 
the user to control the extent of output. All lines may be 
directed to two different output devices. The priorities and 
printers are under control user at execution time. This is 
important for control of output in an interactive computing 
environment. 

Character string information may be output directly by 
WRITLINE: 

ARG 
WRITLINE:(<number of blank lines before actual print>, 1 

<explicit character array to be printed>, 2 
<number of characers in the explicit array>, 3 
<key>, 4 
<printing priority for the line>) 5 

<number of blank lines before actual print> allows for 
single, double, or greater spacing. It simulates FORMAT(1H0) 
etc. The character array to be printed is most often a 
string defined by the use of the DATASTORE: macro. If 
required, numerical data can also be inserted into this 
array using NCODEFLD: as is shown in section 5.1.3- Any 
other character string may be written out; for instance, the 
input image in buffer BFINIM can be directly using 
WRITLINE:. In these cases, the use of an auxiliary buffer 
(i.e. other than BFOTLN) for output is treated as a header 
line and the appropriate key must be set as argument <key> 
in WRITLINE:. These keys are discussed below. 

Character strings may be output by moving them into the 
standard output buffer BFOTLN with the character-mover 
routine, MOVEBYTE:, or by the numeric encoder, NCODEFLD:. In 
this way, alphabetic and numeric data may be arranged 
according to the output format desired. 

The use of BFOTLN as the output buffer is implicit and 
under the control of <key>. The use of <explicit character 
array to be printed> simultaneously with BFOTLN is a 
powerful means of creating headings. 

<number of characters in the explicit array> specifies 
the length of the array. If this integer is zero, blanks 
will be put out depending upon the value of <key>. 
5.2.1 WRITLINE: Keys 

<key> gives the programmer control over the way 
WRITLINE: puts out the special character array and the line 
output buffer, BFOTLN, of COMMON/SYSCH/. The use of this key 
in conjunction with the COMMON/SYS/ variables LINRM and 
LINCT provides a powerful tool for the programmer. Typically 
<explicit character array to be printed> will contain a 
subtitle, a column heading, or text. WRITLINE: counts lines 
as they are printed (LINCT) and, if the number of lines 

Updated February, 1980 Page 41 



Programmer's Manual 

remaining on a page is less than LINRM, a new page will be 
ejected before the <explicit character array> is printed. 
<key>=1 BFOTLN will always be output, but may be preceded by 

the <explicit character array>. 
The <explicit character array> will be put out on 
first call and at the top of every subsequent page. 
This feature is designed to make subheadings for 
output lists. Setting LINRM to the number of lines 
in the array will assure that the subheading is not 
split between two pages. 

<key>=2 BFOTLN will be output, and the <explicit character 
array> will be written on every call. Use of LINRM 
assures that both parts appear on the same page. 

<key>=3 BFOTLN is not output. This option used for multiple 
line heading or printing messages (text). Blank 
lines may be generated by setting <the number of 
characters in the explicit array> to zero and 
<number of blank lines before actual print> 
appropriately. 

5.2.2 WRITLINE: Priorities and Devices 
<printing priority for the line (PR)> 
The integer argument PR is used to signal WRITLINE: 

with respect to the importance of the output. The following 
table describes the priority levels available: 
PR=1 for essential messages and data 
PR=2 for abbreviated messages and data appropriate in 

interactive modes of operation. 
PR=3 for standard messages and data usually on a line 

printer. 
PR=4 for expanded data and messages, Fourier maps, structure 

factor lists, etc. 
PR=5 for diagnostic data and messages, dumps, error traces. 

Also echoes input images from HEADLINE:. 
Reference to the macro call shown at the beginning of this 
section shows that it has five explicit arguments. In 
addition, there are seven implicit arguments, BFOTLN (BuFfer 
for OuTput LiNe), I00T1;,- I00T2: , I0T1P: , I0T2P:, LINRM, and 
LINCT in SYSCOM:. These implicit arguments are the standard 
output line buffer, (BFOTLN), the standard line output file 
priority, (I00T2:), the current standard line output file 
priority, (I0TP1:), the alternate file priority, (I0T2P:), 
the number of lines which must be available on a page if 
printing is to occur before page restoration, (LINRM), and 
the current value of the line count. 

Updated February, 1980 Page 42 



Programmer's Manual 

5.2.3 WRITLINE: Output Units 
WRITLINE: will write on two different output units 

simultaneously. This function is controlled by the use of 
the FILES control line during execution (see section 4.6). 
This control is dependent upon the unit designations I00T1: 
and I00T2:. If these units are assigned the same "logical 
unit number" then there is just one output stream, I00T1:, 
and printing will be at the priority specified by PR for 
each WRITLINE: call. 

On the other hand, if two different units are specified 
for I00T1: and I00T2: each will be written only if the 
output corresponding to priority variables I0T1P: and I0T2P: 
are less than or equal to the value of PR. This function 
allows a user at a VDU or teletype to "spool" low-priority 
output to a file while observing high-priority output at the 
terminal. 

5.3 Examples £f U_se of WRITLINE: 
There are four common ways that a programmer will want 

to use WRITLINE:; first, to write a message, second to write 
encoded data, third to write a message containing encoded 
data, and fourth to write headed data. 
5.3-1 WRITLINE: Used to Produce a Message 

DATAST0RE:(X01, NOW IS THE TIME) # 
DATASTUFF:(X01) # 
WRITLINE:(6,Xoi,NX01,3,3) # 

5.3.2 WRITLINE: Used to Write Encoded Data 
In this example, the floating-point variable X is 

written out as 1X.F12.4. 
NCODEFLD:(X,1,BFOTLN,131242. , 1) 
WRITLINE:(0,0,0,1,3) 

5.3.3 WRITLINE: Used to Write a Message with Data 
In this exapmle, the value of the floating point 

variable,X, is written out as F12.4 at the end of a defined 
message "VALUE OF X IS". 

DATAST0RE:(X03, VALUE OF X IS ) # 
DATASTUFF:(X03) # 
NC0DEFLD:(X,1 ,X03,271242. ,1) it 
WRITLINE:(0,X03,NX03,3,3) # 

Updated February, 1980 Page 43 



Programmer's Manual 

5.3.4 WRITLINE: Used to Write Headed Data 
Consider a program in which it is desired to list 

h, k, 1, sin theta over lambda, and intensity in a loop. The 
output is to be headed on the first write and at the top of 
every page. The skeletal outline of this program using the 
facilities described above could be as follows: 
SYSTEMHEADER:(XXOO) # 

preliminary program material 

REAL FMT(5) # 
DATAST0RE:(X001, H K L SIN(T)/L INTENSITY) # 

all other variable declarations 
DATASTU"FF:(X001) # 
DATA FMT/40413.,80413.,120413-,220852.,341131./ # 

preliminary program 
LINRM = 3 # set up to head output within the loop 

# head columns and start printing 
# unless there are less than three 
# lines left on the current page 

FOR (J=1; J.LE.NREF; J=J+1) 
$( # loop over reflections 

BFOTFPd) = FLOAT(H) # 
BF0TFPC2) = FLOAT(K) # 
BF0TFPC3) = FLOAT(L) # 
BF0TFP(4) = STOL # 
BF0TFPC5) = TENSIT # 
NCODEFLD:(BFOTFP,1,BFOTLN,FMT,5) 
WRITLINE:(0.X001,NX001,1,5) 

$) 
END 

# 
# 
# 

Updated February, 1980 Page 44 



Programmer's Manual 

6. BINARY FILE INPUT/OUTPUT CONTROL 

One of the central features of the XTAL system is the 
use of binary data files for communication between major 
crystallographic programs. In this section, the routines 
which are used for the reading, writing, and copying of 
these files are presented. The structure and contents of a 
binary data file are set out separately in Appendix 5. 

We now summarize the macros which support binary I/O 
activity; the conventions to be used for various kinds of 
binary files; the primitive macros which support the 
frequently used macros; and binary input output conventions. 

Some sketchy examples are given here, but the main 
example is to be found in the EXOO, EX01, and EX02 codes on 
the XTAL distribution tape. 

Four types of binary files are used in the XTAL system. 
Three of these types are sequential in nature and the fourth 
is a random-access file. Two of the three sequential files 
are data files, and the third is a scratch file. The 
random-access file is a scratch file. 

6.1 Binary Data Files 
Two of the sequential file types are called binary data 

files. .The first of these is T*H*E B*I*N*A*R*Y D»A*T*A 
F*I*L*E (BDF) described in Appendix 5. The second type is 
structured in a similar vein and will be referred to as an 
auxiliary BDF. The concept of a logical record and a packet 
are spelled out in detail in section 6.3. 

The structure of these types of binary files is 
carefully prescribed and documented in order to allow 
communication of non-transitory data from one program to 
another (e.g., for reflection information from the 
diffractometer tape to the reflection processing routines). 
On these files logical records of type 1 and type ENDRECORD: 
are reserved for special uses. Record 1 is a label record 
with the last name of the writing program and the date 
written into it. The last record defined by the macro 
ENDRECORD: is the end-of-file record and serves to signal 
macros WRITEPKT: (the packet writer) and READWPKT: (the 
packet reader-copier) that files are to be terminated and 
pointers reset to the beginning of the file. 

The use of these routines may be learned by studying 
the code EXOO supplied on the XTAL distribution tape. 

Updated February, 1980 Page 45 



Programmer's Manual 

6.2 Scratch Binary Files 
From the point of view of the programmmer adding 

working programs to the XTAL system, only the six MACROS 
listed above are usually utilized. In the following section 
is given the background material to the primitives which 
support BDF activity. These primitives are used when large 
scratch files are needed to supplement immediate access 
memory. 

6.2.1 Binary Sequential Files 
These files are written by the use of the macros: 
BINSEQOPEN:(<integer which designates file>) 
BINSEQREW:(<integer which designates file>) 

ARG 
BINSEQWRIT:(<integer which designates file>, 1 

<QX array area to be put out in FORTRAN as: 2 
(QX(I),I=<starting index>,<ending index>)>, 

<buffer length in real words>, 3 
<relative word address on mass storage>, 4 
<QX(<starting index>)>, 5 
<integer error flag; read OK if zero)) 6 

ARG 
BINSEQREAD:(<integer which designates file>, 1 

<QX array area to be input in FORTRAN as: 2 
(QX(1),I=<starting index>,<ending index>)>, 

<buffer length in real words>, 3 
<rel word address on mass storage), 4 
<QX(<starting index>)> 5 
<integer error flag; write OK if zero>) 6 

BINSEQEOF:(<integer which designates file>) 
The use of these macros is illustrated in AA21, AA22, AA25, 
and AA26. Further comments are given in Appendix 2. It is 
intended that these macros be used only for data storage and 
retrieval of a transitory nature. This type of scratch file 
is used for extending memory during a calculation and is not 
to be used for inter-program communication because of the 
uncontrolled file structure and buffer lengths. 

There are very rigid restrictions on the use of these 
reads and writes. The length of the buffer must be limited 
to a single value specified by BINSEQBUF: since the macro 
primitives expect only fixed length records to be written. 
Careful stut'y of the techniques involved must be made by the 
programmer. 

Updated February, 1980 Page 46 



Programmer's Manual 

6.2.2 Random-access Files 
These files are characterized by directory tables that 

point to specific word strings on mass storage which are to 
be written and read randomly. The directory tables are kept 
in the program which uses this type of file. 

As of February 1980, these techniques are ill-defined 
and will require more study to specify fully. 

6.3 Sequential Binary File Input/Output Control 
The structure of the XTAL binary data file is given in 

Appendix 5. Sequential files which do not have strict BDF 
format will nevertheless be structured much like a BDF. 
These, for example, will be files with raw diffractometer 
data or data of the output of a Fourier Transform to be 
input to a search routine. That is, the basis for management 
of this type of file is through the concept of "logical 
records" and packets" . 
6.3.1 Logical Records 

A logical record is a set of data which the programmer 
defines as belonging together for calculational purposes. 
6.3-2 Packets 

A packet is a subset of a logical record which repeats 
a pattern of the same quantities attached to different 
indices. In crystallography, several examples of the use of 
logical records and packets spring to mind. One would be a 
logical record containing atomic parameters. In this case, 
each packet contains the data for a single atom. The packet 
may contain x, y, z, population parameter, U and an atom 
designator. The size of the packet is six; with anisotropic 
temperature factors, it is eleven. 
6.3.3 Binary Control Macros 

The macros WRITEPKT:, READWPKT:, POINTPKT:, 
COPYFILE:.BUFGET:, and BUFPUT: support activities of reading 
and writing logical records and files. 
WRITEPKT: The packet writer ARG 
WRITEPKT:Uinteger which designates output file>, 1 

<integer which designates logical record>, 2 
<integer which specifies packet size>, 3 
<integer returned as index into QX array '4 
where output packet is to be stored>) 

READWPKT: The packet reader-copier ARG 
READWPKT:(<integer which designates input file>, 1 
Updated February, 1980 Page 47 



Programmer's Manual 

<integer which designates logical record>, 2 
<integer returned which specifies packet size>, 3 
<integer returned as index into QX array where 4 
input-output packet is stored; zero if logical 
record drained>, 
<integer which designates output file; zero 5 
implies read only function; non-zero implies 
read-write>) 

POINTPKT: The packet address builder ARG 
POINTPKT:(<integer which designates input file>, 1 

<integer which designates logical record>, 2 
<integer returned which specifies packet size>, 3 
<integer returned which as index into QX 4 
array where input-output packet is stored>, 
<integer which designates output file as in 5 
READWPKT:>, 
<integer which designates number of items 6 
sought>, 

<integer array with numbers of file indices 7 
from Appendix 5 stored>, 
<integer array for return of relative pointers 8 
to sought quantities)*) 

COPYFILE: The logical record copier ARG 
COPYFILE:(<integer which designates input file>, 1 

<integer which designates output file>, 2 
<integer which designates first logical record 3 
to be copied>, 
<integer which designates last logical record 4 
to be copied>) 

BUFGET: The local REAL variable from QX buffer mover ARG 
BUFGET:(<integer index into QX array>, 1 

<real variable to be stored locally>) 2 
BUFPUT: The local real variable to QX buffer mover ARG 
BUFPUT:(<real local variable to be placed in QX 1 

buffer>, 
<integer index into QX array>) 2 

These last two macros can have wider use for moving 
variables into and out of the QX array. 
ENDRECORD: The BDF end-of-file signal is described under 

point 6 below. 
From a programmer's point of view, nine activities must 

be controlled: 
(1) The choice of files to be written (created), read 

and/or copied. These files are designated by 

Updated February, 1980 Page 48 



Programmer's Manual 

integers 1, 2, 3, ..., MXIOUN: which correspond to 
FILE A, B, C, ... 

(2) The buffer region in the QX data array which will 
be set aside as a buffer region for the specified 
file. The value of the location just before the 
start of the buffer in the QX array must be stored 
in the COMMON/SYS/ integer array, IOMARK(N), where 
N is the index of the file. See the dynamical 
storage section for QX array protocols. The length 
of the buffer is always BINSEQBUF: and this amount 
of space must be utilized in a "working" program. 

(3) The actual binary device number (often called a 
FORTRAN logical unit number) is stored in IOUNIT(N) 
of /SYS/. The programmer may wish to interchange 
these for switching units after copying a file. See 
READWPKT: for an example of this procedure. NOTE: 
When READWPKT: is used in the read-copy mode, it 
always interchanges files at the end of the copy. 

(4) FILE A, IOUNITC!) and FILE B, I0UNITC2) are usual 
units for the binary data file. 

(5) Files are created by the use of the binary file 
writer, WRITEPKT:. An example of the use of this 
subroutine is: 

WRITEPKT:(N,LREC,PACK,IP) # 
where all of the arguments are of type INTEGER, N 
is the output file designator, LREC is the logical 
record designator, PACK is the size of the packets 
of LREC (never zero), and IP is a pointer which 
gives the location in the QX array where the packet 
is to be stored. That is: 
QX(IP+1)=<First floating-point word of packet> # 
QX(IP+2)=<Second floating-point word of packet> # 

QX(IP+PACK) = <Last floating-point word of packet> ii 

The programmer should note well that pointers 
into the QX array are always one less than the 
actual QX element of the first item. This is done 
for consistancy and to agree with the BDF 
conventions described below. 

The logic of WRITEPKT: is such that no actual 
writing takes place until the physical buffer is 
exhausted. With each call, IP ranges back and forth 

Updated February, 1980 Page 49 



Programmer's Manual 

over the region of the QX array specified by 
IOMARK(N) to IOMARK(N) + BINSEQBUF: - 1. Logical 
records should be written in the order 2 to 
ENDRECORD: -1. Not every record need be on the file 
if the data are not required for subsequent 
calculations. An ENDRECORD: must always be written 
to the file. In the calling sequence of WRITEPKT: 
the value of the variable PACK is supplied to the 
program to set the size of packets written to the 
file. This quantity must remain constant for all 
packets of a given logical record. 

(6) Logical records 1 and ENDRECORD: are special. The 
first must be formed with great discretion when 
WRITEPKT: and the reader-copier READWPKT: are used. 
At the time a BDF record is created, 50 packets of 
length the-number-of-words-to-hoId-16-characters 
must be written to logical record 1 , filled with 
blanks. The EX01 program shows this procedure. The 
ENDRECORD: must always be called when WRITEPKT: is 
used or when READWPKT: is used in the read-copy 
mode. This signals that the file activity is 
completed. When READWPKT: is used in the read-only 
mode, IOLRPT(N), which indicates the logical record 
type being handled, may be set to zero to signal 
that the use of file N is over, thus avoiding 
reading all the way to ENDRECORD:. 

(7) READWPKT: is used to read, or read and copy files. 
An example of the usual way this subroutine is used 
might be: 

READWPKT:(N,LREC,PACK,IP,NO) # 
where N is the input file designator, LREC is the 
logical record sought, PACK is the size of the 
packet found on the file for the specified logical 
record, IP is the pointer to the QX array where the 
packet is to be found, and NO is the output file 
designator. All of the arguments are of type 
INTEGER. If NO is zero, the subroutine is in the 
read-only mode. This is a single-buffer subroutine 
which uses the buffer array specified by IOMARK(N) 
and means that in the read-copy mode, files may not 
be expanded or contracted. That is, PACK is fixed 
and not under programmer control. The pointer IP is 
returned as zero when the logical record is 
drained. In READWPKT: PACK is read out of the file 
N by the program. Writing, of course, is to file NO 
from the buffer of file N. 

(8) When it is necessary to simultaneously read a file 
with one set of packet sizes, and write a file with 
a different set of packet sizes, WRITEPKT: and 
READWPKT: must be used together. Furthermore, two 
IOMARKC ) values must be set. Then pairs of calls 

Updated February, 1980 Page 50 



Programmer's Manual 

are made to WRITEPKT: and READWPKT: with 
appropriate copying from the input buffer to the 
output buffer. To facilitate the transfer of 
logical records for which PACK remains constant, 
the macro COPYFILE: may be used. For this program, 
an example is: 

COPYFILE:(N,NO,LREC,LRECE) # 
where N is the input file, NO is the output file, 
LREC is the first logical record to be copied and 
LRECE is the last logical record to be copied 
during the call. All of the arguments are of the 
type INTEGER. 

(9) Macro POINTPKT:, the packet address builder, is 
used to locate specified quantities in the 
directory-type logical records of the binary data 
file. For directory-type logical records (see 
Appendix 5 for specifications) the first packet of 
each logical record contains identification numbers 
which uniquely define the contents of all 
subsequent packets in this record. This packet is 
referred to as the directory. 
POINTPKT: is used to locate these identifications 
numbers and return their address (i.e. sequential 
word-position) within the packet. A typical calling 
sequence of POINTPKT: is 
POINTPKT :(N, LREC, PACK, IP, NO, MAXWNT, IWANT, RELPT) // 

where the first five integer arguments are those of 
READWPKT: And are passed through to that macro 
unaltered. MAXWNT is a count of the number of 
quantities wanted from the LREC specified while 
IWANT is an array which contains numbers specified 
as the "identification number" in the binary data 
file. This subroutine then searches the first 
packet for matches between the numbers in the IWANT 
array and the numbers in the first packet. When a 
match is found the RELPT integer array is set to a 
proper "offset" value to be applied to subsequent 
values of IP to fetch or store the desired 
quantities from the buffer. That is, IP + 
RELPT(N+1), will be the pointer to the item 
indicated by IWANT(N). The macros BUFPUT: and 
BUFGET: are used for this operation. The first 
element RELPTCl) serves as a signal. When it is 
zero, all sought quantities are in the file. When 
it is 1, one or more are missing. The missing ones 
have RELPT values of zero. The usual way of setting 
up a packet picking operation is to place a 
statement in the program which declares tne type of 
these variables, such as: 

Updated February, 1980 Page 51 



Programmer's Manual 

INTEGER IWANT(M),RELPT(5),RIP1 , RIP2.RIP3, RIP** 
EQUIVALENCE(RELPT(2),RIP1 EQUIVALENCECRELPT 

(RELPT(I),RIP3),RELPT(5),RIP4) 
This would then be followed by a DATA statement: 

DATA IWANT.RELPT/1,7,11,21,5*0/ # 
This implies that four quantities are wanted from 
the LREC specified. That is, those with 
identification numbers 1, 7, 11, and 21 are 
required. The process is started by a call: 

POINTPKT:(1,11,PACK,IP,2,4,IWANT,RELPT) # 
which reads the table of contents packet and sets 
up the relative packet pointers. 

After the call to POINTPKT:, it would be usual 
to have the sequence of instructions: 

IF(RELPT(1).NE.O) IQUIT:(XXYYZZ.) # 
REPEAT # start of repeat loop 
$( # 
READWPKT:(1 , 14, PACK, IP, 2) it 

IF (IP.LE.O) BREAK # 
BUFGET:(IP+RIP1,HKL) # 
BUFGET:(IP+RIP2,PARAM2) # 
BUFGET:(IP+RIP3,PARAM3) // 

# calculations 

BUFPUT:(PARAM4,IP+RIP4) // 

$) # end of repeat loop 

and if the calculation is completed: 
C0PYFILE:(1,2,15,ENDRECORD:) # files being 

# expanded or contracted 
or 
READWPKT:(1 .ENDRECORD:,PACK,IP,2) # files simply 

// being copied 
Updated February, 1980 Page 52 



Programmer's Manual 

would finish the copying of the files and close 
them out. See the example programs EXOO, EX01, and 
EX02 for a more detailed use. 

When in the single-buffer and read-write mode, 
READWPKT: will always interchange files 1 and 2 
when the ENDRECORD: has been processed. If having 
the files interchanged is not desirable, the 
following sequence of instructions would restore 
them to their original values. 

J = IOUNITO) # 
IOUNITO) = I0UNIT(2) # 
I0UNIK2) = J # 

In summary, it is recommended that examples shown in 
the routines already coded be studied as illustrations of 
how the four macros are used to create, read, copy, and 
fetch specific quantities from sequential binary files. It 
is hoped that this process will be compact, fairly 
efficient, and convenient in the XTAL system. The routines 
EXOO, EX01, and EX02 is the XTAL distribution tape show an 
example of the use of the macros described above. 

Note that there are, as in the case of line 
input-output, few faults which will cause these I/O programs 
to stop. Many times the programmer will put checks which are 
really testing the validity of the code itself or of the 
machine or operating system. These checks are then made 
millions of times to no purpose. The programmer may need to 
add additional dumps during check out, but these should be 
removed from the checked production code. They take up 
unnecessary space and time during production execution. See 
RATMAC Primer (5) for the formation of a DEBUG: macro. 

Please keep in mind that the purpose of this method of 
I/O is to give the programmer control over buffer regions, 
to eliminate large FORTRAN I/O libraries; to match buffer 
size to local mass storage specifications; and to make 
possible the readings of small packets of data in the logic 
of the program while actually minimizing physical I/O 
activity. 

Updated February, 1980 Page 53 



Programmer's Manual 

7. PROGRAM DOCUMENTATION 

Program documentation is one of the most important 
components of software development. With an increasing 
number of structure analysts, who have little or no formal 
crystallographic training, using the XTAL system, 
programmers will be expected to put a particular effort into 
producing a clear, concise write-up. It is worth remembering 
that in commercial software organizations as much time goes 
into the production of supporting documentation as into the 
software development itself. 

7.1 XTAL Handbook 
To ensure clarity of presentation, each program will 

appear as a single chapter in the new XTAL handbook. A 
chapter will contain all relevant information to a given 
program and it will be the program author's responsibility 
to ensure the best possible description. In fact, the 
program write-up should be treated as a chapter in a book 
would be treated. It will represent a publication for the 
author which can be suitably referenced by users. 

The standard layout required for each program chapter 
of the XTAL handbook is detailed below. Chapters will appear 
in the handbook alphabetically according to the calling name 
of the program (e.g., ABSORB, etc.), with the exception of 
the introduction to the use of the XTAL system and a 
description of the SYSTEM images (see above) which will form 
Chapter 1. RATMAC listings of the programs will not appear 
in the handbook, these will be distributed on magnetic tape. 
The appendices will also contain implementation instructions 
and listings of the input and output of two or three test 
decks. These test decks will be distributed with the XTAL 
programs and RATMAC preprocessor. An appendix will also 
describe in detail the method of communicating errors and 
fixes to program authors (see UPDATE PROCEDURE below). 

7.1.1 Layout for Handbook Chapter 
At the beginning of each chapter the following 

information should be supplied: a) program name - one to six 
letters; b) a brief title telling the function of the 
program; c) the author(s) name(s); d) the author(s) 
address(es); and e) the author(s) telephone and Telex 
numbers. The chapter should then be arranged according to 
the following format. 

SYNOPSIS - Give a brief description of the type and 
scope of the calculations the program performs, highlighting 
the important and distinctive features. 

Updated February, 1980 Page 54 



Programmer's Manual 

INTRODUCTION or MATHEMATICAL BACKGROUND - Introduce the 
calculation with relevant references to previous 
publications and programs. References should appear in the 
text (in brackets). All important mathematical expressions 
used in the program must be carefully defined. All terms 
must be described carefully, particularly those for which 
the user must supply parameters or understand the output 
data. 

OPERATIONAL PROCEDURE or ALGORITHM - Describe briefly 
how the program is partitioned and the major steps in the 
calculation procedure. A simple flow chart may be used but 
it must be supplied in a form suitable for direct offset 
printing. Reference the subroutine names wherever possible 
to assist the user in the event of an error. 

PROGRAM AND HARDWARE RESTRICTIONS - Carefully list 
limits associated with input parameters, data size, and 
memory. Also if there are areas which may be 
machine-specific, mention them. 

MEMORY AND FILE UTILIZATION - Give typical examples of 
the amount of direct-access memory required to execute a 
range of problems. If possible, give a 
parameter-to-memory-size equation. Specify which files will 
be input, output, and scratch. If the BDF is updated, 
indicate which data are inserted, modified or removed. 

INPUT IMAGE FIELD DEFINITIONS - All input image types 
must be described concisely. The description should contain 
a capitalized heading; an indication of whether the line is 
optional; a brief description highlighting any particular 
requirements; and the actual field definitions listed as 
Fields, Contents, and Defaults. A typical example of such a 
layout is shown above for the SYSTEM images (sect. 2.6). 

LINE OUTPUT CONTROL - The lines put out by a program 
are conditional on the priority limits 0T1PR and 0T2PR of 
the output devices I00T1 and I00T2. The priority value 
associated with each line of output (in the call WRITLINE:) 
must be listed to ensure that the output information needed 
is received. 

7.2 Program Comments and Sequence Codes 
As discussed in the preprocessor section above, each 

line of program code should contain a comment, starting with 
a Crosshatch # in column 40 (if feasible) and ending on or 
before column 72. These comments should describe as 
succinctly as possible the function of each line or group of 
lines in a way that will be clear to someone other than the 
author. One method of achieving simple and more-readable 
comments is to add them after the program is debugged. At 
this stage, the author has a better overview of the program 
and looks at the code more as a user would. In any case, 

Updated February, 1980 Page 55 



Programmer's Manual 

authors need not be reminded that the success and longevity 
of a program are often dependent on i t s readabi l i ty . This 
enables er rors to be found more easily and allows the 
inevitable modifications to be made without interfering with 
existing code. 

Updated February, 1980 Page 56 



Programmer's Manual 

8. UPDATE PROCEDURE 

With the XRAY system, users were encouraged to send 
information on program errors and fixes to the authors at 
the University of Maryland for eventual distribution to 
users as updates. This proved to be an extremely difficult 
task both because of the sheer volume of updates for all 
programs, and because it was virtually impossible to assess 
the validity of all corrections and enhancements on programs 
that did not originate locally. A more synergistic approach 
to updates is to have authors check corrections and faults 
on their own programs and then send these on to the current 
designated clearinghouse for distribution. 

Accordingly, for the XTAL system, users are required to 
forward all errors and fixes to the author identified for 
that purpose in the XTAL handbook. It will now be the 
author's responsibility to test these modifications, and 
periodically send these to the clearinghouse with suitable 
documentation. One of the most difficult aspects of updates 
in the past was that users, and the authors themselves, have 
failed to comment updates to say what they fix, or what new 
feature they provide. It must be recognized that some 
installations, for reasons that are not entirely clear, are 
reluctant to implement any but the absolutely essential 
updates. Certainly many installations wish to stabilize the 
program system they are using and have little interest in 
additional enhancements, particularly when they are 
uncommented (as they usually are). 

The method of handling updates will be to distribute 
them in a form which can be treated by a special editor 
routine. This routine will expect updates in a form 
described below. It will scan the named symbolic decks and 
carry out insertions and deletions in the RATMAC code. These 
insertions and deletions will be marked in the output code 
and will be made subject to priorities and machine 
designations described. 

8.1 The Update Code *U_ 
The update processor allows a series of commands for 

the insertion and deletion of lines of code. These commands 
are: 

*U,<priority>,<machine> 
*N,<deck name> 

designates XTAL deck as given in the 
SYSTEMHEADER:(<deck name>) 

*I ,<line number>,<priority>,<machine> 
insert following RATMAC code after specified line 

Updated February, 1980 Page 57 



Programmer's Manual 

conditional on <priority> and <machine> matching *U 
specifications. 

*R,<beginning line number>,<ending line number>, 
<priority>,<machine> 
insert the following RATMAC code in place of the 
deleted lines conditional on <priority> and 
<machine> matching *U specifications. 

*D,<beginning line number> ,<ending line number>, 
<priority>,<machine> 
delete the specified lines 

** end of an insert line 
*E end of updating procedure 

After *U any number of *N, *I, *D, *R, **, may be used. They 
must, however, be presented in the same order as the <deck 
name> order on the XTAL system file. 

The *U processor has two input and one output stream. 
They are: the XTAL system edit deck, and the updated XTAL 
decks. Only the "decks" of the updated symbolics are copied 
to the output stream. 

8_.2_ Priority Codes 
<priority> 

1 Designates an essential update that corrects a code 
fault causing a calculation error (eg misspelled 
variable name) 

2 Designates an important update that corrects code 
causing an implementation fault on a specific machine 
(eg a macro provided for IBM is incorrect). 

3 Designates an enhancement that improves some feature 
of the program, or expands its capability ( eg 
additions to the Fourier program for a squared 
Patterson calculation). 

8..3_ Machine Specificity Codes 
<machine> 

0 Implies update for all machines 
1 Implies update for IBM machines 
2 Implies upaate for CDC machines 
3 Implies update for DEC machines 

Updated February, 1980 Page 58 



Programmer's Manual 

4 Implies update for Data General machines 
5 Implies update for Honeywell machines 
6 Implies update for ICL machines 
7 Implies update for Univac machines 

8̂ 4. Implications of the Use of *U_ 
The update code assumes considerable importance in the 

operation of the XTAL system, because it provides (a) for a 
machine-independent method of communicating updates (rather 
than ... UNIVAC -NN.MM or CDC "DELETE XXNN.XXMM); (b) for a 
concise method of distributing the update priority, machine 
specificity, and function, and (c) for this information to 
be imbedded in the program listing. 

To illustrate this, here is a simple example. If there 
were a requirement in the subroutine XY05 to delete 
statements 57 to 59 and insert 2 updates lines in their 
place; and to insert another 2 update lines after statement 
71i the update information would appear as follows: 

*U,1,0 
*N,XY05 
•R,57,59,1,0 
A = QXCI+1) 
B = QXU+2) 
** 

•1,71,1,0 
QX(J+7) = A 
QXU+8) = B 
*» 

*E 
In this example, the <priority> of the update code indicates 
the update is important and applicable to all machines. 

The *U editor will transfer information on the edit to 
the output symbolic deck. Deleted lines will be given a # in 
column one, moved over, marked, and left in the output. New 
lines which are inserted will be marked as well. The process 
will use columns 73 to 80 of the edited deck for the purpose 
of marking the output. This editor will thus leave the 

# EXTRACT A FROM QX ARRAY 
# EXTRACT B FROM QX ARRAY 

it DEPOSIT A IN NEW POSITION 
# DEPOSIT B IN NEW POSITION 

Updated February, 1980 Page 59 



Programmer's Manual 

information on changes from the base system in the edited 
symbolic decks. 

Finally, program authors will be required to use 
considerable judgement and tact on whether updates they 
receive are worthy of the effort of implementation. The rule 
of thumb should be that updates should be kept to an 
absolute minimum and fall into the classes designated as 
essential, important, or a desirable enhancement. Very few 
users wish to change 10 lines of code to improve a page 
layout! 

Updated February, 1980 Page 60 



Programmer's Manual 

APPENDIX 1 

The Distribution and Programs of XTAL 

What follows is a description of the XTAL system 
distribution tape taken directly from the first file of that 
tape. The original Guidelines for Authors (2) had listings 
of the nucleus programs and some examples of their use. 

THIS TAPE CONTAINS 11 FILES INCLUDING THE FIRST WHICH IS 
THE TABLE OF CONTENTS FILE 

FILE 2 RATMAC IN FORTRAN USING ONE CHARACTER PER 
WORD ARRAYS 

FILE 3 RATMAC IN RATMAC 
FILE 4 RATMAC IN RATMAC MACHINE INDEPENDENT ROUTINES 
FILE 5 RATMAC IN RATMAC MACHINE DEPENDENT ROUTINES 
FILE 6 RATMAC TEST DECK 
FILE 7 OUTPUT OF RATMAC TEST DECK. FIRST THE PRINTED 

OUTPUT, THEN THE LISTING OF THE FILE PRODUCED 
BY THE PREPROCESSOR. 

FILE 8 XTAL MACROS 
FILE 9 XTAL SYSTEM IN RATMAC 
FILE 10 XTAL TEST DECK 
FILE 11 XTAL SYSTEM SPECIAL SUBROUTINES FOR SPECIFIC 

MACHINES 
THERE WILL BE TWO MAGNETIC TAPE FORMATS FOR EXCHANGING 
PROGRAMS AND DATA BETWEEN DIFFERENT INSTALLATIONS: (1) ANSI 
LABELED TAPE(REF.ANSI X3.27-1977, LEVEL 3) FOR USERS WITH 
COMPATIBLE COMPUTERS AND (2) AN UNLABELED TAPE FOR USERS 
WITH DISSIMILAR MACHINES. THESE TAPES MAY BE OF ANY TRACK 
AND BIT DENSITY AGREED UPON BY THE CORRESPONDING PARTIES; 
FOR THE PRESENT, DEFAULT SHALL BE 800 BPI AND 9 TRACK. THE 
FOLLOWING DESCRIBES THE UNLABELED TAPE. 

:= MEANS 'IS DEFINED TO BE' 
CHARACTER := USASCII/7 
RECORD := 80 CHARACTERS 
BLOCK := 45 RECORDS, ZERO FILLED WHEN NECESSARY 
FILE := <ANY NUMBER OF BL0CKS> END-OF-FILE MARK 
FIRST FILE := RECORDS CONTAINING THE TABLE OF CONTENTS 

OF THE FOLLOWING FILES 
TAPE := <FIRST FILEXANY NUMBER OF FILES> END-OF-FILE 

MARK 
THE EIGHTH BIT OF EACH CHARACTER, THE MOST SIGNIFICANT BIT, 
SHALL BE ZERO. THE TAPE IS BLOCKED WITH 45 RECORDS (360TO 
CHARACTERS) IN EACH AND EVERY BLOCK BECAUSE THIS LENGTH IS 
COMPATIBLE WITH ALL KNOWN MACHINE REGISTER SIZES. ALL 
INCOMPLETE BLOCKS SHALL BE ZERO FILLED IN ORDER TO KEEP 
BLOCK SIZES CONSTANT. THE TABLE OF CONTENTS IN THE FIRS" 
FILE CONSISTS OF THE FILE NAME WITH NO IMBEDDED BLANKS, 
FOLLOWED BY A CHARACTER BLANK AND IF DESIRED, BY A 

Updated February, 1980 Page 61 



Programmer's Manual 

DESCRIPTIVE COMMENT. WHEN ALL FILES ARE SO DESCRIBED, A 
RECORD OF ALL BLANKS SHALL BE PRESENT. NEXT MAY FOLLOW ANY 
NUMBER OF RECORDS OF DESCRIPTIVE TEXT AND MESSAGES EACH 
SUBSEQUENT FILE, DESCRIBED IN FILE 1, SHALL CONSIST OF 
FILLED BLOCKS OF RECORDS CONTAINING DATA IN CHARACTER FORM. 
FROM THE DEFINITIONS IT.IS APPARENT THAT THE END OF TAPE IS 
SIGNALED BY TWO SEQUENTIAL END-OF-FILE MARKS. THE ANSI 
CHARACTER TABLE IS AS FOLLOWS: 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 

Character set information 
lower case alphabetics 
abcdefghijklmnopqrstuvwxyz 
UPPER CASE ALPHABETICS 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
digits 
1234567890 
FORTRAN 77 Special Characters 
= +-*/(),.$': 

The above set contains 
equals,blank,pius ,minus,asterisk,siash,left paren, 
right paren,comma,period,currency sign,apostrophe,colon 
Additional special characters with significance in 
RATMAC 
& ampersand logical conjunction 
! exclamation point logical negation 
i bar logical inclusive disjunction 
\ backslash logical inclusive disjunction 
11 double quote str ing delimiter with macro expansion 
> greater 
{ left brace statement block delimiter 
[ left bracket macro protection 
< less 
} right brace statement block delimiter 
] right bracket macro protection 
; semicolon statement separator 
# sharp comment signal 

caret logical negation 
\ backslash delimits non printing values in string 
Additional delimiters 
@ at sign 
% percent 
? question mark 
~ tilde 

Updated February, 1980 Page 62 



Programmer's Manual 

The following partial list shows the proposed programs 
for the XTAL system. Those with assigned overlay numbers are 
in the process of being coded and checked out. 

User Program Overlay Program 
Calling Filing Number Function 
Mnemonic Mnemonic (Base 10) 

ABSORB 

ABSCOR 

BONDLA 

BONDAT 

CAMEL 

CONTRS 

AA 
AB 

AC 

BN 

BT 

CM 

CN 

0 

29 

10 

6 

11 

12 

13 

CRITIQ CQ 14 
CRYLSQ CR 15 
DATADD DA 16 
DATGEN DG 17 
DAT IN DI 18 
DATRDN DR 3 

DIFSYN DS 19 

EVAL EV 20 

EXAMPL EX 60 

Nucleus 
Absorption corrections by 
Gaussian quadrature 
Absorption corrections by 
Tompa method 
Bond lengths and angles-
connected set 
Generation of bonded atoms 
by geometric consideration 
Calculate absorption 
correction from diffractometer 
measurements 
Contour sections of 
Fourier maps 

Full matrix least-squares 

Generation of test data sets 

Data reduction to apply 
symmetry operations, etc. 
Diffential difference 
synthesis 
Evaluation of E(h,k,l) from 
intensity data 
Example of use of binary 
data file generation 
subroutines. Test of 
AA22,23,24,25,and 26 

Updated February, 1980 Page 63 



Programmer's Manual 

FC FC 

FFT FF 
FOUREF FR 
FOURR FS 

GENTAN 

LISTFC 

CROP 

LSQPL 

MULDMP 
MIR 

MULIST 

POWGEN 

PEKPIK 

PROMPT 

PHISIN 

GT 

LOADAT LA 
LATCON LC 

LF 

LP 

LS 

MD 
Ml 

PP 

PR 

PS 

21 
22 
8 

23 

H 

2H 

25 

26 

27 

28 

9 

MT 62 

MU 43 

OZ 61 

PG 30 

31 

32 

33 

Structure factor calculation 
generate over atoms 
Fast Fourier transform 
Automated Fourier refinement 
Fourier transform 
Beever-Lipson method 
Tangent formula generation 
for direct methods 
Load atom parameters 
Calculate least-squares 
lattice constants from 
two theta data 
List reflection data in 
compact form for archiving 
or publication 
List atom parameters in 
compact form for archiving 
or publication 
Least-squares planes and 
lines calculation 
Dump information for Multan 
Multiple Isomorphous 
replacement phase 
refinement program 
Core management routine 

Diagnostic message generator 
Generate the powder pattern 
expected from single crystal 
data 
Search Fourier maps for 
peak coordinates 
Prompting program for 
screening input data 
for all these programs 
Direct methods starting phase 
set evaluation 

Updated February, 1980 Page 64 



Programmer's Manual 

PLOT PT 

RIGBOD RB 

HKLIN 

RSCAN 

SINVAR 

DUMCOP 
WTANAL 

WTLSQ 

RI 

RS 

SCALE 1 SC 
SLANT SL 

SN 

SORTRF SR 
STARTX SX 

SY 

TD 
WA 

WL 

34 

35 

36 

37 
38 

39 

40 
1 

63 

7 
41 

42 

Interface to line 
plotters and line printers 
plotter simulation 
Ridged group transformations 
and preparation for least-
squares refinement 
Input reflection data 
(intensities, etc.) into a 
binary data file 
Scan over reflection subsets 
to produce various reliability 
indicies (R values) 

Interpolate an arbitrary 
plane from a Fourier map 
Search for structure 
invariants for direct methods 

Produce an ab-initio binary 
data file with unit cell, 
symmetry, and related data 
System initialization 
routines - sets of 
system common 
Dump or copy BDF 
Analyze F distributions 
to determine weights 
for least-squares 
Calculate analytical 
weights for least-squares 

Updated February, 1980 Page 65 



Programmer's Manual 

APPENDIX 2 

XTAL Nucleus Macros 

See Section 2.2 and RATMAC Primer (5) for the 
definition and discussion of macros. Macro auguments appear 
as $1, $2, $3, . . for the first, second, . . . etc. 
arguments to the MACRO. The macros themselves are to be 
found as the eighth file of the distribution tape. 

AND: 
ARCCOS: 

ARCSIN: 
ARCTAN2: 

Logical conjunction 
Arccosine, 
standard, 
PDP 

arcsine and arctangent are not 
[AC0S($1)] UNIVAC [ARC0S($1)3 IBM CDC 

[ASIN($1)] UNIVAC [ARSIN($1)] IBM CDC PDP 
Returns angle from zero to two pi in radians. 
$1 is sine of angle and $2 is cosine of angle. 
[ATAN2($1,$2)] UNIVAC,CDC 

BINSEQBKSP: Causes sequential input-output binary records 
to be backspaced. The function is a dummy when 
direct access to disc addresses are available. 
The FORTRAN statement is [BACKSPACE $1] 

BINSEQCLOSE: Closes out a binary file. Some machines will 
have an operating system that demands that this 
be done. 

BINSEQEOF: 

BINSEQOPEN: 

BINSEQREW: 

BINSEQBUF: 

BINSEQREAD: 

Marks end of file on sequential binary files. 
When on mass storage such as disc or drum, this 
macro should release any extra tracks back to 
the local operating system. The FORTRAN 
statement is [ENDFILE $1] 
Calls to open a file. Some machines will have 
an operating system that demands this be done. 
Rewinds the sequential binary file, 
statement is [REWIND $1] 

The FORTRAN 

Sets the size of the sequential binary file 
buffers. This number should be fine-tuned to 
the local mass storage device and/or local 
FORTRAN operating system buffers. 
Best accomplished by using local operating 
system facilities. Failing that, the FORTRAN 
statement [READ($1)$2] as the macro will give 
the correct effect. Careful tuning of 
BINSEQBUF: is essential for optimum efficiency. 

Updated February, 1980 Page 66 



Programmer's Manual 

DATASTRING:, and DATASTUFF: are all intimately 
interrelated with this concept. A character 
code which does not use a number of bits which 
gives an integral number of characters per word 
will not work. There are ways to make it work 
but, as written in XTAL the more general 
process will not work. **the programmers caveat 
is well and truly given**. On most machines 
INTEGER or INTEGER*^ will work very well. A few 
may require REAL, but since all character 
strings are moved by use of one of the three 
macros MOVEBYTE:, MOVECTOR:, or MOVERTOC:, the 
whole mess can be kept consistant with the 
rules of FORTRAN 77. 

CHARDEF: Defines the number of 
Used on some machines 
characters. 

characters in a word, 
in AA05 to move 

CHARS: Calculates the number of words to hold 'N1 

characters. Used in statements such as: 
CHARACTER : CH(CHARS:(6)) 
which through the macros allows the correct 
number of words for 6 characters. Thus, it 
mimics the FORTRAN 77 conventions. 

CHRLIMIN: Sets a floating-point word in the input buffer 
BFINFP, an array in COMMON /SYS/, so that it 
contains two pointers to the characters in the 
input line image. These pointers are packed as 
-XXYY.E+20 where XX is the starting column and 
YY is one beyond the last column of a character 
field. A detailed description of line image 
input is given in section 4. 

CHRLIMOUT: Translates back the integers stored by 
CHRLIMIN. $1 is the member in the BFINFP array, 
$2 is the starting column and $3 is the last 
column plus one in the BFINIM array in COMMON 
/SYS/. 

COMC:, COMF:, COMI: Specify communication commons of major 
links. One for integer, one for real, and one 
for character variables. See section 3-7. 

COMPCHAR: Finds matches in strings of characters in 
different arrays. Causes a call to subrour •. 
AA06 which has as arguments the character 
strings to be compared and parameters 
delimiting the search. An integer index is 
returned which either indicates the failure to 
find a match or acts as a pointer to the match. 
See section 4.7 for details. 

Updated February, 1980 Page 68 



Programmer's Manual 

COMPCHR: 

CONVCHR: 

COPYFILE: 

CPI: 

CPL: 

CP6: 

CUT: 

DATASTORE: 

DATASTRING: 

Hooks up to the machine specific method of 
comparing character strings. Used by AA06 
particularly. 
Converts the number of characters to the number 
of I/O items. 
Invokes subroutine AA24 which copies logical 
records in sequential files. See section 6.3-
The total number of characters in an input line 
image. A function of MXWDIM:, MXCHWD: , and 
CUT: . 
Current characters per output line image. A 
function of MXCHWD:, MXCHLN:, and CUT:. 
The total number of words in 
string. 

a six character 

DATASTUFF: 

Flag to signal whether FORTRAN 66 or FORTRAN 77 
rules apply in a given machine. 
Plays a central role in the storing of 
character strings on various machines using 
FORTRAN 66. The RATMAC 

DATASTORE:(A001, NOW IS THE TIME...) 
causes the string: 

NOW IS THE TIME... 
to be counted and broken up into appropriate 
word long strings. The result on a 6 character 
per word machine is as follows.... 
INTEGER A00K4) integer for CHARACTER: on this 

machine 
INTEGER NA001 this variable is generated to 

give automatic count of 
characters in the string. 

In a ten character per word machine.... 
INTEGER A00U2) 
INTEGER NA001 
would be generated by DATASTORE:. The 
characters themselves are put aside in a macro 
called A001: for later use by the DATASTUFF: 
macro. This division of labor is necessary 
because FORTRAN77 will not allow any data 
statements before all TYPE, COMMON, 
EQUIVALENCE, and DIMENSION statements. 

Peels characters out of macros created by 
DATASTORE: and builds the correct size 
character strings for the machine at hand. It 
is a recursive macro and is used by the macro 
DATASTUFF: . 
Produces the data statements, in conjunction 
with DATASTRING:, required to store the strings 

Updated February, 1980 Page 69 



Programmer's Manual 

DCODEFLD: 

DUMP: 

ENDRECORD: 

FILESTATUS: 

GETDATE: 

IFIX: 

INCLUDE: 

supplied by DATASTORE:. From the example 
started under DATASTORE:, the output will be on 
a 6 character per word machine... 

DATA A00KD/6H NOW 1/ 
DATA A001(2)/6HS THE / 
DATA A001(3)/6HTIME../ 
DATA A001CO/1H./ 
DATA NA001/19/ 

on a ten character per word machine.... 
DATA A00H11/10H NOW IS TH/ 
DATA A00T?)/9HE TIME.../ 
DATA NA001/19/ 

All of this effort is obviated under FORTRAN 77 
or on machines where byte addressing is 
possible. 
Decodes the fields of an input line. Used, for 
example, near the end of AA01, BN03, and SX03. 
Sets up connection to local operating system 
memory dump. 
Serves as a signal logical record number 
representing the end of a sequential file. 
Provides the function for testing if a file has 
been opened or written on. $1 is the file unit 
to be tested and $2 is the status code. The 
status code =0 if the is active (ie. open or 
written on) and =1 if closed. On UNIVAC: 

[ $( $2=0; IF(UNIT($1).EQ.0)$2=1 $) ] 
Gets date from local system. $1 is the day in 
floating-point, $2 is the month and $3 is the 
year (each as two digits). 
Rounds positive and negative floating-point 
numbers to integers. Invokes the sign function. 
Used to avoid truncation. $1 is the floating 
point argument. 
Provides a mechanis for simulating 
non-standard FORTRAN INCLUDE statement: RATMAC 
will also recognise INCLUDE in certain 
implementations. The INCLUDE statement is used 
to duplicate one copy of a set of COMMON 
statements in many different subroutines. 

INT: 

INTPAK: 

Rounds positive floating point 
integers. Faster than IFIX:. 

numbers to 

Places integers into packed reals; used for 
example to store h, k, 1, and sign codes into 
reflection records. Can be used interchangeably 
with MOVEBITS: (see section 3-9). 

Updated February, 1980 Page 70 



Programmer's Manual 

INTUNPAK: Retrieves packed integers from real words. 
Reverse of INTPAK:. (see section 3-9). 

IODEVNUMA: Minimum device number for binary files. 
IOUNITO) (ie. FILEA) will be assigned this 
value. The rest are set sequentially from this 
point (see MXDVNM:). 

The next eight macros are all concerned with input-output 
file handling. 
IOCHR: Designates variable in COMMON/SYS/ which gives 

current maximum width of printed output lines. 
Needed by AA08 as information supplied by a 
FILES input line. This macro and the seven 
which follow are used to avoid equivalence 
statements in COMMON/SYS/. 

I0IN1: and I0IN2: Refer to the standard and special line 
input files. 

I00T1: and I00T2: Refer to the standard and special line 
output files. 

I00T3: Refers to the line output file. May be thought 
of as a "card punch". 

I0T1P: and I0T2P: Store the current values of line 
printer's I00T1: and I00T2: priorities (see 
section 5). 

ISAVE: Defines I/O unit for saving common in 
non-overlay mode of operation. See PROGRAMODE: 
and subroutine AAAA. 

IQUIT: Creates error message exit. $1 is a floating 
point number of the form XXYYZZ. XX is the KCD 
(overlay) number of the program, YY is the 
subroutine number, and ZZ is an arbitrarily 
assigned sequential number, (e.g. $1 value in 
AA03 might be 000302.). In the IQUIT mode, 
control is passed to AA42 and then to the 
overlay 0Z00 to print the IQUIT message. The 
idea is that as programs are developed, the 
author will keep a running log of the meanings 
of the various fatal errors in the program 
which can be published as a user guide, then 
later coded into OZ00 and its subroutines. If 
the argument is minus, then AA42 simply prints 
the minimal message 
FAILURE IN PROGRAM XX. SUBROUTINE YY. REASON 
ZZ. 
and returns to the calling program. 

LINEFMT: Output line format used in AA08; e.g. for CDC: 
1 FORMAT(1X,13A10,A2) 

Updated February, 1980 Page 71 



Programmer's Manual 

LINEIN: Input of card image. There are four arguments. 
$1 is the input device number, $2 is the input 
buffer array name, $3 is the return length of 
the input image (to last blank), and $4 is the 
EOF code (=0 if no EOF; =1 if EOF encountered). 
This macro may be set up to use standard 
FORTRAN I/O by.. . 

[$(READ($1,1,END=2)$2;G0T03;2 C0NTINUE;$4=1; 
5 CONTINUE 
1 FORMAT(INCR(ARITH:(ARITH:(MXCHIM:,-,1), 
/.MXCHWD:)) A MXCHPW:) $)] 

For example, this produces: 
1 FORMATC8A10) FOR 60 BITS/WORD;6 BITS/CHAR 
1 FORMATC20A4) FOR 32 BITS/WORD;8 BITS/CHAR 

For efficiency a call to a machine language 
subroutine which moves the next input line into 
the buffer BFINIM in contiguous characters can 
save time and especially space on many 
machines. 
On UNIVAC 

[CALLAA80($1,$2,$3);$3=$3*MXCHWD:] 
does the job. $2 is BFINIM and $3 is CDCHR. $1 
is a dummy argument on UNIVAC since the §ADD 
command of the operating system permits 
changing streams under executive control. 

and/or I00T2:, 
and/or 
three 

LINEOUT: Output line to devices I00T1 
conditional on the value of I0T1P: 
I0T2P:, respectively. There are 
arguments: $1 is the priority rank of the 
requested output line and this is tested 
against I0T1P: and I0T2P: to determine if the 
line is to be output on I00T1: and I00T2:, 
respectively, (ie. output only occurs on I00T1: 
if $1.LE.I0T1P:, etc.) $2 is the output buffer 
array and $3 is the number of words to be 
output. It is used by subroutine AA08. The 
FORTRAN statements for this macro would be ... 
IF($1.LE.I0T1P:)WRITE(I00T1:,1)($2(KIK),KIK=1,$3) 
IF($1.LE.I0T2P:)WRITE(I00T2:,1)($2(KIK),KIK=1,$3) 

LINEPCH: Same as LINEOUT: but is applied to file I00T3: 
for punch card images. 

LINEPRI0R1: Contains the default priority limit for the 
line output device 1 (I00T1:). This is 
deposited in I0T1P: by SY00 during system 
initialization. 

LINEPRI0R2: Contains the default priority limit for the 
line output device 2 (I00T2:). This is 
deposited in I0T2P: by SY00 during system 
initialization. 

MASTERSPACE: Defines the character used by local operating 
systems as a control character. Usually it will 

Updated February, 1980 Page 72 



Programmer's Manual 

initiate action by the monitor. See also macro 
SYSTEMHEADER: (will not be needed on many 
machines). 

MEMDUMP: Forces memory dump on those machines and 
operating systems where the procedure would be 
useful. 

MEMLESS: Requests operating system to reduce the size of 
immediate access store available for XYDATA 
array. $1 is highest address to be available 
after MEMLESS: has acted. Care must be 
exercised since $1 is both read and written 
(see AA41) . 

MEMLOC: Finds actual memory address. The FORTRAN 
routine on many machines is LOC(X); where the 
LOC function returns the memory address of the 
variable X. 

MEMMAX: Defines the memory in words that can be used 
for nucleus plus the overlay plus the QXDATA 
array. 

MEMMORE: Fetches more memory space during execution; 
used by subroutine AAH1. Each operating system 
will have different rules governing the use of 
MEMMORE: and MEMLESS:. If the given computer or 

* operating system does not allow dynamic 
allocation simply set the QX array in 
COMMON/QXDATA/ to a large value, set MEMMAX: 
equal to the same value and make the MEMMORE: 
and MEMLESS: macros null. 

MNFPNBR: Minimum floating-point number of the given 
machine. Floating-point numbers less than this 
value constitute floating point underflow 
(magnitude). 

MOVEBITS: Moves bits from one word to another by 
MOVEBITS:(FROM,N,T0,M,NB) 
where FROM is an input register, N is the 
starting low order bit position - bits numbered 
from the right of the register. 

33222222222211111111110000000000 Read down 
10987654321098765432109876543210 

values of N and M therefore run from 0 to 31 
inclusive and represent the power of 2 which is 
the string of bits starting position. NB is the 
number of bits to move from FROM to TO. M is 
the starting bit position in TO. For many 
machines, a machine language subroutine will be 
needed (see section 3-9). 

Updated February, 1980 Page 73 



Programmer's Manual 

MOVEBYTE: Aids in moving characters from one array to 
another. Simulates or makes possible the use of 
type CHARACTER of FORTRAN 77 (see section 3-9). 

MOVECHR: Moves characters from one position in a packed 
floating point word (i.e. a word of the same 
number of bits as the given machines F.P. 
registers) to another position in another, or 
the same word. The arguments are FROM,N,TO,M, 
as in MOVEBITS:; here NB is understood to be 
MXBTCH: (see section 3-9). 

MOVECTOR: Moves character strings to storage in REAL 
words. This is necessary for loading I/O 
buffers and bypassing restrictions of FORTRAN 
77 (see section 3-9). 

MOVEIN: Moves characters into REAL words. 
MOVEOUT: Fetches packed characters out of REAL words. 
MOVEREAL: Moves REAL word arrays from one array to 

another. 
MOVERTOC: Moves character strings packed in REAL words 

into arrays of type CHARACTER:. 
MOVERWORD: Moves REAL words which may be packed. The 

purpose of doing this is to avoid normalization 
which occurs on some machines when A = B is 
used to move words from one register to 
another. 

MXBTCH: Number of bits used to represent a character. 
MXBTWD: Number of bits used to represent a real 

(floating point) register, (eg. CDC=60, IBM=32, 
UNIVAC=36 ...) Note that no bit packing is done 
in XTAL beyond 32 bits. 

MXCHIM: Number of characters in an input line image. 
MXCHLN: Number of characters in an output line image. 
MXCHWD: Number of characters which may be packed into a 

floating point register. 
MXDVNM: Maximum number which may be used as a device 

number (often called FORTRAN logical unit 
number). See IODEVNUMA:. 

MXFDIM: Maximum number of input fields to be pllowed on 
an input line image. This serves to limit the 
size of array BFINFP used by the decode 
subroutine AA02. AA02 translates each field of 
the input line into the BFINFP array. 

Updated February, 1980 Page 74 



Programmer's Manual 

MXFDLN: Maximum number of fields for translation to an 
output line by the encode subroutine AA07. AA07 
translates from floating point to characters 
for printing. 

MXIOUN: Maximum number of binary storage devices, (eg. 
tapes, discs) . 

MXLNPG: Maximum number of lines per page of printed 
output. 

MXSGFP: Maximum number of significant digits in a 
floating point mantissa. 

MXWDIM: Maximum number of words in input line iaiage 
buffer EFINIMC). This macro uses MXCHIM: and 
MXCHWD:. 

MXWDLN: Maximum number of words in an output line 
buffer BFOTIMO. This macro uses MXCHLN: and 
MXCHWD:. 

MXWD6C: Number of words (F.P. registers) needed to hold 
six characters, packed together. 

NCODEFLD: Encodes floating-point arguments into character 
strings. A function corresponding to FORMAT 
operations in FORTRAN. Causes call to AA07, see 
section 5. 

NEXTPAGE: Moves output line device to top of next page. 
The steps needed to use usual FORTRAN I/O would 
be... 

[KIK=I00T1 :WRITE(KIK,77);77 F0RMATOH1)] 
or [PRINT 77;77 F0RMAT(1H1)] 
or their equivalent. See macro LINECUT: and 
subroutine AA08. This function applies only to 
device I00T1: and not to device I00T2: as set 
forth in the AA08 description. 

NO: Integer 0. 
NOT: Logical negation. 
OCT: Converts decimal to octal numbers; 

CDC-specific. Needed to resolve the overlay 
identifications of CDC. 

OVERLA: Indicates the uae of an overlay. On most 
machines the macro MACRO:(OVERLA:,CALL $1) is 
used and appropriate directives are given to 
the segment loader (mapper, link editor, or 
whatever it may be called). On some machines 
tliis may be insufficient. In this case the 
j^her arguments are set out in CDC specific 
terms. Arguments $2 point to the primary 

Updated February, 1980 Page 75 



Programmer's Manual 

overlay, $3 to the suboverlay within the 
primary one. All calls to primary overlays are 
in AAAA, AA01, AA02, and AA42. All secondary 
overlays are called from XXOO, where XX is FC, 
SX, etc. The structure of XTAL is such that the 
nucleus is the root segment, the primary 
overlays are the first level of branching, and 
the secondary overlays are managed by each of 
the first level overlays. Roughly as indicated 
below. . . . 

////////////////// 
mm XTAL nun 
//III NUCLEUS //// 
////////////////// 

/ 
/ 

/ 

. SYOO . 

/ 

. MTOO . 

/ 

. OZOO 

.mm 
.// PROGRAMS XXOO // 

/ / / 
XX01 . . XX02 . . etc 

OVERNA: Defines subroutines which are overlay segments. 
For most machines it is null. When used the 
arguments are: $1 is the subroutine name, $2 is 
the principal overlay number, while $3 is the 
secondary overlay number, a la CDC. Good luck 
to others. 

PAGESET: Suppresses or overrides the automatic 
pagination that occurs on most lineprinter type 
devices. This enables pagination to be 
completely under the control of the nucleus 
AA08 and makes possible continuous line output 
for fouriers and plotting simulation. 

POINTPKT: 

PROGRAM: 

Gets packet pointers for 
record. Closely related 
section 6, especially 6.3). 

a given logical 
to READPKT: (see 

Substitutes "PROGRAM" for "SUBRCJTINE" (CDC 
specific). On most machines it will simply be: 

MACRO:(PROGRAM:.SUBROUTINE $1) 
(see section 2.1 and PROGRETURN:). 

Updated February, 1980 Page 76 



Programmer's Manual 

the local 
(whatever it 
one "EXEC" 
data cards 

PROGRAMODE: Signals subroutine AAAA which mode the system 
is operating in. The value 1 indicate' that all 
major programs are separate. This has been done 
to facilitate implementation on virtual memory 
machines, or machines which do not support a 
segment loader or overlay structure. The value 
2 means that the system is in a conventional 
overlay status. The difference from the users 

view is thapointmod§ 1 each function 
must be executed separately by 
operating system "EXEC" command, 
may be). While in mode 2, only 
command is used and the XTAL 
themselves cause the loading of the requested 
overlays. The logic is in progam AAAA, which 
tests this flag. 

PROGRETURN: Allows the elimination of the RETURN statement 
in subroutines which are programs in the CDC 
sense (if any or none depending on your point 
of view); CDC specific. It must be used in all 
subroutines which use PROGRAM: and PROGRMAIN:. 
On most machines it will simply be: 

MACRO:(PROGRETURN:.RETURN) 
PROGRMAIN: Distinguishes a main program from other 

subroutines; CDC specific. On most machines it 
will simply be: 

MACRO:(PROGRMAIN:,SUBROUTINE $1) 
PUNCHFMT: FORTRAN FORMAT statement for 'punched' output. 
QXBASE: Sets base number of words in QX data array for 

given machine and operating system. On dynamic 
memory machines, it is set to 1 and modified in 
MTOO. On virtual memory machines, it is set to 
a large number consistent with memory 
available. See SYSCOM:. 

QXMEMORY: Invokes call to subroutine AA41 which is used 
for memory management. See sections 2.5 and 
2.6. 

READLINE: Invokes call to subroutine AA01, the line input 
routine (see section 4). 

READWPKT: Invokes call to subroutine AA22 and its 
subroutines for reading and copying packets of 
sequential binary data files. See section 6. 

REALNOT: Performs a "NOT" operation on a real variable. 
SMALL: Ten times the value of MNFPNBR:. 

Updated February, 1980 Page 77 



Programmer's Manual 

STARTUP: Takes care of any one per execution operation 
required by a given operating system. Invoked 
in subroutine SYOO. 

SYSTEMHEADER: Generates appropriate local operating system 
control lines. As RATMAC translates the 
symbolic program certain orerating systems will 
demand prompting. This macro is provided for 
that purpose. One example is the UNIVAC EXEC 
VIII which needs a iFOR or 0FTN line before 
each subroutine. The § must go in column 1. 
Thus. . . 

[$PMASTERSPACE: FTN,ISA$B$B$1,Y,$1 ] 
SYSTEMHEADER:(AAAA) 

gives: @FTN,ISA AAAA.Y.AAAA 
to prompt EXEC VIII. another example is for CDC 
where: 

[$PMASTERSPACE:DECK,$1] 
would be appropriate, giving: 

•DECK.AAAA 
The macro MASTERSPACE: must be set to § in one 
case and to * in the other. Many operating 
systems do not require this type of prompt, in 
which case SYSTEMHEADER: should be made null. 
Note the use of the $P and $B digraphs to keep 
the line from hitting 6 spaces right and to 
keep the columns which must be blank blank. 

TIMCONFAC: Conversion factor from local operating system 
time units to minutes. Used by MTOO. 

TIMECLOCK: Gets the current wall clock time for subroutine 
MTOO. $1 is the time as a packed character 
string of the form HH:MM:SS or HHMMSS or 
HH.MM.SS. $2 is the number of characters in the 
string. 

TIMEPROG: Gets out the charge time in $1 and the CPU time 
in $2 as floating point. 

UNITCD: Device number corresponding to usual line 
input. (e.g. card reader, teletype, vdu, etc.) 
Was unit 5 in FORTRAN for years and years. Used 
to set variable I0IN1 . 

UNITLP: Device number for printed output. Serves to 
initialize COMMON/SYS/ variables I00T1: and 
I00T2:. 

Updated February, 1980 Page 78 



Programmer's Manual 

UNITPCH: 
VOIDFLG: 

WRITEPKT: 

WRITLINE: 

YES: 

Device number for punched output, I00T3:. 
Signals a void input field; it is a real number 
(floating register) value. See AA02 and macros 
CHRLIMIN: and CHRLIMOUT:. This value is stored 
in COMMON/SYS/ real variable BFINFPO, an 
array, to signal when neither numbers nor 
character strings have been encountered in 
input line images. It allows programs to detect 
void input fields. 
Invokes call to subroutine AA21 for writing 
packets into binary data files. See section 6. 
Invokes call to subroutine AA08 for 
output on line printers. See section 5. 
Integer 1. 

writing 

Updated February, 1980 Page 79 



Programmer ' s Manual 

NN 
00 -- 19 

20 -- 39 
40 • - 59 
60 -- 79 
30 -- 99 

APPENDIX 3. 

XTAL Nucleus Routines 

Nucleus routines all have deck names and entry points 
in the AANN series, where the N';( are grouped. 

Purpose 
Character reading-writing, general system 
management 
Binary sequential file operations 
Memory allocation, date-time, error processing 
Direct access file operations 
Machine language codes which supersede FORTRAN 
I/O. These are always called from macros and may 
be replaced by FORTRAN statements. 

AAAA Program AAAA 
Main Entry Point of XTAL System 
The precise function of this routine is determined 
by the mode of executing the XTAL system. There are 
essentially two distinct modes of operation - model 
for stand-alone or separate program execution and 
mode2 for overlaid program execution. In both cases 
the program AAAA is the entry point for initiating 
the system and for model it is also the exit (stop) 
routine. The program mode is set by the macro 
PR0GRAM0DE: and will vary from site to site 
according the local operating conditions and loaders 
available. 

Model *** Stand-alone Operation *** 
In this mode each program is loaded and executed 
by a separate JCL command with nucleus routines 
(AAAA to AA99) treated as a program library (or 
the equivalent). The entry point for all 
programs is always AAAA. This because AAAA is 
responsible for the maintenance of the system 
COMMON so that it is retained between chained 
calculations. On the successful completion of 
each program AAAA stores the COMMON onto scratch 
ISAVE: (in this mode ISAVE: is always reserved 
for this purpose) and automatically reloads it 
at the commencement of the next program. For the 
first program in a chain AAAA initiates COMMON 
via the routine SY00. 

Mode2 *** Overlay Operation *** 
In this mode AAAA is the single entry point to 

Updated February, 1980 Page 80 



Programmer's Manual 

the base overlay (ie. The (0,0) overlay in CDC 
notation). In this mode it is also responsible 
for initiating SYSCOM via SY00 and continually 
calling AA01 for the next program 
initialization. Exit in this mode is initiated 
by a "FINISH" image in the input stream and is 
via 0Z00. 

AAOO Subroutine AAOO 
Controls Sequence of Operations 
As with the program AAAA the function of AAOO varies 
according to method of system implementation. The 
main purpose of AAOO is to sequence the program 
calls to each separate calculation. DATASTORE:(A001) 
in AAOO contains the input image names of each 
program entry-point in the XTAL system and this is 
supplied to the image-sifting routine AA01 which 
identifies if a call to a particular program is 
requested on input. This is communicated to AAOO via 
the key-card signal (KCD) in COMMON/SYS/ and used by 
AAOO to call the appropriate program. The mechanism 
for doing this in AAOO will vary according to the 
machine and loader. For stand-alone operation or 
IBM-type overlay calls each program request will 
appear as a separate call of the type: 
CALL SUBRX 
For CDC-type overlays there will be only one 
statement for all program requests of the type: 
CALL 0VERLAY(4HXTAL,KCD,0) 
On completion of each calculation AAOO returns to 
AAAA. See section 2. 

AA01 Subroutine AA01, READLINE: 
Reads Input Line ARG 
(<list of seven character arguments, left 1 

justified>, 
<total number of characters in the list>) 2 

Enters all input images using the macro LINEIN: and 
tests if the image name that starts in column 1 is 
in the list array (supplied as an argument above of 
the calling program). NLIST is the length in 
characters of list. Images identified as system 
images (ie. SETID, ORDER, MEMSET, FIELD, FILES, 
TITLE, REMARK, or FINISH) are processed and 
necessary data removed using the image decoder AA02. 
Images identified from the list array reside in the 
input buffer BFINIM and the order number is returned 
to the routine calling AA01 via the word "KCD" in 
common. If the image is not found in the supplied 
list, or the system list, the routine enters an 
error mode and invokes IQUIT:. 

AA02 Subroutine AA02, DCODEFLD: 
Decodes Input Image 
Translates (or decodes) the characters into either 

Updated February, 1980 Page 81 



Programmer's Manual 

floating-point numbers or pointers to character 
strings - whichever is appropriate to the data 
encountered (since all images entered into the XTAL 
system with the macro LINEIN: (in AA01) are in 
character (A) format). Translated floating-point 
numbers are deposited in the buffer BFINFP as fields 
in an order determined either on the input image or 
according to the "ORDER" and FIELD" images. This is 
described in more detail in section 4. 

AA03 

AA04 

Subroutine AA03, MOVEREAL: 
Moves Real Array ARG 
((source REAL array>, 1 
(starting word in source array>, 2 
(sink REAL array>, 3 
(starting word in sink array>, 4 
(number of words to be moved to sink array>, 5 
(key to direct action of sub;-outine>) 6 

Moves 
array. 
»•* 
*** 
*** 

REAL words from source array to a sink 
KEY = 0 when source and sink are different 

arrays 
KEY = 1 when source and sink are the same array 
KEY = 2 when it is desired to clear the sink 

array to the value of the first word 
of the source array. 

Subroutine AA04, MOVEBYTE: 
Moves Character Array 
((source character array>, 
(starting character in source array>, 
(sink character array>, 
(number of characters to be moved to the sink 
array>, 

(key to direct action of subroutine, same as 
AA03>) 

ARG 
1 
2 
3 
4 

Moves a character string of specified length from a 
source array to a sink array. The first character of 
the string is located in the specified byte of the 
source array (where byte 1 is the left-justified 
byte) and this is moved into specified byte position 
sink array. This routine depends on the macro 
MOVECHR:. The source and sink arrays must be type 
CHARACTER: . 

AA05 Subroutine AA05, MOVECTOR: and MOVERTOC: 
Moves Character Arrays to Real and Vice Versa ARG 
((real array>, 1 
(number of first character in real array, "left 2 
justified"=1>, 

(character array>, 3 
(number of first character in character array>, 4 
(number of character to be moved>, 5 
(key to establish function to be carried out 6 

Updated February, 1980 Page 82 



Programmer's Manual 

during call>, 
<key 1 to control action>) 7 
*** KEY = 0 move characters into packed real array 
*** KEY = 1 unpack characters from real array and 

place in character array 
Note well that unlike AA03 and AA04, the source and 
sink arrays are dependent upon the key setting. Use 
of the macros MOVECTOR: and MOVERTOC: take care of 
the necessary switching and avoid any mixed mode 
operations at a higher level. 
*** KEY1 = 0 move on a character for character basis 
*** KEY1 = 1 move only the first character of the 

source array to all characters of the 
sink array. 

AA06 Subroutine AA06, COMPCHAR: 
Compares Character Strings ARG 
(<character array to serve as source for string 1 
sought>, 
<index to first character in source array>, .2 
<character array to serve as a table of strings 3 
sought during the compare>, 
<index to first character in strings sought 4 
array>, 

<length of string to be compared>, 5 
<increment of index to be used during search 6 
for match>, 

<total number of characters in the strings 7 
sought array>, 

<key>) 8 
The key is an integer which is returned as zero if 
no match is found or a number which points to the 
string matched. 
Details of the use of this subroutine are given in 
section 4.7. This is not an easy routine to learn to 
use, but once learned, it is very powerful for 
string comparisons. 

AA07 Subroutine AA07, NCODEFLD: 
Encodes REAL to CHARACTER ARG 
(<source floating-point (REAL) array to be 1 
encoded>, 
<first word of source array to be encoded> , 2 
<character array to act as sink for encoded 3 
numbers> , 
<real array which contains FORMAT information, 4 
one word per item to be encoded>, 

<number of items to be encoded>) 5 
Encodes floating-point numbers from the source array 
into character strings in the sink array according 
to coded-format information in the FORMAT array. 
NOTE — It is usual practice to use the buffer 

Updated February, 1980 Page 83 



Programmer's Manual 

BFOTLN as the output real source array because this 
enables both a header line and the numeric line to 
be output with one call to AA08, WRITLINE:. Section 
5.1 is devoted to the use of this subroutine. 

AA08 SubroutlNE AA08, WRITLINE: 
Writes Printer Lines ARG 
(<number of blank lines to write before printing>,1 
<character array for output on line device>, 2 
<number of characters in character array>, 3 
<control key>, 4 
<PR, priority of the printed line>) 5 

Outputs buffer BFOTLN and/or the character array (of 
specific length) on the devices I00T1: and I00T2:. 
When the string array is to be output (depending on 
the key value) it will always precede the outputting 
of array BFOTLN (if this is to be output). See 
section 5.2 for details. 

AA21 Subroutine AA21, WRITEPKT: 
Writes Packets for Binary I/O ARG 
(<integer index to output binary file>, 1 
<integer index to logical record>, 2 
<integer value of packet size of logical record>,3 
<integer index to storage of packet in QX buffer 4 
array>) 

Writes sequential binary files to a mass storage 
device. Familiarity with the structure of binary 
data files will help one understand this subroutine. 
Its purpose is to create binary data files or 
sequential scratch files of a similar structure. In 
using this subroutine the logical record to be 
written and the size of the packets in the logical 
record must be specified. The integer index to the 
output binary file may be 1, 2, 3, ... MXIOUN:, 
corresponding to files a, b, c The integer 
index to the storage of the packet is a pointer set 
by the subroutine AA21 to point to the place in the 
QX array where the packet is to be stored. The logic 
of use is slightly different than a normal 
WRITE(IOUNIT) list In that one must call AA21 
and then move data to the output buffer based on the 
value of the pointer returned. The actual write does 
not occur until either the buffer becomes full or 
ENDRECORD: is specified as the LOGREC. to be 
written. The typical pattern of use may be seen in 
section 6. 

AA22 Subroutine AA22, READWPKT: 
Reads and Copies Packets for Binary I/O ARG 
(<integer index to input binary file>, 1 
<integer index to logical record sought>, 2 
''integer value of packet size of a logical 3 
record>, 

Updated February, 1980 Page 84 



Programmer's Manual 

<integer index to point to a packet in QX 4 
buffer array>, 
<integer index to output binary file; zero 5 
implies read only>) 

Reads, or reads and writes, sequential binary files. 
Not to be used for writing if the packet size is to 
be changed. It uses just one packed buffer so the 
file size is fixed during reading, and reading and 
writing. For situations where the file is to be 
expanded, two buffers must be used and AA22, 
WRITEPKT:, and AA24, COPYFILE:, utilized. See 
section 6 for details. 

AA23 Subroutine AA23, POINTPKT: 
Decodes Packet Directory ARG 
(<integer index to input binary file>, 1 
<integer index to logical record sought>, 2 
<integer value of packet size of logical record>,3 
<integer index to storage of packet in QX buffer 4 
array>, 

<integer count of number of quantities sought>, 5 
<integer array of indices from binary data file, 6 
specification in Appendix 5>, 
<integer array to receive relative index 7 
pointers within packets for this file>) 

Fetches relative pointers from packetl of the 
"directory" type records in the binary data file. 
The first packet of a directory type record contains 
numbers, defined in the BDF description of Appendix 
5, which identify the items stored in each of the 
following packets of the logical record. The first 
arguments are READWPKT:, arguments of AA22, 
reflection. See section 6. 

AA24 Subroutine AA24, COPYFILE: 
Copies File for Binary I/O ARG 
(<integer index to input binary file>, 1 
<integer index to output linary file>, 2 
<integer index to first logical record to be 3 
copied>, 

<integer index to last logical record to be 4 
copied>) 

Copies the first designated logical record to the 
last designated logical record; used in conjunction 
with two buffers. See section 6. 

AA25 Subroutine AA25 
Reads Subroutine AA22 
(<integer index to input binary file>) 

AA26 Subroutine AA26 
Writes Subroutine AA22 

Updated February, 1980 Page 85 



Programmer's Manual 

AA41 Subroutine AA41, QXMEMORY: 
Allocates Dynamic Memory 
Allocates memory via the machine specific macros 
MEMMORE: and MEMLESS:. The memory request is 
delivered to AA41 in the SYSCOM word QXREQU, which 
is the maximum value of the QX array required. This 
is converted into an absolute address before 
invoking MEMMORE: or MEMLESS:. The amount of core 
available is returned and converted back in terms of 
a QX array value. This is stored in the value 
QXAVAL. 

AA42 Subroutine AA42, IQUIT: 
Treats Error Signal 
(<Encrypted Error Message>) 
Designates where an irreconcilable error is 
encountered in the execution of any XTAL program, 
and what type of error it was. IQUIT: incorporates a 
call to AA42 which in turn is responsible for 
calling the time/core reporter (MTOO) and the error 
message outputter (OZ00). 
Extracts the encrypted message from a real value 
XXYYZZ., where XX is the overlay number, YY is the 
subroutine within the overlay, and ZZ is the message 
number assigned by the programmer. This is printed 
out as: 
FAILURE IN PROGRAM XX. SUBROUTINE YY. REASON ZZ. 
Programmers must take care to document the reasons 
as they program. 

A-3.1 Machine Specific Routines 
AA79 * These routines are all called by macros and all 
thru * may be replaced by using usual FORTRAN input output 
AA99 * statements, by calls to local operating system 

* service subroutines, or by simply not implementing 
* the feature they provide. 
* All calls to these routines are through macros and 
* only through macros. 

AA79 Subroutine AA79 ARG 
(<UNIT>, 1 
<image buffer>, 2 
<words-to-punch>) 3 

May be thought of as: 
PUNCH 1,(ARG2(I),1=1,ARG3) 
Causes a line image to be punched; uses the local 
operating system facilitites. When supplied, it is 
called from the macro LINEPCH:. On many machines 
this will be quicker and take far less memory than 
the FORTRAN library routines. 

Updated February, 1980 Page 36 



Programmer's Manual 

AA80 Subroutine AA80 ARG 
(<UNIT>, 1 
<image-buffer>, 2 
<words-read-in>) 3 

For CDC, it may be thought of as 
READ(INPUT-DEVICE,1)(ARG2(I),1=1,8) 
1 FORMAT(8A10) 
Uses the local operating system and avoids the 
FORTRAN library. On systems which allow 
concatenation of input streams <UNIT> may be ignored 
and the system facility used. For example @ADD on 
UNIVAC. 

AA82 Subroutine AA82, ID 
Fetches date in some encoded form from the local 
operating system. Macro GETDATE: decodes it into 
standard XTAL form. 

AA84 Subroutine AA84 ARG 
(<UNIT>, 1 
<image-to-print>, 2 
<words-to-print>) 3 

Prints output, using local operating system 
routines. The FORTRAN equivalent on CDC is: 
WRITE(<UNIT>,2)(ARG2(I),1=1,<words-to-print>) 
2 F0RMATC13A10) 
See macro LINEOUT: for details. 

AA85 Subroutine AA85 
(<UNIT>) 
Attaches unit to job; a dummy on many operating 
systems. See macro BINSEQOPEN:. 

AA86 Subroutine AA86 
(<UNIT>) 
Ends off files in an orderly way. Uses system 
facilities to carry out ENDFILE UNIT. See macro 
BINSEQEOF:. However, care must be exercised that 
this function and AA85 are compatible with one 
another. The logic in subroutines AA22 and AA21 
should be examined. Calls to AA85 and AA86 are in 
pairs for each unit. 

AA87 Subroutine AA87 ARG 
(<UNIT>, 1 
<number-of-words>, 2 
<file-address>, 3 
<memory-address>) 4 

Writes binary files on unit; used in conjunction 
with macro BINSEQWRIT:. The file address is the 
relative address on the mass storage device,starting 
at zero,for the first buffer full the memory address 
points to the start of the buffer. 

Updated February, 1980 Page 87 



Programmer's Manual 

AA88 Subroutine AA88 
Reads from mass storage device; otherwise, just like 
AA87. 

AA90 Subroutine AA90 
(<UNIT>) 
Causes FORTRAN equivalent of: 
rfRITE(<UNIT>,1) 
1 F0RMATCIH1) 
but uses local operating system facilities instead. 
Used with macro NEXTPAGE:. 

AA91 Subroutine AA91 
Sets page size parameters; UNIVAC specific. See 
macro PAGESET:. 

AA92 Subroutine AA92 
(<core-address>) 
Requests core to given core address. See macro 
MEMMORE:. 

AA93 Subroutine AA93 
(<core-address>) 
Releases core back to operating system. See macro 
MEMLESS: . 

A-3.2 System Program Overlays 
MTOO Program MTOO 

Reports Time and Sets Dynamic Core 
Reports on LINEOUT device the status of the 
execution and memory times, and the various memory 
status words. Memory information is output in 
decimal and octal words. The abbreviation "MEMMAX" 
refers to the total number of words from the first 
word in AAAA to the last word assigned in the QX 
data array. "DATAMX" refers to the number of words 
for data in the QX array alone. (NOTE: for CDC 
operations, the number of words in the QX array 
overlaid by the (n,m) routines has been removed from 
DATAMX). The use of the word "RQUEST" in the AA40 
output is the abbreviation for "requested by the 
system or user", while "ALLOTD" means "actually 
allocated to the program by the operating system via 
AA41". The previous program name indicates the 
memory allocation data for the previous calculation. 
And "SO FAR" means "during the total execution up to 
this stage". 

In addition to reporting on the time and core 
consumed by the existing program, MTOO is also 
responsible for requesting the memory required to 
load in the next program. This is done by accessing 
two arrays, QXSK and QXWK, with the program pointer 

Updated February, 1980 Page 88 



Programmer's Manual 

KCD. The first array, QXSK, contains the "SKIP" 
memory required on CDC-type machines where the QX 
working array is not automatically loaded beyond the 
longest overlay. For these machines, it is necessary 
to define the start of the useable QX array at 
QX(QXSTAR), where QXSTAR = QXSK(KCD). The values of 
QXSK must be the value in words of the longest (n,m) 
overlay (including the (n,o) overlay). For most 
other machines all values of QXSK will be zero. The 
QXWK array contains the minimum amount of useable 
memory required in the QX array to initiate the 
program. This is referred to as the "STARTUP 
MEMORY", and is in general the absolute minimum 
required for the calculation. A request to the 
memory allocation routine AA41 is made for QXREQU = 
QXWK(KCD). Requests for additional memory are made 
within the program itself on a dynamical basis. 

OZOO Program OZOO 
Terminates Run 
Services an error call to subroutine AA42 (via the 
macro IQUIT:) or services a finish and exit call 
from AA01 (on receipt of a finish system image). In 
both cases the variable IQUIT in the system common 
/SYSCOM/ contains a code which specifies why OZOO 
was called. If IQUIT = 000000. this signals a normal 
finish exit is called from AA01. All other values of 
IQUIT indicate an error has occured and is in the 
form of a code XXYYZZ. Where XX is the overlay 
number. YY is the subroutine number, and ZZ is the 
error sequence number in that subroutine. OZOO 
outputs the error code to indicate why and where the 
error is. OZOO also outputs a memory dump provided 
one of the priority limits is set to a value of 5. 

SY00 Program SY , n 

Initialize. ariables and Prints Logo 
Initializes all variables in the system COMMON 
/SYSCOM/ and prints the XTAL system sign on heading 
with an output priority of 3. 

Updated Fstvuary, 1980 Page 89 



Programmer's Manual 

APPENDIX 4 

Glossary of System Common Variables 

The following list is designed to explain the meaning 
and use of the system variables used in the XTAL system. The 
letter preceding the description indicates the variable 
type, r is real, i is integer, and c is character (in the 
FORTRAN 77 type definition sense). If a variable is 
dimensioned, it is followed by a pair of parentheses (). 

BFIELDO i Buffer to hold pointers to ending columns when 
a "FIELD" line has been encounted by AA01. Used 
by AA02 in translating input line images. See 
FIELD control card. 

BFINFPO r Buffer to hold input floating point data. Each 
word corresponds to an input field. If the 
field is a number the buffer contains the 
number, if the field is void, the buffer word 
contains the signal VOIDFLG:. If the field is a 
character string the buffer word contains a 
packed pair of pointers which show where the 
character string actually starts and ends +1 in 
BFINIM. BFINFP is cleared to VOIDFLG: at the 
start of AA02. 

BFINIMO c Buffer to hold the input line image in packed 
READUOINl', 1,END = 2) BFINIM 
1 F0RMAT(20A4) 
is an example of how it may come to be filled. 
The subroutine AA01 issues the read command as 
specified by the macro LINEIN:. The subroutine 
AA02 translates the input line into the 
floating point buffer BFINFP. See macro 
LINEIN:. 

BFORDRO i Buffer to hold pointers to order in which data 
is to be placed in BFINFP from fields of input 
line images. See order control card in AA01 
used in AA02. 

BFOTFPO r Buffer to hold output floating point numbers to 
be translated into characters by subroutine 
AA07. 

BFOTLNO c Buffer to hold characters for output line. 
BFTITLO C Buffer to hold page title which includes 

current program, compound ID, page numbers, and 
date. 

Updated February, 1980 Page 90 



Programmer's Manual 

BLNKWD 
CDCHR 

CDCOL 

CDEOF 

ELAPST 

FIELDF 

IDPRPGO 
IDSETIO 

IOCHR: 

c Word filled with character blank. 
i Count of the number of characters in the input 

line image - set by LINEIM: 
i Pointer to the first blank character in the 

input line image - communicated between AA01 
and AA02. 

i Signal for end of file on line input device -
set by LINEIN: to 1 if EOF encountered; 
otherwise zero. 

r Last snapshot value of the CPU clock. Is used 
to calculate the CPU elapsed time for each 
calculation. 

i Flag to signal that input line images are to be 
decoded as fixed fields (1), rather than in 
free format (0). 

c Array containing name of previous program. 
c Image of the set of characters which the 

"SETID" input line has brought in. See AA01 
"SETID" command. 

i Current printer output line width as a number 
of characters. Used to control output lines so 
that various widths of printers can be 
accomodated automatically. Set by field 16 of a 
"FILES" line, image. Initialized in SY00, used 
by AA08. 

IOIN1: i Special file designation for the input line 
device. The value may be changed by a "FILES" 
line image. 

I0IN2: i Monitor or executive default value for I0IN1. 
IOLRHDO i Pointer to header word of logical record. The 

value of the pointer shows the .relative 
location of the first word of the current 
logical record as it resides in the binary 
output buffer in the XYDATA array (QX array). 

IOLRPTO i Type number of logical record currently being 
processed. 

IOMARKO i Basepoint of input output buffer in the XYDATA 
(QX) array. This corresponds to the appropriate 
QXMARK pointer set when the I/O buffer is set 
up in AA02. 

IOPKPTO i Pointer set by AA21 and AA22 to show location 
of the next packet. This is the pointer used by 

Updated February, 1980 Page 91 



Programmer's Manual 

programs to fetch and store packets from the 
input output buffers. Each call to AA21 and 
AA22 changes the value back and forth through 
the QX array as specified by the corresponding 
IOMARKO. 

lOPKSZO i Used by AA21 to set the packet size for an 
output logical record. Set by calling program 
to inform AA02 of proper action. 

I00T1: i Primary line output device controlled by macro 
LINEOUT: according to the priority limit 
I0T1P: . 

I00T2: i Second line output device controlled by macro 
LINEOUT: according to the priority limit 
I0T2P:. 

I00T3: 

lORWFLO 

I0T1P: 

Punch or special output card 
value may be set by use 
image. 

image file. The 
of a "FILES" line 

i Flag for signaling whether AA22 is reading only 
FILEIN or both reading FILEIN and writing 
FILEOUT from the same buffer. Set by calling 
program. 

i Priority limit of line output device 1. 
Initially set to the macro value LINEPRI0R1: 
but may be specified as field 14 of an input 
FILES image. 

I0T2P: i Priority limit of line output device 2. 
Initially set to the macro value LINEPRI0R2: 
but may be specified as field 15 of an input 
FILES image. 

IOUNITO i Actual values of the units. These are what have 
been called "logical unit numbers" or device 
number for binary files. They are in fact 
pointers to mass storage files or devices. 
These numbers may be described in FORTRAN: 
IUNIT = IOUNIT(FILEIN) 
READ(IUNIT) BUFFER 

IOPRCT i Count of records from the beginning of a file. 
The value of this integer starts at zero. 

IQUIT r Error flag set by the macro IQUIT: of the form 
XXYYZZ. XX is the program overlay number (KCD), 
YY is the two digit sequence number assigned to 
the subroutine and ZZ is the error number, 
(e.g. AA08 would be 000801.) 

Updated February, 1980 Page 92 



Programmer's Manual 

KCD 

LINCT 

Variable used to communicate members of input 
images found by subroutine AA01. A list of 
expected line identifiers is supplied to AA01 
by, for example: 
DATASTORE:(X011, ATOM B BIJ U END ) 
placed in program X. A call from program X by: 
READLINE:(X011,NX011) 
will cause KCD to be 3et to 1 if an atom line 
comes into BFINFP , or 5 if an END line 
image comes into BFINFP. Since AAOO uses this 
same call, the value of KCD will point to the 
correct overlay when AA01 is called by AAOO 
with the ordered list of program names. 
Line count remaining for current page of line 
output device I00T1:. Causes pagination when 
zero and is reset to macro value MXLNPG:. 

LINRM 

MAXCOM i 

MAXMEM r 

MEMSTF i 

MPAGE i 
NCARD i 
NIMAG i 

NPAGE i 

OTPRMX i 

QXAVAL r 

QXAVPG r 
QXAVMX r 
QXREQU r 

Number of lines which must be available on a 
page for a subheading if the page restore is to 
be suppressed. Used to communicate with AA08 
for listing column headings (subtitles). 
Current length of system COMMON /SYSCOM/ in 
real words. 
Value of the maximum memory possible; used in 
AA41 and SYOO. 
Signal to show that a MEMSET line has been 
encountered. Used in AA01 , AA41, and SYOO for 
memory allocation control. 
Count of pages written by current program. 
Count of "cards" punched during run. 
Number of images read from the input device 
since the start of the run. 
Count of total pages written on line output 
device during current run. 
Value of the maximum printer priority 
current time. 

at 

Total number of words currently available for 
use in the QX data array. 
Maximum QXAVAL for current program. 
Maximum QXAVPG for all programs so far. 
Number of words of memory requested for use in 
the QX data array. 

Updated February, 1980 Page 93 



Programmer's Manual 

QXRQPG r Maximum QXREQU for the current program. 
QXRQMX r Maximum QXRQPG for all programs so far. 
QXSTAR r Number of weds of the QX data array not 

accessible for data storage due to overlap of 
program overlays. This value is set by MTOO and 
for most machines is zero. 

QXWORK r The pointer of the QX data array which defines 
the last word of the "simulated program common 
area". Beyond QXWORK is the normal working area 
of the QX array. 

QXUTMX r Maximum QX array pointer currently in use. 
SETIDF i Flag to show that a SETID image has been 

encountered and input lines are being processed 
as if the ID set were on the lines. 0/1 for 
no/yes. 

SYNTXF i Flag set by calling programs to suppress syntax 
checking in AA02 the input line decoding 
program. Certain types of special input lines 
such as "SYMTRY" v:olate the usual free format 
rules of AA02. Setting SYNTXF to 1 before such 
reads and back to zero afterwards will prevent 
diagnostics being printed. 

Updated February, 1980 Page 94 



Programmer's Manual 

APPENDIX 5 

The BDF for XTAL 

The XTAL binary data file (BDF) is divided into 
separate elements called "logical records". Each logical 
record contains specific crystallographic information that 
may be referred to by the logical record type numbers 1 to 
25. The length of each record (in words) will vary according 
to type of information it contains, the type of structure 
being processed, and the current state of the analysis. 

For convenience of access, each logical record type is 
subdivided into packets of words which form the particular 
logical subset of the data contained therein. 
Packet Types 

The different types of information stored in the binary 
data file necessitate three different logical record 
constructions. Records containing character information are 
distinct from those containing numerical data. The numerical 
records are also of two distinct types. One contains 
information that is of fixed length and is located in 
specific words of the record, while the other numerical 
record contains data which may vary greatly from structure 
to structure. These 1<gical records are now summarized: 

•Character* records contain only packed characters. The 
packet size of character records varies according to 
the number of characters per packet and the length of 
the floating point register. Logical records 1, 2, 7, 
and 10 are of this type. 
•Specific Information* records contain numerical 
information data which have fixed location in a 
specific packet. Each word of data is accessed by 
adding the appropriate sequence number to the packet 
pointer provided by the file handling routines AA21 and 
AA22. Logical records 3 and 5 are of this type. 
•Directory* driven records contain numerical data which 
can vary according to the size and nature of the 
structure. The first packet is used as a directory to 
the data contained in all subsequent packets. In this 
way the packets need only be as large as the available 
data or the calculation requires. This is achieved by 
assigning identification numbers to each unique data 
type and inserting these numbers into the first packet 
in the identical order that the actual data appears in 
subsequent packets. A pointer to the word containing 
any given data type is provided by the nucleus file 
handling routine AA23. 

Updated February, 1980 Page 95 



Programmer's Manual 

A-5.1 Structure and Contents of the Logical Records 

LR 1_ File History (character) 
Log Packet Sequence 
rec size number 

1 number of Packet 1 Contains the compound ID 
words to Packet 2 This and subsequent packet3 contain 
hold 16 program ID'S and date as hhddmm at 
characters the time of updating. After 50 

updates, the list is reset and starts 
over again. 

LR 2 Label Information (character) 
Log Packet 
rec size 

Sequence 
number 

2 number of Packet 1 Contains date and time of creation 
words of BDF. 
to hold Packet 2 Contains title in force at time of 
80 char- creation, 
acters Packet 3 This and subsequent packets contain 

images of any label information 
supplied. 

LR 3, (spare) 
Reserved for possible use as BDF status keys to enable 
lookahead capability in sequential mode. 

LR 4̂  Cell Constants (specific information) 
Log Packet Sequence 
rec size number 

1 9 
Packet 1 

IP+1 a cell dimension in Angstroms 
IP+2 b 
IP+3 c 
IP+4 cos(alpha) 
IP+5 cos(beta) 
IP+6 cos(gamma) 
IP+7 alpha in cycles (2pi = 1.0000) 
IP+8 beta 
IP+9 gamma 

Packet 2 
IP+1 - IP+9 Estimated standard deviations of the 

quantities of Packet 1. 

Updated February, 1980 Page 96 



Programmer's Manual 

Packet 3 
IP+1 - IP+9 Reciprocal cell constants in same order 

as Packet 1. 
Packet 4 

IP+1 - IP+9 Transformation matrix from fractional 
coordinates to orthogonal Angstrom 
coordinates. 

Packet 5 
IP+1 - IP+9 Transformation matrix from Miller indices 

to orthogonal pseudo Miller indices. 
Packet 6 

Miscellaneous cell information 
IP+1 cell volume 
IP+2 observed crystal density 

LR 5_ Symmetry Information (specific information) 
Log Packet Sequence 
rec size number 

12 Packet 1 Contains miscellaneous information 
IP+1 Code to indicate lattice type as 

lattice type P I R F A B C 
acentric cell 1. 2. 3. 4. 5. 6. 7. 
centric cell 8. 9. 10. 11. 12. 13- 14. 

IP+2 Centric/acentric indicator 0/1 
IP+3 Number of symops 
IP+4 Number of distinct rotation matrices and 

translation vectors exclusive of lattice 
translations and center, if any. 

IP+5 Number of rotation matrices of identical 
pattern of zeros 

IP+6 Cell multiplicity factor to place a and b 
parts of the structure factor on the scale 
of int.tab. vol 1. This factor accounts 
for lattice type. 

acket 2 Contains the rotation matrices and 
translation vectors for first equivalent 
position.. 

IP+1 r(1,1) 
IP+2 r(2,1) 
IP+3 r(3,1> 
IP+4 r(1,2) 
IP+5 r(2,2) 
IP+6 r(3,2) 
IP+7 K1,3) 
IP+8 r(2,3) 
IP+9 r(3,3) 
IP+10 t(1) 
IP+11 t(2) 
IP+12 t(3) 

Updated February, 1980 Page 97 



Programmer's Manual 

Packet 3 to n+1 for the remaining n equivalent 
positions. The maximum value of n is 24. 
Matrices involving an inversion center or 
non-primitive translations are excluded. 

LR 6 (spare) 

LR 7. Scattering Factor N^ '̂s (character) 
Log Packet 
rec size 
7 number Names of scattering factors contained in 

of LR 8. Each packet contains the characters 
words supplied as a scattering factor type, 
to hold One packet for each different scattering 
six factor type, 
charac­
ters 

LR 8_ Atom-type Parameters (directory) 
Log Packet Ident. Directory in packet 1, first atom-type in 
rec size number packet 2 

8 varies 1 number of atoms of this type per unit cell 
2 atomic weight 
3 atomic number 
4 number of electrons in neutral atoms or 

ions 
5 atomic bond radius in Angstroms 
6 atomic contact radius in Angstroms 
7 
8 
9 effective spin quantum number 
10 neutron scattering length in cm*10**-12 
21 real part of dispersion scatt. factor for 

data-set 1 
22 real part of dispersion scatt. factor for 

data-set 2 

61 imag part of dispersion scatt. factor for 
data-set 1 

62 imag part of dispersion scatt. factor for 
data-set 2 

100 atomic scattering factor at s = 0.00 
101 atomic scattering factor at s = 0.01 
102 atomic scattering factor at s = 0.02 
1nm atomic scattering factor at s = O.nm 

Updated February, 1980 Page 98 



Programmer's Manual 

299 atomic scattering factor at s= 1.99 
Note (1) No scattering factor table is required 

if interpolated values have been stored 
with each hkl in the reflection record 20. 

Note (2) Scattering factors at all s-intervals 
of 0.01 need »not* be present for 
interpolation. 

Note (3) Additional scattering factors for a 
given atom type are stored 300-499, 
500-699,700-899,... 

LR 9 (spare) 

LR 10 Data Set D e f i n i t i o n s ( cha rac te r ) 

Log Packet 
rec s i z e 

10 words/ 
12 
characters 

Strings of 12 characters used to describe 
data sets. Order of strings corresponds to 
data-set number. Data sets may be defined 
as isomorphs, graphs of partial structures, 
or residues. 

LR 11 Experimental Parameters (directory) 
Log Packet Ident. 
rec size number 
11 varies 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Directory in packet 1, one parameter set 
per packet 
data-set key (1 designates data-setl , etc.) 
wavelength (weighted mean) in Angstroms 
wavelength linel in Angstroms 
wavelength line2 in Angstroms 
wavelength line3 in Angstroms 
relative weight wl linel 
relative weight wl line2 
relative weight wl line3 
measured density 
linear absorption coefficient in 1/cm 
temperature of measurement in degrees 
Celsius 
sorting order of hkl 
a cell dimension in Angstroms 
b 
c 
cos(alpha) 
cos(beta) 
cos(gamma) 
alpha in cycles (2pi = 1.0000) 
beta 
gamma 

Updated February, 1980 Page 99 



Programmer's Manual 

31-39 dlffractometer orientation matrix r11,r21, 
,...,r33 

100 number of scale groups for this data set 
101 frel scale factor for scale-group 1 
102 frel scale factor for scale-group 2 
100+n frel scale factor for scale-group n 

(maximum allowed 64) 

LR 12 Data Set Information (directory) 
Log Packet Ident. Directory in packet 1, one parameter set 
rec size number per packet 
12 varies 1 data-set key (1 designates data-setl, etc.) 

2 overall temperature factor UOV in Angstroms 
squared 
packed word of =eval= fragment types 
maximum /h/ 
maximum /k/ 
maximum /l/ 
minimum sin theta/lambda 
maximum sin theta/lambda 
scale, data set to parent 
temp, factor, delta B, relative to parent 
closure error 
closure error, anomalous 

101 extinction type (0=none, 1=iso 1, 2=iso 2, 
3=gen iso 1,2, and prime, 4=aniso 1, 
5=aniso 2, 6=gen aniso) 

102 distribution (0=Gaussian, 1=Lorentzian) 
103 isotropic typel parameter 
101 isotropic type2 parameter 

105-110 anisotropic typel parameters 
111-116 anisotropic type2 parameters 

LR 13 (spare) 

LR 14. (spare) 

LR 15 Atomic Identification (character) 
Log Packet 
rec size 
15 number Each packet contains the string of 

of words characters which constitute an atom 
to hold identification (6 characters) plus a 
eight 2 character dataset pointer (data number 
charac- in \SCII). Their relative position in 

10 
11 
12 
13 
14 
15 

all 30 
initialized 31 
to 32 
IDFLG: 33 

Updated February, 1980 Page 100 

file:///SCII


Programmer's Manual 

ters the packets is linked to the following 
record 16 which contains the atom 
parameters. 

LR 16 Atom Parameters (directory) 
Log Packet Ident. Directory in packet 1, first atom data in 
rec size number packet 2 
16 varies 1 x parameter in fractions of unit cell 

2 y parameter in fractions of unit cell 
3 z parameter in fractions of unit cell 
4 individual isotropic t.f. as B 
5 individual anisotropic t.f. stored as betas 

beta11 
6 beta 22 
7 beta 33 
8 beta 12 
9 beta 13 
10 beta 23 
11 population parameter 
12 anomalous population parameter 
13 neutron scattering factor 
21 atom multiplicity for atoms in special 

positions 
22 xray scattering factor pointer as a packet 

sequence number of LR 8. 
23 temperature factor type (0=overall;1=iso; 

2=aniso) 
24 atom-group key for group refinements 
25 model-refinement key for refining different 

models 

LR 17 Std Dev in Atom Parameters (directory) 
Log Packet Ident. Directory in packet 1, first atom s.d. in 
rec size number packet 2 
17 varies 1 sigma x 

2 sigma y 
3 sigma z 
4 sigma b 
5 sigma beta 11 
6 sigma beta 22 
7 sigma beta 33 
8 sigma beta 12 
9 sigma beta 13 
10 sigma beta 23 
11 sigma of population parameter 
12 sigma of anomolous population parameter 
13 sigma of neutron scattering factor 

LR 18 Refinement Constraints (directory) 

Updated February, 1980 Page 101 



Programmer's Manual 

Log Packet Ident. Directory in packet 1, first constraint in 
rec size number packet 2 
18 varies 
Note: The general form of the constraint equation is... 

p(s)«f(s)=q+p(r1)*f(r1)+p(r2)*f(r2)+...+p(rn)«f(rn) 
1 packet sequence number of subject atom in 

logical record type 11 
2 parameter identification number of subject 

atom 
3 multiplication factor of subject parameter 
4 constant Q in constraint equation 
5 constraint classification key 
6 site multiplicity of subject atom 
11 packet sequence number of the reference 

atom 1 
12 parameter identification number of 

reference atom 1 
13 multiplication factor for parameter of 

atom 1 
21 packet sequence number of reference atom 2 
22 parameter identification number of reference 

atom 2 
23 multiplication factor for parameter of 

atom 2 

n1-n3 packet, parameter, and mult, factor for 
atom n 

LR 19 (spare) 

LR 20 Reflection Information (directory) 
Log Packet Ident. Directory in packet 1, first reflection 
rec size number in packet 2 
20 varies 

* numbers 1- 999 identify crystal-
specific data 

* numbers 1000-1999 identify data-set 1 
information 

* numbers 2000-2999 identify data-set 2 
information 

* . . . 
* numbers n000-n999 identify data-set n 

information 
Crystal 
specific 

1 Miller indices packed word, with bit pattern 
29-21 20-12 11-3 2-0 
/h/ /k/ /l/ sign code 

(see belowa) 

Updated February, 1980 Page 102 



Programmer's Manual 

2 sin(theta)/lambda 
3 reflection multiplicity and reinforcement 

factor 9-5 4-0 
epsilon hkl mult. 

4-15 equivalent indices packed table (up to 12 
words). The table appears in sets of *two* 
words. 
*** wordl describes index magnitudes 
29-21 20-12 11-3 2-0 
/h/ /k/ /l/ no. of sign/phase 

codes in word2 
*** word2 describes the index signs and 

phase shifts 
23-21 20-18 17-15 14-12 11-9 8-6 5-3 2-0 
phase sign phase sign phase sign phase sigh 
code4 code4 code3 code3 code2 code2 codel codel 

sign phase--shift 
code hkl degrees cycles 
0 +++ 0 0.00000 
1 ++- 60 0.16667 
2 +-+ 90 0.25000 
3 + — 120 0.33333 
4 -++ 180 0.50000 
5 -+- 240 0.66667 
6 — + 270 0.75000 
7 300 0.83333 

501 interpolated scattering factor for atom 
typel 

502 interpolated scattering factor for atom 
type2 

• • • • • • • * * • a a • a 

510 interpolated scattering factor for atom 
typelO 

The 700 numbers are used to store estimated 
phase sets for the "native" structure or 
"parent" substance 
700 Figure of merit; weight of the 

'best' Fourier coefficient 
701 cos alpha for the 'best' Fourier coef. 
702 sin alpha for the 'best' Fourier coef. 
703 cos alpha most probable 
704 sin alpha most probable 

705-709 alternate phase set 2 
795-799 alternate phase set 20 

Updated February, 1980 Page 103 



Programmer's Manual 

» nO00-n199 identify measurement parameters 
* n200-n299 identify reduction parameters 

for all * n300-n499 identify reduced structure 
factor data 

data sets * n500-n599 identify Hendrickson coefficient 
data 

n • n600-n699 identify normalized s.f. data 
* n700-n799 identify structure factor 

phase data 
* n800-n899 identify refined structure 

factor data 
* n900-n999 identify refinement parameters 
• 

data-set l 
1000 total gross counts 
1001 total background counts 
1002 ratio of scan to background time 
1003 net counts 
1004 sigma(net counts) 
1005 phi diffractometer angle in cycles 
1006 chi or kappa 
1007 omg 
1008 2th 
1009 2th scan range 
1010 omg scan range 
1200 absorption weighted mean pathlength tbar 
1201 absorption correction factor to irel 
1202 extinction correction factor to irel 
1203 thermal diffuse scatt. correction factor 

to irel 
1204 1/lp factor 
1205 irel scale factor to scale counts to irel 
1300 relative intensity (irel) 
1301 sigma(irel) 
1302 relative f squared (f2rel) 
1303 sigma(f2rel) 
1304 relative /f/ (frel) 
1305 sigma(frel) 
1306 relative /f/ friedel related -hf-k,-l (frel«) 
1307 sigma(frel») 
1308 rcode reflection status key (user designated) 
1309 scale group number 

1501-1504 A,B,C,D Hendrickson coefficients 
Phase probability distribution (isomorphous) 

1505-1508 A,BfC,D Hendrickson coefficients 
Phase probability distribution (anamolous) 

1600 normalized strr ;ure factor 1; assuming 
random atoms 

1601 normalized structure factor 2; with fragment 
information 

Updated February, 1980 Page 104 



Programmer's Manual 

1602 expectation value for f**2; assuming 
random atoms 

1603 expectation value for f**2; with fragment 
information 

1604-1630 group s.f. in sequence designated by LR 17 
(ID 10) 

1631 weight of s.f. phase estimate 1 with id 1701 
1632 weight of s.f. phase estimate 2 with id 1702 
1694 weight of s.f. phase estimate 64 with id 1764. 
1700 current structure factor phase estimate 

(in cycles) 
1701 structure factor phase estimate 1 (in cycles) 
1702 structure factor phase estimate 2 (in cycles) 
1764 structure factor phase estimate 64 (in cycles) 
1800 calculated /f/ (fcal) 
1801 A sum normal S.F. only (=/f/cos(phase) ) 
1802 B sum normal S.F. only (=/f/sin(phase) ) 
1803 A dispersion contribution only 
1804 B dispersion contribution only 
1805 A total excluding extinction correction 
1806 B total excluding extinction correction 
1807 translation function coefficient 

1810-1817 partial structure factor values in order 
1800-1807 

1900 least squares weight last used 
1901 least squares weightl 
1902 least squares weight2 
1903 least squares weight3 

LR 21 (spare) 

LR 22 (spare) 

LR 23 (spare) 

LR 24. (spare) 

LR 25, EMD-0F-FILE Record ( spec i f i c ) 

Log Packet Sequence 
rec s i z e number Description of contents 

25 0 This record serves as EOF s ignal to 
nucleus 

A-5.2 Physical Structure of the Binary Data File 
Updated February, 1980 Page 105 



Programmer's Manual 

The physical structure of the BDF on the output or 
input device is not of particular importance to the XTAL 
user or programmer. This is because the XTAL nucleus 
routines handle all the bookkeeping operations and return 
data in terms of logical records and packets. However, for 
those who wish to write their own BDF drivers, a brief 
description of the BDF structure follows. The length of all 
logical records is determined solely by the crystal and 
amount of information it contains. Storage requirements in 
direct-access memory force certain physical constraints on 
the maximum number of words that can be output or input to 
or from an I/O device at one time. The memory reserved for 
this transfer is referred to as the I/O buffer, and in the 
XTAL system these buffers are located in the data array 
QX( ). The length of these buffers is specified by the macro 
(BINSEQBUF:) when XTAL is implemented. This value will 
depend on the core available, and other hardware 
constraints, such as the disc track length. Once the buffer 
length has been set for a given installation, it must not be 
ch.ar.3ed. To optimize the transfer of the binary data file to 
and from the fixed length I/O buffers, it is necessary to 
both pack and position logical records according to length. 
This operation, in turn, requires that three additonal words 
at the front of each logical record or buffer are used for 
bookkeeping purposes. These three floating point words are 
referred to as lead words and set in the following way: 

"lead word 1* is the length in floating point words, 
including the three lead words, of the part or all of a 
given logical record in this buffer. The end of a 
buffer is signaled when the first word following a 
record has the value of +1. or -1. The +1. signals that 
the preceding logical record does *not* continue into 
the next buffer. The -1. signals that the preceding 
logical record is incomplete and continues into the 
next buffer. 

•lead word 2* is the logical record type number (1 to 
ENDRECORD:). This number is negative when the last part 
of a logical record is in the current buffer. It is 
positive when more of the logical record follows in the 
next buffer. 

"lead word 3* is the packet size in floating point 
words for the given logical record. 

Updated February, 1980 Page 106 

http://ch.ar.3ed


Programmer's Manual 

REFERENCES 

1. Ahmed, F.R., ed., Crystallographic Computing, 
Proceedings of the 1975 Summer School on 
Crystallographic Computing, Munksgaard, Copenhagen, 
(1970). 

2. Hall, S.R., and Stewart, J.M., TR-700, The XTAL System 
of Crystallographic Programs: Guidelines for Authors, 
Computer Science Center, Univeristy of Maryland, College 
Park, Maryland, (1978). 

3. Kernighan and Plauger, Software Tools, Addison-Wesley 
Reading, Massachusetts, (1976). 

4. Munn, R.J., and Stewart, J.M., TR-675, RATMAC: Kernighan 
and Plauger's Structured FORTRAN Programming Language, 
Computer Science Center, University of Maryland, College 
Park, Maryland, (1978). 

5. Munn, R.J., and Stewart, J.M., TR-804, RATMAC Primer, 
Computer Science Center, University of Maryland, College 
Park, Maryland, (1979). 

6. Stewart, J.M., .et ̂ . , Technical Report 67-58, X-Ray 67 
Program System for X-Ray Crystallography, Computer 
Science Center, University of Maryland, College Park, 
Maryland, (1967). 

7. Stewart, J.M., £t ajL., Technical Report TR-192, The 
X-ray System of Crystallographic Programs, Computer 
Science Center, University of Maryland, College Park, 
Maryland, (1972). 

8. Stewart, J.M., £t _al., TR-446, The X-Ray System of 
Crystallographic Programs, Computer Science Center, 
University of Maryland, College Park, Maryland, (1976). 

Updated February, 1980 Page 107 


