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1. INTRODUCTION 

. It has recently been shown that the Zeeman quantum number selection 

rule 6iIF1 of conventional Fourier transform NMR can be overcome in a 

systematic manner by suitably designed pulse sequences, thus permitting 

. 1-4 
. the observation of multiple-quantum (bm=n) coherences. The usefulness 

of observing multiple-quantum transitions can be understood by considering 

1 a schematic energy level diagram for a system ofN spins-2 without 

symmetry, shown in Figure 1. The number of levels for each allowed 

to m=-N/2 is ~!(N/2)) •. _ With this distribu-eigenvalue of Iz=m from TIFN/2 

tion, the number of allowed single-quantum transitions increases exponentially 

with N, and in general the single-quantUm transitions are only resolvable if 

there are few spins, or if many of the transitions are either degenerate or 

forbidden. However, there is only one transition with bm=N, corresponding 

to all N spins flipping together, and at most 2N transitions with tml:=N-l'. 

In an oriented system such as a liquid. cx:ystal,the. total spectral width may 

be many kHz, with each line typically a few Hz wide. Thus, high mu1tiple-

.quanturo. spectra are well resolved even if N is large. 

This point is illustrated by Figure 2, which shows the multip1e-quan-

tum spectra of benzene oriented in a liquid crystalline solvent. The six-

quantum spectrum has only one line, and the five-quantum spectrum has only 

two lines because of the high molecular symmetry; the normal single-quantum 

5 spectr.um has 76 lines. Unfortunately, the enhanced simplicity of multiple- ~ 

quantum spectra has to be balanced against a reduced overall intensity. On 

the average, every symmetry allowed transition is pumped about equally well 
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(independent of llm) in the standard multiple-:-quantum experiment. 6 As a 

result, total intensities of the high multiple-quantum spectra in these 

totally nonselective experiments are much weaker than the total intensity 

of the single-quantum spectrum, arid most of' the spect:ral in feiis lty is '''wasted'' 

in unresolvabletransitions • 

Clearly,it would be extremely valuable if we were able to distri-

bute the total spectral intensity between only a few orders of coherence, 

instead of driving all transitions equally. From the viewpoint of pertur-

bationtheory this appears impossible because a multiple~quantum transi-

-
tion occurs only with irradiation which also excites lower quantum trans i-

tions, particularly when all transitions are simultaneously resonant as 

required by the nearly equal,spin-energy level spacing. Thus,-aside from 

6 even-odd selection due to tl-;.c bilinear fO:Lili or of-in evupl':"ng operatou., 

no general method of selective excitation has been proposed. In this 

- - 7 -
paper and the letter which preceded it, we demonstrate that selective 

excitation of multiple-quantumcoherences in NMR is theoretically and' 

experimentally possible as illustrated in Figure 3. We will show that 

this technique can provide enormous signal enhancement, and that general 

selective sequences are applicable to a wide range of spectroscopic 

systems. 

II. -GENERAL THEORY OF SELECTIVE SEQUENCES 

A. Review of Average Hamiltonian Theory 

The effect of any sequence of irradiating pulses and delays on a_ 
, u j 

general system in the absence of relaxation can be represented by a 

single unitary transformation U, called the propagator. Calculating U 

directly by multiplying together the propagators for each part of the 
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sequence is extremely tedious 'if many eigenstates are involved. However, 

this calculation can be avoided for certain pulse sequences by a technique 

known as average Hamiltonian theory. This technique is thoroughly docu-

8 9 
men ted , ' so we will reproduce in thisstibsection only a brief summary 

of pr.evious results which we require for our development. In the next 

section we will generalize the results to describe sequences which are 

inherently selective. 

The total Hamiltonian of a system is rwritten as X(t)~. ~l(t), '. ~nt 

where 'Je. t is the internal Hamiltonian of the system (for example, the in­
'. 1n 

teractions between pairs of magnetic dipoles) and :1Cl (t) is the explicitly 

time-dependent interaction controlled by the experimenter (for example, 

the interaction .with radiation) .~lt)is termed cyclic with cycle 
t . 

time tcif :1(1 (t) and the propagator Ul (t)=T exp(-i IXI (t i )dt') {1' is tne 
o . 

Dyson time-ordering operator) are periodic, and if tc is the shortest 

interval.that constitutes a period ·for both U(t) and 'Jel(t). 

Xint is considered to be time independcmt, so :1e(t) is cyclic if 

;1<1 (t) is cyclic. If:1<1 (t) is a pulse sequence made up of an integral 

th number N of cycles, the propagator for the entire sequence is the N 

power of the propagator. corresponding to one cycle, and therefore only 

a single cycle need be considered. 

The propagator fora single cycle can be shown to be: 

where: -(0) 1 t- -
;1C . = - fC ~nt(t)dt t c a t 
-(1) -i f c dt t2 ~- -. J ;JC = f dtl ;1{int(t2\j(int(tl } 2t 2 

c 0 0 

(1) 

(2) 

(3) 

.'" . 

~ 
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(4) 

and 

10 This is merely a Magnus expansion of the propagator in powers of 

the cycle time." The' average Hamiltonian expansion is a perturbation 
.; ".'" 

expansion in powers of a smallness parameter t , that has a physical meaning; c , . 

tc and :T(int (t)are simultaneously varied by lengthehing the sequence. For 

this reason, jf{i) is termed a correction term of order i and is propor­

tional to t. 3({0) is the zero-order or average Hamiltonian, and X is c 

the effective Ha!liltoni.~rL The advant9,ge of eq. (I) is that a complex 

time dependent process has been expressed by a time independent Hamiltonian. 

'. -(O) , ' 
Pulse sequences are usually designed so that X has some particular 

desired property, and then higher-order terms are minimized. For example, 

line narrowing sequences for solids completely suppress the dipolar or 

quadrupolar interaction, but not the chemical shift interactions in this 
, 11 

lowest-order term. If a pulse sequence is symmetric, such that 

feint (t) = Xint (tc -t), Xl,l) _B:~!l al!~ther-odd-orde-r_correction t::e~~- ;~ni~h~-' 

Symmetric pulse sequences are easy to desigri, so the major contributions 

to residual 1 inewid ths for simple line narrowing sequences come from ~(2) 

and from pulse sequence imperfections (inhomogeneity, timing errors, and 

the like). A very powerful method of eliminating these terms involves 

alternating between two or more different cycles (called subcycles) to 

form a new, larger cycle which has smaller higher-o~der terms. Under- certain 
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conditions, some of the higher-order terms' for the entire cycle are 

simply equal to the sum of the corresponding terms for the subcycles; such 

12 terms are said to decouple. Decoupled pulse cycles for line narrowing 

have been produced that have fc(2)=0 for the dipolar Hamiltonian, and have 

small error terms. 12 

Higher-order terms are usually difficult to calculate, but for line 

narrowing sequences their size (andther~fore their contribution to 

residual line widths) can be estimated. If. ;C(O)=3(l):JC(2) ••• =x(n-l) 

=0, then j(.(k)= ;R-(k), where X(k) is defined as 

k=n, 11+1 ~. ' •• 2n 

Reference (9a). contains a weaker. version of this theorem, which requires 

;cO )=0 for all j <n for ;K(n) =Jt(n), but inspection of their proofl3 leads 

to the immediate conclusion that K(j)=O for all j«n-l)/2 is sufficient 

forX(n) :&(n) • 

The volume of integration is (tc)n+l, so X(i1) can be easily estimated 

in terms of Jei • To do this estimation we need to use the concept of nt 

the norm of a matrix. We will define the norm of an arbitrary NTxNT'matrix 

A as 
I AD = (N~ Tr (AA t ») 1 / 

2 
• 

DAD is invariant under unitary transformations, so if A is Hermitian, 

DAD is the root-mean square eig.emralue of A, called M 1/2(A). Other· con-
2 . " 

venient properties that are easily proven are: 

1. 

2. 

If A and B are Hermitian, UABU = DBAn<N BAnDBn. -T 

010 = 1, where I is the identity matrix. 

(6) 
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3. If A is Hermitian, D AnO is the square root of the (2n)-th moment 

of the distribution of the eigenvalues, .ca11ed ~~2 (A). . Since 

~~2(A)~(~~/2(A»n for any distribution,'nAnU~(UAU)n. 

4. If A and B aresim!lar Hermitian matr·ices, such that A=UBUt , 

RABD<DA2B=DB2U. 

5. However, if A and B are two different matrices, with nothing 

else known about either matrix, then (AB) =EA iBi is the sum . . . mnim n 

of NT numbers, which we expect will add randomly. 

<I(AB) 12 }""N(IA B. I;\-N «IA .12><IB 12»1/2 
mn . T mi l.n T ml. in ' 

implies "ABn-nABOBIi. 

Then 

and this 

~ ~ ~ 

Properties (2) and (4) imply that nKint(tn+1)Kint (tn) ~ •• Kint (t1 )D ~ 

o (3Cint (t1 ) )n+1U - For many systems the eigenvalues of Kill!:. have roughly a 

Gaussian distribution, and in this case 

Thus 
'-' . 

B3t(n)t O«B;]{'i t nn+1) «2n) !/2nn! «n+1)!)2)1/2. 
c - nt c 

In fact, if the cycle contains many pulses so that Xint(t) varies 

. - - - n+l· 
rapl.dly, we expect that~int(tn+I)Kint(tn) ••• Kint(tl)n-OKintn • Thus 

(7) 

(8) 

03C(n)tcO-UKinttcOn+1/(n+1)!, and for those terms for which jC(m+1)=3C(m+I)~ 

gjC(n+1) D /ofc(n) ° -OK· tn/ (n+l). For higher-order terms expressions involving 
.int c 

commutators, such as equations (3-4), are required. 

All ·of the results presented so far are applicable to any cyclic pulse 

sequence. We wiil now extend average Hamiltonian theory, in order to 

create pulse sequnces·which selectively excite only a few transitions. 
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B.' Extension of Average Hamiltonian Theory 
to Selective Sequences 

" 1. Def ini t ions 

We term an operator nk-quantum selective if it can be completely 

decomposed into irreducible tensors T!k' with k allowed to have any 

, integral value including O. If only k=+l is required, the operator is 

termedn-quantum selective. If tensor components that are not integral 

multiples of n are required, the operator is nonselective. Any nonselec-

\ 

tive operator can be decomposed into a nk-quantum selective operator and 

a remainder which we call non-nk-quantumselective (abbreviated nns). 

From the definition 'of tensor operators, the product or sum of two nk-

quantum operators is alsp an nk-quantum operator. In addition, an 

operator is nk-quantum selective iff it is invariant to a rotation of 21T/n 

about the z-axis. 

We term a cyclic pulse sequence j-order nk-quantum selective if all 

the operators ~(i)(i<j) in the average Hamiltonian expansion of the pro­

pagator are nk-quantum selective operators. (For example, if j'{'(O) is 4k­

quantum selective but ~(l) is not, the sequence is zero~order 4k-quantum 

selective). An equivalent definition is that all terms in the propagator 

proportional to (tc ) i+l (i2j) are nk-quantum selective. If the initial 

density matrix has no coherences, the final density matrix will contain 

- k '( j+l only n -quantum selective operators, up to terms proportional to t c ) • 

The physical meaning of nk-quantum operators depends on the system 

being considered. If the axis of propagation of the radiation is chosen 

as the z-axis, an nk~quantum operator causes a net absorption or emission 

ofa mUltiple of n photons, and changes thez-component of the angular 
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momentum of the applied field by some multiple of nfi. If the z-component 

of angular momentum is a good quantum number for the system (as it is, 

for example, inNHR at normal magnetic field strengths), conservation 

of angular momentum implies that the system can develop coherences only 

between states for which this quantum number differs by a multiple of n. 

If this is not a good quantum number, the selection rules for n-quantum 

transitions are more complicated .• 

i1. Theorems for Selective Sequences 

Many of the theorems of average Hamiltonian theory are directly 

applicable to selective sequences. In addition, we present two new theorems 
, , 

which can be viewed as a generalizationofkIi6wn theol'"ems for l.ine narrowing 

sequences. 

Theorem I. Suppose a cycle (cycle time tc)consists of m slibcycles 

(cycle times t l' t 2 ••• t ), each of which is j-order nk-, c c cm 

quantum selective. Then the cycle is also j-order nk-quantum 

selective. Furthermore. the non-:-nk-quantum selectj.ve (nns) 

part of X(j+l) for the cycle decouples, i.e~, 

m . (j+l) 
= i~l- ( jf t .) . : i Cl.,nns 

Proof: For simplicity of notation we will explicitly prove only the 

case m=2, since repeated application of this theorem with m=2 proves the 

theorem for arbitrary m. 

Because the propagator for the 'cycle is equal to the product of the 

propagators for the two subcyc1es, we have: 

exp(-i(;j(~) +jf(l) ••• )t ) = 
. c 

-(1) 
Xl + ... ) t cl ) ~ 

(9) 

(10) 
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By expanding in powers of t , t'l ' c c and tc2 and recalling that;if (k~i ~," 
.•. "-'<-/ 

k" -(k) k 
t and 'JC. - t ., 
c,' "J CJ 

we find that the term proportional to (t )k-1 is: 
c 

_ill(k) t +, 1 
c 2 

r I jf(k ')v(k") 2+ 
"'" t ... 

lel,k" c 
, , 

(11) 

k '+k"=k-l 

k'+k"=k -1 
1 1 1 

(12) 

(13) 

k'2+kZ=k2-1 (14) 

where the terms represented by ( .•• ) are products of three or more 

~perators. ~~llti!,lied by (t
c

) 3 or higher powers of tc' j(k) can only 

appear in the first term on the 1.h.s.,and all other terms must have 

smaller superscripts ~ By assumption, j(~) is nk-quan,tum selective 

for all k.<j. When k=O, equation (11) simplifies to 
1-

i3"(O) t =i (X(O) t +j{'(O\ ) 
c 1 cl 2 c2 

rC(O). ' 
so J is nk--quantum selective if j>O. It follows by induction that 

all the operators :tt(k) (k2j) arenk-quantum selective by considering 

·+1 
progressively higher powers oft

c
' through (tc)J,. 

The only poss ible nns term proportional to (t ) j+2 on the 1. h. s. is 
c 

then (_iU(j+l) t) since all other terms involve only lower-order 
" 'c nns 

operators which are nk-quantum selective. Similarly, the only possible 

, ( ·+1) ('+1) 
nns term on the r.h.s.is-i(j(' J t -fj{' J t) . By equating these 

, , cl c2 nns 

two expressions, Theorem I'is proven. 

, The only' property of, nk-quantumselective operators that was needed 

to prove'Theorem I was closure of this set of operators under addition 

and multiplication, and similar theorems can be' proven for any other 

(15) 
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set of operators with these ttvO closure properties. In particular, the 

null set'is closed under addition and multiplication. A decoup1:i.ng 

theorem for this case (Le., ;j'f(O):4('(l) ••• :=j(j);:O) t\fas proven by Burum 

and Rhim. (12) Another set which satisfies the required closure properties 

is the set of N-quantum operators in an N spin ~ NMR system, plus the 

populations of the two extreme states; this case will be discussed later. 

,'. - The size of the first nns term for a j-order nk-quantum selective 

sequence can be readily estimated. 

Theorem II. Ifa seque,nce is j-corder nk-quantum selective, the non--nk-

-( '+1) -
quantum select~ve (nns) part of,X J -can be written as: 

(';(j+l» ::0« )j+l/ ) ('f' tc - Jt2 ';, ,(, ) if (")') '(16) 
dl. nns -i -, tc 0" dtj +2 .. •

0 
' dtl <1\.int t j +2 • ~'_inttl nns' 

Proof: The proof of this theorem is identical to the proof that ;n,(j+l) 

ha~ this form if X(j)=O for all i~, contained in reference (9a), so we 

will merely outline it. The most general expression for the term 'propor­

'+2 tional to (t)J in the propagator is 
c 

. j+2 ftc 
(-~) , dt '+2 

,0 J f t j +2dt Jt2dt i (t +l)j{ (t ) •.• j(_ (t) . 
o j+l' • • 1 int n int n ~nt 1 

EXpanding u=eXp(-i(;JC(O)-t3t(l)+ •• ~(;j'f(n)~.)tc) as in the 1.h.s. of equation 

(11), the only possible non-nk-quantum selective term proportional to 

(t' )j+2 is( _i3C(j+l) t) ',which proves the, theorem. 
c c nns ' 

It should be noted that equation (16) is only valid for the first 

nns term, while if ;j'f(n)=O for all n<j a similar expression holds for all 

terms up to 1l'(2n) •. The difference is that the 1.h.s. of equation (1') 

(17) 
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contains operators such as ~(kl)~(k2) ,which vanish if either U(kl ) or 

3('(k2) vanishes, but which are generally nk-quantum selective, only if both 

X(kl ) and ~(k2) arenk-quantum selective. 

c. Design of Selective Sequences 

L Zero-Order Selective Sequences 

Starting from any cyclic sequence of pulses and delays, we can pro-

duce a sequence which is zero-order nk-quantum selective, using a techni-

que which we call phase cycling. This is illustrated in Figure 4(a). We 

assume that the cyclic sequence has a duration ~Tp(which we call a sub­

cycle), an effective Hamiltonia~ 'Je ::j(0)-h1't(1)+ ••• +3C(n) ••• , and a propa-
. 0 0 0 0 '. 

gator U =exp( -iJC ~T ). At the end of the interval ~T , the sequence is 
o \ 0 Pi P 

repeated with all radiation phase shifted by rp=271"/n about the z-axis, giving 

I 

a new effective Hamil~onian 'Jerp and propagator.Urp. 'Jerp is related to 'Jeo by a 

rotation of -rp about the z-axis: 

:Jeep = exp (irpI~ JCo exp (-irplz ) 

(1C"')i.=(j( ) .. exp (ic/>(m.-m.». 
. 't' . ) 0 l.) - l. J 

and Urp is related to Uo in exactly the same manner. This phase shift is ", 

repeated n times, creating a cycle with cycle time-t =n~T. We would' like c p 

to calculateX(j) for the cycle. Since t is proportional to ~T it is 
c P 

(J.8) 

(19) 

clear that ~!j) and ~(j) scale in exactly the same manner when tc is 

changed, and by equating terms proportional to tc with those proportional to 

~T we find: p 

(20) 
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'(0) .' 
This sum scales the matrix element 0'0 )ij by 

n-l i21T Q I 
(lIn) I:e p. n, 

m=O 
where p=mi-mj ; this scaling factor is zero unless p=nk. Therefore, ;iC(0) 

is a pure nk-quaritumselectiveop~rator. Since'X(O) decouples, any other 

permutatioll of. the subcyclesis also acceptable. Higher order terms have 

some nk-quantum selective· parts (for example, there is ·.a contr.ibution 

n-l (1) . . 
I reto;;c(l» but no higher order terms are completely selective. Thus, 

R.=o R.<j> 

the sequence obtained by phase cycling is zero-order nk-quantum selective.' 

If tc can be made arbitrarily small, all the higher-order terms in 

the average Hamiltonian expansion become unimportant, and a zero·-ordcr 

selective sequence becomes completely selective; of course, the selective 

term Bre(O) tcD:....o as tc+O' but this can be remedied by repeating the zero-

arbitrarily small, so higher-order selectivity is desirable. One simple 

. way to get a first-order selective sequence is to symmetrize the cycle, 

as illustrated in Figure 4(b). j{'(0) is still nk-quantum selective, and 

the symmetrization causes ~(j) to vanish for all odd j, so the first 

. nonselective term is ;R'(2) • 

ii. Sequences Selective to Arbitrary Order 

Suppose that the sequence for j( in Figure 4(a) is already j-order 
.. 0 

rik-quantum selective, instead of being n0l1;selective as was assumed earlier. 

Theorem I proves that the sequence obtained by phase cycling is (j+l)­

( '+1) order nk-quantum selectiv~, because (~J ) decouples: . nns 

._(' J"+l) n -1 (j+l) n -1 (j+l) 
(3C )nns == I (re. ) = I (exp(iR.<j>I )3C exp(-iR.<j>I» =0. (21) 

~Ol!~ hns R.=O z .0 . z nns 
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Therefor~, . starting from a nonselective X , (j+l) phasecyclings pro­
o 

duce;8 sequence that is j-order nk-quantum selective, requiring n(j+1) 

subcyc1es; each block of. n subcycles is zero-order nk-quantum selecU.ve, 

2 each block of n subcyc1es is first-order nk-quantum selective, and so 

forth. For example, a first-order 4k-quantum selective sequence maY'be 

2 constructed from 4 ==16 subcyc1es, and the phases of the subcyc1es can be 

written schematically (0: <j>=0, 1:<j>=1T/2, 2:<j>=1T, 3:<j>=31T/2)as (0123) (1230) 

2301) (3012). Each group in parentheses is a zero-order nk-quantum se1ec-

tive sequence, and is phase shifted by 1T/2 to produce the next group. 

In the absence of relaxation, there is no limit to the number cf times 

phase cycling can be applied, and therefore sequences which are selective 

to arbitrarily high order can be designed. In any real system, only a 

limited number of subcycles could be completed before relaxation effects 

make the average Hamiltonian calculation invalid. One way to reduce the 

number of subcyc1es required to achieve a given order of selectivity is 

to combine phase cycling ulldsymrnetrization, as in Figure4(b). The 

sequence is first-order nk-quantum selective even if ,;}C is nonselective. o 

If X is already j-order nk-quantum selective (j odd):, the phase cycling 
o 

and symmetrization requires 2n subcycles to make a (j+2)-order nk-quantum 

2 selective sequence, instead of the n subcycles required for two phase 

cyclings. Thus, a (2j+lrorder nk-quantum selective sequence requires 

(2n)j+1 subcycles «j+1) phase cyc1ings and (j+l) symmetrizations) and a 

(2j)-order nk-quantum selective sequence requires u(2n)j subcyc1es «j+1) 

phase cyc1ings and j symmetrizations). For example, a third-order 4k-

2 quantum selective sequence requires (2n) =64 subcyc1es, and the relative 

phases can be written schematically as' (0123)(3210)(1230)(0321)(2301) 
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(1032)(3012)(2103)(3012)(2103)(2301)(1032)(1230)(0321)(0123)(3210)~ 

III. APPLICATION OF SELECTIVE . SEQUENCES TO MULTIPI.E-QUANTUJi J\'HR 

A. Motivation 

In this section the general principles of selective exc1tationare 

elaborated for the particular case of a system of directly dipole coupled 

nuclear spins. The analysis of the spectral line positions of such a system 

supplies structural information on the lengths and orientations of inter-

nuclear .vectors and analysis of the relaxation times provides information 

on .molecular-motion. Neither analysis can be cotitpletp.d unless the spectrum 

contains resolved assignable lines. The high resolution and simplicity of 

the high multiple quantum spectra.make them preferable or indispensible 
. I . 

for t'iu:t;e a(lal'y::;~::>. It will be shown li~w Lh~ use of selective sequences 

promises to overcome the difficulty of small signal intensity, thus making 

. these analyses possible in large spin systems. 

The Hamiltonian for the N spins-lof an oriented molecule in a large 
2 

magnetic field can be written in the rotating frame (in units'of h=l) as 

;]C == 1C -+iff -hJC 
.int/1w 1), zz rf 

r -;> ~ 
;]CA •. =l1wlz· is the resonance offset: term'-;]Cn = .>.a . . (31 i I .-li·lj ) 

ow .. ,zz ~ J ~J Z zJ 

is the secular portion o.f the dipolar Hamiltonian, and ;]Crf is the time-

dependent interaction between the molecules and applied radiation. Other 

(22) 

interactions such as chemical shifts or scalar spin-spin couplings may also 

be accounted for, but we will not consider them here. 

The task we set out to accomplish in this section is to construct a 

rapidly convergent effective Hamiltonian for an excitation cycle which will 

contain, in its leading terms, operators T~k with rank j up to the maximum 
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value j=N and components nk<j. Such a Hamiltonian \"ill create high quantum 

coherences selectively even if it acts only for short times such that 

83Ct 0«1. The theoretical tool to be used is a nested series of average c . 

Hamiltonian expansions with each successive expansion involving a longer 

cycle time. This approach is exact when the effective Hamiltonian of each 

of the preceding expansions is used as the starting point for the next 

expansion. In practice one designs sequences with rapidly convergent 

expansions and proceeds by using only the first few terms as an approxi-

mation to the effective Hamiltonian. Precedents for this procedure exist. 

It is implicitly used whenever a rotating frame Hamiltonia.n is used as a 

14 starting point for an average Hamiltonian expansion •. Another example 

is the "second averaging ll procedure used tp explain off-resonance effects 

15 in multiple pulse line narrowing experiments. 

The expansions which were the subject of the previous section were the 

final exp~nsions, in which the effective Hamiltonians 3(4) for the subcycles 

were assumed to be known. Figure 5 shows schematically how the phase 

shifts of the cycle may be viewed as a series of z pulses on a system \vith 

an otherwise· time independent Hamiltonian ;](<p=o. In the next section the 

subcycles are treated. 

B. The Design of Effective Sub cycles 

If a sub cycle can be designed which has high quantum operators in the 

leading terms of its effective Hamiltonian ;]f<p' then the cycle need only be 

selective to a low order since high quantum operators will appear in its 

leading terms. Since ;]fint contains only first and second rank operators, 

no simple rotation of;]fi can contain high quantum operators. It is nt 

only through the action of the couplings between spins that such operators 
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can appear itithe evolution, so it appearsdesi1'ab1ethat the subcycle 

last at least long enough that DXD 6:r 0 -1. An apparent dilemma arises 
.,zz p 

here though,for if the cycle consists of many subcycles then n:rc
D 

tbl 
. . ,zz c 

,arid convergence of the effective Hamiltonian expansion becomes doubtful. 

The solution to this problem is to arrange the internal structure of the 

subcycles so that nXD,zz.1TpU-l but H3f'cp.1Tpn«1.. Several approaches will 

be discussed. One general approach to subcycle design uses the method 

of timereversal l6 and is illustra.tedin Figure 6(a). X· and X' are 
p p 

approximations to the effective Hamiltollians for the periods T and T'. 

Before examining particular sequences, for the periods T, T', and AT I, lie 
p 

indicate how time reversal leads to the desiredconditioris that j('<I> contains 

high quantum operators and that OXcp.1TpD«1. 

Pulse sequences can be designed with~O)=i(;I{'b,xx-ti1CD,yy) == - ~l~,zz' 
and the effect of such sequences is to make the spin system appear to 

evolve backwards in time. 16 If such a.pulse sequence is applied for a 

time 2T and then turned off, the initial condition ,dll return after a time 

T. If H, jeD TU > I, both the fon.;ard time and reversed time propagators can 
'I ,ZZ -

contain irreducible tensor operators of arbitrarily high rank, but will 

commute with I • z Similarly, pulse sequences can be designed with 

x(O)= 1(;1{' ~ ) 
D 2 D,yyD,zz 

from a sequence with 

= '- .kc . In this case, the propagator obtained 
2 D,xx 

D3C
D 

TD~l will contain irreducible tensor operators 
,xx 

of arbitrarily high rank, but will not commute with I. Such a propagator z 

can generate multiple-quantum coherences and can be viewed as a multiple-

quantum rotation (as opposed to the rotation produced by a single strong 

pulse, which will only generate. single-quantum coherences from a density 

matrix proportional to I ). .. . z 
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The propagator for the subcycle of Figure 6(a) is U(6T )=exp(-i~~T') 
p p 

exp(-iX 11-r')exp(-iX T). Time reversal techniques may be used to arrange w p p 

that X'T'=-X T. When this condition holds, the periods T and T' lTIay 'he 
p p 

viewed as a complementary pair of multiple-quantum rotations which 

sandtvich the period 6T'. . Together they form a cycle and the average 
. p 

Hamiltonian for this cycle is 

'11'(0) ···1 fI1Tp"U'()d . 11':; !-,"- T:JC .. -iipT 
<I\. = -- <I\. t t = --e ~-p -'We 

<f> 6T .. 6T pop 
(23) 

If 'JC i 1 b'l' and does not commute with 'JC then xiO) will p s nonsecu ar, 1. 1.near. w 'I' 

contain high multiple-quantum operators when n;rCpTIi ~1. Since the exponential 

operators constitute a 

(0) . I1T' . 
unitary transformation, the norm of;lC is conserved 

w 

and "xn = ~IX II • 
<f> 6T.W The desired effect of reducing the norm of the sub-

P 
cycle Hamiltonian is achitvcd ~vht::ii:'T' :::<f.T • 

p p 

the· small interval I1T;may be thought of as an effective cycle time for 

the subcycle. This conc,ept is useful in that lengthening the cycle time 

corresponds to lengthening I1T' and notT or '1". 
. ..J.l 

Several choices are possible for :Ie , X' and :Ie • ppw Let :Ie. =JeD .p. ,xx 

i
1: a i · (31 11 . -1. • 1.) produced by the sequence 90 -'1'-90_, where 90 is 
> j J X XJ1. J Y Y 

the pulse flip angle, and the subscript is· the rf phase in the.rotating 

frame; X, = "':'~2 . produced by a time reversing sequence, such as 
p D,xx 

I 1 
(~~90x-T-90x-T- 90i -T-90x-T- 90i -T-90x-T-90x-T-90x- ~), repeated enough 

times to fill a period T'=2T; and X ~D using no pulses at all ~ is w. ,zz .w 

. a "window" in the sequence). The particular time reversing sequence 

chosen for X' has x(o)= -~.; it is symmetric, so x(I)=O. Using the 
p -~D 2 D,xx ~~ 

v 

notation of reference (II) for various error terms from pulse imperfec-

tions,.we find fc6°) (resonance offset and chemical shift terms) = 0; 
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;c(0) (rf inhomogeneity effects) = 0 (to order D; X,~OD) (nonzero pulse 
ED . u 

width) = 0; and X(l) = X(l) = X(I) = 0 can be achieved by symmetrization. 
ODED ' 0 . 

Neglecting all correction terms, we have 

x(O) flT = exp (i3{' T) (3C.D· flT') exp (-i3{' T), . </>=0 P xx, zz P . xx (24) 

which conserves the even or odd quantum character of the initial density 

matrix. This is sometimes convenient; for example, a third order 10k-

2 .' . quantum selective sequence requires 4n = 400 subcycles, but a third order 
, . 

5k-quantum selective sequence only requires 100 subcycles, and if no odd-

quantum coherences are present. in :iC</> the two sequences have the fHJme effect. 

The sequence 90 '-T-90-- only gives 3{' =3C
D 

• if there are no 
y .' y ..P .'xx 

chemical 

shifts, if f:.w=0, if the rf homogeneity andtliestatic homogeneity are 

short in' the seqyences forT', it m~y be that D3C</>flTp n »UJCwflT;" because 

neglected error terms would enter. One very convenient way to lessen 

the severity of error terms is to design a sequence with an effective 

Hamiltonian having only double-quantum, terms; then time reverse!.l can be 

achieved by a phase shift~ For example, the sequence (! -90 --T' -90-T-90.c 
, 2 x x z 

. -(0) = average Hamiltonian 3C
D 

-T'-90_-T-90_-T'-90_~T-90 -T'-90 - T)has an 
x x. x x x2 

(-r' h+r ')3C
D

,yy + (T /T+T' ):un,zz in the limit of a-function pulses, and if 

T'=2T, 

xSO) = 1 (2;1f- . +3C ) = !.(:Jt -j('_ ) • 
~J) 3 .l),yy D,zz 3 -l),yy -l),xx 

This is a pure double-quantum operator,' which can be inverted by phase 

(25) 

shifting the sequence by 90° .0' If the pulses are assumed to have a square 
,. 

envelope but a finite width" t i, jC(O) is 'a pure double-quantum' operator 
p D ' 

for T'=2T+tp ; other pulse errors may change this relation slightly. 
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, The sequence can be used with x and ~ pulses with enough cycles to' 

create a total length T such that OJ{' Tn ~1. j{" is provided by the same 
, .p p 

sequence, except with y and y pulses. Potential sequences for J'Cw j.nclttde: 

1. No pulses, giving "JC='JC.D and even-quantum selection for initlal 
w ,zz 
.. . 7,17' h condition f3Iz • This sequence was used in our recent work, . as s mom 

in Figure 3, to produce 4k-quantum selectivity in oriented benzene. 

45 -~T'-45_, giving all orders in j{'A-,. 
x p X 'f' 

2. 

3. The same sequence as j{'p' except phase shifted by'45°. Clearly 

'JC is also a pure two-quantum operator, but[j{' ,j{' ]*0, so multiple"""quantum 
.~ . p w 

coherences still develop. 'After a brief interval 6.T', another phase shift 
p 

of 45° gives j{" • 
p 

The standard WAHUHA sequence, illustrated in Figure 6(b), is another 

possible pulse sequence for X<t>. If J(' =:J(' ." thi s spn11pnce gives 
1n1:: )J,zz' -

jC(O)::jC(l)=O (neglecting pulse errors). However, if'IIJ( TD»l, JCA-, ,,,i11 
,D,zz 'f' 

have strong contributions from.~(2), 3C(4) and higher-order terms which 

contain multiple-quantum coherences. For some value of T such that 

U'JCD,zzTH-l, we expeet to find Uj{'<t>ll<dJ<D,zz"' but JCep will contain a sub~tan­

tial fraction of multiple-quantum coherellces. The sequence is L"epea,ted n 

times, so ~T =6NT. When such a stibcycle is incorporated into a selective 
p 

excitation sequence, it will prove useful to think of T as a fixed parameter 

;while N is varied in order to vary the c~cle time. 

Clearly, any other line narrowing sequence is also a candidate for 

producing j( , but this sequence would probably be the easiest to use because 
o 

of its relatively large correction terms. A possible advantage over the use 

(J 

of time-reversing sequences is the very low duty cycle, which results 

because T is much longer than in a normal WAHUHA experiment. 

". 
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Selective Sequences in the Multiple-Quantum NMR. Experiment' 

Any selective sequence can be incorporated into the general frame-

work eta .multiple-,quantum experiment, shown in Figure 7 (a) • A large 
: -+ . ;.. .. 

static magnetic field B=B z is applied to a·system of N spin-I nuclei, 
. 0 

giving an equilibrium spin density matrix po=exp(-:f3'I/ITr(exp (-I3'Xz», 
where 13' =yBo/kT; in the high temperature approxi.mation we write the 

reduced de~sity matrix asp'=(2I+I)-N (-13'1 )=131 • A pulse sequence 
. 0 Z Z 

(which need not be cyclic) is applied to produce multiple-quantum 

coherences. This is called the preparation sequence, and we will denote 

its propagator by U. The spins theri evolve under X. t for a time t l • 
. ·1U 

In the simplest experiments no pulses are applied during t l ; however, 

decoupling,. spin echoes, or more complicated sequences are possible if 

suppression of part of :fe. is desired. Because only the operators I 
·1Ut • x 

and I are observable, another pulse sequence (called the mixing 
y . . . . 

sequence) is used to transfer the multiple-quantum coherences that 

evolved during tl into single-quantum .. coherences; we will denote the 

propagator for the mixing sequence by V. The oscillating magneti.zation 

proportional to ( I > and < I > is measured, the experiment is repeated many 
x·· y 

times with different values of t l , and the signal is Fourier transformed 

with respect to tl to produce the multiple-quantum spectra. In this work 

it will be assumed that the initial condition is 131 and that only the 
Z 

operators corresponding to magnetization at the end of the mixing period 

V are detected. The use of coherently excited initial conditions and 

the implications of selective excitation for full two dimensional NMR. 

experiments will be discussed elsewhere. 
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In the "simplest experiment, U and V are nonselective as shown in 

Figure 7(b). The first two pulses, separated by a time T , constitute the 
,p 

preparation sequence. If we further assume that all pulses are strong 

pulses, so that the internal spin Hamiltonian ~ =6wI +KD can be . z z ,zz 

neglected during the short intervals that the rf field is present, we cen 

write the reduced density matrix at the end of the second pulse as: 

p = aexp(-iI"y'~/2)exp(~iH ~ )exp(iI ~/2)1 exp(-i1 ~/2)exp(iH T ) 
" , . zp y' z y zp 

X exp(iI ~/2) =aexp(iH T )1 exp(iH T ) (26) 
y .' xp z xp 

where 

;YCa.· =&11 +KD (a.=x,y or z) 
a. ,aa . (27) 

'JeD = ,~.ai,(3I .1 ,-1.'1.) (a=x,y, or z). 
, aa. l.] ] a.l. a] l. ] . 

(28) 

quantum matrix elements if O;}C
D 

T U ?;l, in contrast to excitation by a . ,zz p 

single pulse which produces only single-quantum" coherence. The third 

pulse and the final delay t2 constitute the mixing and detec~ion sequence, 

"and ( Ix (t
2
» is measured ~ This pulse sequence ,modified to include echoes 

to remove !Jw and field inhomogeneity from the evolution ti.me t
l

, and phase 

.' . \ 2c ,d h" d f shifted to separate the different n-values, is t e one use . or most 

multiple-quantum experiments. 

The dramatic decreaseih intensity as n increases and the low 

intensity of individual transitions mentioned in the Introduction is now 

easily derived. To simplify the formalism, we note that there is actually 

'. a great deal of similarity between the preparation and mixing portions 

of the pulse sequence, which is hidden by the experimental need to measure 

( I) or ( I ) even though the initial density matrix is pro.portional to I • x . y z 
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ILwe imagine instead that we observe (1/ ' as in Figure 7 (c), we have to 

j.nsert a fourth pulse at the end of t 2 • The sequences in Figures (b) and 

(C) ,,,ould always give exac.tly the same spectra, but in Figure (c) the 

symmetry between preparation and mixing is apparent; in fact, if t = L , 2 p 

the propagators are identical: 

U=V=exp{-iI TI/2)exp{-iH T )exp{iI TI/2). 
. Y . z P y 

We can write the observed signal as 

(I~(Tp' t l , t2=TpH=tr (p I z) 
t t, 

=~tr{Vexp~~Hztl)UlzUexp{iHztl)V I z) 
.' t.. . t 

=~tr{{UIz1) )exp(iHztl ) (V I z V)exp(-iHzt1 » 

. ,;: a·r (UI tr) (utI U) eiWmntl 
mn z·mn ,z nm . 

where wisthe energy difference between the states m arid n. The maxi-
mIl .. . .. 

(29) 

(30) 

(31) 

(32) 

mUUl.'signalis obta:f.ned when I(U1 U t) '. I = I (UtI U) I for every matrJ): cleue.nt, 
ZmIl ,z 11m, . 

. anditcari easily be shown that 1:he condition is satisfied if U has the 

form in equation (29) f8 in factior this sequence (UI ut) =(UtI U) • 
. Z mIl z nm 

Therefore, the intensity of the multiple-quantum transition at the fre-

quency w is equal to ~ I (UI U t)12 assuming that all peaksar.e resol vablc;~. 
nm z nm 

The total intensity 

of multiple-quantum 

of the spectrum, which is divided among all 

transitions, is equal to aTr«UI U t) 2). ' But . z 

the orders 

this quantity 

is invariant to unitary transformation and is the same as the integrated 

intensity of the single-quantum spectrum in a conventional one-pulse experi-

2 ment, ~Tr(I ).. Therefore, the total spectral intensity of the nonselective 
y 

experiment is. fixed. 

If the multiple-quantum matrix elements are inefficiently excited (for 

example, if "3C
D 

T 0«1), UI Ut has large matrix elements along its diagonal. 
,zz p .' z· , 

These matrix elements are populations, so they do not evolve, and most of 



-24-

the intensity of the multiple-quantum spectrum is found at w=O. Art 

effi.cient wideband nonselective excitation has little j.ntensity at w=O, 

and excites all of the possible transitions about equally. Therefore, 

the average intensity of a single line in a multiple-quantum spectrum is 

smaller than the avel."age intensity of a single line in an ordinary single 

pulse experiment, by a ratio '(number of single-quantum transitions)/(number 

of excited multiple-quantum transitions). When there are many spins, the 

intensity of.a single transition becomes extremely small. For example, 

a system with N sPins.;.~' and no symriletry has 22N possible distinct matrix 

elements, so totally nonselective ,excitation gives a s:i.gnal for each 

-2N 2 transition of ,2 (Btr(Iy ». 
If only certain orders of multiple-quantum transitions are excited, 

but the excitacioll is still efficient (in the scnse that the peel-: r't 

w=O is small), the intensity of a single transition grows. For exalnple, 

if the resonance offset is removed from the excitation and detection periods, 

(by echoes, for example), H retains only 0- and 2-quantum operators s Clud x 

only even-quantum coherences are. excited. 6 Since roughly half the coherences 

are even-quantum, this process increases the intensity of an average C!V\2."-

quantum transition by a factor of two. ,If, only a few transitions are 

excited (by an extremely selective, sequence) and the sequence is efficient, 
I 

the intensity of each'transition could,be.enormous. 'Suppose'th""t selective 

excitation is used for both preparation and mixing as in Figure 7(d), and 

that UI U t and VI V t could be prepared with aU the matrix elements zero z z ' , 

except for the single coherence with 611F+N and the single coherence with 

6m=-N. In that case, the :s18Oal gain relative to the nonselective experi-' 

2N-l ment would be 2 • However, ,the density matrix that results is not 
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related to the initial condition I by a unitary transJoi:'tnation, end ,there­
z 

fore it cann~t'beproduced by any sequence that does not include J:claxation. 

A more reasonable estimate of the mtlximum possible gain is obtained 

... I by finding the maximum possible value of (Ur u ) b' where a> is the single 
z a, 

state with m=+N/2 and lb> is the single state '07ith m=-N/2. 

"(UI U +) b = EU i (I ) •. U + . b z a ~ az ~~ ~ 

* = fUai(Ubi) (IZ)ii 

* ru .(U
b

.) =l5 b. 
1. a~ ~a 

We have: 

(33) 

(34) 

(35) 

The maximum can be readily seen too be U= 1/12 U ,,=1/12 U .=0 U = -1/12 
aa ' ab ' a~ , ba 

Ubb=1/12,Ubi~. The phases are not unique.. Such a' propagator cOllc:en.l:rates 

the matrix elements of U in the states with the largest values' of Iml. It 

couples states la>an.d Lbo> only to each other~ effectivelY creat:i,hg a 

two-level system. 'The two-level systelJlhas 

,U=,ly2 ," =exp(1(n/2)Iy )' Iy = 0 ,', (" /'.r.> 1/' M2)' , , ab '. ab (" 

-l//i. ]//2 ' '., .. ' i/2 
(36) 

'ab 1 
"There r is a fictitious spin- 2 operator for multiple-quantum cOherc.::lCe. ,y 

Thus, the maximum possible signal is obtained by a selective 90° pulse, 

shown schematically in ~igure 8. The signal from this transition is, from 

equation (32), (12) • The gain when compared to totally nonselective , ' z aa 

excitation is then 

G
N 

= (a(1;) aa)/(f32"';2Ntr(I";» 

= a(N/2)~f32-2N(N2N/4) = N2N. 
(37) 

To acnieve this gain, we need a sequence that couples the state m = N 12 

only to the state m= - N/2. The effective Hamiltonian for this sequence 

should be some linear combination of I ab and I abo This sequence would be used 
y x 
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t t to create UI U and VIV • If the effective Hamiltonian has this form for z z . . 

m= +N/2 it can have any form_ whatsoever for the other levels, -and the 

signal in theN-quantum transition will be unaffected. 

Often the (N-l) -.. quantum or (N-2)-quantum transitions in an N-spi-n_ 

system are more interesting than the N-quantum transition, since the N-

quantum transition contains no dipolar information. If (N-l)-quantum ' 

selection on I is used, the number of transitions increases to 2N for a z 

system without symmetry. In addition, while it is possible to envision 

a 'IT/2 pulse on a two-level system completely depleting the populat.ion 

difference, in a multilevel system it is very unlikely that all population 

differences can be eliminated s:tmultaneously. TllUs we expect to also 

produce zero-quantum transitions and populations in the m = +N/2 and 

m = +(NI2-1) manifolds , -effectively increasing the 'total number of pumped 

- 2 
matrix elements to 2N +2. -Now, however, the available fraction of 12-is 

-z 

larger. The result of all of these effects is: 

GN_l :: (f3(2 (I;)m;"N/2+2N(I;)m=N/2~1) /(2N
2+2N+2) (B2-2NTr(I~» 

= 2N (N2-3N+4)/ (ll+N+l)::;2
N 

for (N)>l). 

Values of GNand GN_l for systems without .symmetry are listed in 

Table 1. If symmetry is included, all gains are reduced, because fewer 

(38) 

transitions are allowed and therefore the system is effectively a collection._ 

of smaller systems. All of our calculations are still valid, except that 

the number of density matrix elements excited and the available fraction 

2 . 
of Izshould be recalculated using the known symmetry. In general, N-quantum 

and (N-I)-quantum transitions must have Afsymmetry, since the states with 

m = +N/2 have that symmetry. The relevant energy level diagram is not a 

-. 
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binomial distribution but instead is the groupo~ Al states. The calcu­

lations are straightforward, and benzene has been included in Table 1 to 

illustrate s)1lUInctry effects. 

These gains become extremely large for large N. However, the single 

N-quantum transitlcin contains only a tiny fraction of the total intensity 

in the nonselective experiment, "and therefore ~ve shou1d'calculatethe 

total signal available in the N-quantum and (N-I)-quantum transitions with 

and without selectivity. This calculation is done in Table 2~ We assume 

that the total number of protons in the sample is kept constant a,s we change 

N, and calculate the signal size as a fract:ton of the total magncti.uttion of 

the sample. The signal size still decreases ClsN increases, but the 

decrease is much slower ,in the selective experiment, and Table 2 indicates 

that selective excitation should dr.amatically increase the number of mole--

cules which ~ould be studied by multiple~qu~ntum spectroscopy. However, 
. -I' , 

the results in Tables 1. and 2 were calculated by assuming that a p.erfectly 

selective e,~per:i.ment j,8 possi.b~e. Since any actual experiment will deviate 

from this ideal, we must now consider sequences vhich are not selective to 

infinitely high order, and which can have other errors. 

IV. EXTENT OF SELECTIVITY IN NON-IDEAL SELECTIVE SEQUENCES 

General Systems 

As mentioned eaelier, for any multiple":'pulse sequence one expects 

O';u.(n)O<U orr nn+ltn I I· orr i f' 11 i I cI\. cI\. • n a se ect1ve sequence, cI\.... s orma y equ va ent to " -, int c 't' 

if. t(t), as illustrated in Figure 5. Therefore, as U'JC ... t 0-+0, X(D) ,m ... c 

becomes the dominant term of 'JC. The nonselective terms of U=exp(i'JC(Nt » , c 



-28-

can be made arbitrarily small in principle by making t very short, while . c 

if Ntc is kept constant the selective contributi~n from :11:(0) is unaffeeted. 

In practice, the attainable selectivity is limited by several factors • 

. '1. For technical reasons, t cannot be made arbj.trarily short.. I'or , c 

example, if each subcycle requires pulses with sped.fied flip 

angles, each pulse has a finite width ~Jhich depends on the strength 

of the exciting field. 

2. The time required to pump multiphoton coherences is generally 

dependent on the "anharmonicity" of the energy level spacing. 

The (~xcitation sequence needs to extend for a period comparable 

to the inverse of the anharmonic frequencies, which in the las t 

section were the dipolar frequencies. This problem was investigated 

in depth 1n tne is.st: section; one solution is to constl:ll(;t a sub--

cycle with an effective Hamiltonian IlJe~O «UJeintD, so that UjC~ tcn 

can be sma.ll even thou'gh UJeinttcU is not. If this is not possible, 

the. gener.al consider.ations of the preceding section still hold, 

but to retain selectivity the subcycles ,",ould need to be 

shorter, and cycles selective to higher order would be needed to 

obtain high quantum operators. 

3. Because there is a lower limit to the length of a subcycle, the 

minimum time needed for a j-order nk-quantum selective sequence 

increases rapidly as j increases. However, relaxation mechanisms 

make the average Hamiltonian calculation invalid if the total 

length of a sequence is comparable to T2 , the coherence dephasing 

time. Thus, for any system only a finite order of selectivity is 

possible. Inhomogeneous systems are a special case; excitation 
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designed to compensate for such broadening may allow homogenous 

selective excitation. 

4. Timing errors, inaccurate phase shifts or other failures in 

control over coherence will reduce the selectivity of any 

sequence. 

In this subsection we discuss the limitations for gEinera1 spectros-

copic systems •. In order to estimate the importance of the first three 

problems listed above, we calculate in the Appendix the size of the 

firstnon-nk-qu~mtum selective operator from a j-order nk-quantum selec­

tive sequence, which is ( .. iTt(j+l}-t) ,and we determine plausible 
. c nns 

conditions .for convergence of the average Hamiltonian expansion. Only 
/ 

the results will. be summarized here. We combine p~se cycling and 

symmetrization into one operation, which turns a (j-.l.j-orcicr uk-quantUIlI 

selective subcyc1e into a j-order nk--quantum se1ectiv~ cycle requiring 

2n subcyc1es (Figure 2(b», assuming perfect phase ·shifts and no timing 

The norm of the first nnsterm for the cycle, which is (;Tt(j+l» , 
nns errors. 

is. shown in the Appendix to be related to that of the first nns term of 

the l.th subcycle, which is (j(~j-1» .' : 
1. . nns 

F( ) =( ~ 5_ 2 3+ 2. )1/2/8 3_ 09 -1/2 n 15 n yt 15 n . n ,. n • 

If a (j-2)-order selective sub cycle were repeated 2n times without 

(39) 

phase shifting in between, the 
. (' 1) 

first nonselective term would be lCiJ- t; ,nns c 

tbe first nonselective term in the j-order selective sequence is smaller 

than this
U 

only ifU (X(O) tc)2n F(n)<1. This result suggests that the 

average HamHtonian expansion failS to converge whe:nD(j(0)tc)11 ~F(n)-l. 
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Thus we require 

(40) 

Values of F(n) are listed in Tnble 3. 

Equation (40) can be used (j-l)/2 times, to express in 

terms of (j{(2» for a first-order selective sequence • 
. ' nns 

then be calculated, using equation (16). We define the selectivity, S, 

of a j-order nk-quantum selective sequence to' be the ratio between a 

typical matrix element of ;1(0) and a typical matrix element of (j{(j+l» • nns 

At the limit of conve~gence (fi;fc(O)t II-F(n)-l) v1c find: 
c 

(111) 

.' . . .2 2 2 3 . 
S=K-1F(n)1/2(2n) (j /4+7/4tn8~ + nfz(F(n)II(X(0)tc)3U/IIX(0\cll)2fl/2 

the total number of nk-quantum transitions, and a. is defined by the rela.tion 

OX</> U 2=CXKnX<°) 02 (see equation (20»; the reason for the definition is that 

if all the matrix elements of X<I> have roughly equal magnitude, (rl. 

To go further, we need to knoW' the relative sizes of 113C(0) II, II (;I{'(O» 2 0 

and "cre(O»3U. If the eigenvalues of;R(O) have a Gaussian distribution, we 

knoW' from equation (7) that o (X(O»211=l3l1x(0)U2 and II(X(O»311=Il5 IlX(0)n 3• 

Another possibility is that the energy levels might be spaced so that X o 

has only two transitions which are nearly. resonant, forming an effective 

three-level system, and x(O) contains a nonzero matrix element for only 

one of these transitions; in this case NT=3, and if x(O) is traceless we 

. we expect n (X(0»nU=(3/2) (n-l)/2I1X(0)nn. In both cases U (X(O»nU does 

not grow ;:-greater-E~_a_~-_~_]-~~O~e~:~~y~n~~~~idIy.c However, if K»1, so that 

only a very small fraction of the matrix elements of X<I> are selected by 

~, 
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of a Gaussian distribution will be discussed in the n.ext section in 

connection with multiple-quantum l\"l'iR. 

The factor (2n)j2/4+7/4 makes S grow very rapidly as j is increased, 

and fairly small values of j still gi.ve very selective sequences. For 

example, if a Gaussian distribution of eigenvalues is. assumed [or ;Tc(O) , 

the selectiyity ofa third-order 10k-quantum selective sequence with 0.-1, 

$-n, and F(n) = 0.028 (from Table 3) is S = 1170; a typical selected 

matrix element is more than three orders of ma&'11itude larger than a 

typical nonselected l'!latrix element, even ncar th(! limit of conve.rgcnce. 

When n (j(O)t )2 11 «F(n)-1, S will be much larger; in general, if U (j(O)t )11 
c , c 

is scaled down by a factor of A, 1Ij(n+l)tll is scaled down by a factor 
C 111.1.6 

j~ 'B of,A , and S increases by a factor of AJ • \.Jc conclude that for 

many systems the use of cycles with only a finite order of selectivity 

is entirely sati.sfactory. 

The effects of timing errors and imperfect phase shifts are mc~re 

serious. Suppose that the length of subcycle i is Ire +0;, and that th;,~ 
p ~ 

. phase is ¢.+e:., where ~o.=r:£.=O (Figure 9). 
~ 1 1 1 1 1 

Then 

fc(O) = 2 ~, '~(lrr +oi)(exp (il (~.»3C exp (-il (¢i+e:.» 
" n Tp i P Z ,:':i -1 0 Z 1 

which is no longer purely nk-quantum selective; the matrix element for 

anm-quantum transition is multiplied by 

1 
v 2nllT 

p 
L (liT +o.)exp(im(¢.+e:.» 
j p J J.J 

instead of O. Assuming 0j«lITp and £j«1, we can expand this out: 

(42) 

(43) 



'.; .. ' 

1 
2n~T 

p 
(1::~T exp(im<l>. )+}:oe){p (j.mqli)+}"; (~T ) (ime: ~xp (im¢ .)+ ••• ). 
'. P l. -i.. . P i ~ 

The first termon the r.h.s. correBponds to an ideal sequence and 

vanishes if m is not a multiple of n. 

with <po, the last two terms reduce to 
]. 

(/f4) 

the number of subcyc1esincreases (for example, by going to a higher-order 

selective sequence) this. term decreases, so that the ratio·nX(O)n I t' 1 , . se ec ~ve 

nx(O)n can be made arbitnirily larg'e. Ho' if £ or 0 a p omple" ly nns iv8ver, j j r ",c .' -1...£:0, 

correlated wi th<p. (so that, for cX8,mple, every time the phase should be 
~ 

<1>=0 it is actually <1>=£0)' nx(O) 0 10;K(0) n is not reduced by in-
, selective nns 

bratedphase shifting device or for one it'l which a digital approximation is 

made to the exact setting. ,One way to reduce this error is to use two 

(or more) phase shifting devices, so that the total error is not ~\TeJ.l 

correlated with the total phase.' 

B. Application ofNon~Ideal Selec.tive Sequences: to Nultiple-Quantum NHR 

AS mentioned earlier, an ideal N-quantum sequence that had no zero-

. quantum matrix elements could enhance the single N-quantum transition of 

anN-spin system by a factor ofN2N. A n~n-ideal nk-quantum selective sequence 

(which has zero-quantum matrix elements) will not work as well, for two. 

reasons., First, there may be nonzero matrix elements for the populations 
, . 

of the states m=+N/2(populations maybe thought of as a special type of 

zero-quantum coherence, with the initial state identical to the final state). 

In this case, the effective Hamiltonian for the two levels will be a rab+ . x x 

a lab+a lab (Figure 10) instead of containing only lab and la~Depending 
y y z z x y 

,0. 
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'. . 

on the relative size of the coefficient az it may be impossible to transfer 

population completely into coherence. Statistically loJe. expect the coeffi-

cients to be of comparable size and in that case much of the population 

can be transferred into coherence. 

A much more serious effect comes froin the requirement that the 

average Hamiltonian expansion converge. In general this would imply 

I (X(O) t )2 U«;F(n) -1. For the sequences described, the distribution of c '. . 

eigenvalues of 3Cc!> is expected to resemble that of the eigenvalues of :1Cn,zz 

t'ihich will be .Gaussian if N is large. It is reasonable to assume that 

thc.eigenvalues of 3(0) have a Gaussian distribution, since X(O) has mm1Y 

allowed O-quantum transitions, . and since the limit of jf(O) as T-+'O for 

The convergence criterion of equation (41) can then 

From the definition of the normaf a2N by2N matrix we find: 

=(2-N L 13C(0) t I 2) 1/2 
mn c mn 

=IN 2-N/2( I U(O) t 12 ) 1/2 
s c 

mn 

where N is the number·of possibly nonzero matrix elements, and the rms s 

average only includes those elements. Therefore, to make an average 

excited matrix element comparable to 1 (which is needed if we want the effect 

of '11-0 ) to approximate a selective 90 0 pulse between the levels 111==+N/2) 

we need; 

There are 

N 
N ~2 • s 

2N 2 possibly nonvanishing matrix elements for a nonse1ec-

tive sequence, and if only O-quantum and N~quantum elements are excited, 

(46) 
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2N -~ 

NS-2 N • For N~2, Equation (46) cannot be satisfied. Assuming 

UU<°\ 11-1, we expect c 

( (3C(0) t ) ~ 1/2::2N/2 rN--r.f(N/2\<1. 
c ab . 

This scales dm;1n the possible gain because the selective sequence 

o effectively produces only a small rotation instead of a 90 pulse. In 

fact, 

so the gain is. 

ThisvDlue of G' is only apP1:oxi1l1ate, since it depends on .t:he 0.xaet 

(/,7) 

(48) 

maximum permissible value of OX(O) te". The gain can be assigned to two 

e:ffecfs •.. Only "vi/IN as manytransitioris are being pumped so each one is IN 

times stronger;· in addition, the N~quantum transition receives intensity 

from the equilibrium population difference of the extreme states for which 

the expectation value of 12 is N2/4, a factor of N greater than the expcc­
z 

t_atioll value averaged over all states. "Thile this gain is lai:gc, a much 

larger gain is possible if NS cart be reduced. 

c. Removal of O-Quantum Operators from Selective Sequences 

The gain can be increased if the O-quantum coherences are removed 

from j{'(0) One way to do this is with the sequence shown in Figure ll(a). 

The phase shift of w/N inverts the N-quantum coherence but leaves the 

O-quantum coherence invariant, and the time reversal inverts every 

order of. coherence, so the net result is that O-quantum coherences are 

inverted every subcycle but N-quantum coherences are unaffected. The 

lowest-order average X(O) for the sequence in Figure ll(a) contains only 
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N-quantum. 3N-quanttlm •• , (2k+l) N-'quantuOl coherences after 2N sub cycles • 

In an N--spin system, this mc.~k~s Ns «2N, condition (46) is satisfied, 

amI the icif,al gain G1tN2N of Table 1 becomes possible. 

Theeas:test way to design such a sequence for JC¢ is shown in 

'Figure 11 (b) • "JC ,'-"JC ,:JC and -"JC are all generated from the double-quantum p p w w 

sequence, mentioned earlier and illustrated in Figure 11 (c) with relative 

phases 0, Tr/2, Tr/4, and 3Tr/4 respectively. If 11;1(' b.T 8«1, only the 
w p 

N-quantum transition appears. However, the value of K=n"JC¢oin~(O)u is 

no,.; very large (K-2N) so the selectivity S from Equation (41) '{oJl11 be 

someV7h[.i.t ¥;c[il:;er, and should be reconsidered, High-order select.i.ve 

sequenceswithnoO-quantum contributions can be generated from Figure 11(a) 

in exactly the same way that high-o=der~se1ective sequences with O~quantum 

contributions were generated from Figure If (a). A thj.rd-order 10-quantum 

selective sequence requires (4~)2=1600 subcycles (instead of (2N)2=400 

subcycles "tdthout, s\tppression of O-quantum), Equation (41) applies if 

j 2//1+ 7/ II ' J' 2/" If1-7 / 4 
(2N) ': ; is replaced with (LIN) . arid N is replaced w:i.th 2N, S:LiiC.~ 

each symmctd.zed phase cycling 11mV' 'requires lIN: subcyc1es, 

The assumrtion of a Gaussian distribution of eigenvalues is no longer 

valid, since X(O) has only two nonzero matrix elements. Since X(O) is 

1 
Hermitian, the two elements have the.same magnitude IR. The eigenvalues are 

+ t~.,.~t.t~~'1:? fOr all·d~her s tates!.~.~~c~i~se3C(O) is traceless. Therefore 

D~(O)t O=«2-N)(2)(R2/4»1/2=RZ-(N+1)/2 (50) 
C . . 

o (U(O\C) 20 = «2-N)(2)(R4 /16) )1/2=R22-(N+3) /2=2 (N-1) /2U~(O) tcU2 (51) 

U (X(O)t )3n;"«2-N)(2)(R6/64»1/2=R32- (N+5)/2=2(N-1)OX(O\ 11 3 , (52) 
. C c 
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In the limit of convergence (n(:n.(O)t,)2U~F(n)-l) we find the calcu·­
c 

2N-l latedselectivity of a third·-order IO-quantum sequence 1:o1ith a=l, K!':2 

a:nJ F(n)""O.029 (s~e equ£.t~ion (lfl» to he S""0.025. Hm'7e\Ter, we do not 

really need to have II (;1(.(0) t ) 2U be th18 lar,gc; all He really want is Rt 0:.:11'/2 ~ 
c c 

--(0) 2 
so !;(JC t c ) 11 =.027, a factor of 1797 smaller. 

value, we find S=8.0xlO lJ • 

We can attain the maximum gain G if the 4(2N-2) non-N-quantum 

selective matrix elements that involve the m=+N/2 states transfer only a 

small fraction of '(I; )m==+N/2 relative to the fraction transferred by the 

tt']Q N·-quantum selecti,Ve Ti:~Vcix elements. Since each, selective IG/ltrix 

element is larger by a factor S, the inte:l.sity of the selected transition 

(from Equation (32» is larger by a factor s2, and we require 

2S2»lr (2N_2) 

S2»2N+1_2 

which is satisfied in this example., We therefore conclude almost all the 

tllC,ol'etical [,;()ir;. l' l' m1>., an, ill:::in:tte"'onlc~:( seJ.cctj:vC': r.~eql1,ence is att<l'i.lw,ble 

with a third-order selective:: sequence, and the potenti.al gai.ns in Tnhle 1 

should be approximately realizabl(~. 

Note that the theoretical maximum gain becomes more difficult to 

achieve as N increases, for several reasons. From Equation (53) we see 

that the required selectivity for maximum·gain is proportional to (/2)N, 

and therefore high~order selective sequences may be needed. However, the 

number of subcyclescannot be increased indefinitely, because each sub-

cycle must have a minimum duration, and relaxation effects limit the 

maximum duration of the cycle to less than T2. Typically, n j( n ~lOkHz 
D,zz , 

(53) 

and T2-lOO msec for liquid crystal systems, so no more than a few thousand 

'., 
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subcyc1es would be possible; a third.;..order18-quantum selective sequence 

that eliniilwtes O-quantum requires (lm)2=5184 $l~bcyc1es ,and therefore, 
, . " . 

is :i.nip~l3sib1e for many molecules. In addition, sample heatl.ng beCOm2.B 

a serious problem \>7hen many pulses are applied. 

V. CONCLUSION 

On the basis of the calculations presented in this paper and experi­

mental results reported elsewhere, 7,17 we believe that selective excitation 

will increase the number and size of molecules \,lhich can be studied by 

multiple-quantum m·m. He also expect that this approach to selective 

. excitation of coherence and selective population inversion will be useful' 

in a variety of systems. 
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APPENDIX 

In this Appendix \ve calculate the size of the first non...;n-qu£mtum 

selective operator from a j-on1er n·-quantum selec.tive sequence, \kid1 is 
. '" 

(_iX(j+l) t ) 
c nns 

To simplify the calculations we combine phase cycling and syrometd.-

z.ation ,into one operation, which turns a (j-·2)·-order nk--quantum selective 

subcycle (j odd) into a j-order nk-quantum selective cycle requiring 2n 

subcycles (Figure 2(b», assuming perfect phase shifts and no timing 

errors. 
-(,+1) , 

This vJill allm.;>" us to write ;Ie J • As in our earlier calcu--

lations, ';Ie expal1d the propagD.l:Or for the j-order nk-··quantnm seleetive 

sequence inpO\\Ters of t • 
c 

-(,+1) 
The first nonselective term is i3C J t which c' 

is proportional to t (j+2). 
c 

'+2 -
All other terms proportional to t J are c 

nk--quantum selective, so the only possible Hl1S term proportional t() tc (j+2) 

is (~(j+l)t ) The product of the.propagators for the subcycles has 
, c ,nns 

'+2 ·+2 
several terms proportional to (tci)J =(t

c
/2n)J ; they are: 

j~ U(t .) -- -itJ(,(j+l) t (A.l) 
CJ.. ' c1 

_ L. (JC(O);TC~j) -t;7C~j );j(~O» t 2 . 
1<J i ' J J.. J C1. 

(A.2) 

~ 1 L (U(O)U(j) +X(j )5(0» t 2 
2 iii i i ci 

(A.3) 

L -(l)-(j-l) -(j-l)-(l) 2 
(A.4) -i<' (JC. 3C. -fi1f.. 3C. )t. 

J 1. J :L JC:L 

_ 1: L(j(~1)j(~j-l)-t-X~j-l)j(~1»)t2 
2 i 1.:L 1. 1. c1 

(A.5) 

(A.6) 

.~ 
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..! • '1 ()j+2 ,- terms not proport1.ona.to t • c 'tole will assume that the subcycles 

are themselves constructed by phase cycli.ng and symmetrization, so that 

;u.(-j+2jr) O'f ", 11" d (2 A 5) .. h "dd" <1~ '-- - = 'or a_. J ,an tei-ms,' A. -. varu.s. In a ltlon, terms 
i 

(A. I) and (A.7) Hre unaffect,ed by a phase shift of ¢=21T In., so they are 

'. nk-quantum sele.ct:l.ve. Finally, tenn (A. 6) contains many nk-quan.tum 

-(O) . ..,(O)-(j-l) _ ~ 
selec ti veportions; for example, i~j <k J('j J(j JCk is uk qu<~,n tum 

"-

selective if i and j are in the first half of the cycle and k is in the 

second half. As another example, if i=j=l, the nns part of the summation 

, ~(O)-(O)-(j-l) , kh <!i.l ;r('l ;r~~ "which contains (n-1) terms, 

,single teri:l,~il1ce «Jc1(O);i('1(O) )(L:j(1~j -1)) "=0. 
k !'i. 'nns 

is the same size as a 

Straightfor~'!Il'rd but 

tedious counting of the remaining terms,assumlngthat their matrix 
. .~~-. ~ " . 

elements. add randomly, gives: 

(A.8) 

so 

(A.9) . 

Since ;jC(j) is proportional to t j , we expect that if t is "small" . c c 

U~(j+l)u»nu(j+3)n (we assume the cycles are symmetrized, so thatX(j+2) 

vanishes) and if t is "large, " IIX(j+I)11 <<DX(j+3) II. We are interested 
c 
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in finding the value of t whichmakes 
c 

-('+1) -('+3) II JC J n~"'IIj{' J II· if we m;3.ke , . 

tc much smaller than this criti.ca1 value t we expect to fjnd convergence. 

Assume that we have a (J-2)-orc1er nk··quantum selective subcyc.le ,,;V'h5.ch 

j.B known to conv~rge, so that IIX(O) u »nj(~2) U and l:jC~j-1) II . »ll;JC
i
(j+l) fl 

J . 1. nns rms 

To create a j~order nk-quantum selective cycle \V'e need to increaf:>c the 

cycle time by a factor of 2n. He have calculated II JC(j+1) II by examining 
nns 

'+2 
the term in the propagator proportional to t J • The largest nns terms . c 

'+4 
proportional to t J , under these assumptions, are: c . 

Again a substantial fraction of the r.h.s. cancels or is forced to be 

se1eetive. Host: of the remain:lng terms on the:: r.h.s. canCf>.l wlt:h terms 

we expect to find 1I~{j+3)ll < IIJtj+l) II 
nns nns 

Thus, if we have a converging 

(J-2)--order nk~'qu[mtum selective 'se1,uenee, we E::xpcct to retain corl'vcrgen('.e 

. U-(O)-l for the j-·order selective sequence if ;r-c tcll «F(n) • 

As mentioned, '\Te can use equation (A.9) iteratively, to ca.lculate 

the first nl!s term asa f~eition of successively lower-order terms. To ... ~'. 

begin the iteration, however, we need an expression for n~(2)Unns for a 

first.,-cirder selective sequence (Figure 2'(b) with J{'<I> nonselective). 

have shown that (eq,latiori (16»: 

-

We 

K
int 

in this expression is :JC<I>,as discussed in relation to Figure 
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5. We cart rewrite this as:' 

, (3l'(2»=( -i/2nAT )(AT
3
)(,' E +1/2 L +1/6

i
=JL.=-k) (Je"'(i):lC"'(J. ):JCt/, (k) )nns 

nns p', p i<j<k. ,'i=j<k' '" 'I' 'I' 

'-There ep (i) is, the value of ep during i th subcycle. ' Since the operators 

Jeep(i) are nonselective, only a few terms in the sunnnations are forced to 

be uk-quantum selective (note, however,thesuDlwith i=j=k-is nk-quantum 

selective, as are a few of the terms in the other sums). We divide the 

possible values of i,j and k into two sets: 

a) i and jareboth in the first half of the cycle and k is in the 

second half ,or i, is in the first half and j and k are both in 

,the second half. In this case the sum over the isolated index 

reduces to xJC(O) .. 

b) i, j and k are a1] :in the RATI1~ h81f (If thp ('yelp. In this ('A!';p 

no further-reduction is possible., By construction of the sequence, 

UCep ,0 =OXep 0 • If we assume < 0 X(O)X", X", U):{ I :JC", :Ie 3l'(O) II} 
"'(i) "'(j) "'(i) ep(j) , (i) (j) 

straightforWard algebra then gives: 

" 2, 

DU(2) AT n 2 - ~ ( O:lf X :JC AT3112 >+ n ( 1Ij(O)JC :JC U2 ). (A.ll)' 
p ,nns 12 <I>(i)' <I>(j) <P(k) P 8 <I>(j)<I>(k) 

We expect IIX(O)X", :JC",' lI-ll3C(O)IIIIX", X", O<I!3l'(O)IlU (3C", )20 
"'(i) "'(j) , "'(i) "'(j) ""'(i) 

and OX<I> X<I> ,Jeep ," 0<11 (Xep )3 11 • 
(i) (j) (k)(i) 

Let OX", 02 =etKnU(O)U 2 (see Section Iv.i). We can now write: 
"'(i) 

, ~3 ' " 2 2 2 ' , , 
UX(2)AT n «net '" n(X(O)AT )3U2 + netiC II (X(O)AT )2 11 2 I1X(O)ATU 2)1i 

pnns- 12 ,p 8' pp 

(A.L2) 

We ~ant the first':'order s~quence to converge. If U(Xep(2nATp)tn-1, 

we see that Dj('(2) AT n «1. Combining this with our earlier results, we 
p nns 

expect a j-order rtk':'quantum selective sequence which is constructed from ~(j+l) 
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1 . 
phase cycles and 2(j+l) . symmetrizations (and therefore has a cycle time 

t =(2n) (j+l) /2 b. T ) toconvetge if c p.: 

and IIjC~2)1I is given in equation (A.12), so 
:1. nns 

gX{j+l) Unns:S (F(n) (j":"'1) /2U(X(O) b.Tn)2U (j-l) /2 (2n) j
2
14 +J-5j4 (1/ In ) 

. . 0 

. 2 2.·2 3 3 
X(n 0'. ~ IIX(O) b.T D 211 (X(O) b.T ) 20 2 + nO'. KU(X(O) b.T ) 3 11 2) 1/2. (A.14) 

.8 p . P 12 p 

We define the selectivity, S, to be Kl / 2I1X(O)II/IIj(j+l)l1, which is 
··nns 

the ,ratio of a typical nonzero matrix element or" ;R(O) to a typical nonzero 

matrix element of (UU+l » .• tole would like to calcula.te S as ;R(O) t 
- nns c 

approaches the limit of convergence, 'vhich is II (X(O)t )2 11 - F (n)-1. Since 
.. c 

t~=(2n){j+l)/2b.Tp' II (X(O)b.Tp~211--{2n)-(j+l)F·(ii)""1, aod: 

.. 
v 

. (A.1S) '"' 

Equation (A.lS) is the same as equation (41). 
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, 'TABLE 1 

ENHANCEMENT OF N OR (N-1)-QUANTUMTRANSITIONS 
IN AN N-SPIN SYSTEM BY SELECTIVE EXCITATION 

SYMMETRY GN 

None 8 
(' 

None 64 

Benzene 47.5 

None 384 

None' 20l.8 

None 10240 

None 49152 

None :l.l:;j,o 

None 1048576 

None 4718592 

GN- L 

1.14 

6.10 

17.2 

32.7 

154 

683 

2922 

1zz6~ 

50892 

209409 

TABLE 1.1 Enhancement of high multiple-quantum transitions, using selective 
I 

se,quences. Sequences which select only N-quantum (or only (N-l)-qucmtum) 

are illustrated in Figure 4. 
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TABLE 2 

INTENSITY OF HIGH MULTIPLE-QUANTUM TRANSITIONS, 
lnTH AND WITHOUT SELECTIVITY, RELATIVE TO TOTAL 

MAGNETIZATION OF THE SAHPLE 

SYM}1ETRY 

Benzene Al 

None 

None 

None 

None 

None 

None 

None 

NONSELECTIVE 

0.197 

0.024 

1.5 x 10-3 

9.5 x 10-5 

5.9 x 10-6 

3.7 x 10-7 

2.3 x 10-8 

. -9 1./1 x 10 

xC 

9.38 

9.38 

3.13 

0.98 

0.29 

0.085 

0.024 

0.0069 

, 
l\ 

~N'-l 

3.69 

0.80 

0.24 

0.065 

0.017 

4.5 x 10-3 

1.2 x 10-3 

3 0 1,·-4 . x II 

' • .1 

• 
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TABLE 3 

/" t: :"t 

F(n) 
~·1 

n 1o'(n) _ 

3 .090 11 

I. .044 . " 23 

5 .036 27 

6 .032 ' 31 
''f. 

10 .029 35 

12 .026 38 
", 

14 .024 ;.", 41 

16 .023 44 
~ ! ~' 

" 
18 .022" 

\ 46 
" " 

. " " , I ',~~' " , 
f . " 5 ' ,3' . '1/2 3 

Values of F(n) = «8/15)n-q/3)n +(2/15)n) 18n ~n4 TABLE 3' • 
.,.1, 

(F(ri». As lo~l~"as 0 Oc(0)tc)2n«F(n»~1 the aycrage Hamiltonij~;n expanden 

is expected to converge rapid~y. '. 

'. 

,~ /., \ 
•• oj,. • 

" 

.' , 

/ 
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FIGURE CAPTIONS 

I' 
Energy level diagram for a general sys tem with N Spi1i3-~ -;:'. 
, L 

Each value of M has degeneracy (H+-~N/2)), correspondL,~ 
to a binominal distribution. 

Figure 2.. The multiple-q~antum spectra of benzene oriented in a 

liquid crystal solvent. The number of allowed transitions 

decreases dramatically as ~M increases. 

Figure 3. The mUltiple-quantum spectra of benzene oriented in a liquid 

crystal 'solvent, using selective excitation of O-quantum and 

4-quantum transitions. 

Figure 4a •. Phase cycling can be used to create nk-quantum selective 

sequences, using phase shifts of rp=2+'-!n; The cycle of n sub-

cycles is more selective by one order in the average lLw:il.tonJDn 

theory expansion. 

b. The, cycle of 2n suhcycles formed by phase cycling cmd symme.tri-

Figure 5. 

Figure 6. 

zation is more selective by t,,!O orders. 

The analogy bet.Heen a phase cycled sequence consisting of :::ub·-

cycles "lith effective Hamiltonian,'] Jf<j> and a pulse cc"quCl1c.e Oi."l 

a hypothetical system with X. =X. Average Hamiltonian theory 
1nt 0 

can be applied to the pulse sequence. 

Possible pulse sequences for the subcycles in Figure 4. In 

Figure 6(a), time reversal sequences generate Jep'T'=-JCpT, so 

that Ox II <<oX ,11. but X contains multiple-quantum coherences. 
. 0 D,zz a 

In Figure 6(b), a WAHUHA sequence with a long cycle time has 

the same effect. 

" 
j 

-, 
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Figure 7. Pulse sequences form~ltiple:.:.qu~mtum experiments. a) is the 

genera1case~ '-1itp prep8"CationpropagatorU and mixing pro-

. pagator V. b) is the simplest nonselective mu1d.ple-q1..w.ntum . 
exper:tment. c) is formally equivalent to b) and reveals the 

Symmetry bet,.,een preparation and mixing. d) is a fully selective 

experiment, involving selective preparation, mixing, [Jnd 

·detection. 

Figure 8. . Schematic illustration of the effect of N-quantum selective 

Figure 9. 

sequences, in terms of an effective two-level system involving 

onlym =+N/2. A selective 900 pulse transfers the entire 

population difference between those two states into N-quantum 

coherence,· giving a gain relative to nonselective excitation 
. N· 

of N2 {see text). 

Modification of the symmetrized sequence of Figure 4(b) to. 

include phase errors 0i and timing errors I:: i • We assume, 

without loss of generality, that (e'>=<o,>=O. 
l. l. 

Figure 10. Schematic illustration of one effect of a-quantum cohercnccs 

Figure 11. 

on an N-quantum selective sequence. The sequence CCUDU; 

the population d:i.fference between the states m =+N/2 to be 

rotated about an arbitrary axis, and complete transfer of 

population difference into coherence may be impossible. 

Compare this to Figure 8. 

Sequences to select only N-quantum, 3N-quantum ••• (2k+l)N~ 

quantum coherences. a) General sequence. Note that jeep is 

inverted after every subcycle, and that the phase shift is 

ep=~/N, instead of ep=2~/N in Figure 4. b) j( can be formed 
o 
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with the pure double-quantum sequence (part (c)), which j.s 

inverted hy a7T/2 phase shift. 

"-, .. 



v---

, 

.. 

- N -- --
2 

N 
~+I 
2 

N 
2 

o 

.- 2 

N - -I 2 

N -2 

_ -51-

- ........ --
:::::::::::::::::::::::::::::::::~:::::::::::::~~~------------~--~--

• 
• 
• 
• 

• 
• 
• 
• 

• _... .... .u ___ ... ..-.. _ ... ' ............ .. _-' .~ .. ;..-.. ~ 

XBL 7710-10022 

.Fig. 1 



o 
~ ..... 
(.) 
0> 

0>0-c;.(f) 
N 0 
c...r:;. 
ro u 

CDW 

"'OE 
2?;:, c_ 
.~ § 
..... ::l 

°0 
I 
~ 

W 
It 

c: 

It) 
It 
C 

V 
II 
C 

I'f) 
II 
C 

N 
II 
C 

II 
C 

o .. 
c 

-52-

_J 3 
<l 
to 

~, .. 

lL"l.:: -" 

J :3 
<l 
It) 

o 

Fig. 2 



I'fj 
~ 

00 

w 

r' 

'-

.. i" ~1' ~,. 

n=O· n=11 

o Aw 

n=2 

2~w 

n=3 

36w 

Frequency 

Fig. 3 

n=4 

'. 

4Aw 

, . "',. 

.. ~ 

n=5 n=6 

5Aw 6A(f) 

I... 

., 

,( 

..•. 

"". 

'\..: 

~..,.. 

i 
\:11 
W 
t~ 



-54-

-&-

1 - I I I-"Co 
c: 

~-! <J .-J ---- --- .. - -- --- : 
: : -- : - : -- : -: --- : -- -- -- -io---~-

~-f). ..f-
<l 

~o 
~Co 
<1 

-0 -

Fig. 4 

-------------e-
I 
c: 

~ 
-e-: --, 

I 

C 

~-
-----
------
w . 

----------
---

c. 
i-..t 
<i 

~T"-'"~ ...... _ .. i ___ ~Ta'f"""~-;'~·""'!\'< 

-
----
G 

.. -.. --

...,0-
<l 

-.0 -'. 

0'1 
0) 
CD 
ro 

I 
(V) 

o 
CD 

I 

I 
; 



;:', '- 10 ~ .~ •• 

fI[ fit f)l 
d70 07cp&t2<? J!(n-I)q, , 

r--

.6.Tp I6.Tp·I.6Tp .! ..... , .............. 'ALp 

L! 

'" , 

~ intO) = $0,0'5: t < D.Tp 

~ Jl4>,I:::,.TpSot< 2 D.Tp 

~ 

® 

~ 

= cflI, \\,.s..,' (n-l)T.p'S t <nD.Tp 
In- J't' ' '\ 

Fig. 5 

1 .... _ 

6.T/ P 

CPz <Pz CPz 
,j 

l!.Tp IIl!.Tp 

'.~ r; 

¢z ,CPz' 

..................... 6.Tp 

.JI
int 

= j}/O' CPz = fl ip angle cp, phase z 

r-.J 

Jlint{t) = $0" 0 '5: t < D.Tp 

,'= fJ! "A~' '5:t <2D.T ' , o'tcJ> I P ,p 

• 
G 

o 

= cPI(n-oq,' (n-I)D.Tp So t < nb. Tp 

XBL 803-8945 

I 
\J1 
\J1' , I 



I-a. 
~ 
I 
II -1--

- (:L 

~ 

-'0 ..-

-56-

iX 
C) 
en 

« 
N 
<::t-
en 
OJ 

I 
M 
0 
0] 

...J 
0) 

>< 

~ ... " .• 

~-I 

-. 
...0 -

. 
00 

.r-! 
~ 

~ 

'" • 

'. 1 



-c' , 

,+, -57-

'(0) u 

90y' 90-, Y 

(b) Tp t, 

(c) 

90-
Y 

n-quontum 
(d) selective 

Fig. 7 

v·· 

t 2 

n-quantum 
selective 

I 
I 
I , , 
I 
I 

<Ix> 

,90y 

1 " 

XBL 803-8944 A 



N __________________ ~ 

H 

N 
I-t 

-58-

X 
H 

X 
H 

co 
'" co 
co 

I 
('Y') 

o 
co 

-' en 
>< 

co 

.~ --------.-----



• 

N 
H 

l-
.=> aU) 
m-
<L~ 
._.., 

0° .. _W -..-: ..... 
.• <{ ..... 
1-0 
00 
0:: 

)( 
H 

X 
.H 

r-
o:::t 
0'1 
ex) 

I 
M 
o 
ex) 

--' co 
>< 

( 



' .. 

, -59-

.;,--.... 
c: c: 

C\.I C\I 

~W 
t() 

+ 
~ ~a. 
,.--..... <l 

I 
c: I 

~ 
c: 

'C\J 

+ t() - + 
, ~--e- ~ 
~ 

<l 
-

-
-We: -+ + - ' c: 

I , t() 

c: + a. 

~ ~ -
c: 

\1J 
+ -I 

c: 

, 

c 
(.() 

+ 
~ 
<l 
----' ---------. -
C\J 

GO 
+ 
~o. 
<J 

-
(;() 

+ 
~a. 
<l 

I M .... 
en 
ex> 

I 
M 
0 
ex> 

~ 
-I 
co 
x .' 

"," 

-



• 

-e- , 

~ 
f{) 

I 

~: -G-
~l'J 

t 

.., c: 

~ 
01 

~-G-
I 

~o 

. 
.. 

.. 

1-oQ. 
<I 

",a. 
<1 

0-

~ 

... 0-

<I 

S 

-61-
.-': ':.~ ...... 

i~ 

(\J 

~. 
0- + 
~ c 
I ~ 

~~~ 
L~ 

r,..----..... 

II 
i1-. 

-~ 
~-G-I I 

.... 
C\J 

""-e-
g L_ 

I:: .... 

~.I 
I:: 

.... 
C\J ... 

~I 
I:: .... 

tl ·1 
.... 

I:: 
C\J 

-+ 

gl 
.... 

~I 
.... 
C\J 

g:L~ 
"-~ 

E 
:::l 

C ClJ 0 
::J U 

·CT C 
CU 

I :::l 
0 CT 

.! ClJ 
en 

~ 

<t 
\0 
.". 
m 
<Xl 

I 
M 
o 
<Xl 

...J 
en 
x 

r-I 
r-I . 
00 

..-f 
r:. 



:11 
o· 

T 

_r. ., 
.. 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



~ ,~. (r:(.~. 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

-.--.,.~ .. 

t~~~,.,~ -;,; 


