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1. INTROﬁUCTIéN

It has recently-been shown that the Zeeman quantum number selection
rule A=l of conventional Fourier transform NMR can be overcome in a “
systematic manner by“sﬁitébiyidééignéd pulse seouences, thus permitting
,the observation of multiple—quantum (Am?n)»coherences.l-a. The usefulness
of obserﬁing multiple—quantum transitions can be understood by considering
a schematic energy.level diagram for a system of N spins-%-withoutv
symmetry, shown in Figure 1. The number of levels for each allowed
eigenvalue of T,=m from m=N/2 to m-——N/Z is mlj'(N/Z)> -~ With this distribu-
tion, the number of allowed 51ng1e—quantum transitions’ increases exponential]y
Vwith N, and in general the single—quantum transitions are only resolvable if
there are few spins, or if many of the transitions are either degenerate or
forbidden; 'However, there is only one transition with Am=N, corresponding
to all N soins‘flipping together; and at most 2N transitions nith An=N-1.
In an oriented system such as a 1iquid crystal, the total spectral width may
be many kHz, With each line tyoically a few Hz wide. Thus, high multiple-
_quantum spectra are well resolved even if N is large. |

This point is illustrated by Figure 2, which shows the multiple-quan-
tum spectra of benzene oriented in a liquid crystaliine solvent. The six-

quantum spectrum‘has only one line, and the five-quantum spectrum has only

‘o

two lines because of the high molecular s&mmetry; the normal single-quantum
spectrum has 76 lines.s‘ UnfOrtunately, thie enhanced simplicity of multiple- Y
quantum spectra has to be balanced against a reduced overall intensity. On

the average, every symmetry allowed transition is pumped about equally well

\
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v.(indenendent of dm)hin:the:standard‘nultiple;quantun(erperiment.6 As a
-:result total 1ntensities of the high multiple—quantum spectra in these
_f.totally nonselective experiments are much weaker than the total intens ity
cof the. single—quantum spectrum, and most of the spectral inten31ty is "wasted"
: in unresolvable“transitions.
: Clearly;'it weuld be.extremely-valuable:if’we were able to distri-

-bute the total spectral intensity between only a few orders of coherence,
instead of driving a11 transitions equally. From the viewpoint of pertur-
bation theory th1s appears impossible because a multiple-quantum transi-
.tion occurS»only w1th 1rrad1ation’which‘also excites lower quantun transi-
tions, particularly when all transitions are simultaneously resonanL as
required by the nearly equal spin energy level spacing. Thus-;aside fronit_”
' even—odd selection due to thc bilineai folm ;L.oplu cuuyiing operatOLs,s

no general method of selective excitation has been proposed. In this
"paper and the letter which preceded it 7 we.demonstrate that selective
exciLation of multiple—quantum coherences in NMR is theoretically and"
experimentally~posslble as-illustrated in Figure 3. We w111 show that -
‘ this.technique can'provide enormous signalhenhancement; and that general
selective sequences are applicable to a wide rangevof snectroscopic

‘gystems.

II. "GENERAL THEORY OF SELECTIVE SEQUENCES -

A. Review of Average Hamiltonian Theory.

" The effect of any sequence of irradiating pulses and delays on a.
general system in the absence of relaxation can be represented by a-
single unitary tranSformation U, called the:propagator. Calculating‘U

directly by multinlying together the propagators for each part of the
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seqnence isvextremely tedious "if man},eigenstates are involved. 'However,
this calculatidn.canvbé'avoided for.certain puisé.senuences by a technique
known as avéragc Hamiltonian theory. This technique is thoronghly docu-
:mented,8’9 so”§e~;ili'reproduce in tnis“subsectiqn only a briefvsummary :
_ ofbprevious results which we require fof our.development. ’In'tne next
‘seccion we will-genefalize'the resnlts‘to describe seqnences which are
inherently selectlve. .

- The total Hamlltonian of a system isfwritten as ﬂ(t)%ﬁ HK (t),
.whénc mint is-the-internal Hamlltonian_of the system (for.example, the inf
vteractions between pairs cf;magnetic dipoles) and ﬂi(c) is the explicitly

'time-dependent'interaction_cOntrolled by the experimenter-(for example,'

. . the interaction with radiation). ft) is termed cycllc with cycle-

time t, 1f R’(t) and the propagator U ()=T exp(~ ijﬁK (t? )dt ) (1 is tne
Dyson time—ordering operator) are periodic, and if t is ‘the shortest
interval that constitutes a'periodvfor both U(t) and ﬂ'(;)

Hin is con51dered to be t]me independent, S0 ﬂ(t) is cyclic lf
ﬂi(t) is cycllc., If J&(t) is nlpulse:sequence made up of an 1ntegral
"number N of cycles, the*propégator for che_entire séquence is .the Nth
pcwer cf.the prnpagatorfcorresppnding to one cycle; and therefore cnly

a single cycle need be considered. .

The propagator for a single cycle can be shown to be:

ﬁ= exp (- iJ(t ) exp( < (0)+JC( )4 +J((.n)) ) ~- (D
wnerc: , ‘ i‘O) - J. aint(t)dt N : - )
7 - i g, tzdt [ ey (t-.)] 3

o ) 26, 0 2 intth); int™ 104 L

o
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IR . t t t . - .
Cog2y L frege o 340 2 ; '
KT 6.;‘:»0.'[] dt; ! Tty gf 4| Ky ()

1nt(t2) nt( 1]] [ 1nt(t1) [ (tZ)’ (t3i[]$ (4)

and ok | (t) =U "I(t':»"):fc. U (t).
S :int ' :'fl.' .1ntA~l
This:is'merely.a Magnus.expansionlq of the propagator in powers of

‘vthe cycle time.”{Thefaverage Hamiltonian'expansiOn is'a perturbation
'expansion in powers of a smallness parameter t that ‘has a physical meaning,
tc and ﬂ' (t) are simultaneously varied by lengthening the sequence.. For
this reason, ﬂ( ) is termed a correction term of order i and is propor—

'tional to t . 3'(‘(0)

is the zero—order or.average Hamiltonian, andsﬂfis‘

the cffﬂctivc Hsniltonien,‘ The:advantege of eq. (l) is'that a complex

time dependent process has been expressed by a time independent Hamiltonian.
Pulse sequences are usually designed so that M‘O) has some particular

desired property,: and then hlgher-order terms are minimized. For<egample,

"line narrowing,sequences for .solids completely suppress,the dipolar or .

.qﬁadrupolar'interaction, but‘nOtIthe chemical shift interaction, in this

lowest—order term.;1 If a pulse sequence is symmetric, such that

; ﬂ (t) = (t -t) ﬂ& ).and all other odd- order correction terms ya'nish'w

"Symmetric pulse.sequences are easy to_design, so the maJor-contributions

to residual linewidths'for simplelline narrowing sequences come from ﬂ(z)

~and from pulse sequence imperfections (inhomogeneity, timing'errors, and

the like). A very powerful method - of eliminating these terms involves

alternating between two. or more different cycles (called subcycles) to

form a new, larger cycle which has smaller>hlgher-order‘terms,;“Under certain



conditions, some of tﬁe higﬁer-order terms f§r the entirevcycle are
simply‘équal to.thé_Sum of the corresponding ferms for thé subcycles; such
terms afe sa.id-t:ov'decouple.'12 Decoﬁpled puise_cycles for line nérrowing
have been produced that havé T( )—0 for the dipolar Hamlltonlan, and have
sﬁall error terms. 12
Higher—ordér terms afe’usually difficﬁlt to calcUléte, but for line
- narrowing sequences.tﬁeir size (and‘theréfore their éontribution to
residual-liné widths) caﬁ be estimated. ifvﬂ(0)=ﬂx1)gﬁ(2)...#ﬂ(ﬁ_l)

=0, then i‘k)= ﬁ(k), where i‘k) is defined as

700, | tkﬂ o
j. at k+1 dtk J. dtl 1nt(tk+1) 1nt( )"'  (5)

k—*h, _p*l.‘. .2n
Refereﬁce (93)'éoﬁtains a Wéaker“verSion'of this thebrém bwhibh requires
ﬂ(J)—O for all j<n for mﬁ“)qx(n>, ﬁut inspectlon of thelr proof13 leads
vto the immediate conclusion thath(J)-O for a11 j<(n-1)/2 is SUfficient

for-M‘n)ﬁK(n). o _ -

n+l

" The volume'of integration is (tc) ’ so-i(n) can be easily estimated .

in terms of ﬂi e To do this estimation we need to use the éoncept of

the norm of a matrix. We will define the norm of an arbitrary NTxNT matrix

A as R ' o '
: o pal <N1 Tr (AA ))1/2 , , 6)
T . .

UAl is invariant under unitary transformations, so if A is Hermitian,

lAl is the root-mean squére eigenvalue of A, called M21/2
T

A). ‘Other  con-
venient propertles that are easily proven are:
1. If A and B are Hermitian, 1ABI = IpaAl<N PallBl.

2. ﬂIﬂ = 1, where I is the identity matrix.

Y



3. If Ais ‘He_.rmitian', 1A™ is the square root of the (2n)~th moment
‘of the .distribution of the eigenvalues, called Mllz(A).' _Since

' M2/2(A)>(M1/2(A)) for any distribution, 1AM>(1AD™,

4. If A and B are. s:.mllar Hermitian matrices, such that A—UBU+

‘ lABﬂ<ﬂA 1=1821.
5. | HoweVer, if A and B are two d;lfferent matrices, with nothing .
_ else 'k'n'own' about either ma'trix; then A(A;B') =iA iBin is the sum

of N numbers which we expect will add randomly._ Then "

. (AL 1/2 PP
(I(AB)mnI ')“NT(IAmiBinl_‘) NT((IAm.I )(IB | ", and this

implies nA3n~nAnuBuv“
Properties (2) and (4) imply that IIJC t( n+1)Jcint(t )”.'xilnt(tl)ui

n(JCi (t )\nﬂ'" | For many systems the eigenvalues of kY m have toughly a
' Ganésian distribu_tlon, _and_._in ‘this case e o o
'-'M§I{Z=<l'3‘-s.;.(2n-1)>1/2(M§’2)“ ((zn)'/<z ‘)n')”z(r«”2 M
L "‘_<_<"J'c' .t ﬂ“+1><<2n>'/z nt (¢ w1 1) >1/2 o ®

In fact., if the cycle contalns many pulses so that J{ (_t)» varies

+1
rapidly, we expect that II}{‘. ( n+l) int(t )...J{‘i t:(tl)ﬂ~l]J(‘intlln_1‘. ‘Thus

ntl / =(mt+l)_ (m+1 )

I];c(n)t u-<|]3ci . ‘c (n+1)', and for those terms for which ¥

(n+l)ll/l]3(‘(n)" 0t M/ (otl). _For higher-order terms expressions involving

‘commutators, 'such_ as equations (3-4), are required.

All of the results presented so far are applicable to any cyclic pulse
sequence. We will now extend average Hamiltonian theory, in order to

create pulse sequnceé'which selectively excite only a few transitions.
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S T 'Extension of Average Hamiltonian Theory
. to Selective Sequences
- PR Definitions L

"‘We term an operator nk-quantum selective if it can be completely

decomposed 1nto irreducible tensors TJk; with k allowed to have any

'integral value including O. If_only k%fl iS'required,*the'operator is .

terned'n—quantum selective. If tensor components that are not integral

multiples of n are required, the'operator is nonselective. Any nonselec-
tive operator can be decOmposed into a nk-quantum selettive operator. and

-a remainder which we call non-nk-quantum selective (abbreviated nns).

- From the definition of tensor operators, the product or sum of two nk-

quantum operators is also an_nkéquantum operator. In addition, an

operator is nk-quantum selective iff it is invariant'to'a.rotation of 2m/n

: abouretﬁevz—axis.
‘We term a‘cyclicipulse sequenoe j;order nk—qnantnn Selecrive ifball

'the operatora i‘i)(igj)vin ;he_average Hanilronian,expansion of.the pro-
pagator are nk—quantum‘seleetiveIOPeratora. (For example, if ﬂ(o) is 4k-
quantum selective but ﬂ(l) is not, the sequence'is zero-order 4k~qnantum
selective).. An eqnivalent'definition is that all terms in:the propagator
. proportional to (tc)i+1v(ifj) are nk;quantum selective. If.the'initial

.density_marrix has no coherences, the final density matrix wili'eontain
-only nk—quantum selective operators, up to terms pronortional to (t )j+1.

The physical meaning of nk—quantum operators depends on the system

' being c0nsidered. If the axis of propagation of the'radiation is chosen -

_as the z—axis, an nk4qnantum operator causes a net absorption or emission

: of_a multiole of n photons, and changes thezeeomponent of the angularv
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.momehtum pf_thé'appiied field'by some‘muiﬁiple of nfi. If the z~-component

of angular momentum is a good quantum number for the system (as it is, -

 for example, in NMR at normal magnetic field strengths), conservation

of éngular momentum implies that the system can develop coherences only

__betWeen’states for which this quantum number differs by a multiple of n.

If this is not a good quantum number, the selection rules for n-quantum .

tranéitions are-moreicdmplicated,
ii. Thebiems for Selective Sequences

'  Many of the theorems of average Hamiltonian:fheory_are directly

.'applicabie to selective sequences.A In-addition,fwe’present two new theorems

which can be viewed as a_gehéréiizatidnfof:kﬁbwﬁ"thébrémsifbr'line narrowing
sequences.
Theorem I. Suppose a cycle (cycle time té);cdﬁsists of m subcycles

(cycle times t.1» tcz...tcm

o quantum selective. Then the cycle is also j-order nk-quantum

), each of which is j-order nk-

“selective. Furthermore,”the non-nk-quantum selective (nns)

'lpart of FI) £or the cycle decouples, i.e.,
3 SRR () - o
_f»‘(j+1) _ m . _ Ll _ _
(JC t<:c). nns - iz':—"i ( oo t:t.:_i,.)nns T . (9

Proof: For simplicity of notation we will explicitly prove only the
case m=2, since fepeated'application of this theorem with m=2 proves the
theorenm fo:_arbitrarj me

Because the propagator for the'cyclé‘is equal to the product of the

propagators for the two sgbcycies, we have:

e 1P +ED . e = e 1@+ BV e pem-1 " +

(10)
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By expanding in powers of ts t el and t c2 and recalling thatJf(k)

tk andZC(k) EJ, we find that the term proportional to (t )k 1

m<k>tc+ 1x s“c<k"’:rc<"~")t§+.

2 k' k"
=T (;i.’TC(kz)t +1 5 ac(k')zc(k") 2 »
L kytk,mk 2 c2’ k'k"2 2 % tea?
12 :
x(-ix0e + 1 3o O ):fc(k D24y | 1)
.71 7 el 2 K k" 1 te1 :
k'k"=k-1 e o aw
L n._. : ; . o o R S
ki kl 1 L o T o S 3
_ P i S | | - (14)
"where the terms represented by (. ..) are. products of three or more
.operatorsizmultlnlied by (t ) or hlgher powers of t . ﬂ‘ ) can only

' appear in the first term on the l h. Ses ‘and all other terms must have
smaller superscrlpts. By assumption ﬂ‘kl) is nk—quantum selective
,foruall kifg. When k—O, equatlon (11) simplifles to

| iic(o? tc=1(36{9) e 70 - @s)

cZ)'

© so ﬁ(o)"is nkﬁhantum selective'if‘j>0 | It follows by inductionlthat
) all the operators ﬂ( ) (k;g) are nk—quantum selective by considerlng
;progre531vely higher powers of “t ,'through (t )J+l |

. The only possible nns term proportlonal to (t )j on the l.h.s. is

.~:then (- fY(J+1) c)nns since all other terms involve only lower-order

operators which are nk—quantum selectlve. Slmilarly, the only -possible

) By equating these

nns term on the r. h s. is - i(ﬁ(3+l)t ﬁR(J+l)t
c2 nns

two expressions, Theorem I° is proven.
fThe_onlY'prOperty of_nk-quantum.selective'operators that was needed
to-prove Theorem I was closure of this set of operators under addition

and”moltiplication, and similar theorems can be?proVeo for any other

“y

AR 8
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7._set of operators with these two closure properties. “In particular, the

'

null set is closed under addition and multiplication. A decoupltng
theorem for this case (i e. (o)qK(l) Aﬁ(J)"O) was proven by Burum
(12)_ Another set which satisfies the requlred closure propertics
is the set of N—quantum operators in an N Spln~%'NMR system, plus the
populations of the two extreme states"thls case will be discussed later.

The size of the gizgt_nns term for a j—order nk—quantum selective
sequence can be readily estimated. |

Theorem 1I. If a sequence is J—order nk—quantum selectlve the non-nk-

quantum selectlve (nns) part of H‘J 1) can be written as:

w(jﬂ))m;« i)j+1/t ) (f f dtlJCi RS J+2)... () _.(16)

L ' +
Proof: The proof of this theorem. is 1dent1cal to the proof that«Q(J 1

‘Has'this form if ﬂ‘j>=0 for all igj;.contained in reference (9a), 50 we

will merely outline it The most general expression for the term propor-

‘tional to (t )J+2 in the propagator is

o . | _ L | )
- J+2,'. c j+2 J 2 - (t ) ,(t_ ).. .3{'
( 1) vOJr dtj+2 OJ? dtj+l"' dtinnt ntl ﬂint n 1nt( l)

(17)

Expanding U=exp(—i(ﬁ(q)%ﬁ(l) ﬂ‘n) Dt ) as in the l.h.s. of equation
(11), the only possible non—nk—quantum selective ‘term proportional to
(t )j’*"2 is (- ﬁﬁ(3+1) t) ‘; which proves thevtheorem.
¢‘nns 7 . _ N
It -should be noted that equation (16)'is only valid for the first .
nns term, while.if ﬂ(n)=0 for all n<j a similar expression holds for all

terms up to I(Zn) " The difference is .that the 1.h.s. of equation (1)
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containsvoperators.such as ﬁ(kl)i(kz)"which vanish if either ﬂ(kl)’or
5?( 2) vanishes, but which are generally ‘nk-quantum selective only if both

_ﬂ(k ) and ﬂ‘k ) .are nk-quantum selective..'

C. Design of Selective Sequences

i. Zero-Order Selective Sequéﬁces
Staftiﬁg frém any cyclié sequeﬁcéfof puiées an&'deIAys; we can pro-
ducg a Séquénée which is zero-order nk;quantﬁmlselective, using a techni-
que-Whichuﬁe call phase cycling. This is iilustfated in Figure 4(a). We
“assume that the cYclié séquéncé has avdpxétion ATp(Which we call a sub-
i-: cycle), an effectije Hamiltoniaﬁ.ﬂ;=ﬁ§0)+ﬂﬁl)+...ﬁﬁﬁn)...; and.a P?Cpa“
gator Uo=éxp\-iH;ATp).  At.the‘end of the iﬁterval ATé, the»seq#ence is
h ‘repeéted wifh all radia;ioﬁ phésé shifted by ¢=2ﬂ/n about the z~axis,_giving
‘éiﬁéw'effegtiVe Haﬁilgéniaﬁ ﬂ@ and prbpagagor-ﬁ¢.'ﬂ$_ié re;ated tp ﬂ;.by a

rotation"of_-¢ aboﬁt the zéaxis: ‘

3_c¢ = exp (19T ) ¥ e AT,y o . (@38)
(ac¢) (Jc) exp(1¢(m —m)) . N o 19)
and U¢ is related'to Uo in exactly the same manner. - This phase shift is -

repeated n times, creating a cycle with cycle time/tc=nATp. We would like
to calculate‘i‘J) for thevéycle. Since tc is proportional to ATpvit is
clear that ﬂﬁJ)vand ﬂ(J) scale ih‘exa¢t1y the same manner when t, is
changed, and by equating terms propbrtional'to tc'with thoselproportional to
- AT -ﬁe find: - | |

p Ve !

7(© __.11;93. Q=L F jexp (ino1) T exp Cano1). @0



R

_13;'7

L , ‘ o . .
This sum scales the’ matrix element Cﬁﬁ ))ij by (1/n) Te iz"P /“
' n=0
| where P‘m -m, ; thls scaling factor is zero unless p—nk Therefore, K( )

3

is a pure nk—quantum selective operator. Since ﬂ( ) decouples, any other
permutation of . .the subcycles is also acceptable. Higher order terms have'

~ some nk-quantum selective-partS’(for example,,there is a contribution

n-1_(1) - '
LR to ﬂ‘ )) but ‘no higher order terms are completely selective. Thus,
- f=0 ¢ . . : :

_ the'sequencevobtained byiphase cycling'is zero—order‘nk-quantum selective.'
If t, can be made arbitrarily small all the higher—order terms in -
:the average Hamiltonian expansion become unimportant, and a zero~order
selective sequence becomes conpletely.selectlve' of course, the se]ective

ﬂ(o)t ﬂ+0 as t vO but this can be remedied by repeating the zero—_

:term 1
order sequon"es many times. In general hovever, t canuct be m;dc‘ B
arbltrarily small, so higher-order selectivity is desirable. One simple

' way to get a first-order selective sequence is to symmetrize the cycle,

fas illustrated in Pigure 4(b). ﬂ‘o? is still nk—quantum selective, and
the symmetrlzation causes ﬁ(j) to vanish for all odd j, so the first
nonselective term is ﬂ(z) | | .

i1, Sequences Selective to Arbitrary Order

| Suppose that the sequence for ﬂ' in Figure A(a) is already j-order
nk—quantum selective, instead of being nonselective as was assumed earlier.
Theorem I proves that the sequence obtained by phase cycling is (3+1)-

3@(.‘1’*’1))

order nk—quantum selective, because ( decouples:

-1

n .
z (exp(izuz);‘cgj*l)exp(-wpxz))nh;o. (21)

1
(.,C(j+1)2\

ns

GKY i _)nns N
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Thereforg,'starting from a qonsélgcti%evﬂ;, (j+l) ﬁhase‘cyclihgs pro-
duce;a_sequencé that is j—orderink—quantum selective; requifiﬁgvnFj*l)
subc&cles;veach block of n subcycles is zero-order nk-quantum selective, .
‘each block of nz»sﬁbcyclés'is first—-order nk-quantum selecfive, and so
,forth.. For example, a first-order 4k-quantum selectivé sequehée méy‘be_
construcfed from 42=16'sﬁbcyéles,.and the phases of the subcycles can be
written schematically (0: ¢=0, 1l:¢=7/2, 2:¢=m, 3:0=37w/2) as (0123) (1236)

23015 (3012) . Each'group in parenfhesesais_avzero-ordér nk—quantuﬁ selec~
tive sequeﬁce, and is.phase shiftéd{by m/2 to produqe'the nextlgrouﬁ;

In,the.ébsence of,relaxatioﬁ,vthere is né Timit fo the number cf times"
phase cycling can be applied, énd-therefofe éequénces which Afe’selective
to arbitrarily high order can be'designéd. In any real éystem, pnly a o v
limited number of subcycleé could be éompléted'ﬁefore relaxation effects
' _make'the avéragé Hamiltonién caléulation invalid.; One.way to reduce the
number of'subcycles required to achieve a giveﬁ order of selecti§ity is
to comsine phase éycling aud:symmetrizatiéh, as in Figuré 4(b). ;Thév
Sequencé is,fi£5t—§rd¢r nk-quéntum selective even if'ﬂb‘is nonselective.
1f ﬂb is already jforder nk-quantﬁm selective (j odd), the phase cycling
and symmetrization requirés 2n subcycles to make a (j+2)-order nk—quéntum-f
selective sequence, instead of the n2 subcycles ¥eduired for two phase
cycliﬁgs.llThus, a (Zjiﬁ);order nk-quantum'éelegtive sequence requirés
(2n)j+l subecycles ((jfl)'phase cyclings and (j+1) symmetrizations) and a ' -
(gj)-order nk-quantum selective-sequence requires 'n(2n)j subcyéles ((j+l)
phase'cyclings and j symmetrizations). For example, a third-order 4k~
quantum selective sequence requires (2n)2=64 subeycles, and the relatiye

phases can be written schematically as'(0123)(3210)(1230)(0321)(2301)
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(1032) (3012) (2103 (3012) (2103) (2301) (1032) (1230) (0321) (0123) (3210) .

IIT. APPLICATlON'OFlSELECTIVE'SEQUENCES T0 MULTIPLE?QUANTUM NMR.
A. Moﬁivation
In this section the general principles of seleetive excitation’are
. elaborated.for‘the particular case.of a sjstem of directly_dipole.coupled
’nuelear snins; .The analysls of the spectral 1ine poeitlons of Such_a system
‘sdpplies.stfuetnral information on tne lengths and orienfations of inter-
nuelear veceors and analysis of_thevrelaxation times provides information
on‘molecular;motion;' Neifher analysielean Beeeompleted_unleesltnefspectrum
eontains resolved assignable llnes;"The high reeolntioneand simpllcity of -
the‘nigh multinle quantnn'épecfra}make fhem‘pfeferable or indispensible
v-.;fer-Lhese analjSQSg ,Ithlll ﬁe_Shown nenithe use of selective eeqﬁences
"promises to.ovefeome the-difficnlty;of'enall Siénal intensity, thus making
. _these analyses possible in 1arge spin systems. | |
'_ The Hamiltonlan for the N splnSv% of an orlented moleeule in a large
magnetic field can be written'in’the rotating f:ame (in nnits'of h=1) as
| B A '_ - (22)

Ant TAw D,zz rf

r (1

- is the secular portion of the dipolar Hamiltonlan, and ﬂ‘ is the time-

ﬂ7.=AwI is the resonance offset term, I -1,:1.)
: : zi zj i i

Dy zz 1>Ja13
dependent interaction between the molecules and applied radlation.‘ Other
“interactions such as chemleal shifts or scalar spin—spin couplings may also
be accounted for, but we wlllanot consider them here.

‘The task we set out to aceomnlish in this seetionvis.to‘construet a
rapidly convergent effectiyelﬂamiltonian for an excitation'cfclevwhieh will

contain, in its leading terms, operators T:k with rank j up to the maximum
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valué j=N.and componénts nk<j. Sucﬁ a Hamiltonian will'qreate high quantum
_coherences seiectiﬁely-even if it écfs oﬁly for short times such. that
Hﬂtcﬂ<<1, .The theoretical tqol to be usedkis a nested series of average
Hamiltonian expansipﬁs with.each successivé expansion involving ailonger
cycle time. Thié approach isrexact when the effective Hamiltonian of each
of the précedingrexpaﬁsions is used as the starting point fér the next
_-expansion. . In practiéé.onevdeéigns sequences with rapidly convergént
v.expansions énd proceeds by géing only tﬁe firsf few terms as‘an_apprdxi_
mation to-ﬁhe éffeétive Hamiltonian. Precedents for this-progedure exist.
It is implicitly ﬁsed wheneQerva.rqtating fraﬁe Hamiltoﬁiép is used as a
starting point for an avefage"Hamiltoniaﬁexpaﬁsibn..14 Anothér example
is the "sécond averaging" procedufe used to expiain of f-resonance éffects
in'multiple pulse line narrowiﬁg éxpériments. 15

; fhe expansions which_were‘the subject of the'previ§us seéﬁibﬁ were the
'fiﬁal éxp?nsions, in which the effectiVeZHamiltonians 3@ for the sdﬁcycles
were assﬁ&ed to be known. ’Figufe 5 shows schématically how fhe phase
shifts of the cycie may be-viewed as a series of z pulses on a system with
an Q;herwise'time independent Hamilténian ﬂ@;o. vin'the next‘Section the
'subcycles are freated.- |
" B. . The Design of Effecﬁive Subcycles

If a subcycle caﬁ be designed which has high §uantum operators in the

leéding terms of its e%fective Hamiltonian ¥, , tﬁen‘the cyclevneed only be_
selective to ailow order since high quantum operators will appear in its

‘contains only first and second rank operators,

‘leading tgrms. Since mﬁnt

no simple rotation of x&nt can contain high quantum operators. It is

_only through the action of the cbﬁplings between spins that such operators
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hcan'appear in.theheuolution;fso it'appears'desirable'that the subeycle

last at least long enough that HH' AT |~1 An apparent dilemma arises -

here though ‘for if the cycle consists of many subcycles then UWb ‘zt¢ﬂ>l

D,z

© . and convergence of the-effective Hamiltonian expan81on becomes doubtful.

The solution to this problem is to arrange the internal structure of the

SUbCYC1eS 80 that “ﬂ' AT i~1 but “mbAT "<<1. Several approaches will
’ .

be_discussed. One general approach to subcycle de31gn uses the method

"of'time.reversall6 and is illustrated“in Figure 6(a); ﬂ‘ and ﬂ?'are

approximations to the effective Hamiltonians for the periods T and T'.

,Before eyaminivg particular sequences for the periods T, T', and AT yo e

Vindicate how time reversal 1eads to the desired conditions that M& contains

high quantum ooerators and that ﬂﬂbArPﬂ<<l

0) 1 N 7
Pulue sequences can. be de51gned with ﬂb ( N xx&mi,yy = -ﬁtD 2z?
and the effect of such sequences is to make the spin system appear - to
evolve backwards 1n.time. 16 If such a. pulse sequence is applied for a

tlme 2T and then turned off Lhe 1n1tial conultlon will return after a the

T, If Uﬂb 2z Th>1, both the forward time and 1eversod time propaga xtors can
1D,

contain irreducible tensor operators of arbitrarily high rank, but will

_commute w1th I . i Similarly, pulse sequences can'bevdesigned with

0)_ o R o B
JC( N ) = - . tained
( D,yy YD’ZZ) %ﬂb,xx Invthisﬂcasef the propagator obtaine
'from a sequence withnﬂﬂb xxTnzl will ¢ontain irreducible tensor operators
B ’ o :

B ofvarbitrarily high rank, but will not commute with Iz’ .Such a propagator

can generate multiple~quantum coherences'and can be viewed as a multiple-

quantum rotation (as opposed to the rotation produced by a single strong
pulse, which will only generate.single-quantum coherences from a density

matrix proportional to Iz).
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The propagator for the subcjcle of‘Figure 6(a) is U(ATp)ﬁexp(—ldgT )
enp(-im%Afé)exp(-im%T). HTine reuerSal techniques may be used to arrange
“that m%T'=—M%T; When thisCOndition.hoidsgthe_periode T and Tf may'be‘
' vieWed‘as a complementary pair,oftmultiple—quantum rotations which
'sandwich the_period ATéf ‘Together they form a cycle and.the'everage_
Hamiltonian for this cycleuis |

wéO) .f EK(t)dt = PeimbTa%é';mbT - | (23
Mp

If ﬂ; is nonsecular, b111near and does not commute w1th ﬂ' then ﬂé )_w111
contain high multlple—quantum operators when ﬂﬂ‘T"zl. Since the-exponentral

*»operators constrtute a unltary transformatlon,_the norm of ﬂ’ is conserved

and "ﬂéo)ﬂ = ——imJCl| : The.de31red effect ofnreduc1ng the norm of the-sub—
cycle Hdmiltonlan is achieved when ;<<ATPQ Siuce ""(0)‘T b= “T'AT'"

'3the-sma11 1nterval_Atp‘may_be,thought of as an effective cycle time for
the subcycle. Thisvconcept is useful in that lengthening the cycle time
‘corresponds to lengthening At; and not T or T'..
Several choices are poésible for i, I and ﬂ{; Let W‘AK =
o PP W Dyxx
i> iJ(31 i Ii-Ij) produced by the.sequence 90y-T-90y, where,QOliS
- the pulse flip angle,_and'the_subscript is the rf phase in the rotating
- frame; ﬂ" '&K produced By a time reversing eequence, such as
'e~r-9o,-r-9o T80 ~T—90 T~ 80.-7-90_ T80, ~1~90_~ Lty, repeated enough
2 "% "X X x X X X x 2
times to fill a period T'=2T; and ﬂ@;ﬂb 22 using no pulses at all (ﬂ; is
v "w D, 5
a "window" in the sequence). The particular time reversing sequence
chosen for M; has ﬁ£0)= ‘kK _'; it is symmetrlc, so Mé )-0. Using the

notation of reference (11) for various error terms from pulse imperfec-

tions,:we find Hé ) (resonance offset and chemical shift terms) = - 03
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6D ~eD -0

(g) (rf 1nhomogeneity effects) =0 (to otd'erf)' TC(O) (nonzero pulse
width) = = 03 and ﬂ(l) ﬂ‘l) M‘l) = 0 can be achieved by symmetxlyatlon.

Neglectlng all correction terms, we havo .

JC(;E‘?’AT ‘=' exP.(iJCxxT)_ (xD_Q ZZAT;)eva(‘iJC}-{XI_)" - : : " | (24)

which con_sefves the evenvor odd quantum chara'cter of the initial d.e'nsity'
matrix. | This is’ sOme_times convenient;_ for enample, a third‘order 10k-
tiuantum selective seqnence requiree 4n2‘ 4—-"400 " subc&cles, but a third order
Sk—quantum selective sequenc'e only requirea 100 euhcycles, and if no odd-
quantum coherences are present 1n JCq) the two sequences have the same effect.
The sequence 90y-'—-T—-9..03;. o_nly -.g..lves -J-Cp=JCD_,'>_c;: ifv there are no che_mlcal )
shifts, if bw=0, if _the rf homogeneity‘ 'and'»the '.s"t'atic_v homogeneity- ate
vperfer‘t, and lf the pulse m"ths ore “cglzgc‘*?c' "“ﬂ cven if T is ot
short in’the sequences for T' it may be that ﬂ3C¢AT ll>>ll.7(‘ AT'“ because
neglected error terms would enter. One very convenient way to lessen
\the severity of error terms is to deulgn a sequence w1th an effective
' FH:a‘miltonlan hav1ng- only double—-quantumtermcv' then: tlme reversal can be
.achieved byb a phase shift’ For example, the .,equence (—- -90 T m90y—T 90
-1 -90 --'r—90 & T —90 5T -90 -T 90 - -—) has an average Hamiltonian JC(O) |
(t' [+t ):_IC + ('t/'r+'r )JCD in the'llmit of G—functlon pulses, and if

2(0) _ | 1 o o

1 - g e, 0 = S, 0, . S @
This is a pure double-—quantum operator, .which can be inverted by phase
'shifting the sequence by 90° . If the pulses are assumed to have a square

envelope but a finite. width tp JC(O) 1s a pure double—quantum operator

. for T'=Zt+tp; other pulse errors may change' this relation slightly.
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"Thersequence can‘besused with x and X pulses with'enouéh cycles to -
| create'a‘total:length T such thatiﬂﬂleél. 'ﬂ; ls provided by the same
sequence,bexcept-with y and § pulses; Potential Sequences for m; include:
| 1.  No pulses, éiving ﬂ;ﬁﬂb’éz and‘even-quantum selection for initial
conditioanIz, ‘This sequence was used in our recent work ,‘7’17 as shown
._in.Figure 3, to produce 4k—quantum.se1ectivitv in oriented henaene.
Zf 45 —AT —45_, giv1ng all orders in ﬂ¢ |
.3;_ The same sequence as ﬂ', except phase shlfted by 45°. Clearly:
ﬂ; is also a pure two—quantum operator, but {ﬂ?,ﬂ%]*o, S0 multi?le*Quantum
A coherences still develop..'Aftér,a brief interval AT;, another phase shift
~of 45° glves JC' | o
. The standard WAHUHA sequence, illustrated in Figure 6(b), is another
-nossible pulse sequence for M@ Tf ﬂ;ﬁtmf ’;}; this seanence- gives
C(O)4K(1)“0 (neglecting pulse errors).: However,.if'"ﬂb’zzTﬂ>?l, ﬂ& will
have strong contributions from_ﬂ(z)’-ﬂﬂé? and.higherrorder terms which'
contain'multiple—quantum coherences; iFor>some value of T such that

13, Ti~1, we expect to find Hﬂ‘ﬂ<<ﬂmb zzﬂ, but ¥, will contain a substan~
. 5

" Dyzz™ ? - : ¢ ¢ .
: tial fraction of multiple~quantum coherences. The sequence is repeated "
times, sd ATP=6NT, ‘When such a subcycle is_incorporated into a.selective
eXcitation sequence, it vlll prove useful to think of T as a fixed parameter
:while N is varied in order to vary the cycle time.

Clearly, any other line narrowing sequence is also a candidate for

'produc1ng K’ , but this sequence would probably be the ‘easiest to use because

of its relatively 1arge correction terms. A'possible advantage over the use

of time-rever31ng sequences is the very low duty cycle, which results

' because T is much longer than in a normal WAHUHA ‘experiment.



.C.i' Selective Sequences in the Multiple-Quantum NMR Experiment“

) Any selective sequence can be incorporated into the generol frame-
- work of a multiple-quantum experiment, shown in Figure T(a). A 1ar0c
static magnetic field B—B z is applied to a system of N spin-I nuclei
giving an. equilibrium spin dens1ty matrix p "exp(-B 1 )/Tr(exp( - ),
where B ryB /kT, 1n the hlgh temperature approximation we write the
reduced density matrix as p =(21+1) (—B I ):BI .. A pulse sequence
(which need not be cyeclic) is applied to produce multiple—quantum
coherences. This is called_the_preparationrsequence, and we will denote

itsgpropagator by U.__ihe spinS‘then;evolvevunder-ﬂint for a time tl;
In the simplest erperiments novpulses are’applied during:tlg.however,v
decoupling,_spin echoes, or more complicated sequences are possible if
suppiession of part of ﬂ? is des:red Becavse only the operators l#
and Iy are observable,'another pulse sequence (called the mixing |
sequence) is used to transfer the multiple-quantum coherences that

1.

‘propaﬁator for the mixing sequence by V. - The oscillating magnetization

evolved during t into s1ng1e—quantum_coherences; we will denote the

proportional to (I ) and { T )1 meaSured the'experiment is repeated many

times with different values of tl,'and the signal is Fourier transformed

, with respect to t,. to produce the multlple-quantum Spectra. In this work

1
it will be assumed that the initial condition is BI and that only the
operators corresponding to’ magnetization at the end of the mixing perlod
V are detected. The use of coherently excited initial conditions and

the implications of selective excitation for full two dimensional NMR

experiments will be discussed elsewhere.
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In.the simplest experiment‘ U and V are nonselective ‘as shown in
'Figure 7(b) TheAflrst two pulSes, separated.byva tlme Tp, constitute.the
preparation sequence., If we'furtherfassume'that.all,pulses are stroné

o .pulses,eso'that the internal:spin'Hamiltbnian ﬂ"=AwI +I D, 2z can be
neglected during the short intervals that the rf field is present, we can

write the reduced den81ty matrix at the end of the second pulse as:

Bexp(-iI n/2)exp( iH T )exp(iI ﬂ/Z)I exp(—lI W/Z)exp(iH T )

)( exp(iI n/2) —Bexp(iH T )I exp(iH T ) - N - (26)
where | |
Ja Awlafmb’aa(a:x,y or.z) R e @n
ﬂb o 5% ij(BIalIaJ I, vI ;) (o= x,y, or z) o 5 (28)
:B::atc: +““,*ipc’**'""w41tonian ie k*liﬂnnr p will have mulriple-
- quantum matrix elements if ﬂﬂb zzrpuzl,'in'contrast to excitation by a
. . R ? : !

single pulse which produces only single-quantum“coherence. The third .
pulse and the final delay té

 constitute the mixing and detection sequence,
-and (Ix(tz)lislmeasured;v'This“pulse sequence, modified to include echoes

ltolrembve Aw'aﬁd field inhomogeneity from thetevoluticn-time tl’ and phase
shifted to separate the different n-values,zc’d is the one used -for most .
multiple-quantum experiments,

‘The dramatic décrease in intensity as n increases and the low.
.iﬁtensityvof‘individual transitions mentioned in the Introduction is now
eesily derived. To'siﬁplify the‘formalism; we note that there is actually
;_a great deal of similarity Eetween the preparation and miking pcrtions

of the pulse sequence, which is hidden by the experimental need to.measure

Y(Ix? or (Iy} even though the initial density matrix is proportional to I,.



-23-

If we imagine.instead thatrwe'observe (I’) ,. as in Figure 7(c), we have to

_'insert a fourth pulse at the end of t,.

- .(¢) would always give exactly the same spectra hut in Figure (c) the

The sequences in Figures (b) and

'~i symmetry between pieparation and mixing is apparent' in fact if t?= Tp,
the propagators are identical' . o
U~V*exp(—1I ﬂ/l)exp(—iﬂ T: )exp(lI "/2) o o @29

We can write the observed signal as

(I (T stls T )) tr(pI )

' L~—Btr(Vexp€iH t, )UI U+exp(1H tl)V+I ) d'__' 1. L t ) (30)
—Btr((UI IJ)exp(1H t )(v T V)exp( ~iH_t )) '_ | S @D
=8k Z(UI J) ', m el tl S ow

- where wmh,is the energy difference between the states m and n. The maxi—

Taum - uignal is obtained when [(UI 4 ) I-I(U I U) | for every matriw olcuLnL

nm
“and it can ea311y be shown that the condition is satisfied if Ry has the
. -form in equation (29),8 in fact for this sequence (UI U+) -(U I U) |
Therefore,_the 1ntensity_of_the:mult1p1e~quantum transitlon‘at the fre-
quency w. isvequelrto‘BI(UI U*) 12 assuming that all peaks‘are revolwahle
The total 1nten31ty of the spectrum, which is divided among all the 01ders
of multiple-quantum transitions, is equal to BTr«UI U+) ). But this quantity
is invariant to unitary transformation and is the same as the integrated
intensity of the single-quantum spectrum in a conventional one-pulse experi-
ment, BTr(Iy ). Therefore, the_total spectral intensity of the nonselective
experiment is fixed. |

If’the'multinle—quantum matrix eiements.are inefficiently excited (for

.i.

example, if “ﬂb’zzrpﬂ<<l), UIZU has large matrix-eiementslalong its diagonal.

These matrix elements are populations, so they do not evolve, and most of
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' the*intensity of the-multiple—quantuﬁAsbettrum isAfound et w=0. An
efficient widetand hoﬁselective excitatioq hésilittie intensity at w=0,
and exciteS'ail of the_possible'ttansitiohs about equally. - Therefdre,
the ayerage intensity of a single line’in-s mﬁltiple-quantum-spectrum is
smaller than the.ave:age intensityeof a.single line in an’ordinary.single
ﬁulse experiment, by e-ratio7(nﬁmbervqf sihgle;quantum transitiqns)/(nsmber
of excited multiple—qsantum transitidns). When:there are ﬁeny spins, tﬁe
iintensity of a single transition'becomes extremely small. Fot example,.
a system with N sp1n5¢%-_ and no symmetry has 22N possible distinct matrix
elements s0 totally nonse]cctive exc1Lat10n glves a signal for each
transition of,2y (Btr(Iy ). | | |
va.only'eertaiﬁ orders of multiple-quantum-tfansitions"are excited,
Dut the excitacion 1is sti]l efflcient (in the sense that the ﬁeék’:t.
w—O is small), the intensity of a sxngle transitlon grows.-‘For‘example;
if the resonance offset is removed from the excitation and detection periods
(by echoes, for example) H retains only 0- and 2= qunntum operatoro, vnd _
only:even-quantum coherences are excited,6 v81nce roughly half the coherences
are even-quantum, this-process increasesvthe ihtensityiof"aﬁ average’evenw -
:quentum transition by_a{factdr of two. -vaosly a few transitionsvare
;exeitedv(By‘an e#tremelyfselective,sequeﬁce)-and the sequence is efficient,
the:intensity of eéch‘tranSition‘eould-be]ehormous..-Suppsse'that selective °
excitstioh is used for bothkpreparatiqn and mixing as in Figure 7(d), and
._thst UIzUwfandeIzV'rcould_be ptepafeq'with ell_the matrix eiemests Zero
‘except for the single coherence with.Am=+§_and the.sisglefeéherence witﬁ
Am=-N, . In that'caSe,'the signai gainVrelative'to the nonseleetive experi-

ment would be 22N_1. However,-the density matrix that results is not
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U= 1//_ 1//2 —exp(i(‘lT/Z)I ab, VI.‘ab_-—-M"O”- =i/2)
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, related to. the initial condition I by a unitary transformation, end there~

fore it cannot be produced by any sequence that does not 1nclude fclaXatlon
A more reasonable estimate of the'maximum poss1ble gain is ohtrined :
by finding the maximum possible value of (UI U ) ab’ where’ a> is the’ single

state with m—+N/2 and | b> is the single state with m=-N/2. We have.

- §v s, w o aw
§U (Ubl)_"6 - R " R - (35)

The maximum can be readily seen to be U -1/Vr'U '-l//_'u *0 U = —1//5

Uit =1//2, U '0 The phases are not uniqué.v Such a plopagator concentrates

the matrix elements of U in the states with’ the largest values of |m]. 1t

couples states la> and lo> only to each other. effectively creatnng a 77

two—level system.' The two-level system’has

v S
. o r (36) -
~1/f"3/"_ - \iz2 o

B o . AR ‘
where Iyab is a fictitious spin- 2 operator for multiple-quanfum cohCLCucc
Thus, ‘the maximum possible signal is obtained by a selectlve 90° pulse,

shown schematically in Figure 8. The 81gna1 from this transition is, from

equation (32), (Iz)aa'. The'gain when_compared‘to totally nonselective
excitation is_then
2N .2
oy = B2, )/ 82 Mer (12
= e(N/:z) 23" N4y = w2,

To achieve this gain, we need a sequence that'cOuples the'state m=N/2

(37

onlyvto the state m = - N/2. The effective Hamiltonian for this sequence

should be some linear combination of Iyab and Ixab. This sequence would be used
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to create UI ﬁfiand-VI~Vj- If the effective Hamiltonian has this form for

+ N/Z 1t can have any form whatsoever for the other 1evels, and the
signal in- the N—quantum transition will be unaffected |

Often the (N—l) quanttm or (N—?)quantum transitions in an N—spir
systen are-more interesting;than the N-quantum tran31tion, since the N-
. quantum transition contains no dipolar<information.- If fN-l)—quantum .
selection on Iz is used, the number'ofvtransitions increases-to 2N for a
system without symmetry,:lln addition, while it-is=possible‘to envision
a ﬂ/2fpulsevon a two4leve1'system comsletely depleting the popnlation |
"diffeience, in a multilevel system it is very unllkely that all populatlon
'r-dnfferences can be cllminated s:multaneously Thus we expect to_also‘
.-produce zero—quantum transitions.and'populations in the m = +N/2 and =
':m = +(N/2—1) manifolds, effectively 1ncreasing the total number of pumped
‘matrlx elemcnts to 2N2+2 Now,“however, the availablezfractloneof iz is.
lgrger. The result of all Of_these effeCts.is: | R -

= (3(7(1 ) _N/2+2N(Iz)m_le;l)/«2N2+2h+2)(Bz"ZNTr(Ii)),.

(3g)v'
= 2 (N —QN+4Z/(N +N+l)~2 f01 (¥>>1).
Values of GN and GN 1 for systems without symmetry are 1isted in’
Table 1. 1If symmetry is dincluded, all gains are reduced, because fewer
'_transitions are-allowed'and therefore the system is effectively a collection_
of smaller systems. All of our calculations are still valid, except that
'.the number of density matrix.elements>encited‘and-the available,fraction _
:_of I2 should be recalculateo using-the-knomnvsymmetry.' In general ﬁ;ouantnm,'-
and (N- 1)—quantum transitions must have A symmetry, 31nce the states with o

+N/2 have that symmetry.  The relevant energy level diagram is’ not a
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binomial distribution but instead is the group of A1 states, The calcu-

lations are stralghtforward and benzene has been inc}uded in 1able 1to

_illustrate symmetry effects,

These gains become extremely large for large N. However, the single

N-quantum transitiontcontains'only a tiny fraction of the total intensity

in the’nonselective eXperiment,‘and.therefore we shouldfcalculate'the
totalisignal available in the N-quantun and (ﬁ-l)-quantum transitions with
and without selectivity. This calculationiis-done in Tahle'if 'We asSume
that the total number of protons in tbe sample is kept constant as we change
N, and calculate the slgna]- size as a fracrton of the Lotal magnctlgu.lon of
the sample.l The signal 51ze still de01eaoe° as‘N 1ncreases, but Lhc
decrease is much slower'in the selective experiment, and Table 2 indicates
that selectlve excitatlon should dramatically increase the number of mole-
cules which could be studled by multlple—quantum spectroscopy. However,

. _-;. B
the results in Tables]. and 2'were calculated by assuming that a perfectly
uC]CCLiVL er>erimcnt is pOSSJble._ Slnceaeny_actual experlment will deviate

from this 1deal, we must now consider sequences which are not selective to

infinitely high order, and which can have other errors.

v. EXTENT OF SELECTIVITY IN NON—IDEAL SELECTIVE SEQUENCES

As General Systems

-As mentioned earlier, for any multiple-pulse sequence one expects

ﬂ‘n)ﬂ<ﬂﬂ‘ ﬂn+1 2. In a selectlve sequence, ¥, is formally equivalent to'

| e
(t), as illustrated in Figure 5. Therefore, as I, t I-0, 70

~

1nt

$.c

becomes -the dominant term‘of‘ﬂl AThe_nonselective'terms of U=exp(ﬂE(Ntc))
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‘can be made érbitrafily small in principle by making t. very short, while

if N, is kept constant the selective contribution from ﬂ‘o) is uvnaffected.

In practice, the.attainable selectivity is limited‘by'several factors.

1,

For gechnical reasoné? tc cannot be made arbiﬁ£arily.shoft. Foxr
exampie,vif each subcycle requires éulses with_specified flip
angles, each pulce ﬁaé a finite width_whiéh_depeﬁdéabn»the streagth
of thé-exciting fielﬂ;7>' | |

The time required to- pump muifiphotén coherénqés is genefaily

dependent on the "anharmpnicity" of the énergy level spacing.

The excitation sequence needs to extend for a period comparable

to the inverse of the anharmonic frequencies, which in the last

section were the dipblarfrequenciés. This probiem.was investigated.

in depth in tne 1ast section; one soluiion is to coiistruct a sub-

cycle with an effective Hamiltonian HI U<<iX, [, so that 13 ¢ I
: v ¢ int $c

can be small even though ﬂﬂinttc“.is not. If this is not possible,

the general considerations 6f the preceding section still hold, -

- but to retain selectivityvthe subcycles would need to be

shorter, énd éYcles sﬁlective to higher order would bevneéded to
obtéin high quéntum.oﬁér#toré. o | |

Beéauée there is a lpwer limit to the iength df a subcyéle, the
minimum.time needed for a j-order nk~quantum éelective_sequence
increaseSIrapidiy‘as § increaseS~ However, relaxation mechanisms
make the average Hamiltonian caiculation invalid if fhe total
lengtﬁ of a sequence is compa:ablé to_Tz, the coherence aephasing

time. Thus, for any system only a finite order of selectivity is

possible. Inhomogeneous systems are a special case; excitation
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designed»to comnensete’for‘such broedening mey aliow homogenous
selective_excitation..:

"4, Timing errors,iinaccurate'phase shifts cr Ctherﬂfailures in

. control over‘ccherencejwili reduce‘the selectivity of any
) _sequence. ) | -

‘In this subsecticn we‘discuss-theviimitations forlgeneralvspectrcs-
copic systems; Vin order tc:eStimate the importencerof'the first three
problems listed"abowe, we celculate in“the‘Appendix the siee of the
first non-nk—quantum selective operator from a J—order nk—quantum selec—

J+1)

tive sequence which is ( iT( t ) 7,'and we determlne plau81b1e.

c’nos
condltlons for convergence of the average Hamlltonian expansion - Only
‘ the results will be summarized here. We cOmbine phase cycllng and _

‘symmetrizatlon into one operatlon, wnlcn turnb a \J-L)—Orabr nk—quuntum

selectlve subcycle into a J—order nk—quantum selective cycle requirlng

2n subcycles (Figure Z(b)), assuming:perfecttphase;shifts and no timing

errors. The norm of the first’nnsiterm for thetcycle, which is (ﬁ(3+l))rnq,
s shown-in the Appendix to be related to that of the first nns term of
Lhe Jth subcycle, whlch is (ﬂ(J l))
_ nns_ s
D (0) (J 1) -
rﬂ(ﬂ' tc) ﬂ F(n)“(M‘ t ) ﬂ ﬂ(ﬂ‘ i c)nnsn o (39)
5 23, 2 w12 ".-'1/'2,'
If a (3—2)—order selective subcycle were repeated 2n times w1thout
phase shifting in between, the first nonselective term would be ﬂﬁjnil t.s
’

the flrst n0nselect1ve term in the J-order selectlve sequence 1s smaller

than thls only if "(ﬂxo)t )Z“F(n)<1. This result suggests that the

average Hamiltonlan expan81on fails to converge when ﬂ(R(O)t )%|>F(n) 1
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Thus we require
ll(ic(o)t‘c)-zlld(n)—l o | - - (40)

Values of F(n) are listed in Table 3.

e

Equation (40) can be used (j-1)/2 times, to express CK(JTl))

nns

‘terms of CK(Z)) for a flrst-order selective sequence. CR(Z))nns can
then be calculated, using ‘equation (16). We define the selectivity, S,

of a J—order nk-quantum selectlve sequenee-to'be the ratio between a

'typical matrix element of ﬂ( ) and a typical matrix element of,Cﬁ(j+l))n
.At the limit of cqnvefgence (ﬂi(o)tcN~F(n)fl) we find: )
' (41)
s=kLr (/2 (Zn) s /4+7/4>(n I%(F(n)ll @O )% 17O 1)252/2

wbere K is defined as the total nu*F"“ af nllownd tvoncitions divided by
the total number of nk—qudntum tran51tions,‘and O is: deflned by the relatlon
'Hﬂkﬂz aKﬂg(O)uz (see equatlon (20)) the reason for the definition. is that

if all Lhe matrix element° of ﬂ@ have roughly e0ual magnitude, O~ 1

(0),2]

To go further, we need to know the relative sizes of “M(O)u T E AN
andrk#(q))ju.- 1f the eigenvalues ofgﬁ( ) have a Gaussian distribution, we
know from equation (7) that “(ﬂ(o))2"=V§"ﬁ(o)"2 and “(i‘o))3"=VT§“i(o)ﬂ3.
Another nossibility is'that the energy levels might.be-spaced s0 thaﬁ ﬂ;
has only twe transitions‘whieh are nearly resonant, forming an effective
three-level system, end ﬂ‘o)~eontains'a nonzero matrix elementffor only
Qne_of these trensitions; in'this-case Np=3, and if ﬂ(o) is traceless we

-we expect ﬂ(i(O))n“;(3/2)(n—l)/zﬂi(o)"n. In both cases “Cﬁ(o))nﬂ dees

not grow greater than “ﬁ( )“ T Very. rapldly However, if K>>1, so that

only a very small fraction of the matrix elements of'ﬂi are selected by
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5-{,(0) .

, we may have “GK(O))nn~(N )(n 1)/2mw(0)"n

; this case and the case
of a Gaussian distribution will be discussed in the next section in
connection with multiple—~quantum NMR.

.2 ' '
14+114 makes S grow very rapidly as j is increased,

The factor (2n)J
and fa1rly small,values_of j still glve very selective sequences; For
example, if a Gaussian»diétribution of eigen&alues is_assﬁmed for ﬁ(o),
the selectiyity,cf;a third—orderelOk—quantum selective sequence with a~l,
Kﬁn, and F(n) = 0.028 (from Table 3) is S = 1170; a typical selected
matrix element 1° more than three orders of magnitude larger than a

typlcal nonuclcctOd matrix elemcnl, even near the limit of convergeuce.

~ When "'ﬂ‘o)t ) H<<P(n) s S will be much larger; in general, if ﬂcﬁ(o)tc)ﬂ
e,

is scaled down by a factor of A LI is scaled down by a factor

of. AJ_Z, and S 1ncreases by a factor of Aj+1; We.conclude that for

many eystems the use’ of cycles w1th only a finite order of selectivity

is ontirely satlsfactory.

The cffectv of timing crrors and 1mnerfcct phase shifts hre mere

n serious. Suppose that thc length of subcyclc i is At +6 ,and ih’L the

_phase is ¢i+€i’ where §6i=§€i=0 (Figure 9). Then
7O L5 (&r_+5,) (exp (L1, (9fe,) )X exp(-i1 6. 4¢.)) (42)
. p 1 p i‘ Tz o z 1 4

which is.no,longef purelyAnk—quantum selective; the matrix element for

an m-quantum transition is multiplied by | | |

[ 1

2nATp

§'(ATp+6j)exp(im(¢j+ej))‘ _ o | (43)

instead of 0. Assuming 8, <<AT_ and €,<<1, we can expand this out:

i p 3
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m‘f’g Zi(ATp+5_ i)'exp (1m(¢i+ei) )=
ﬁ_T; (ZBT jexp () +38exp (S I3 (T )) (dmepowp (b 4.0+ ()

The first'termfon the r.h.s. eotresponds to an ideal sequence and

vanishes if m is not a multiple of n. If é.”and 6, are uncorrelated

with ¢i’ the 1sst two terms reduce to (2n) / (((6 )/AT )hm% 6)1/2 It

the number of subcyelesgincreases (for example,_by'going_to a higher-order
selective sequence);thls:term decreases, so that_the.ratio-“ﬂxo)" /
1320y

selective

]

nns Can be made arﬁitrérily large. However,'if‘éj or 6. are completely.
correlated wlth ¢ (so that fo: example, every time the phase should be

$=0 it is actually ¢—e ), Hﬂ‘o) /HH(O)H is not reduced by in-

selective
crea31ng the order of the c'f""_tenc:f»-VS.'_'!:h a citustion aricos with a miccoli-
bratedtphase-shifting deine‘or:for‘oﬁefiu.ehlehla.digital.approxiﬁation is
made;;oithe exact:settiegg;_One'wayltq teducetthis_errpr is to use two
(orfﬁbre)vphase sﬁiftingfdéﬁices,'so that,tEeAtotal errot'is not well
' correlattd with ‘the total pﬁase |
l,l-B.v> App11c3t101 of'Non ldeal Selectlve Sequences to Mu1t1ple Quantum NMR
1A As mentloned earl1er,vanv1deal Neduantum sequence that had no zero-
'::quantum mattlx elements could enhance the 51ngle N—quanLum trans1t10n of
f. an N—sp1n system by a factor of N2 A non—1deal nk—quantum selectlve sequence'
e (which has zero—quantum matrix elements) will not work as well, for two
:reasons.u.Flrst,_there may be nonzero matrlx elements for the populations
vof theestatesbm%iN/Z_(popelstiohs mayvte theught of ssva speeisl”type of
_'zero—quanthm cohetenee,wltﬁ the‘inltialfstate identical to thetfinal state).

In_this.case,‘the effective»Hamiltonian.fer'the two levels‘will_be_axlib+

anyb+a 12 (Figure 10) instead of eoﬁtsining only Iib and:I;Ethepending
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‘on the'relettve.siee-of thehéoefficient azjitimaﬁ be impossible toitransfer
populaticn completely,into coﬁetenee;--Statisticailyewe ekpect the coeffi-
; cients to be of compaxable size and in that case much of the popu]ation :
can be transferred into coherence.
‘A much moretserlous effect comes froﬁ.the-requirement-tﬁat the
' aﬁerage P?miltonlae‘expanslon converge. 51n general this woula imply

(0)

: HCK t ) ﬂ<<F(n) .: For"the'sequences described, the distribution of

.eigenvalues of-ﬂ@ is expected to resemble that of the eigenvalues of ﬂb 2z
_ which wil] be Gau981an if N is large.' It is reasonable to assume that
the elgenva]ues of ﬂ( ) have a Gaussian distlibution since A( ) has many

(0)

allowed 0 —quantum trans1tlons, and since the limit of H’ as T»0 for

?Figure 6(a)'is M? e The convergence criterion of equation (41) can then

1/2 1/4

be wrltten as ﬂﬂ( )t P<<3 / F( ) ~2 1(n

From the definition of thevnorm'of a 2 byVZN'matrix we find:
'ﬂ:TC_(O) e t= @ Fer (@O t.) %)) 1/v2_ |

'=(2"N:§n' 7O, | 212

Cc mm

e M E RO 222 (4

wn.
'whete N is the number -of possibly nonzero matrix elements, and the rms
'average only 1nc1udes those elements. Therefore, to make an averege
~ excited matrix element comparable to 1 (which 1s needed if we want the effect
qf Jé ) to approximate a selective 90° pulse‘between the'levels w=+N/2)
we needf - |
N2V, | SR (46
There are 22N possibly ﬁonvanishing matrix elements for a nonselec-

tive sequence, and if only O-quantum and N-quantum elements are excited,



~3h4=
N 22N | ' suming
" . For N>2, Equatioq (46) cannot be satisfied. Assuming

ui‘O)tcu~1, we expect

(A0 BV D i
ab ' ‘ . A

This scales'down-the possible gain because the selective sequence

effectively produces only a small rdtationrinstead of a 90° pulse. 1In

~fact, -
| N‘ﬁ N/2,2 o N N2
I(UI ot ) VI vt )y I~ (N2 5 y2 _le = (VF = ')(Z) e
: so the gain is
o= (1D o) 182 e (10 2, L )

This value of G' is only approximate, since it depeénds on the exact

.maximum permissible value of ﬂﬂ(o)tcﬂ The gain can be assigned to two

-effects. Only ~ 1/V/N as many transitions are being pumped so each one is YN =

times stronger;-in addition, thie N-quantum transition receiﬁes intensity
from the.equilibrium population difference of the extreme states.for whicﬁ
the expectation value of Ii:is Nz/é, a_fattor of N greater than thé éxpec-'
.tation value averaged over all.states. While this gain is 1aige,va much
larger. gain isbpossiﬁle if Nskcan be reduced.: }
c. Removal of 0-Quantum Operato;s‘from Selective Sequences

| The gain éan be increased if the O-quantum cohereﬂces are removed
from H( ), One way to do this is with the éeduence shown ianigu:e 11 (a).
. The phase shift of m/N inverts the N—quéntum coherence but leaves the
O—quantum coherence invariant, and the time reversal inverts evety
order of,¢oherenée, éo the net result is that'O-quantum coherences.are

inverted every subcycle but N-quantum coherences are unaffected. The.

lowest-order average 7(® for the sequence in Figure 11(a) contains only



 _N4quantum, 3quuaatum{;.(2k¥i$ﬂ—ﬁquantumvcoﬁetences'after 2N subcycles.
In an Hespinasvsteu,'this_uakes NS<22N, condition (46)_is satisfied,
'.ahd the idealcéain'G;=N2Nvef Taﬁie 1 becomes possible.‘>
| The eas4e st way to des1gn Such a sequence for ﬂ¢ is shown 1n :7
.'Figule ll(b) p ;'ﬂ%,-ﬂg and 4E§ are all generated from the douole«quantum
sequence,;mentioned eatlier and illustrated‘in Figure 11 (c) withbrelative
phases 0, ﬂ/2 -ﬂ/4. and 3ﬂ/4 respectively. If HM‘AT n<<1 only the.
N—quantum transition appears. However, the value of Kr“ﬂb“/nﬂ(O)“ is
. IOW . VETY. larre (K~2 ) so the se]ect:vity s frnm Equatlon (41) WJll be
samewbat weaslker, and should Le reconsidered;' High~order selective
sequences‘with;nOnO—euantum'conttibutions caﬁ be generated frou Figure 11(a)
‘in exactly the same way that high;o*der selective sequences with O—quantum
coutr;butlons were generated [rom FJgure 4(a) A th]rd~ordcr lO quanLLm
selective sequence requlres (4N) =1600 subcycleSj(instead of'(2N)_=400 |
nsubcycles w;thout'supn19851on of O—quantum) Equatlon (41) applies if
v'(ZN)j?/§“7/f is 1epluced w1th (I;N)J /3ﬂ7/4 and N is replaced wi.th ZN, since
each symmetirized phase cycllug nowfrequires 4N subeycles.

The_assumption of a'Gaussian.distribution of eigenvalues is ne longer
valid, since ﬂ(o) has only’two nonzefo.matrix elements. Since'ﬁ(o) is

Hermitian, the two elements have the same magnitude %R. The elgenvalues are

1
+ 2,$ and 0 for a11 other states because ﬂ( ) is’ traceless Therefore

17O 1= (2) @ /4)) L 2epe” D /2 (0

lI(JC(O)t =" )(2)(R “116))/2=%2" -(43) [2_, (- 1)/2UJC(0)t u2 (51)

u(:Tc(O?tc)3n’=((z" y(2) (RS /64 )y 1/ 2-p3,~ W5}/ 2=2(N‘1)n3‘c(°)'tcu3_. (52)
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In the limit of convergence (HG%(O)té)zﬂ”F(n)-l) we find the calcu-

lated selectivity of a third-order 10-guantum sequence with g=1, K=22N_l

and F(n)=0.029 (see equation (41)) to be S$=0,025. However, we do not

really need to have ﬂ(ﬁ(o)tc)zﬁ be this large; all we really want is thzw/2,

soixﬁ(o) %i=.027, a factor of 1797 smaller. When ﬁ(ﬂ(o)tc)zﬂhas this

4

tc)

value, we find S$=8.0x10
We cén_attain the maximum gain G if the 4(2N—2) non-N-quantum

selective matrix elements that involve the m;iN/Z states transfer only a

~small fraction of'(I?) relative to the fraction transferred by the

z ‘m=+N/2

two N-quantum selective metrix elements. Since cach, selective motris
element is larger by a facter S, the intensity of the selected transition

(from Equation (32)) is larger by a factor Sz, and we reqﬁire

282554 (2N-2)

82>.>2N+1__2 ' o >(53)
which is satisfied in this eiample., We therefore conclude almost all tiie
theoretical gain from an iuﬁinitewérdef sélective sequence is attainable
with a third-crder selective sequence, and the potential gains in Table 1
should be approximately realizable.

Note that the theoretical maximum gain becomes more difficult to
achieve as N increases, for several reasons. From Equation (53) wé-see
thét the required selectivity for maximum'gain is proportional to (/E)N,
and therefore high-order selecitive sequences may be needed. However, the
.number of subcycles-cannot be increased indefinitely, because each sub-
cycle mﬁst have a minimum duratibn, and relaxation effects limit the

maximum duration of the cycle to less than T,. Typically, "ﬂb zz““'IOkHz
. ’ .

and T2~100 msec for liQuid crystal systems, so no more than a few thousand

>



-

“'}5;Subcyc1és_wou1d be pbssible;'é third~ordef'i8—qﬁahtum selective sequence

- that eliminates O-quantum requires -(4n) =5184 subcycles, and therefore,
is imﬁégsible'for‘many_mOIECGles;_ In addition, sample heating bLecomes

‘a serious probléﬁ,whén*many pulses'aré applied.

V. CONCLUSION

_Oh_the'basis of thé caléuiations préseﬁted in this papéf and.éxperi—
mentél feéulfs feédrtéd elsewhere,v7’l7.we believé.that selective excitation
i wi1l iucrease'tﬁe.number and'size of ﬁoiedules which can be studied by
‘ ﬁﬁltiﬁléwquantumvNﬂR.- Wévalsoiexpect that thié approach to.éelective
'_ekcitétibn'of éoherenée‘and seieétive population invérsién Qili be useful"
in.a.vériety of éystems. o |

| We wisb»to thank Gary,D?obny, Df. LucianoIMuellef,ﬁJamés Mﬂ;doch,
Steve Siﬁﬁoﬁ‘and Jau Tang'for_sfimdiéting.aiséussiéns; and Téffy Jﬁdséﬁ
for her pafieﬁcevin typing the manuscript. W.S.W. holds a ﬁational Science
:Foundaaicn'c£aduéte Feliowship.' This fééearch waé’SUPported by the
Division of Materﬁais Scienceé, Office.of Easic Energy Sciences, U,S.

Departmeht of Energy under contract No. W—7405—Eng—48.



~38-

APPENDIX
In this Appendix we calculate the size of‘the first non-néqﬁantum

selective operator from a j-order n- quantum St]LaLLVG sequence, which is

J+1)t )

(—JJC( .
v c’nns

- To simplify the calculations we combine-pbase cycling and symmetri-
zation into one operation, which turns a (3- 2)—01dor nk-quantum selective
subcycle (j odd) into a j-order nk—quantum selective cycle requiring 2n
subcycles (Figure 2(b)), assuming perfect phase shifts and no tlmlng.‘\

A . . a3 for o
errors. This will allow us to write #0°° 77, . As in our earlier calcu-

lations, we cxpand the propagator for the j-order nk-quantum selective

sequence in powers of.tc. The first nonselective term is.ﬂﬁ(3+;)tc, which

is proportional to t, (j+2). All other terms proportional to t, jt+2 are .
nk-- quantum selec rJve, S0 the only possible mns tcvw ploportnonal tv tc(3+2)
is (ﬁK(J+l)tc)nhS, The product'of the;propagators for the subcycles has
‘several terms proportional to (t )J+2—(t /2n )J ; they are:
e p N - (J *‘]/ ’ ' . . ‘ :
JUCe ) = AR | | (A.1)
_ —(O)r(j) 7(3)7(0) . 2
153(“3 ﬂa 4#& ﬂg. )Fci . (A.2)
i1 z(fc<0)—<j)+5c(j>-(q-))t2 . (a.3)
L gWz(E-1) (31)(1)
, i<J(ﬂ‘ H‘ %K )t i 3 (A.4)
LIt +(i/2) S AA2), T, )'
_ 1>J>k >k 1>J-k ci
7(0)3(0). (3-1),7(0)(3~1)7(0) 7(3~-1)£(0)4.(0) :
(?K‘i JCJ Z(‘k +&"Ci JCj Jfk 'h\.i JCJ, Hr) (A.6)

‘ 3 7(0)7(0):(3-1) ,=(0)7(5-1)5(0)  7(i~1)7(0)(0) | (A.7)
+(i[6)§t 194 _ﬂj By TR T T TG G
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vselectlve_portlons; for example,. .T

) 3 (3-Dy

. “i<3+l)“>>“ﬂ(3+3)ﬂ.(we assume the cycles are symmetrized, so thaﬁ?(

,i39- 

4+ terms not propnrtxonal to (tv)j 2. We,will assume that'the subcycles
are themselves conctructed by phase cycllng and symnetrivatlon, so that
U,p(‘+21)

3 .
(A1) and (A 7) are- uraf ccted by & phase shift of ¢ 2w/n, so they are

=0 for all j', and teims (A 2-A. 5) vnn;sh. In' addltlou, terms

:nk~quantum selective. Finally, term (A 6) conta1n° many nk-quanium

57403 (J(O)JC(J D is nk-

3<k qugntum .

JSéléctive‘if'i and j are in the first half of the cycle and k is in the

seédnd haif.  Aé‘énother example,.if i=j=1,‘tﬁe nns part of the summation
1§1-7(0)K(0)ij 1), which contains (n—l) terms, 'is the same size as a

nns

single term, since ((”C(O)JL(O))(Z'C(J Dyy - =0, Straightfofward but

_tedious counting of the remaining terms, assuming that their matrlx

elements add- randomly, glves"

'Jc(’”)t ) 'n- ~I«(n) (ll (3((0))?3€(J l)l!>2 6

¢ EEE
F(n) (Ein5~ %n3 VG )1/2/8n ~ 09r 1/2. o : (A.8)

" The cons trucfion of the subcyclee lmpljes ﬂ‘ ) C(O) ‘and HT G-1)y.

and rherefore (U(ﬂ(o) )M"(J 1)“ (“ﬁ(o)ﬁ(J “')ff{'(o)ll)‘2

:_ WJKJ 1)Qm(o’)H2 . We expect to find

"(0)'24(j?l) N (0) 2 "(j-l)
nch ) Jcnns_: I u_(R_ ) I}uacj’ nn.S“
S0

u(3+1> I (0) G-L gy 9y

JC t, I‘(n)ll(.?c t ) IHIJCJ’ ans C | | (A.9)
Since,ﬂ(J)'is'proportional to ti, we expect that if t, is "small"‘
j+2)

" n:;'t(_j”l).n <<t7{33)y

vanishes) and if té is "large, We are interested
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in finding the value of t;,which'makes LW(J+1)WWHK(J+3)H' 1f we make

té much smaller than this critical value, we expect to find convergence,
Assume that we have a (jﬁ)~oLuPr anguantvn selective subeycle which

1s known to converge, so tbat “H(O)H>>ﬂﬂ§‘)h and EKi? l)n'nn TV(]4])anS.

To create a j-order nk-quantum selective cycle we need to increase the

cycle time by.affactor of ZnQ We have ca 1cu1ated b33ty nns 'by-ekamining'

the term in the propagator proportional to t3+2. The largest nns terms

proportional to tJ 4, under ‘these assumptions, are:

(]x0+$t*_;kabﬂJMKWBZWﬂ&ﬂvﬂbémﬁﬁﬁi%KWHZ»
(A10)
(C(J J)aéﬂﬁ éO\y(O)“( )-pelmqtatlons) e 2l+small teruns.

=i§j>2>2>m s

Again a substantial fraction of the r.h.s; eencelé.or is forced to be

selective. "Most of the rcmalnjnn terms onlthc t.h.s. cancel wlth terms
such as ﬂ(J+l)GR(O))2 on the 2.h.s. The result is that, if hGW(O)t )2“~l
we expect to flnd "ﬂ‘3+3)ﬂ <M35j+3)“ one” Thus, if we have a-converglng
-(j*zyorder méquentum se lect;ve sequence, we expect to retaiﬁ’conﬁergencc
for the j-order selectiﬁe sequence.if‘“ﬂ(o)tcn<<F(n)—l.

As mentioeed, wevcéh use equatioﬁ (A.%) iteretiveiy,'to calcﬁlate
the first nns term as a fueﬁtlon of successively lower-order terms. To
begin the iteration, however, we need an expression for “ﬂ(z)u ans for a
first+0rder selective eequence (Figure 2(b) with ﬂ& nonselective). We
have shown that (eqation (16)): | |
&Py =1/ )(;(c:lt ;3,; tf:<21c %, (e ()T (£))) |
) nns e’ 372" T int T3 int 2°7int*"1"'nns

t3=0vt2=0 tl=0 :

xiﬁt in thiS‘expreésion is ﬂ%,as diseussed in relation to Figure

LY

*
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5{' We can rewrite this as:

—(2)y '
@@y = _1/2ni );AT )(i<§<kf1/21_§<k+1/6i_z_k)cn¢(l) 9 ¢(k))nns

"where ¢(i) is, the value of ¢ during i h subcycle.‘-Since'the operators
L ¢(1) are nonselective -only a few terms in the summations are forced to

be nk~quantum selectlve (note, however, ‘the sum- w1th 1=3—k is nk—quantum

 selective, as are a few of the terms in the other»sums). We divide the .

. possible values of i,j and'k into'two.sets:
va):i'and j'are-both in theffirst half‘of the cycle and k is in-the:
second half or i is in the first half and j and k are both in
tthe second half In thls case the sum over the isolared 1ndex
V'reduces to mn( ) o
'b):i, k| and»k areual] Sn the sém;'haifféf the rvele. In this case
| vno further:reduction isipossihlerv'Bj’construction of thevsequence,

. If ve assume(llJC(o)JC LS E A 720y

o' Mo | Hateo ot
- straightforward algebra then gives ‘ ’
(2) . 12 ~'._ f 32, () 12 '
1% AT cax, 1 et g <||:;c i, %, 1%, (A1)
| P mns . ey 0 b RIORID
Ve expect IIJC(O):}C 2, 1@, i, u_<_uzc(°)nu(:zc¢ )21
@y ¢<1) o - W
and 13 R e |
e ¢(J) ¢<k> bwy |
) Let ﬂﬂb ﬂz aKﬂﬂ(O)ﬂ (see Section Iv. 1) ~ We can now write:
(1) ‘f. :

_ . . (A.3:2)
we want the first-order sequence to converge._ If “GK¢(2nAT )f"~l '

we see that HHKZ)AT I ns <<1.' Combining this with our earlier results, we

expect a j-order nk-quantum selective sequence which is constructed from —(3+l)

#
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phase cycles and %(j-l—l) .symmetrizations (and therefore has a cycle time

tc=(2n) (G+1)/2 AT ) to 'coﬁveige if
I (JC¢(2nAT ») 2y¢1 ana 1 @0 (2m) (j+1)/2A )?|'<_<F(n)—1.
The size of the first nonselective term, “ZIC(JH')II .n , is

o 3G /2
n:’fc“*”n (2 )(j"l)/ 2AT <F(n)||JC(J 1)11 u(ac(o)) I )3(2n) ’

“ﬂ(j-ﬂ')“ nns <F(1n)||17('(:'l l)ﬂ H(JC(O)AT )2,|| 2n )jv+1
=Fx3 3 (JC(O)AT )2|;2(2 )<J+1)+(J-l)

=(F (apt~ l)/zu:lcéz)" H(JC(O)AT Y44 1)/2(2 )J /4 + 3504 (A.13)

and llvtlfiz)lvl nnsv ie g.iven in eqﬁatioe ‘(A.12)",. eo ,v
,_u:f“c(3+1)u- s (FR) (3*1)/211 (J’c(,o)m y20 G112 (g3 /43 5/4(1/ATD) -

2 2. ? 3.3 | -
x@E2K nzc(o)m nzn (JC(O)AT y2% 4 2@ Oa y B2

We define‘ the sel‘ectivity, S to be K1/2||3—('(0)||/l|3__(§i:1)“ , which is
' 7%(0)

the ratlo of a typlcal nonzero matrlx element of to a typical nonzero

matrix element of (JC(J-H)) ‘, We would llke to calculate S as ﬂ(o)tc

2y

approaches the limit of convergence which is i (JC(O)t ) ~F(n)'“1. Since

¢ e )(34’1)/2 §’ I (J{'(O)A‘rp) N2n)” -G gy 7L, and:

\

. '_. 2
§=K / “JC(O)“/HJ{'(i-‘-l)“ s = K-]'F(-n)llz(zn) J “14+7/4
| | . (A.15)

22
n o

X Cgx

@O IO 1212,

Equation (A.15) is the same as equation (41).

N
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'TABLE 1

ENHANCEMENT OF N OR (N-1)-QUANTUM TRANSITIONS
IN AN N-SPIN SYSTEM BY SELECTIVE EXCITATION .

=

N _ H-1

sowETRY e e
4 © Nome . flv ek 6.10
6 R Benzene - ‘; :;':i; ) : 47.5 B 17.2
161 - Nome . o ;:f 384 32.7
8 S _'f _N§neﬁ,-\'-] ) L s s
10 o  Neme _[f‘ f' 10240 683
12 . yone . E:'(' . : a2 A 2922

_'14  " None ,  S  : 25576 1226y

_.16'% o | 'Nonev _ ; '  ‘ . _-f'.,  1048576 - - 50892

18 . R Nome -~ o " 4718592 _ 209409

TABLE11.| Enhancement of high mﬁltiple~quantum transitidns, using selective
seQuenées. Sequences which sélect.bnly N-~quantum (or only (N-l)-quantum)

are illustrated in Figure 4.
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TABLE 2

INTENSITY QF HIGH MULTIPLE-QUANTUM TRANSITIONS,
WITH AND WITHOUT SELECTIVITY, RELATIVE TO TOTAL
MAGNETITZATION OF THE SAMPLE

1=

10

12

14

16

18

INTENSITY (IN PERCENT)

SYMMELRY ~ NONSELECTIVE G 56,
Benzene A1 6.197 9.38 3.69
None 0.024 9.38 0.80
 None 1.5 x 1073 3.13 0.24
None 9.5 x 1070 0.98 10.065
None 5.9 x 107° 0.29 0.017
None 3.7 x 107/ 0.085 - 4.5 x 1073
None 2.3 x 107° 0.024 1.2 x 1073 |
None 1077 0.0069 3.0 x 167"

1.4 %
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12

U

16

18

(F'(n')‘)‘.

1

" As long as ﬂ(ﬂ(o)._tc:)zﬂ_< (F,(‘n))..?l' the é\;érage Hamiltonian expansicn

¢}

0 .032]

044
©.036

029

~..026

024

023

. }022£“3“‘

is expected to converge rapidly. .

R
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* TABLE 3. Vélués‘ofwfﬁﬁ1 =:((8/15555462/35534(2/15)5
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Figure 1,

Figure 2,

~ Figure 3.

Figure 4a. -

- Figure 5.

Figure 6.

Energy level diagram for a general system with N sping--

-
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FIGURE CAPTTONS

N

N
Each value of M has degeneracy <M+(N/2?>,correspondigg

td a binominal distribution.

The multiple~qﬁantum spectra of benzene orieuted in a

liquid cfystal sélvent.- The nuwber of allowed transitions
decreases dramatically as AM increases.
Thevmultiple~quantum spectra of benzene‘ofientéd in a liquid
Erystal'solvent, usinglseléctivé excitation of O—quéutum.énd
. .. ‘ P
4-quantum transitions.
Phase cycling can be used to create nk~quantum selective
sequences, using phase shifts of ¢=2%/n. The éycle of n suB¥
cycles is more selective by one orxder in the average Buwiltonian
theory expansion. |
The ¢yc1e of 2n.subcycles formed by phase cyciingAand symmetri-
zation is more selective'by two orders.

The'analogy between a phase cycled sequence consisting of zub-~
cycles with effective Hamiltoniansiw¢and a pulse sequenée on

a hypothetical system with ﬁi =ﬂ;. Average Hamiltonian theory

7 nt
can be applied to the pulse sequence.

Possible pulse sequences for the subeycles invFigure 4. 1In
Figure 6(a), time reversal sequences generate ﬂb'T'=~ﬂ£T, 0

that'ﬂmgﬂ<<ﬂﬂb z;“’ but ﬂg contains multiple-quantum coherences.
s .

In Figure 6(b), a WAHUHA sequence with a long cycle time has

the same effect.

(5288

..,,.1,"??.



x Figure 7. }:

<5

\Figure 8.

| --71'Figufe'9.

Figure 10.

lai

Figure.ll.

ebe-

Pulse sequences fop_multiple%duantum’experiments. a) is the

general’éasé;.Witﬁ PfeparationQpropagatorfU and mixing'pfé—

~pagator V, b)»is”ﬁﬁefsimpIESt nohselective multiple-quantum

ekpefiment,' c) istformallykeduivalent to b). and feveals the

. 'symmetry between preparation and mixing. d) is a fully selective
- experiment, involving selective preparation, mixing, znd
‘detection.

Schematic illdstration-of the effect of N-quantum selective

sequences, in terms of én effective two-level system involving
Qniy»n1=iN/2. .A seleéti?e 90° puléé:transfers-thé entire

populatiqn differencé.betwéeﬁ thoéeuﬁwo states into N—quaﬁtum
coherghce,-givingﬁa gain:reiéti§é to nonselective excifatibn '

of NZN (see text);

iModification_of the symmetrized sequence of Figure 4(b) to
. include'phéSe‘erroré Gi and timing errors éi. We assume,

i without loss of generality, that (ei}=(di?=0;

Schematic illustration of one effect of O-quantum coherences

- on an N-quantum selective sequence. The sequence causes

" the population difference between the states n1=jN/2 to be

rotated about an arbitrary axis, and complete transfer of

vpopulation difference into coherence may be impossible.

 Compare this to Figure 8.

Sequences to select oﬁly N-qdantum, 3N?qgantum...(2k+1)Nf

. quantum coherences. a) General sequence. Note that J%is

inverted after every éubcycle, and that theiphase shift is

1¢=H/N, instead of ¢=27/N in Figure 4. b) m; can be formed
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with the pure double»quantﬁm sequence (part (c)),which

inverted by a m/2 phase shift.

—
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