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This report is the second in a sefies of three companion
reports presenting the results of an investigation into the use
6f mathematical models for predicting subsidence caused by geol
thermal extraction. The simulation of results of the investi-
gation are summarized in the report, "Simulation of "Geothermal
Subsidence" (LBL 10571). The titles of the supporting reports
are listed below. \

Report No. SRR TR E K Title -

Physical Processes of Compaction LBL-10838
3 « Case Study Data Base LBL-10839

An additional report on the subject of reservoir models was
generated as part of this project. The report was produced in
1979 by Dr. George F. Pinder under subcéntract to Golder Asso-
ciates and is titled "State-of-the-Art Review of Geothermal
Reservoir Modelling" (LBL 9093).
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ABSTRACT

The Lawrence Berkeley Laboratory of the University of
Celifornia is conducting an ongoing research program aimed at
' improved understanding and control of ground movements caused by
geothermal power productlon. As part of this research program,
Golder Assoc1ates, acting under subcontract to the University,
_ performed an assessment of existing mathematical models for
subsidence simulation and prediction. This report presents
detailed analyses of the theory, power, usability, and perform-
ance of the seven models used in conjunction with this research.
The models used were: '

- Hand-calculation techniques

- The nucleus-of-strain method

- The one-dimensional Terzaghi consolidation method

- The two-dimensional boundarysintegral-equation method

-~ Two-dimensional finite-element coupled fluid. flow
and deformation

- Three-dlmen51ona1 integrated finite difference, coupled
fluid flow, heat flow, and porosity change

- The three-dimensional displacement discontinuity method.
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1.0 . INTRODUCTION

‘This report presents detailed analyses of the theory, power,
usability,sand perfornmance of the seven models used in conjunc-
tion with the report, "Simulation of Geothermal Subsidence"
(Miller et al. 1980). Each model has unique capabilities and
»eachﬂhas value in the simulation of geothermal subsidence.

A chapter is devoted to the study of each model. The models
are listed below.

Chapter o Model :
2 Hand Calculations ,
3 SUBSID -~ Nucleus of Strain ;
4 UPDOWN - One-Dimensional Consolldation
5 BIEM2D - Boundary-Integral-Equation Method
6 CONSOL3 - Nonlinear Finite Element
4 " CCC ~ ° = Heat-and-Mass Flow ' -
8 ;,NFOLD -

‘3-D Dlsplacement Discontinuities

In addition,,two users‘-manuals for programs developed or
modified by Golder Associates are. included as appendices A and B.
Appendix A is a users' manual for SUBSID developed on the basis
of nucleus-of—strain formulation. Appendix B is & users manual
for BIEM2D, a program developed by ‘John V. Bray at University .
College,. London, and modified by Golder Associates to solve geo-
 thermal problems. P _r“xj“jla;

Sample problems were used to test the facility of each
_model. Figures 1-1 through 1-6 present the sample problems.v
Material properties are summarized in Table 1-1. Table 1-2 is a-
summary of the sample problems. Solution efficiency is measured
o by‘the number of CPU seconds‘required to achieve solution. Val-
ues are for Boeing Computer Services' CDC Cyber A5 computers
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TABLE 1-1

MATERIAL PROPERTIES

LINEAR ELASTIC

E-LOG P COMPRESSIBILITY

1.44 x 1016
(bulk modulus)

X

0.25
(Poisson's ratio)

<
]

.15

(compaction coefficient)
e = 0.3 :

(void ratio)

Q
Q
[l

my = 1.111 x 10-6 psf
(coefficient of volume comp)
Cy = 1.736 x 10-6 ft2/sec
(coefficient of consolidation)
k = 1.208 x 10-10 ft/sec
(hydraulic conductivity)




TABLE 1-2° :
. SAMPLE PROBLEM SUMMARY
(from Miller et al. 1980)

PROBLﬁﬁuiM‘«“HW — DESCRIPTION i

1 Uniform linear elastic material properties throughout
© 'half-spaceé. © ' ¢

f"s;'

Rock mass saturated:from surface downward. .

Reservoir interyval bounded above and below by
impermeable boundaries. MR

Initial poré'pressurée distribution as shown:in-
) Figure 1 1. :

Sy

Uniform pressure drOp of 5 04 x 104 psf in reservoir.

2 .. ... Linear. elastic reservoireand elsewhere except shale.
o layer; infinite reservoir.

Shale layer e-log p compressibility.‘kh
q;Impermeable boundary below reservoir.”
Constant head boundary at top of shale layer._‘

%Uniform pressure drop of 5 04 x 104 psf maintained
-“infreservoir.z~ :

' 'MInitial and final. pore. pressure distribution as .
'shown. .

3 VFiniteffthin“reservoir of disk shape, = i
\%??*“?Impermeable boundaries around reservoir.

‘Uniform’ 1inear elastic material properties
throughout.;fr__\kJ' _

‘ T {l‘;;i'\.‘v?%f“'; S
Initial pore pressure distribution as shown.~

‘WUniform pressure drop of 5.04 x 104 in
reservoirq
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TABLE 1-2 (Cont.)
SAMPLE PROBLEM SUMMARY :

PROBLEM

DESCRIPTION ‘

4

Same geometry as prohlem'SJ‘“

“Properties of shale layer above reservoir "e;iog p

compressibility.

Impermeable boundary below reservoir.‘
Constant head boundary at top of shale.
Besides shale layer, material linear. elastic.

Uniform pressure drop of 5 04 x 104 psf maintained

in reservoir.

Initial and final pore pressure as shown.

Thick, cylindrically shaped reservoir.

-Uniform elastic material properties throughout.

Uniform pressure drop of 2.16 x 104‘psf in reservoir.
Impermeable boundaries surrounding reservoir}

Constant initial pore-pressure gradientfofléi;ez
psf from surface downward.

Wedge-shaped reservoir.

Uniform elastic material properties;throughout.
Uniform pressure drop of 2.88 x 104 psf in reservoir.
Impermeable boundaries surround reservoir,:~

Constant initial pore pressure gradient of '
61.92 psf/ft., : :




11 .,

operéting under EKS1l. Cost (1979) is approximately $1 per CPU

second.

- 1.1 REFERENCES

Miller, I., W. Dershowitz, K. Jones, L. Meyer, K. Roman, and M.
Schauer (1980). "Simulation of Geothermal Subsidence," pre-
pared for Lawrence Berkeley Laboratory, University of Cali-
fornia, Berkeley, LBL 10571.
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2.0 it oif - HAND CALCULATIONS ‘-

2.1 INTRODUCTION & =« o =eb' o spiiim g o

There  are a- number of techniques available- which allow .an
investigator to ‘estimate. ‘subsidence - in simple .systems. -For this
study we have selected gghqnd-calculationrtechniquevthat'computes
vertical compnction of the‘reservoir using one-dimensional equa-~
tions. Propagation of the compaction to ground surface is '
modeled using a technique developed by Geertsma (1973) which
treats the reservoir as an infinitely thin, horizontal disc. A
relatively thick reservoir may be modeled using a stack of these
disks.

2.2 SOLUTION METHOD - GENERAL THEORY

2.2.1 Theory |

©2.2.1.1 Compaction

, The vertical compaction of the reservoir is computed
assuming vertical strains with constant vertical stress. Com-
panion Report 1 (Miller et. al. 1980) presents the governing
equations for. this case. The compaction coefficient (Miller et
'al 1980 equation [18]) is‘ :

[2—11

e
P ]

where: K 1is the bulk modulus of the reservoir miterial, which"
is assumed to be isotropic and elastic
Ks 1is the bulk modulus -of the solid ‘matrix




14

A is Lame's elastic coefficient or the reservoir
material ‘ |
G is the shear modulus of the reservoir material.

It is commoniy;assumed~that;Ks,is much greater than K, .
which gives Cp the same value as used in the conventional .

(Terzaghi) effective stress law: Cp= 1

Theiémouht,of gompaction in'a_Iayer'duekto,pre5suré drop,
AP is: ..

where 2y, Z{ are the elevations at the base and top of
the layer.

The amount of compaction due to\temperature drop AT is:
Zy

SKe&_ ATdz
A+2G

[2-2b]

where a is the coefficient of isotropic linear thermal expansion
of the reservoir material.

If the reservoir is homogeneous and of thickness H, then the
total compaction-is:

VRt 3IKK
[2-3] c’.—._H(c:-;m AP+ 355 AT) _
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where AP and AT are vertically averaged. In order to use

equation [2-3], it is" necessary to know AP and AT from reservoir-
flow modeling calculations.

An alternative means of computing the one-dimensional com-
paction is based on knowing the volume of fluid produced. The
resulting equation is based on adding a term’ for the thermal ex-
pansion of the fluid to equation [2 3] of Companion Report 1
(Miller et al. 1980):

[2-4] Sonae AT g
C=H |+H_._+-ll-( ) A+ 26G
Ks Kf Ks S J ;

' where AVw is the volume of fluid produced divided by the

total :
V is reservoir volume

n is the porosity i SR , o

ae is the coefficient of volumetric thermal expans1on for.

the reservoir fluid
£ is the bulk modulus (1/compressibility) of the reser-.
- voir- fluid.vs

K

Equation [2-4] assumes that the bulk modulus .of the fluid is

’ constant and thus is not appropriate for steam—dominated i
rreservoirs.

If the assumption is made that the bulk\modulus‘of'the
matrix material, Kg, is much greater than the other elastic
parameters (A, G, Kg, Kf), then equation [2- 4] becomes
’simpler.
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. -
[2-5] o _A___\_/u._an,AT L T
C=HCm |—— nff + 3KA AT
- ) AP
m ®e
N _

A common nonlinear approach to estimating compaction 1s
,based on Terzaghl s one-dlmensional e-log p relatlonship. The
relationshlp is 1n terms of the void ratio e:

[2-6] e - €o = Cc log)o (———-—-———-% ;AP>
. : (-]

where: e is”the void ratio {-volume of voids \ -
, ' -volume of solids:

P 1is the effective vertical compressive stress =

', overburden weight minus the pore pressure

C. is the compression index, a material property
€o:» Po are the initial state. o

Assuming that the volume of solids is constant, the vertical

compressive strain is:

[2-7]1 &, = S=€e
l+e,

Two alternate forms of the relationship are based on d1ffer—
entiating it and are only valid for small changes in P:

[2-8] e =e, + a AP
or 6\/"‘ ava
1 +¢€,
where: ay = de = —.434C,
dpP P
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2.2.1.2 Subsidence

¢

Geertsma (1973) presented a simple and powerful technique

 for computing ‘the’ ground surface deformations due to ‘an infi—
nitely thin disk-shaped reservoir. The reservoir and the sur-
rounding’ material were assumed to be of. identical ‘materials with

’ isotropic linear elastic properties., The following presentation_
is adapted directly from Geertsma. f' '

.»»\J ’

The disk—shaped reservoir is assumed to be of radius R andf'
buried at depth D. The ground movements at a radius r from the
point overlying the center of the reservoir are:

[2-10] g 26 o (1 _-pe R
| \uz_ 2C ———-—-——,ZG&A»R‘ e,. }d.,(Q )Jo(e,-)d_e
LTI e O T .

GO

W re-ul ur = 2e 2822w (™0, (6R) J, () a6
o 2G+2 |
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where Jo and Jj are Bessel functions of zero and first
order, respectively.

Geertsme. (1973) went on to tabulate specific values of the
~integrals in equations [2-10] and [2-11] in terms of speciflc
values of the radius ratio p = r/R and the depth—to-radius aspect
ratio of the reservoir n = D/R. The tabular values are used in
the following equations. '

[2-12] Uz =—2c 2E22
z 2Gezn AP

[2-13] Uy
2G+2)

& (pn)

Specific values of'A and B are'given in tablesb2-1 and 2-2.

| Note that the ratlo ﬁﬁxﬁ_ equals l-v where v = Peisson's
ratio. If the method is used for cases where the reservoir
propertles are different from the overburden properties,,the
compaction C should be computed us1ng reserv01r properties, but
the Poisson's ratio for the overburden shqgldvbe used when com-

puting 2G+A .
2G+2 A

2.2.2 Numerical Methods

Application of the technique is straightforward. The
reservoir compaction is determined using equations [2-3], [2-4],
or [2-5]. The surface deformatlons are then computed u31ng
equatlons [2-12]) and [2 13} and tables 2-1 and 2-2,
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TABLE 21  VALUES OF A FOR RANGES OF VALUES OF pE /R AND n= D/R

oAby i TepC o072 - 04 0877 - 087 10 - T 12 14016 18 20 130
00 10000 0803 06285 04855 03753 . 02929 . Q3318 01863 01520 01258 - 010S6  C.OSI3
g2 10000 07983 {06201 S 0A77I ' 0.3683 02876 02279 C0.1835 01500  0.1244 01045 0.0510
. 04 10000 07785 05926 04508 03473 02720 , 02167 01734 01442 . 01202 0104 00502
“Hili06 T10000 0739 05377 0A043: 03124 1 02470~ 01969 01628° 01351 01135 " 0035 00488
68 10000 06301 04433 0338 02658 02147 01762 OMES 01234 0104 00501 00470
:010- /05000 03828 03105 - 0.2558- 02130 - - 01787 :0.1510- “0.1285 - -0.1102  0.0951  0.0827 ° 0.0449
12 00000 01548 01871 01795 01621 , 01433 03257 01103 0095 00848 00743 004N

£F 224000000 SH.0077.. 01101 01216° 7 61197:7701120 - 04024 /00525 |+ 0.0831¢ 10.0744 * 10.0667 - 00398
1§ 00000 00400 00682 00829 - 00876 00865 00224 00768 00707 00645 00589 00370

© 18 . 00000 00243 00449 - D.0580 % 0.0547 <+70.0668 ©-0.0653 00633 . 0.0587.7.0.0557 . 00516 00343 -
20 00000 00168 00312 00418 00485 0051 00528 00520 00502 00477 00450 00315
30 00000 00042 00082 00118 00149 00174 00193 00207 0026 0021 0022 00138

s

ST <y N Loe Cowe Lo ;’,g
~ep 8RR FRA S . N EEEE
Ik i =
ST EAE $345% R IR I TR S A DA I

TABLE 2-2 VALUES:OF B“FOR RANGES OF VALUES OF p= /R AND ¢= D/R
s 00 02 04 06 08 10 12 14 1.6 13 20 30
00 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000  0.0000
02 01015 00954 00804 00628 00472 ~ 00350 00259 = 00194 00147 0013 00083 00032
04 0213¢ 01979 01622 01238 00317 - 0.0675 :10.0500  0.0375 - 0.0285- 00220 - 60173 0.0062
06 03530 - 03163 02443 01763 01298 00949 = 00703 00529 - 00405 - 00314 00248 . 00030
08 05721 04573 03151 02197 01570 ~ 0.1147 00854 00648 00500 00391 00311 00117
10 e 0545 03122 02355 01693 04252 00945 00726 . 00567 00448 00359  0.0139
12 05235 04278 03072 02237  0.1666 <0265 © 009761  0.0764 - 0.0605 ' --0.0485  00393. 00158
14 0.3293 - 03026  0.2432 0.1958 0.1535 0.1208 0.0958 0.0766 0.0613 .0.0504 0.0414 0.0174
16 02338 02228 01952 04650 01358 01110 00907 00743 006l 00506 00422 00185
18 01767 . 01711 01566 01377 01180 00397 00838 00703 - 00590 00496 00420 00194
20 01390 01358 01272 G1I52 - 01018 . 0.08%5 00762 - 0.0653 . 00559 00478 - 0.0410 00189
30 00580 00576 00562 00541 00514 00483 - 00449 00414 _ 00380 ° 00346 00314 ~ 00190

o Tag ey ¢ s Tyl
ST BN < - i i A
H e LR aN e H PR CYTTE fro4 St ay oy

- ki o ER N U R 4 i DR R i ¥ LR

from Geertsma, 1973
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2.3 CAPABILITIES AND LIMITATIONS

2.3.1 Geometric Capabilities and Limitations

The proposed method%is clearly restricted to regular reser-
voir geometrles., 1t is, however valid to superlmpose the ‘

effects -of 2’ number of dlsks. In th1s way it is poss1b1e to sim-
ulate falrly complex reserv01r geometries. To do thls well - how-
ever, more complete and exten51ve tabulat1ons of the 1ntegrals in

equations [2 10] and [2 ll] should be developed.

The ground surface is assumed to be horizontal--an assump-
tion that might be poor in mountainous areas. '

The model computes deformations only for the ground surface
and provides no values for subterranean deformations. It does

not compute stress.

2.3.2 - Flow Capabilities and Limitations

The model does not simulate flow.

2.3.3'AMaterial Properties

The model assumes a linear elastic isotropic homogeneous
half-space. All of these assumptions are questionable. The
model can be used with nonlinear reservoir properties when com-
puting the reservoir compaction, but this will induce some error.

2.4 USABILITY

The method is very simple to use and requires the minimum
amount of input data.
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2. 4 1 Resume of Performance on Sample Test Problems
and Case Studies . o

; +. PO

,}l

Reservoir compactions and surface subsidence profiles were

" determined for each sample problem and case study. Where neces-

sary, the reservoir was made axisymmetric and the half—space _
materia) properties were made uniform so that compaction and
subsidence could be approximately calculated by hand.

2.5  PERFORMANCE ON ,SAPPLE,.iEST,.,,?RQﬁLEiAS L

2.5;i; Sample Problem 1: Confined Infinite Reservoir

,’

The compaction coefficient for Sample Problem 1 (Figure 1 1)
is computed as:

S 1 ST R 8G

A

'K is not specified but for a typical value of Ks of 109 psf

the ratio K/K is almost zero. Thevaluescﬁ v and G are readily
computed (see Miller et al. 1980 for 8 list ‘of conversions) from
G =jf§§i;ﬁ?{“ nd A = K - 2G/3. The resu1t4is Cp = 3.86 x 10-7

psf ~. The pore—pressure drop is 5 04 X, 10 psf thus for the N

50- foot reservoir layer ‘the compaction is

C = 50(3.86 x 1077 x 5.04 x 10%) = 0.972 ft.

Since the reservoir'is assumed infinite in:extent, coeffi-

| cient A equals 1 0 and thus the ground subsidence equals the o

compaction times 2(1 v) or 1 458 feet. There is no horizontal
movement. '




22,

Using equations presented in Companion#Reportfl‘5(Miller:et °
al. 1980), it is possible to compute changes in the horizontal
stresses and in the pore volume as well as the quantity of fluid
produced from the reservoir. h - ' '

2.5.2 Asaﬁple:Problem 2: Infinite Reserv01r |
‘With Permeable Confinlng Layer S AN N

In Sample problem 2 (Figure 1-2), a permeable boundary
exists between the reservoir 1nterva1 and the overlying material"
consequently, deformations and stress changes must also be cal-
~culated for th1s layer. D1sp1acements -and "~ stresses w1th1n the
reservoir interval w111 be the same as those obtained in sample
problem 1. ' ) c .

The compressibility assumed for the confinlng shale layer
was nonlinear, represented by an e-log p type expression. Dis-
placements in the shale layer were therefore calculated using
classical soil mechanics formulations. Pressures were assumed to
be steady-state, therefore, the calculations represent ultimate
dlsplacement of the shale layer. ' S N

Assuming the uniform initial v01d ratio eo throughout the
conflnlng 1ayer, the total compaction of the 1ayer is g1ven by

Zz
Ce

l+e,

C=

109‘ ciZ'
%
'

Because the upper boundary of the clay or shale layer was assumed

to remain at a constant pore pressure, the pore-pressure change

varied with position in the layer from a maximum of 5.04 x 104 psf

.
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»atlthe,reservoir top to zero at.theﬂtop‘of the .shale layer.. :
(Figure 1—2) Consequently, effective stress changes will also
vary with position. - The initial effective stress varied from
4,104 x 104 psf at % = 500 feet to 2.45 x 104 psf at Z =

570 feet.' In equation form: )

5

T, = 1.593 x 10° - 236.6%

(]

S S

After steady-state pressures have been reached, the effective

stress varies from}4.104 x 104 psf at Z = 560‘feef to - ' '

' 7.49 x 10% at 2 = 570 feet. An expression for the final
effective stress is thus: s SRR SRR =

T = -2.007 x 10° + 483.4%
Substffutiniviﬁese exﬁ}essidns*ihke'theiabOVe“thatioﬂi"

‘57570", ‘ : g Dol
‘Oq. /—2 007 X105 + B34 2 dE -
\ 1593 x10% - 23¢.CE,

0

N " -

SR
—

| Integratlng and - substituting Cc =0.15 and’ eo'= 0. '3 results

in uz '= 1,98 feet. Similar to sample ‘problem 1, this displace- L

ment would also be magnified by 2(1- V), giving ‘a* subsidence,of
2.97 feet at the surface. Adding the deformation of the shale
layer to the. deformation of the reservoir 1ayer yields 8 total‘
surface,displacement of 4.425 feet for sample problem 2.

P :

2.5:3 “‘Sample Problem 3: ’Confined Finite Reservoir

Problem 3 (Figure 1-3) is like problem 1 except that the
reservoir has a finite lateral extent. The reservoir compaction
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is the same as was computed in problem 1 (0.972 ft). If one as-
sumes’ an axisymmetric reservoir, the surface subsidence can be .

calculated using equation [2-12] with n = 595 = 1.19.
| | | 500

' u, = -2(.972)(.75)A(p, 1.19)

A plot of surface subsidence as a function of distance from

‘the reservoir centerline is prgsented in Figure 2-1. The maximum

subsidence is 0.342 feet.

2.5.4 Sample Problem 4: Finite'Reservoir
With Confining Layer

Sample Problem 4 (Figure 1-4), is like problem 2 except that
the reservoir has a finite lateral extent. The reservoir and
shale layer compaction and the resulting surface subsidence may
be approximately calculated by simplifying the system. Assuming
that compaction in the shale occurs only in that portion of the
layer vertically adjacent to the reservoir results in a lower
bound on surface subsidence. At steady-state the compaction of
the shale will be 1.98 feet, as is computed in problem 2, while
the reservoir compaction is 0,972 feet. If one assumes cylindri-
cal symmetry, the surface subsidence can be calculated using
equation [2-12], modeling the two layers with disks at depths of
535 feet and 595 feet: | :

ugy = -2(.75)(0.972A(p, 1.19) + 1.98A(p, 1.07))
Uniform material properties in the half?space with Péisson‘s

ratio equal to .25 have ‘been assumed. . The surface subsidence is

plotted in Figure 2-2.
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Surface subsidence {feet)

~

0 . + >
-0 200 400 .560 ebo 1000 * 1200 1400
Radigl distance from center (feet)

FIGURE 2-1: HAND-CALCULATION METHOD SURFACE SUBSIDENCE
SAMPLE PROBLEM 3 S

-

Surface subsidence (feet)

200 ..:400 600 ~800 . 1000 : 1200 1400 © . ...
_ Radicl distance from center(feet)

FIGURE 2-2:0 HAND+CALCULATION METHOD SURFACE SUBSIDENCE
SAMPLE PROBLEM 4
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2.5.5 Sample Problem 5: Thick Finite Reservoir

The reservoir in sample problem 5 (Figure 1-5) is like that
in sample problem 3 but is 10 times as thick, and the préssure
drop is only 2.16 x 104 psf. The material properties-are the
same. The compaction of the 500-foot interval is then:

C = 500(3.86x10"7)(2.15x10%) = 4.17 ft.

Assuming the reservoir is axisymmetric, the surface subsidence
may be calculated using equation [2-12]. The reservoir may be
modeled with either a single disk at the reservoir mid-depth or,
‘more accurately, with a number of disks distributed over the res-
ervoir depth. For a single disk:

u, = -2(4.17)(0.75) A(p, 1.5)

Ten disks spaced 50 feet apart from D = 525 feet to D = 975 feet
represent the thick reservoir more accurately and give:

z

10
u, = -2(4.17)(.75)1/10 2, A(p,7,)
K=1

with Ny = 1.05 + 0.10(k-1). The surface subsidence for both the
single disk and the stack of 10 disks is plotted in Figure‘2—3.

2.5.6 Sample Problem 6: Confined Prismatoidal Reservoir

Compaction and subsid¢n¢e due to & uniform pressure drop of
2.88 x 104 psf in the prismatoidal reSérvbir df prdblem 6
(Figure 1-6) can be approximately caiéuiated by hand. The ma-
terial properties . are the :same as in sample problem 1. ' The
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AR AR

O Single disk.
O Ten disks

IR - I

200 400 600 800 1000 1200 1400
Radial distance from center (feet)

. . FIGURE . 2-3

HAND—CALCULATION METHOD, SURFACE SUBS IDENCE

:s.xSAMpLE ‘PROBLEM ‘5 (SINGLE DISK AND -10-DISK . STACK) LT
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prismatoid can be modeled as being uniformly 135 feet thick to
give a one-dimensional compaction of:

C = (3.86x10"7)(2.88x10%) 135 = 1.50 ft.

By molding the prismatoid into a cylinder of the same
volume, the approximate surface subsidence caused by the pressure
drop can be determined. The corresponding cylinder thickness is
135 feet, the depth is 732.5 feet, and the radius is:

R = 600 = 338.5 ft.

Thus, n = 732.5/338.5 = 2.16 and the surface subsidence is given
by:

u, = -2(.75)(1.50)A(p, 2.16).

This is plotted in Figure 2-4. The actual surface subsidence
profile is not axisymmetric, and the point of maximum subsidence
is offset toward the thick end of the reservoir.

2.5.7 Case Studies

The reservoir interval compaction and surface subsidence
were calculated by hand for Wairakei, The Geysers, and Austin
Bayou Prospect.

Vairakei was assumed‘to be a one-dimensional system, as the
reservoir horizontal extent is much greater that its depth. A
reservoir compaction of 2.25 feet was determined, giving a sur-
face subsidence of 3.6 feet.
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The Geysers system was assumed to be axisymmetric. 'A reser-
voir compaction of 1.03 feet was calculated. Two different
models were then utilized to predict surface subsidence. A
single disk modeled the reservoir in one case. In the other

model, 12 disks were used to better represent the vertical extent

of the reservoir and the lateral distribution of pressure and
temperature change. The maximum subsidence predicted by the two
models was 0.344 and 0.410 feet.

Austin Bayou was also modeled as being axisymmetric. The
compaction of the reservoir interval after 1000 weeks of pumping
‘was determined to be 5.31 feet. Modeling the reservoir interval
with a cylinder of equal volume gave an axistmetric surface
subsidence with a maximum of 1.29 feet.

2.6 CONCLUSIONS

The hand-calculation method presented above provides a
simple model which is applicable to a number of systems. It is
easy and inexpensive to use.

2.7 REFERENCES

Geertsma, J. (1973). "Land‘Subsidence Above Compacting 0il and
Gas Reservoirs," Journal of Petroleum Technology, SPE ‘3730,

Miller, I., V. Dershowitz K. Jones, L. Meyer, K. Roman, and M.
Schauer (1980). "Simulatlon of Geothermal Subsidence,"
prepared for Lawrence Berkeley Laboratory, University of
California, Berkeley, LBL 10571.
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3.0 - NUCLEUS=OF-STRAIN MODEL "SUBSID"

3.1 INTRODUCTION _

H P e
! ey e L ’ >
IR e e

A program named SUBSID thatkwanbased on’ a ‘nucleus-of-strain
formulation to calculate displacements and stresses due to reser-
voir pore pressure changes was written by Golder Associates. The
'nucleus-of—strain, or center of dilatation, solution was origi-
nally developed for point temperature changes in an infinite

space (Goodier 1937). This solution was later used by Sen (1951)
to calculate stresses and ‘displacements due to a. nucleus of
strain in an infinite half-space. It was also used by Mindlin
‘and Cheng (1971) to calculate ‘stresses -and: displacements ‘both
interior and exterior to & spherical inclusion with a uniform
temperature change. A point-pressure change can be treated in a
similar manner. Geertsma (1973) ‘calculated analytically the
.‘surface vertical and horizontal" displacements .due "to a uniform
pressure change over an infinitely thin disk in a° half-space by
integrating nuclei of strain over the disk..r.

In SUBSID, the Mindlin“and Cheng (1971) solution for a uni-
form spherical ‘témperature’ (of pressure) change; transformed to
"Cartesian. coordinates, was used. Arbitrarily shaped reservoirs
may be modeled ‘by ‘any number of ' spheres of arbitrary radii. The .
system is constrained to be & homogeneous,‘isotropic, linearly
- . elastic half-space. ST ; LA

3.2 ~SQLUT10N'METHOD~55GENERAE’THEORY*22 DY SR R L

S

3201 THEngficafaacafa;g:;;ga;;u;;;

The displacement field interior to a spherical nucleus of
-strain with strength B is given by ' :

£
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[(3-11 -, _a% Y 4 3-4dVY y-_‘i@"'_c).y
. 3 a Rgs Peg Rz_s

L 4

VE 3 ‘ Rz st ]

where: B :

oN < o

N R HT

XsY,

= l-v 3

o P
1+V -2 Ap for a pressure change

1+v

i oAT for a temperature ‘change ..

sphere radius

Poisson's ratio

(22 + y2 + [z+c]2)1/2

depth of sphere center \

3(1-2v)/E compressibility -

modulus of elasticity

coefficient of thermal expansion

Cartesian coordinates of observation point

Exterior to the sphere, the. displacement field is given by
1dent1ca1 formulas with 1/a3 within the brackets . replaced by
1/R1° (vith Ry = [x2+y2+(2z-c)2]0:5y,

The stresses in the sphere interior are:

o =E_2%| 2 a-ev._ (a-w)sx‘-»cg_(zm)—nzv(z*C)‘.,,sox’z(?—-*C)
“l+v 3 a: R.> R,% .Rz :
2 s s-gv _ (3- qv)sY +¢,z(z+c) )zv(zw) 3oyz(l+c—)
3 a° Rg3 e . Rg® R oo o Ry 7 ;
_ ,
Oy = E. 3 z _ 3(z.+c.)" |ez(z+c) BOE (2+C)3
Tiwoe a2t RS RS R27
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_ =_\E,5 xz>‘ - _'lOZ{Z&C! -"a PN s

=
Tvz e "B a%p —L— _loz(z+c)
EETRU AP RE . |3EC Rp2
: -L' ‘_=;;-'E- S ,»f”X o OZ_ (E-ic! T oyl .
=T, a8 R, S 3Z+C- ~ R,? o

The exterior stress fieldﬁisii

JE.a’s[ . 3-8V ez@+c)-nzv(z+c) s/l L3 uv oz(z+¢))

i SRRt R &= sx( r-ILI
oveE a%8[1  2-pv_ezErc)-12v(zee) C3y A+ B 195_(;:9_)
AT [ R,*
AL MNP M 12711 - (?--*C)_,, 207 (20€) mfr-cY ;

l+v 3 [R* R} R,% R,7 - RE

; . .
[3—3]» -

Txy“ l*‘\) /6

Tye - -,—-— a% 2,

SR

AR L o l+v 2. R s - 3 i : , Rz
In the preceding equations, positive normal stresses 4indi- "
cate compression. “The stresses -are- relative ‘to the initial.
,stressifieldlin'the,helf-space.v The sphere ceénter has been as-
sumedtto be at~(x,y,2) =>(0;O;c),rbut%1t7maysbe taken at (xq,
Yosc) ‘and x‘and y{in’equetionST[ll;ﬁlzl, and [3]-being -
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replaced by x-xo and y-Yo. The stress and d1sp1acement .
fields that are caused by a number of : spherical 1nc1u51ons 1n the
half-space are found by summing the contributions due to each

sphere.

If a portion bf the feservoir being modeled is of a differ-
ent compressibility from the rest of the half-space, that effect
may be included by adjusting the pressure change in -that region,
~taking ' " - - N

(AP) actual (Cb)actual,
(Cb)half-space

(AP)equivalent =

This adjustment is only approximate, however, as the effects of
"soft" and "hard" nuclei of strain cannot be linearly super-
posed.

3.2.2 Numerical Method

In SUBSID the contributions to the stresses and displace-
ments at a particular point in the half-space from all spherical
nuclei of strain. are calculated using equations [3-1], [3-2], and
'[3-3] and summed. '

For most reservoirs, the total yq}dme of the spheres used to
' model the reservoir will not be equal to the volume of the ac-—
tual resefvoirQA In these cases; each sphere pressure change (4p)
should be.ddjuSted so that Ap = Volpe/V, whére‘V is the sphere
volume and V45 and Apy are the actual reservoir volume and
pressure change represented by the sphere. This adjustment:makes
the stresses and displacements exterior to the o

sphere correct, as there; Ap and V appear only in the combination
ApV.,VHowever,pin the interior of: the sphére, the sphere volume .

o

occurs both alone and in the pV combination in the expressions
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for displacement (see equation {3-1]) and normal stress’ (see
equation [3-2]). These quantities, therefore, will be incorrect.

The:program outputs displacements; normal stresses; shear
stresses, and mean stress Om = 1/3 (0x + Oy + O0z) at observation -
points chosen by the user in the semi-~infinite space.

3.3 CAPABILITIES AND LIMITATIONS

: 3.3;1‘wGeometric Capabilities and Limitations .

A reservoir may be modeled as & single sphere, as a linear -
array of spheres in the x, y, or z_direction; as & rectangular
array in any xy plane; or as a disk-shaped array centered at x =
y = 0 in any xy plane. Any number of arrays of one of these six
types may be used, but different types may not:be combined. Each:
line or rectangle is made up of an arbitrary number of spheres
with: arbitrary‘but equal radii. - The: sphere center: spacing is
constant and specified by the user; in the:rectangle the spacing -
of ‘centers :in the x and'y directions need not.be the same. A
disk is made up of 1, 9, 25, 49,:81, 121, or 169 spheres. - Obser-
vation points areVSpecified'similarly'on lines in the x, y, or z
direction or in rectangular arrays in any xy plane. - Any combina— ,
tion of lines and rectangles may be used to form the observation
array. ‘The program is ‘now dimensioned to allow 500 observatlon
points and:a total:of 700 spheres. and: observation points.:: fThefa
arrgy sizes may ‘be- easily;changed,to,flt any- size,problem.»;The;x
unlts}bf»lehgthVandfstreSSzxhat»arenuSedlneed;not%bezconsistent¢%z

. R R B T T A S
IPEEE SCHEE R S S A RN RELTLEL BT E R A T “,‘:_x';,;.u’

In a number of problems, stresses were: calculated in-psi. and
displacements in feet. ' ‘
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3.3.2 Flow Capabilities and Limitations
Flow is not considered in SUBSID. The material in,the'half—
space  is assumed: to react:instantaneously to & pressure.:change in

the - reservoir. -

3.3.3 Material Properties

The reservoir and the surrounding material are assumed to be
made of the same homogeneous, isotropic, linearly elastic mate-
rial. The material properties specified by the user are Young's
modulus: E and Poisson's.ratio v. - '

3.4 USABILITY

3.4.1 Documentation-

For further discussion of the nucleus-of-strain method see
Geertsma (1973).- A users' manual developed by Golder Associates
is included as Appendix A. The manual includes a discussion of
input parameters, a program listing, and a sample problem.

3.4.2 Input Ease

Input .to SUBSID is straightforward. It is. compact if the

reservoir is of a regular shape with uniform pressure changes so

that combinations of disks, rectangles, or lines form an appro-

priate model. Hovever, .if the reservoir is large and irregular -

in shape or if the pressure change varies within the reservoir,
many single spheres are required for the model, and the input can
become lengthy.
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3.4.3 Output Control and Comprehensibility

The user specifies at which points in the half-space dis-
placements and stresses are to be output; Also output are the
half-space material properties, the coordinates of the sphere
centers and the observation points, and the strength and radius
of each source sphere. Card images of the reservoir spheres
input and the observation points input are also printed.

3.4.4 Solution Efficiency

Solution cost is directly related to the product of the
number of sourEe spheres and the number of observgtien points.
Cost in CP seconds is shown in Figure 3-1. For a three-
dimensionaltsolutieh,nSUBSID is extremely efficient.

3.4.5 Resume of Perfermance on Sample Problems
and Case Studies

Three sample problems, (3, 5, and 6) were solved with
SUBSID. Surface displacements from problem 3 were compared with
. Geertsma's (1973) analytic solution for ‘a uniform ‘pressure drop
- on an 1nfinite1y thin disk. A,superposition.ofvlo of Geertsma's
disks was used to calculate surface displacements to compare with
-those from'problem's;‘ The Geertsma displacements agree with the
best SUBSID displacements to better than 1 percent in problem 3
and agree to better than 2 percent 1n problem 5. No independent
,solutlons wvere available to: compare with ‘the’ ‘calculated surface
displacements from the prismatoid of problem 6. In ell cases,
the stress and displacement fields within and in the immediate
neighborhobd'of the actual reservoir are not accurate because
sphere arrays.do not conform well to the actual reservoir shape.
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‘ Two case studies, The Geysers and Wairakei Were modeled
w1th spherical nuclei of strain. B - i

3.5 PERFdR'MANC_E’ " SAMPLE‘ jﬁRdeLf:Ms{ i

3.5 Sample Problem 3 Confined Finite Reservoir“

Sample problem 3 (Figureal:3) was run with SUBSID, using
disks of 9, 25, and 169 spheres. In all cases the pressure drop
in the model reservoir. had to be adjusted because volume of the
disk of spheres was not the actual reservoir volume. Models with
9, 25, and 169 spheres required O 1, 1.1, and 3.2 CPU seconds,
grespectively.‘ The sphere centers for the three cases were taken
v at z = 595 feet.i The geometries and. applied pressure drops were
. as follows.; SRR g SRR '
Case 1: ‘9. spheres arranged in two rings

o a =1/3 R = 166.67 ft |
V = 40/9 Vo = Ap = 9/40Apo = -11340 pst

. Case 2: 25 spheres: arranged ‘in. three rings
a=1/5R = 100 ft
Vo= 8/3 Vo -+ Ap = 3/8Apo ='-18900 psf
5#Case'3:~'169 spheres arranged in seven‘ringsﬂ\
aoiooao= 1/13 R = 38.46 ft T
Y= 40/39 Vo * Ap = 39/40Apo =:—4914o psf -

P 3sphere radiiz

=

=2

o

L I
®

L]

R = reservoir radius
V = volume of model reservoir

Vo = volume:of actual reservoir
Ap = pressure change in spheres
pressure change in the actual reservoir

o>
o o
o
n
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Surface vertical and horlzontal dlsplacements along y=20
are shown in flgures 3 2 and. 3- 3. Table 3= 1 glves w(O 0 0) and
u(500,0,0) for the three cases and for Geertsma's analytlc solu-
tion for a pressure drop of 50 400 lb/ftz on an 1nf1nitely
thin disc at z = 595 feet. The 169 -sphere d1sk comes closest to
matching the aspect ratlo (h/R) of the ‘actual- reservoir however,
the dlsplacements from even the rough 9—sphere model are in '
agreement with the more precise values.

TABLE 3 1
COMPARISON OF VERTICAL AND
- HORIZONTAL -SURFACE DISPLACEMENT .
SAMPLE PROBLEM 1

VERTICAL DISPLACEMENT —HORIZONTAL DISPLACEMENT

AT SURFACE ' AT SURFACE"
MODEL w(0,0,0)(ft) u(500,0,0)(ft)
9 spheres -.3608 -.1493
25 spheres -.3487 2 : . =+1430
169 spheres -.3421 - =-.1398

Geertsma » -.3419 ‘ _ -.1398

3.5.2 Sample Problem 5: Thick Finite Reservoir

Sample problem 5 (Figure 1-5), a high-aspect ratio cyiin-
drical reservoir at a mean depth of 750 feet subject to a 21,600
psf pressure drop, was modeled with four large spheres and with
four overlapping 25-sphere disks. The surface displacements
obtained were compared to those found from the superposition of
10 of Geertsma's infinitely thin disos. Solution with four large
spheres required 0.1 CPU seconds; solution of the 100-sphere
model required 0.7 CPU seconds.

The geometries and applied pressure drops for. the two cases kwi
were as follows. :
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___ Lateral distance’from center of reservolr (feet) '
... 200 ..._400 .. . . 800 .. .. .800

Surface subsidenée
[ $ 32 }

@ l

=2

v [

(1)

<

]

3

[3

% v_z-

L

(3]

&8

| ) "

.34 169 spheres »
25 spheres
9 spheres

FIGURE 3-2 -
'NUCLEUS-~OF-STRAIN. MODEL, .
SURFACE SUBSIDENCE. USING 9, 25, AND. 169 SPHERES
, T SAMPLE PROBLEM 3”E? o :
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Lateral distance from center of reservoir (feet)
‘ 200 400 600 800

" horizontal displacement
. e Wi el p—

2

169 spheres

-
(34
1

Horizontal displacement of surface (feet)

25 spheres | o
9 spheres :

" " NUCLEUS-OF-STRAIN MODEL, '
HORIZONTAL DEFORMATION OF THE SURFACE
USING 9, 25, AND 169 SPHERES,
SAMPLE PROBLEM 3

FIGURE 3-3
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Case 1: 4 spheres with° centers at 2 =’750 ft
' a = 250 ft; sphere centers at- (x,y) = (250,0),
(0,250), (-~ 250,0),_(0,-250)
V=2/3V, +A4p= 3/2 Apo = -32400 psf

-~

Case 2: 4 disks each made up of 25 spheres
disk centers at z = 600,‘700, 800, and 900 ft
V = 16/15 Vo + Ap = 15/16 Ap, = -20250 psf

Surface vertical and horizontal displacements along y = OQ'
are shown in figures 3-4 and 3-5. Table 3- 2 are gives w(O 0 0)
and u(600,0,0) for the two cases and for Geertsma's analytlc
solution for a pressure drop of 21,600 1b/ft2 on each of 10
1nfinite1y thin disks spaced 50 feet apart from z = 525 ft to z =
975 feet. . The latter solution and the 4-by-25-8phere disk model
agree to within 2 percent.

TABLE 3-2
'COMPARISON "OF ' VERTICAL: AND
HORIZONTAL SURFACE DISPLACEMENT

~ SAMPLE “PROBLEM 5 .
MODEL x~~€w(0,0,0) (FTY, u(600 ) (FT)
4 spheres -1.186 f;i] -0. 47425
4 x 25 spheres -1.106 -0.450

Geertsma ¢f~‘~“?fakéilgfff5f, —0.4§7ff

=

3.5.3 Sample Problem 6: Prismatoidal Confined Reservoir

Sample problem 6 (Figure 1-6), a prismatoidal reserv01r sub-
ject to & pressure drop of 28 800 psf Was modeled with spherical
nuclei of strain. '-The loweriboundary of the reservoir is at z =




44

Lateral distance. from center.of reservoir (feet) .
.200 400 €00 800

oy 3 . N e

Surface subsidence

4 - 25 sphere disks

Surface Subsidence * (feet)

FIGURE ,374 NUCLEUS—OF-STRAIN MODEL,
SURFACE SUBSIDENCE USING 4 AND 100 SPHERES
SAMPLE PROBLEM 5

Lateral distance from center of reservoir (feet)
:200 400° - 600 .- 800

horizontq_l_ disp Ioceen'

39

=25 sphere disks

.SJ 4 spheres

‘Horizontal displacement of surface (feet)

FIGURE 3-5: NUCLEUS-OF-STRAIN MODEL,

2 ~ HORIZONTAL DEFORMATION OF THE SURFACE |
USING 4 AND 100 SPHERES, . O
SAMPLE PROBLEM 5 :
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800 feet. The reservoir thickness ranges from 70 to 200 ft. Two
" models of this reservoir were tésted. The simpler model (27
spheres) ‘required 0.4 CPU seconds for::solution;  the more complex
model (128?spheres)vrequired 0.9 CPU .seconds for solution. -

B b Byt oo o b e by :

a4l

3.5.3.1 Setup

The two models of this prismatoidal reservoir had very
differentiﬂistributioﬁsibfaspheresc:FOne‘contained 128 spheres,
- the other contained:27,wahe=geometries:andkthe%applied'pressure'
drops are as follows. iz:. . ' sl e
SFTE SN EE N N TR L R AT £ AR E IS T i
ﬁwCaseel:=-Casef1ruses~128:spheres~arrangedwin;threelrecAHW
tangles. The rectangle center planes are'at z =
765,695 and 630 feet and contain 64, 48, and 16
spheres. The sphere centers areﬁspaded‘at‘751feet
in the x and y directions, and the sphere diameters
are all 75 feet. -

V = .582 Vo* Ap = 1.7198p, = -49504 psf
Case 2% - ACase”2‘uSeS‘27'spheres¢afrange&¢ih five.lines of 3,
Ls iefi 4,5, 6, and'9 spheres in the y direction. The
| ”; centerlines of the spheres are at (x z) = ‘
<3(100 700),::(257, 925)» (382, 740), (486, 750), and.
. (56667, 766:7)e The\corresponding sphere diameters,
" which'are equal‘tolthe'Sphere center spdcings in

.- ,.the 1y direction . are: zoo, 150, 120, 100, and 66.7
feet o L Taithon wivodaiol :

a7 - R ]

V = 0. 591 Vo-+Ap =1, 693Apo = -48758 psf -
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3.5.3,2 Results ~ . . oo iy

Both vertical and horizontalasurface disblacements from the
two models: agree to within 1:percent.’ A\contour»plot of the
surface vertical displacement is presented in Figure 3-6.

3.6 CONCLUSIONS

.-The nucleus-of-strain fOrmulation used in program SUBSID is
unique. in that it;‘allows the solution of complex,:three-
-dimensional geometries at relatively low cost and minimal effort.
Solutions obtained by use of SUBSID suffer primarily from the
simplification of material properties that is required to allow
solutions.

3.7 . LIST OF SYMBOLS
/ . .
- radius of sphere

X, V¥V, Z - Cartesian coordinates of observation
_ point ' '
c - 2z coordinate of sphere center

Ry = 6("+yz+. (?--c)")y?', distance to center of image sphere
S at (O;O,c) from observation point at
L (x,y,2) :
6("+y"+(z+c)’>/z - distance to center of image
" : - sphere at (0,0,z) from observation
point at (x,y,2) o
- = pressure change within sphere

t=¥)
[\
]

- Poisson's ratio
modulus of elasticity
-3(1-2V)/E = compressibility
- coefficient of thermal expansion

LI
1

v, W : : - X, ¥, z displacements

£ @
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x(feet) Surface subsidence contours in feet
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FIGURE 3-6
: NUCLEUS~OF-STRAIN MODEL,
CONTOURS OF SURFACE SUBSIDENCE,
' SAMPLE PROBLEM 5




Oy oy, g, - normal stresses

op = 1/3(0x+0y*°z) - mean stress

T T T - shear ress
xy’ ‘yz’ Tzx she stres

Apo - pressure change in reservoir
Vo : - volume of reservoir
\' - volume of spheres modeling reservoir
h, R - thickness and radius of cylindrical
N reservoir -
B = %;% gh AP - strength of. source sphere due to
preséure change
B =,%§% aAT - strength of source sphere due to

temperature changé
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4.0 ONE-DIMENSIONAL CONSOLIDATION MODEL “UPDOWN® = °

4.1 INTRODUCTION

UPDOWN is a one-dimensional consolidation program in the
public domain written by Don Helm while working With the u. S.
Geological Survey. Doubly draining, horizontally infinite aqui-
tards w1th specified time-dependent effective stresses at the
upper and lower boundaries may be modeled with this program. o
- According to Terzaghi s theory of one-dimens1ona1 consolidation,
aquitards are assumed to deform*vertically ‘Effective ‘stress
profiles within the aquitard and the amount of aquitard consol—
idation are output at user-specified time intervals.

4.2 SOLUTION METHOD - GENERAL THEORY

4.2.1 Theory

) The Terzaghi consolidation equation is defined in terms of
effective stress p, hydraulic conductivity K=m chv’ and speci-
fic storage S = m Y

a1 K i& ._.P_ e R et b i
S azz 77-" RS EOIE L s S S . fooTEy

»:' 4%

'It is written as a finite difference equation in space and time
and solved in UPDOWN.: When p is’ less than the past maximum ef-
fective stress, “then S is the elastic specific storage Se,' o
when p is greater than the past maximum effective stress, then S
is the virgin specific storage Sp. Both K and S may be E
functions of z. If K and S are assumed to vary . with effective
stress, the Terzaghi equation becomes nonlinear. Helm (1976) ap-
plieswa,transformation_toilinearize the equation. The resulting

Goh T I RS AL EN S Bt
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linear equatlon is exact only 1f the ratio K/S does not depend on
'effectlve stress. The linear form of the equation is approx-
imately correct if K/S is weakly stress-dependent or if the ef-
fective stress in the aquitard does not change s1gnif1cant1y.

4.2.2 Numericaivﬁethddf

A llnear f1n1te difference formulatlon of [4-1] W1th con-

stant coefflcients 1s

et e < rel veRy ARl
wheret . A=Kt
25472
B=1+ 2A
E=1-2A

The superscript (n) 1nd1cates a discrete point in t1me and
the subscrlpt (j) a discrete point on the vertlcal grld. Uniform
steps in space and time are denoted by z and t (see Figure
4-1). This finite-difference equation is solved deterministi- .
cally by an adaptation of an efficient forward and backward sub-'
stitution method developed by Thomas (see Remson et al. 1971, pp.
168 -171). The nonconstant coefflcient and the stress dependent
coeff1c1ent formulatlons of equatlon [4 1] are solved in a s1m—
ilar but more complex manner (see equatlon [4—2]) |

4.3 CAPABILITiES AND LIMITATIONS

4.3.1 Geometric Capabilities and Limitations

The aquitard modeled may be of arbitrary vertical extent. A
uniform vertical grid and uniform time steps are specified by the
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-user. Helm (1976) suggests that the grid spacing be less than 1
foot. Arrays within UPDOWN are dimensioned to allow 150 grid
lines, but the array sizes may be easily increased. The time
step size chosen should reflect the complexity of the loading.

Length is input in feet, time is input in days, effective stress

is input in feet of water, hydraulic conductivity‘is input in
feet per year, and specific storage is input in feet'l. An
option to the basic program allows the effective stress at the
upper and lower aquitard boundaries to be specified indepén-
dently. This option was not extensively used by Helm (1976) and
still needs to be debugged. ‘ : '

' 4.,3.2 Flow Capabilities and Limitations

The fluid is assumed to be incompressible. Hydraulic con-
ductivity may be taken as constant, as a function of z, or as a
function of effective stress. Fluid-flow ca;culations can be
performed at user-specified time steps to pfovide’any desired
time history.

4.3.3 Material Properties

The aquitard specific storage parameters Sg and Sp may

be constant, may vary with z, or may'both be functions of effec-

tive stress. If Se and Sp vary with effective stress, the

hydraulic conductivity must also vary with effective stress. The

user then has the choice of making K/Sé and,K/Sb either
constant or functions of effective stress. The program has not

been tested with the heterogeneous (K = K[z] and/ or 8 = S[z]) and
nonlinear (K = K[p] and § = S[p]) options superposed but, according

to Helm (1975), should work. Neither the heterogeneous nor the
nonlinear options can be used when the upper and lower boundary
conditions are specified independently.

Q_J
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4.4 USABILITY

- e SR S

4.,4.1 Documentation ..

Lorn R T I £ SRR ST S s SO S B PR R S S T ,

The theory behind the program, the numerical solution:
" method, and numerous examples using homogeneous, heterogeneous,
~and nonlinear aquitard parameters are preseuted‘ineHelm‘(1975;
' 1976). The analytic and UPDOWN solutions to a siﬁple consoli-
| dation -problem are given :in Helm:(1975) and can serve as a check
on thetuser!s,comprehensionuofwthexbasic program.:

An input manual ex1sts in rough form. A number of addltions
'and changes have apparently been made to .the original manual.
For the most part, the input parameters are clearly defined and,
‘where necessery, are further explained.

The NDDD = 1 option, which allows the uppéer and lower
boundary conditions -to. be specified 1ndependent1y, was added to
UPDOWN in order to solve a particular problem and is not well

' documented.

‘4.4;2 Input Ease:«: .

Only eight data cards are required to specify material prop-
erties, geometry, and boundary conditions. Boundary conditions
are stored on tape to be read into the- program when needed.

4.4.3 Output Controim aaa "ééﬁibféh’éﬁé’ihi’iit;

A11 input ‘data: are echoed An output either as . card images or.
as 1abe1ed,parameters. -The user may. separately specify at what
time intervals-aquitard compaction and effective stress profiles

within the aquitard are to be output. Effective :stresses are
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given at every grid point. If the nonlinear option is used, pro-
files of hydraulic conductivity, elastic specific storage, and
virgin specific storage are printed with the corresponding effec-
tive stress profiles.: ; - ' T S

4.4.4 Solution Efficiency.

- The solution cost for'UPDOWN‘inéreaseS”with;the number of
time steps and the number ofvgrid7lines in the ‘aquitard.  ‘Some
examples of solution times for aquitards with constant permea-
bility and specific storage coefficients for different numbers of
time steps and grid lines are given in Table 4-1. i

TABLE 4-1
UPDOWN SOLUTION EFFICIENCY

SOLUTION TIME
GRID LINES  TIME STEPS (CPU SECONDS)

21 11 0.222
15 60 0.725

141 60 5.664

4.4.5 Resume of Performance on Sample Problems

Sample problem 2 was solved with UPDOWN. The aquitard
permeability and specific storage were assumed constant.
Ultimate consolidation was 1.945 feet, agreeing with the one-
dimenSionalfanaiytic solution. The aquitard was found to be 98
percent consolidated at 30 years. ' S
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4.5 PERFORMANCE ON SAMPLE PROBLEMS

4.,5.1 Sample Problem 2: Infinite Reservoir
With Permeable Confining Layer

Sample problem 2 (Figure 4-2) was solved with UPDOWN. The

r.aquitard properties K and S were calculated from values of my,
Yo and cy and converted to the units required by UPDOVWN:

K = mvywcv 3.7869§.x‘}0_:uft(¥?,__:_

- = ’ -j5, » —ii',‘, X
Se = Sp = vaw 6.915l x‘lO ,kft .,f

The aquitard was divided into 140 6—inch intervals in accordance
with Helm's suggestion that the grid spacing be less than one
foot. - Effective stresses at the top and bottom boundaries wvere

- specified every 180,@%¥Sv£1 year.is}takenfas ‘360 days by UPDOWN)

for 10,800 days (3o'yéars§:e The effective stress on the upper

boundary remained constant at 41,040 pst (658 ft of water) while
the effective stress on the lower boundary was 24,480 psf (392 ft
of water) at t = 0, and 74 880 psf (1200 ft of water) thereafter.

The sample problem setup for UPDOWN is shown in Figure 4-2. The

solution required 5 7 CPU seconds.

Effective stresses were output at 1 5~year intervals.? The

effective stress profilés’within the aquitard: at t =0, 2, and 20

years are plotted along with the ultimate effective stress pro-
file in Figure 4-3. . ‘

Aquitard compaction was output at 0.5-year intervals. A

plot ofrcompaction as a function of time up to 30 years is pre-

sented in Figure 4-4. The ultimate compaction is 1.945 feet.
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4.6 CONCLUSIONS

UPDOWN is useful for simulation of the compaction of éimpie
one-dimensional flow-consolidation systems. Unfortunately;ﬁoﬁé—
dimensional conditions are rarely found in‘feal»geothermal«feéer-
voirs, and multidimensional flow is frequeﬁtly a controlling
factor in subsidence behavior. On the other hand, UPDOWN is'con—
siderably cheaper and easier to use than more. sophlstlcated flow
models such as CCC.

UPDOWN ignores the effect of the lateral boundries of the
reservoir. As demonstrated by the hand calculatlon method (Sec-
tion 2.0), this can cause it to significantly underestimate the
subsidence of homogeneous systems.. However, when the compacting
layer is much more compress1b1e than the surrounding materlal
UPDOWN's assumption is valid and sub51dence will equal
compaction.

4.7 LIST OF SYMBOLS

K = mVYwCV o= hydraulic conductivity

S,Se,Sp = vaw - specific storage, elastic specific
storage, virgin specific storage

p - effective stress

t ~ time

Z - vertical position

my - coefficient of volume change

Y - weight density of water

Cy - coefficient of consolidation
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5.0 .. ... .. BOUNDARY-ELEMENT MODEL "BIEM2D"

R AN N

5.1 INTRODUCTION , ... ..

... .. The Boundary-Integral Equation, or Boundary-Element method is
similar in approach .to the. nucleus—of—strain method. It uses
superposition of component parts of a system. but w1th a different
geometrical basis from the nucleus-of-strain method. The
boundary-integral equation method is.a powerful numerical'tech- 4
nique for solving 11near boundary value. problems and -is used in a
variety of disciplines. The particular program reviewed here is
designed for two—dimensional stress analys1s of underground .

openings.ﬁ Originally prepared at Imperial College, London by
| John W. Bray, it was modified for the purpose of this proaect to

incorporate thermal and pore pressure effects (see. Section 2.0).
A large part of the program description and code, which are.
presented 1n the following sections, are adapted . from Hoek and
Brown (1980) and are reprinted here w1th the permission of the
,authors.wuw e e

The two-d1mens1ona1 boundary-integral method uses analytic

solutions for strip loads Ain an infinite medium to obtain .the |
stress and straln elsewhere in the medium.; Its particular advan-
‘tage is that only boundaries with fixed (i.e., known) boundary
'conditions of stress must be dlscretized (as opposed to the
7f1n1te—e1ement method Where the entire body. must be discre-.L
tized) This means that input formulatlon is simpler and program
' solution 1s less expensive._fs ‘

5.2 ;,sdw?ié?nﬁ METHOD - GENERAL THEORY

5'2'1,.EE§2£X,w oem ol oseades G

In most'of the llterature on boundary—element or boundary—

integral methods, the principles of the method, which in reality
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are quite simple, are often‘obscured by the formal mathematical *
presentation. The f0110w1ng simplified explanatlon of the bas1s
of the method is based on Hoek and Brown (1980).

Thé“prbblém‘is*to"determiné“the‘étrésses”ﬁrouhd:a'long'éxca—
vation of specified cross section, given the field stresses P
(vertical) and Kp (horizontal) (see Figure 5-1, a). Prior to
excavation, the rock that is to ‘be removed prov1des support for
the surrounding rock. This support may be represented in terms
of normal and ‘tangential tractions (T, T) on the potentlal
boundary of the excavation. The magnltude of these tractions
will vary from point to point, depending ‘upon the orientation of
the various parts of the potential boundary. When the hole is
excavated;'theée:tractions are reduced to Zéro; thus, the exca-
vation can be regarded as being equivalent to applying a system
of negative tractions to a boundary in a solid mass without an
excavation. The resultant state of stress can then be considered
as the superposition of two stress systems: the original uniform
stress state and the stresses induced by the negative surface
tractions (-3,~T). The distribution of induced stresses in the
medium corréspOnding to the negative‘surface tractions can be
determined using the analytic solution of stress and strain due
to strip loads (Brady and Bray 1978). ‘

Figure 5-1 compares a "real" situation (a) to an’imaginary'
situation (b) in which there is an infinite plate. 'In the imagi-
nary case, there is no hole in the plate. ‘Instead, one imagines
a line inscribed on the face of the plate corresponding'to the
boundary of the hole in the first plate. The line is divided
into a series of elemental lengths and‘the elements are{numberéd
consecutively. One now imagines that each element is subjected
- to an external force whose line of action lies in the plahe of
the plate. The force is resolved into components Fn and F¢,
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(j:

normal and tangential to the element, and these are taken to be
uniformly distributed over the length of the element. Because
they do not correspond to the forces applied to the boundary of
the real excavation, these forces are called fictitious. The
procedure now is to adjust the forces so that the ‘total normal
and shear components of stress (¥, T) at the center of each ele-
ment are equal to the corresponding normal and :shear tractions
(-5,-T) of the real plate (zero for an unsupported excavation).
There are varlous ways of ach1ev1ng this result but in this
program an iterative procedure (Gauss—Seidel method) is used.
Starting with element 1, the forces Fnl' Ftl are adjusted so that
o4 equals -01 and L equals ~T1 Similar adJustment for the
elements is carried-out in: turn.. In correcting the values of ©
and T for any given element the stresses on all the other ele-
ments are disturbed; hence, the procedure must be continued for a
series of cycles around the boundary unt11 no further adjustment

is considered necessary.

Once this process is complete, the distribution of tractions
on the real boundary is identical to that on the imaginary boun-
dary. Since these tractionSrdetermine'the stress distribution in
the surrounding medium, the distribution will also be the same
for the two cases. To compute the stresses'at any point in the
imaginary plate, all that ‘has’ to be done is. to sum the contribu-
tions of the various fictitious: forces such as Fnl: F¢1,

Fpo, and Fig (see Figure 5-1, d).

Once the stresses due to the negative surface tractions have
been determined, they may be added to those of the original
stress field to give the required stresses following excavation.
Elastic displacements around the excavation can be calculated by A
using the standard solutions for displacements due to line loads k'}
in an infinite medium. | '
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1 5.2.2 Modification for Incorporation of Fluid Pressure
B and Temperature Effects

The'bbundary-element‘progrem was ‘modified' to incorporate
effects of fluid pressure or temperature ‘changes. The following
is a description of the theory supporting the modifications.

- The basic stress-governing equation is the equilibrium
- equation: . - : “ ' ’

| [5—1] G,j1|~109ZU=O

\

Note: Indicial notation is used and implicit summation over
repeated indlces is assumed. R B : :

In dry, isothermal elastic materials, the stress can be ex-
pressed as a function of the strain:

[5‘21» oy = o-,J D,jkl Ekl
'Substitdtimg'[s-zl-into*[541]%giVes$f X

[5-31 o +(Dipd &), -p9Ej=0

: : 'W,.; :‘,]‘ i v V
Conventional.numericalvmodels>for*statie-801id*mechanics.solve
equatiqh-[S-S] by expanding it in ‘terms of -the displacements.

'When“prdblems1inv01ve“f1uid%pressures'or temperatures,: the .
stress-strain' equation- [[6-2] can be ‘expressed as:-
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[5-4] oy = O'i;_-* Di'jkl (&l = '&Té‘gl)'-ééﬁ k

Note that equation [5-4] assumes that the pore pressure inter-
action factor is unity, an assumption that is questionable for
low porosity materials. - :

Substituting [5-4] into. [5-1] produces the equilibrium equa-
tion used in the modified BIEM2D program:

5-5 ) ‘ A
e i +(D‘:5k| 6‘*'):} "Z-D"Skl Skl T'i-P’.S "/0924 =0

This can. be compared with equation .[5-3], which. is formulated for
the dry,.isothermal case. The difference between equations,[S;S]
and [5-3] is in the inclusion of two pseudoforces (those of tem-
perature and fluid pressure).

5.2.2.1 Pseudo Body Forces

For an isotropic material, the temperature pseudoforce is
-3Ko times the temperature gradient, where K is the bulk modulus.
The pore-pressure pseudoforce is equal to minus the pore-
pressure gradient.

By applying the pseudoforce as external strip loads around
the edge of a temperature or pore-pressure change contour (the
temperature and pore pressure changes are assumed to occur in -
stepsvat'contouredflines), the computed deformation using equa-
tion [5-5] will be correct. The stresses are computed using
equation [5-4] where the thermal and pore-pressure changes. are
applied as body forces:within a pressure-change contour.
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5.3 CAPABILITIES AND LIMITATIONS

5.3.1 Geometric Capabilities and Limitationsrg,%f

BIEM2D is limited. to:two-dimensional plane—strain problems
within elastic whole spaces. Excavations and, pressure-change
,surfeces‘muSt,bevmodeled by combinations. of straight<line

L

elementsSe. . i e T o

The boundary elements can be placed in any combination or
| orientation within the elastic space. Boundary elements can
represent conditions of stress, temperature, or pore pressure.
Displacement cannot be assigned to elements:as a:boundary
condition. .. -

. Displacements are calculated with respect to an arbitrary
point included.as .input to«the~mode1.V<If‘a-ha1f-space.iseto be

modeled, ground, surface must. be modeled by a relatively: long :
‘segment of unloaded boundary elements... .

5.3.2 Flow.Capabilities:and:-Limitations -

No heat or mass flow calculations are performed by BIEM2D.
BIEM2D computes only the;iniiuenCe;of;pressure,ohengeAWithin the:
reservoirs. Pore pressure changes obtained from simulations of
flow can; be: given as. input to ‘BIEM2D., Contours of’ pore pressure
can_be. approximated by series of .segments; ‘each" consisting of" one -
"element. Temperature effects are:: treated by, conversion: to. the
 'equiva1ent pressure change: before input to the model. :

5.3.3 Materia1~Properties»

The continuum is 1inearly elastic, homogeneous, and iso-
tropic. 1Its behavior is defined by Young's modulus and Poisson's
ratio. ‘
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5.4 USABILITY RS S S S B HREIE U TR ST

5.4.1 Documentation

. ‘The original users' manual for BIEM2D is not~£ppropriate for
use with. the reservoir modeling version of BIEM2D developed by
Golder Associatesi: A'new,éupdated*ﬁsers' mahual- incorporating
recent program enhancements and an improved discussion of dnput e
parameters is included as Appendix B.

5.4.2 < Input Ease

Coding-of input is relatively easy in BIEM2D because of the
simple geometric and material property assumptions used. In ad-
dition, automatic generation of elements along linear or curved
segments simplifies the specification of boundary elements. " This
feature allows the. user to specify whole series of elements by a
single segment specification. Observation point grids can be
specified with similar ease. L

The program can handle symmetry:about- either one or two
axes, which further simplifies the input.

5.4.3 Output Control and Comprehensibility

<~ BIEM2D produces only one level of output. ' The output in- -
cludeS"strésses and deformations at the midpoint of each boundary:
element. - In addition, -rock-failure information isoutput where -
relevant. Although not important inithe cases studied, rock

failure information may be useful in other cases.
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In addition to producing output at elements, BIEM2D can pro-
duce outpnt at any desired locations within the elastic space
when a grid of observation points is specified by the user.

Output is well labeled and easy to understand.

5.4.4 Solution Efficiency

The BIEM2D program is a very efficient method for homo-
geneous, isotropic, linearly elastic stress-strain problems in
. two dimensions. Because of the small number of elements needed,

. the demands on computer storage and time are very low. Because

solution time is also dependent on the formulation ‘of the problem
(ill-formed problems require more iterations), there is no direct
relationship between solution time and the number of elements.
However, Figure 5-2 gives some:indioatlon of solution time versus
number of elements for the problems'modeled in this study.

5.4.5 Resume of Performance on Sample Problems

One of the most critical assumptions of tbeEboundary element
method is that the Subsnrface°geology can be modeled as a homo-
geneous, isotroplc, linear elastlc ‘space. ThispasSumption‘was
- considered reasonable for sample problems 1, 3, 5, and 6, and
BIEM2D was used to- model these problems. It was not considered
_reasonable for problems 2 and 4 where inhomogeneity plays an

W .

,1mportant role.~

Problem 1 is one—dimensional'and was modeled by use of a
reservoir and ground surface'much greater5than the reservoir
depth. Predicted settlement at the surface was 1.3 feet, which
compares well with the exact result.
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Solution time, CPU seconds

0 : '
0 lo 20 30 40 S5 - eb
Number of elements .. .

FIGURE 5-2

BOUNDARY-INTEGRAL-EQUATION METHOD

SOLUTION EFFICIENCY
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. Two-dimensional problems 3 and 5 had maxima of 0.6-foot and
2.5-foot surface settlement, respectively, over the center of the
reservoir. Compaction of the reservoir surface exceeded surface
settlement. Unexpected edge effects were observed at the sides
of the reservoirs. '

Three-dimensional problem 6 was modeled in two dimensions
with BIEM2D., Maximum surface subsidence and maximum reservoir

compaction occurred at the same horizontal location.

Results of sample problems are discussed in greater detail

in Section 5.5.

5.5 PERFORMANCE ON SAMPLE PROBLEMS AND CASE STUDIES

5.5.1 Sample Problem'1§V,Confinedklnfinite3Reservoir

Sample problem 1 (Figure l—l) is a one-dimensional problem
with a 50- foot—thick reserVoir at a 570—foot depth. The pore

’pressure in the reservoir drops by 50 400 psf.r Because sample

problem 1 is one—dimensional the boundary elements of the top
and bottom of the pressure contour were extended to 6300 feet

- (about 10 times the depth to ‘the reservoir) ‘on the positive side

of X = ov(the axis of symmetry). This length~- was judged -suffi-

cient to eliminate the effects at X = 0 of‘the ends of the seg-

ments. The ground-surface elements were extended to X = 25 000

~ feet. Figure 5~-3 shows the problem configuration.

Thejinitial element lengths along;thefground surface were
chosen to be about one-tenth of the depth to the reservoir at X =
0 and increased as X = 6300 feet was approached. In order to
model the reservoir in sample problem 1, it was necessary to have
an upper-pressure drop contour of -50,400 psf where the drop




LYl

"IGURE 5-3 -
BOUNDARY ~INTEGRAL-EQUATION
ELEMENT CONFIGURATION OF ‘SAMPLE PROBLEM 1
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applied to the material below the contour line. Then a second
pressure‘contour of +50,400 psf was used to raise the material
below the reservoir back to a condition of no pressure change.)
Figure 5-4 shows the variation of vertical displacement with

~ depth. Note that these values are relative to the displacement

at 1000 feet.

Sample problem 1 was rerun with the ground-surface elements
half'as long as in the first run (twice as many elements). There
was no change in thevrelativesdeformation. ‘Therefore it was/con—
cluded that the surface element size in the first run was
adequate. :

Sample problem 1 needed 13 1terations to produce a solution.
Run time was 0.888 CPU seconds.

5.5.2 Sample Problem 33 Confined Finite Reservoir °

Sample problem SH(Fiéure 1;3);isksfﬁiiar”to‘problem 1 except
that the reservoir is of finite length (1000 feet) and is con-
sidered infinitely long in the Y-direction. An element configur-
ation was used that was similar to that in sample problem 1 (see
Figure 5-5). B T e ' '

‘ Figure 5-6 shows'the vertical displacements that occurred
due to a pressure drop of 50, 400 psf in the reservoir. At the

'center line of ‘the . reservoir, the ground surface dropped .0.62
- feet. As expected ground-surface displacement tends to zero far

from the reservoir,

‘Closure in the reservoir at the center line was 0.93 feet.

’This decreased to 0.458 feet at the reservoir edge.
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‘All displacement is relative to that at 1000 ft. depth.

O+ 0o

3

d

200 $

: )

< 400-

‘.Z ‘Reservoir » : 6 »

6001 ‘ mmx\x@gx

O 025 050 075 0100 125
Displacement (feet)

FIGURE 5-4 »
BOUNDARY—INTEGRAL—-EQUATION METHOD
"VARIATION IN VERTICAL DISPLACEMENT WITH DEPTH

SAMPLE PROBLEM 1 :
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FIGURE 5-5: . BOUNDARY-INTEGRAL-EQUATION METHOD - =~
_ ELEMENT CONFIGURATION OF SAMPLE PROBLEM 3
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. FIGURE 5-6: BOUNDARY-INTEGRAL-EQUATION- METHOD |
VERTICAL DISPLACEMENT OF GROUND
SURFACE .AND RESERVOIR TOP AND BOTTOM,
SAMPLE PROBLEM 3 .
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The solution for problem é‘reQQired 13 iterations. Run time
was 0.970 CPU seconds. o

5.5.3 Sample Problem 5: Thick Finite Reservoir,L

Sample problem 5 (Flgure 1-5) is 81m11ar to problem 3. ~How-
ever, the reservoir in problem 5 is at a depth of 500 feet and is
500 feet thick. The element conflguratlon used was bas1ca11y the

same (Figure 5-7).

Figure 5-8 shows the veréié51 displacemeht that occurred due
to a pore-pressure drop of 50,400 psf in the reservoir. At the
center line of the reservoir the ground surface dropped 2.54
feet. The top of the reservoir dropped 3. 05 feet at the center.
Closure in the reservoir was 3.23 feet at the center line. This
decreased to 1.67 feet at the reservoir edge (the base moved up
0.18 feet). ' |

The solution of problem 5 required 15 iterations. Run time
was 0.956 CPU seconds.

5.5.4 Sample Problem 6: Prismatoidal Confined Reservoir

Sample problem 6 (Figurej1—6) consists of a wedge-shaped
reservoir at a depth of 600 feet. The reservoir is assumed
infinite in the y-direction. The element configuration used is

shown in Figure 5-9,

Figure 5-10 shows the Vertical displacement that occurfed
due to a pore-pressure drop of 21,600 psf. Maximum ground
surface displacement was‘o.38 feet. Maximum reservoir closure
was 1.08 feet. S ’
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The solution of sample problem 6 required 15 iterations.
Run time was 1.227 CPU seconds.

5.5.5 Case Studies

5.5.5.1 The Geysers

The Geysers area consists of a basically three-dimensional
system but is simplified to two dimensions for this model reser-
voir. 1Its geology is apparently unknown in detail and is assumed
'homogeneous, isotropic,»and linéorly elastio.vuThe pressure of
the reservoir has been dropping due to steam extraction.

BIEM2D solved the system by assuming that the reservoir
could be represented as a series of concentric ‘pressure/
temperature change contours within an elastic half-space. The
element configuration was ‘not difficult to code. The solution
conformed well to those obtained by other methods..: The solution
required only 2.47 CPU seconds.

5.5.5.2 Austin Bayou

The Austin Bayou model consists of a reservoir at a depth of
about 15,000 feet. The rock in both the reservoir and overburden
is inhomogenous, consisting of inter-layered sands and shales.
The problem was simplifiéd to a homogeneous material for the
boundary-element model. An equivalent pressure drop in the
reservoir was determlned to glve a reserv01r compactlon consis-
tent with that determlned by CCC. Agaln, codlng was relatively
easy and the solution was inexpensive (1.312 CPU seconds).
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5.6 CONCLUSION

The boundary—element method is applicable tobmodeling of
‘geothermal subsidence if "the conditions listed previously are
met. It is a very easy ‘méthod to use as’ the input is short and
easily determined.; Some experience is necessary for choosing the -
‘proper size of elements and in locating endp01nts of "infinite"
boundaries. One distinct drawback to using the method for geo-
thermal subsidence problems is that the temperature or pressure-
drop contours must be already known,

5.7 LIST OF SYMBOLS

p , vertical field stress (ML-1T-2)
Kp horizontal field stress (ML-1T-2)
normal traction (ML-1T-2)

tangential traction (ML*lT-z)

Fn normal force (MLT-2)

Fy tangential force (MLT“Z)

P - density (ML'3)' .

g acceleration of gravity (LT"Z)
-z ~ depth (L)

,cij stress tensor (ML“lT‘z)

Aldifﬁ initial stress tensor (ML‘lT‘z) !
Eij" strain tensor ‘
ei;> o initial strain tensor
o coefficient of linear thermal expansion (°C-1)
T change in temperature (°C)
ksij Kronecker delta ,

P pore pressure (ML"1T‘2)

K pulk modulus (ML-1T-2)

\Y Poisson's ratio |
E elastic modulus (ML-1T-2)
G shear modulus (ML-1T-2)
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> P R [T

' G.O jLvg,FINITE-ELEMENTwSTRESShSTRAIN FLOW MODEL. "CONSOL3"

" 6.1 INTRODUCTION

The,two:dimensional~fipiteeelemeptlprogram CONSOLS, written
by R.,W._Lewis, solves a system of first-order nonlinear flow and
consolidationaequations.k The . program has been used to model the
subsidence of Venice (Lewis 1978), the subsidence of the Polesine
area in northeast Italy (Schrefletr et al. 1977), and the pro-
gressive deformation under foundations of offshore structures due
* to both static and cyclic loading,(Zieukiewicz et al. 1976).

6.2 SOLUTION METHOD - GENERAL THEORY

. The~system_of‘firstrorder;nonlinearzflow;end consolidation
equations;solved'by}CONSOszis,written;in;matrixuform,as:

.is the. nodalmpOre pressurefv

is. the nodal displacement SRR TINE PRIVRU R Py
;depends on-the matrix tangential stiffness i’
;is given by the matrix and. solid constitutive
erelationships : PO LU TR

depends on: the material permeability , :
are the. nodal forces due to. boundary. tractions and. body»
7forces ‘ '
vis due: to, the material ereep

where:

tbna z: Huf;

..depends on inflow and boundary. conditions
is.due to the matrix, soil solid, and fluid‘,u -
compressibilities

o
T 0
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More complete definitions of the parameters in this system
- can be found in Lewis and Schrefler (1978) or Zienkiewicz et al.
(1976).

This system of equations is symmetric and can be solved for
specified initial displacements,; pore pressures, and stresses. .
Isoparametric finite elements are used. A complete consolida-'
tion history may be obtained u31ng various tlme-stepplng - '
schemes. ” ' 1 i

6.3 CAPABILITIES AND LIMITATIONS

6.3.1 Geometric Capabilities and Limitations

CONSOL3 may be used to solve two-dimensional plane strain,
plane stress, or axisymmetric systems in any consistent set of
units. A unit width of material is considered in the plane-
strain and plane-stress formulations and 1 radian of material is
used in the ax1symmetric formulation. 1In the latter’system, no
point loads or outflows may be specifled at the axis of symmetry.
We expected the units of outflow to be volume per time, but found
that they were volume/time step. Finite elements are isopara-
metric quadrilaterals with either linear or quadratic shape
functions. In all models but one, a rectangular mesh was used.
Irregular quadrilaterals were'employed for a two-dimensional
Wairakei model; for undetermined reasons, however, the model was
unstable. Arrays within the program are dimenSiéned-tb“allow up
to 200 elements and 300 nodes, of which 150 may have specified
boundary conditions (displacements or pore pressures) and 100 may
have specified point loads or outflows. Boundary conditions and
point loads or outflows may both be functions of time. The /
maximum node number difference allowed is 40, and 100 time steps
may be taken. The time-stepping scheméiis,specifiedvby'thé user
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 and may“beueitherjfprwgrd\differenqe;,central difference, or
'backward'difference. QWith,some;difficulty,4because.of,theglack Lo
. of documentation, ,we were able to increase ‘array size limits in

- CONSOL3. : A sihgle-Gauss;pointvor;a,two—by-two“or threé-byﬁthree—~

grid;of;GausS pbints in .each element is.specified by the user to

integréteqover{elements.ﬁi;v |

PR

Sesmes paoe

6.3.2 Flow Capabilities and Limitations

CONSOL3 allows a only a single fluid phase. The . ratio of
hydraulic conductivity to the weight density of the fluid must be
constant for a given material but need not be‘tpe;same:igfthe
vertical and horizontal directions. The effects of changes in
température«and;pressure:on;hydraulic conductivity are not
“modeled. .- :

6.3.3

aterial Properties. .

CONSOL341s;d1mensiohed.t05ailow,up to 200 different materi-
als.. ' The materialsxare36ssumedvtorbeﬁisotropic.,'Four different
failure criteria (Mohr-Coulomb, Roscoe.Critical State Ellipse,
Displaced Critical State Model, and Combination Model of Mohr-
Coulomb and-Critical-State Ellipse).are incorporated in the .
_program. In most models we spécified;Mbhr—Coﬁlqmb:material =

k 'fai1ure with a very high value for cohesion so that the material

behavior would always be linear. Our attempts tof&};pyggqnlinearJr

material behavior USing'éither the Displaced Critical.State Model

. or the»RoscoeaCfi£i¢a1 State Ellipse-were unsuccessful- for unde-

" termined reasdns,* The,displacéménts;due:to;a;porerpressure=€.ﬁan.;

decreasez&hiChawereﬁdeterminedain those. tests depended strongly. .

on the Specified'vglue;of;Young's modulus and~verynweak1ygon the ..
failure .parameters: Pgoand X. . ’ '

-
it
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Initial stresses are specified 'by supplying the material:" -
weight and the ;elevation of ithe upper boundary of each layer of : =

diffefent weight material.. Up to 10 strata may be used. 'The
users' manual indicates that: the program-also allows the user to:
specify ‘initial stress values at :each node-by reading them from
tape or diSk, but this option does not work. Positive normal '
stresses indicate tension and positive pore-pressures
‘compression.' » SRS AL NI U LI AL S

6.4 USABILITY:

6.4.1 Documentation

Program documentation:is almost nonexistent. There is a“
sparse users' manual in which the input parameters are, for the
most part, undefined and apparently often misnamed. A number of
options described by the manual do not exist. Published papers
" by Lewis and his colleagues (Lewis and Schrefler 1978; Schrefler
et al. 1977;inenkiewitz et al. 1976) seemed to have only a
tenuous relation to the CONSOL3 solution method. Comment cards
within- the program are few and far between.

Improved documentation is now being prepared and presumably

will be available.’in the-future.

6.4.2 Input Ease

-~Assuming that the user can come:up with appropriate defini-
tions for the input parameters, the input ‘itself is' fairly
straightforward. It can, however, become lengthy and, inﬁthe’
case of an .applied distributed load or outflow, require some

simple but time-consuming calculations. If any initial displace-

ments or pore pressures are nonzero, they must all be specified.
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There is no provision for automatic generation of equal pore-
pressure or displacement values for & series of nodes. If the
systen is subject to a uniformly distributed boundary load, the
user must calculate and input the equivalent point loads that are

‘unique to each finite-element mesh.

6.4.3 ' Output Control and Comprehensibility

The user may ask for (1) full output, (2) no stress output,

kor, (3) no input data output or stress output.§ In case (3), a

portion of the inﬁﬁt data is printed out alongfwith initial
stresses at Gauss points. For every time step, displacements»and

pore pressures at each node and reactions atvnbdes;where dis-

placements or pore pressures were specified‘arevpripted. In case

(2), additional input data including element nédes;;nodal coordi-

nates, boundary conditions, and initial conditions are also
output, If full output is specified, stresseséggdiStrains at all
Ganss points are included in the time-step inférmation. The mag-
nitudes of reactions corresponding to'sﬁegified pore pressures in
all the cases we ran seemed much too large. ‘We conjecture that a
normalization fad¥6f i§g1ﬁdé&ff6Wﬁaké fhéMm§tfices well-condi-
tioned was not removed. ‘ :

6.4.4 Solution Efficiency

The ‘Solution tire depends linearly o the number of time -

'”steps‘used. For & given number of time steps,'the cost varies

~ with the number of elements and nodes in the model and the maxi-
mum node number difference in the elements. Some examples of

" costs are given in Table 6-1. Cbsts are plotted against the

number of elements for five time steps in Figure 6-1.
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.. TABLE.6-1,
CONSOLS SOLUTION EFFICIENCY
| = —MAXTMON NODE — SOLUTION TIWE
TIME STEPS _ ELEMENTS _ NODES _ NUMBER DIFFERENCE _ (CPU SECONDS)
3 L. 42: .. 153 . . . 26, . .. -22.4
5 84 293 46 1337
5 240 785 40T 7 318.3

- [N T A NS TSN NPRI Y SIS O A LR s SRt & £ RO RS AR T S
6.4.5 Resume of Performance on Sample Test Problems
and Case Studies e

Two of the sample problems, 2 and 4  were solved with
"CONSOLS. The reservoir and aquitard compaction at 3000 years
calculated by CONSOL3 as 8 one-dimensional problem in sample
problem 2 agreed with the analytically determined ultimate
compaction. In sample problem 4 overburden was included in the
~finite-element model so that the surface subsidence due to the

reservoir system compaction could be determined.

_ CONSOLB was implemented for case studies of Wairakei and _
Austin Bayou.a The Wairakei grid was unstable, while the Austin‘v
Bayou Model was quite useful and provided answers to a variety of
questions. ’ '

, In all the“sample problems;andﬁcase}studies‘the'following
,definitions were ‘used for parameters undefined or misnamed in

‘the input manuel:

auQJ;:PompreSSibilitygfactor:
g ‘~v [N s = n :v‘ - Frea ik EREat
ERRERRSTRE Kf ST LI

,where n is the porosity of the material and Kf is
the fluid compressibility
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o permeability per uhitﬁweight of fluid:
_K = hydraulic conductivity per unit weight‘of fluid

Tw

o) ;Ksubmerged unit welght of solld
Yé= saturated weight of solid minus 1n1t1a1 pore
. pressure gradient

o pore pressure:
Pe = actual pore pressure minus in1t1a1 equllibrlum
pore pressure " : \ s

o stress:
oe'— effective stress

o For a system with its upper boundary at a depth d below
the ground surface, the uniform vertlcal load P at the
upper boundary was calculated as ‘

P =Yed

Using these definitions, the systems modeled were in equi-
librium; that'is, there were no vertical or horizontal displace-
ments and no cheange in pore pressure as long as the system -
remained undisturbed.

6.5 PERFORMANCE ON SAMPLE PROBLEMS AND CASE STUDIES

6.5.1 Sample Problem 2: Infinite Reservoir
With Permeable Confining Layer

Sample problem 2 (Figure 1-2) was modeled as a two-element,
two-material, pPlane-strain system with an applied pore-pressure
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drop at the aqﬁifer—aquitard boundary. The finite-element grid
with element dimensions, overburden loads, and material proper-
ties is shown in Figure 6-2. ’ '

The nodes at x = 0 and 1 foot were constrained to have no
. horizontal displacement, and those at y = 0 were allowed no
vertical displacement. The fluid was assumed incompressible
(S = 0). Pore pressures pe at y = 50 feet were decreased
instantaneously by 50,400 psf, those at y = 120 feet held
consfaut, and the system'waé allowed to equilibrate.

Solution of sample problem 2'required'0.85*CPU seéonds.

At 3000 years,‘after three time steps, the aquifer compac-
tion was .97 feet and the cdmbined’aquifer-aquitard compaction
was 2.93 feet. The pore-pressure‘changé in the'aquifer was uni-
formly -50,400 psf. and, within the aquitard varied linearly from
zero at the upper boundary to ~50,400 psf at the aquifer—aqultard
interface.

6.5.2 Sample Problem 4: Finite Reservoir
With Permeable Confining Layer

Sample problem 4 (Figure 1-4) was modeled with 42 quadratic
elements. Aquifer and aqultard properties are - the same as in
sample problem 2. Overburden with E = 2,160, 000 psf was included
in the model, The finite-element grid is shown in Figure 6-3.
Nodes at x 0, 5000 feet were constrained to have no horizontal

displacement, and those at y = 0 were allowed no vertical dis-
'placement. However, horizontal displacement was allowed at y =
0, which is equivalent to specifying inflnltely soft material
below the reservoir.
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Soiution of sample problem 4 required 22.14 CPU seconds.

As in sample problem 2, the equilibrium pore-pressure drop
above the aquifer varied linearly from 50,400 psf at the ‘
aquifer-aquitard interface to zero at the upper aquitard boun-
dary. In the horizontal direction, the effect of the aquifer.
pore- pressure drop was significant only out to x = 775 feet. 1In
figures 6-4 and 6-5, pore pressureldrops along x = 0, and y = 0,
respectively, are presented.

The maximum compaction of the reservoir system at equi-
librium was 2.68 feet, and the maximum surface subsidence was
2.27 feet. Compaction and subsidence out to x = 1600 feet are
shown in Figure 6-6. Note that the reservoir systém compaétion
in this problem is less 'than that found in sample problem 2 (2.93
feet). This occurred because the system hefé‘was!allowed to
deform horizontally and;afsubstantial pértion~of the reservoir
system compaction showed up in the horizontél displacement.

6.5.3 Case Studies

CONSOL3 was implemented for both Wairakei and Austin Bayou
case studies. The Wairakei case study involved only deformation,
but utilized a variety of complex trapezoidal element shapes. It
was unstable. The Austin Bayou Case Study involved both flow and
deformation and was used in a parametric study with considerable
success. - '

6.6 CONCLUSIONS

With the current users' manual, CONSOL3 is an extremely
difficult program to use. As a result, solutions obtained by

CONSOL3 are sometimes suspect due to the possibility of errors in
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input. In addition, the complexities of CONSOL3 can lead to
excesslive cost in some cases.

The ability of CONSOL3 to perform coupled deformation-flow
calculations.andlto model inhomogeneous cases, however, makes it
extremely valuable for geothermal subsidence modeling.
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7.0 MASS AND HEAT FLOW MODEL "cCCC"
7.1 INTRODUCTION -

Single-phase, water-dominated geothermal systems are charac-
terized by a circulating liquid that transfers most of the heat
and largely controls»subsurface'pressures._’Fluid production from
' thevreservoiruef:such a system results in a reduction of pres-
suresfand‘vertical,consolidation1in the whole system (reservoir
and@surroundingrrocks);and may lead to land surface subsidence.
CCC'(for Conduction Convection Consolidation) is.a.numerical
model developed at the~LawrencekBerkeley;Laboratoryrthat simu-
lates both the'transport.of water and heat through saturated,
perous,'single phase, water-dominated geothermal systems and the
vertical deformation of the flow region. '

7.2  SOLUTION METHOD - GENERAL THEORY -

7.2.1 Theory

“Based on the~ptincip1es;offconservation;of mass, momentum,
and energy, severa1~aﬁthors have :developed the ‘equations govern-
ing the transport of*f1u1d~and heat through porous media (e.g.,
Faust -and Mercer 1977 ‘Mercer et :al. 1974).: For a slightly com~
pressible fluid (€egBoy: water), the fluid-flow equation ‘may be =
expressed as . (Lippmann et al. 1977c) ‘ ‘ e

[7- 1] a ) dﬁr+ ij
o - Q(Vp— A g v
o gl-re. ‘ )Pdv g /09
and the heat flow equation may be . expressed as. !

[7—2]

1— g(,ac) Tdv= gl( VT hAdS - Spc STvd nds+ S/q_dv
o

S
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A list of symbols and their definitions is given at the end
of this chapter.

- The left-hand sidé of the fluid-flow equation [7-1] is the
capacity term, which incorporates the one-dimensional consoli-
dation theory of Terzaghi (1925). According ‘to this theory, the
void ratio of a material is a function of its present (vertical)
effective stress and, for nonelastic (nonlinear) materials, ‘its
previous stress history. From the effective-stress law, vertical
effective stress is the vertical total stress due to' the weight
of the overlying rock minus the fluid (pore) pressure.

Linear, elastic, cohsolidation behavior is described by a
linear void ratio versus effective stress curve. As the effec-
tive stress increases, the void ratio df the material decreases.
The absolute value of the'slope of this curve is the coefficient
of compressibility of the material (ay).

Nonlinear, inelastic consolidation behavior is described by
void ratio versus. logarithm of effective-stress curves. As the
effective stress increases, the void ratio of the material
decreases.  There is a virgin curve with a slope whose ' absolute
value is the compression index (C;) and a series of parallel
swelling-recompression curves (CCC neglects the hysteresis
between swelling and recompression curves) with slopes whose
absolute values are the swelling index (Cg). If the effec-
tive stress is greater than orAeQual to the previous maximum
effective stress, the virg{hicurve is followed and the rock is
said to be normally consolidated. If the effective stress is
less than the previous maximum effective stress, the swelling
curve is followed and the rock is said to be overconsolidated.
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Thus, deformation is dependent on stress history for nonelastic
materials. ‘ S S IR P R

Since pore pressure and effective stress are related by the
effective stress law, pore pressure changes are reflected by ef-
fective stress changes, which in turn are related to void ratio
changes. Void ratio changes give pore volume changes if the |
solid volume is defined to remain constant. Because of the one-
dimensional nature of Terzaghi s consolidation theory, vertical
strains and displacement result in, and are restricted to, the
saturated formations which release water from storage during
fluid production. These vertical displacements may or may not be
directly expressed at the ground surface as land subsidence. The

o external loading of the overburden, caused by the vertical defor- -

mation of the deeper saturated formations, may result in displac-
ements at the ground surface that are different in magnitude and
direction than those at the top of the saturated flow region. '

. In hydrogeology, it is more customary to express ‘the capa-
' c1ty term in the fluid flow equation [7-1] (Lippmann et al.
1977b) as‘_J‘": |

The coefficient of specific storage (SS) combines the
compressibilities of the fluid and the rock/soil skeleton. " The
coefficient ‘of specific storage is usually taken to be constant;i
This form of ‘the capacity term can be used when consolidation is':
not being considered._ R R U T o
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The equatlons governlng fluld and heat flow (equatlons 7-1

and 7-2) are 1nterconnected or coupled by the follow1ng

0 The second—order equatlon of state for the f1u1d
‘ (Llppmann et al. 1977c):

[7-4? | =/oa* ['— .' T_+> U(T—TO):I

”to The Darcy fluld veloclty (Vd) used 1n the convectlon
term of the heat equation.

o) vﬁThe temperature and/or pressure dependence of certaln
parameters used in the equatlons (L1ppmann et al.
. 1977¢) .

7.2.2 Numerical Method

~ The numerical model CCC, developed at the Lawrence Berkeley
Laboratory, is based on computer programs SCHAFF (Sorey 1975) for
fluid and heat transport through saturated porous media and TRUST'
(Narasimhan 1975) for one-dimensional consolidation. CCC num-
erically solves the fluid- and heat-flow equations by an Inte-
grated Finite-Difference Method (Narasimhan and’Witherspoon 1976)
by using a mixed explicit-implicit iterative scheme and variable
time steps chosen by the program to advance in time. CCC also
computes the vertical consolidation of simulated systems using
Terzaghi's one—dimensional consolldatlon theory. Detalls of the
varlous appllcable algorlthms are given by Edwards (1972),
Naras1mhan (1975) and Sorey (1975) ~In f1n1te dlfference form,
the fluid- and heat-flow equations (equatlons 7-1 and M- 2) are
given by Lippmann et al. (1977a):
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CCC: solves: the fluid - and heat' flow equations :(equations 7-5
and:7—6)lcoup1edrby;equation~744;by;alternative1y’interlacing'n
them in time,. For temperatures‘below'the‘reference temperature,‘
cce. uses -the- foliowing coupling equation with a different co~ -
efficient,of volume_fluid.thermal expansion (By): ‘

» [7—7] /o /oo (l—,ﬁvAT)

The . flow equation (equation 7-5) solves for- P, Va, and e .-
assuming - that theMtemperature-dependent properties of. the fluid
and rock remain constant.. Then: the heat equation (equation 7-6)

. 1is-solved. for .T: assuming that.: Vd and: the: pressure—dependent

properties-of the fluid- and rock remain: constant. -~ Since . pressure
varies much faster than: temperature, smaller: time steps-have to .
be: taken: in the fluid-flow cycles than in the heat cycles in:
order to compute pressure.variations accurately (Lippmann et ale,
\19770). ‘ ]

A further explanation of the mixed explicit-implicit iter-
ative. scheme used - by CCC: is as follows‘ For heat: calculations,:
all. nodes are considered initially to be regular (explicit) nodes
unless. otherwise specified as’ special (implicit). nodes, - Regular
nodes are- reclassified as:special nodes: only vhen necessary to
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maintain the stability limit of a node above the time step. All
heat calculatlons are first done explicltly, correctlons .are thenf
'applied to any special nodes - and to any nodes connected to a spe—
cial node. Therefore, the interpolation factor for a regular
node is 0.0 and the forward-difference method is used. For the
speclal node correctlons, .the 1nterpolat10n factor is varied from
0.5 (central dlfference method) to 1.0 (backward dlfference L ‘
method) by the program. Stability is then uncond1tiona1,=and the
iteration acceleration factor is set at 0.2.

“For fluid calculations, all nodes are considered to be'-

» special,nodes.v All fluid calculations are done explicitly and
then: corrections are applied to 2ll nodes..  The interpolation
factor is 1.0 (backward difference method), the iterative scheme
is unconditionally stable, and the iteration acceleration: factor
is set at 0.2. | |

It is also possible to use either an explicit or an’implicit
scheme for the heat calculations. With an explicit scheme, all
nodes are always regular nodes. with an interpolation factor of
0.0 (forward difference method): With an implicit scheme, all
nodes are special nodes with an iteration acceleration- factor set
at . 0.2 and a choice of differencing methods. : If the interpola-
tion' factor is 1.0, the backward difference method is used; if:
the interpolation factor is 0.5, the central difference method is
used. rFor both of these it. is apparent that stability is
unconditional. |

A maximum of 80 iterations is. allowed for convergence in
heat or fluid calculations. If’convergence is not" accomplished
byﬁthen; the time step is reduced by half, if possible, and the
iterations are repeated. A similar thing is done when the maxi-
mum pressure or temperature change in a cycle exceeds twice the
value of the maximum desired change.
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7&3 CAPABILITIES AND LIMITATIONS

= s ks il < Do . T

Foes o

‘7 3.1 - Geometric Capabilities and limitations

~CCC-can model one- two;;’and three-dimensional problems
(rectangular coordinates) as well as - axisymmetric (cylindrical.
'coordinates) and: centrisymmetric (spherical coordinates) problems.
Since:an integrated: finite: difference (1IFD) method is used, the-
5;nodalupoints-of:the,modeled,system,may be ‘arranged randomly and
do not have: to be parallel: toithe coordinate axes.: CCC can have
- a' maximum. of 200 nodalfpointS‘andvsso connections between nodes.
Boundary conditions that:can be handled include impermeable
and/ortadiabaticl(nofheat%flbw)aboundaries,rconstant—pressure
'and/or temperature’ boundaries, and constant fluid-flow-and/or'
'_heat—flow boundaries. (including fluid and heat sources [injec-
tionasandqsinks [production]), 'Because it considers only satu-
ratedsfluid flow,~CCCfcannnot handle free~surface or seepage-.
face boundaries., | '
7.3.2 Flow Capabilities and Limitations

FropTe ‘:,..‘,,;

..3'7:,.‘;..

7_33251 Fluid Flow Capabilities and- Limitations
ﬁCCCEuseSﬁa"singlefphasevfluidfinfitsffluid;flbw calculations,
specifically water:“whic is’a“slightly'compressiblebfluid; sHy~"
draulic and! thermal properties ©of “the fluid (fluid viscosity,
first’ coefficient of :fluid thermal expansion B and. fluid-
specific heat capacity may be: constant o) oF tabulated as linear or -
_ nonlinear functions of temperature or pressure.v Twelve points
are: alloWed on’ each table. ‘Initial conditions: for fluid-flow -
calculations are: assigned through initial fluid pressures and
preconsolidation’ stresses.. Cpop el i o o ‘

idd
PR i
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If both fluid- and heat-floW“calculationSfare¥desired;”fluid:

density cannot be constant and will instead be calculated by

equations 7-4 or 7-7.;VSo‘q,reference;f;uid*density,:;eﬁerenceM8,?

temperature, and the first coefficient of fluid thermal expansion
(B) must be assigned, .In the code for-CCC, the second:coeffi-

cient of fluid thermal expansion (&) and the:coefficient of - . .

volume fluid expansion used in. equation .7-7:(By) are . given. in’
inverse degrees Celsius. Thus the.systemfofwunitsachosen for.. -

input:must‘give temperatures and thermal properties‘of,the.fluid.

and rock in degrees Celsius. - If both.fluid- and heat-flow calcu-
lations are desired until theefluiduflow reaches steady-state and

then only heat-flow calculations are desired, fluid density must . -

be constant. For the case of constant fluid density,. any consis-

tent set of units can be chosen for input. ‘A limitation of cal- -

culating fluid density by equations 7-4 or 7-7 is that only the
variation with temperature is considered. Variation with pres-
sure, which is smaller in magnitude, is ignored. ‘

7.3.2.2 Heat Flow Capabilities and Limitations
CCC handles nonisothermal problems. Initial conditions for
heat-flow calculations are assigned through initial temperatures.
CCC can also handle isothermal (constant temperature) problems if
the initial conditions of the entire system.are assigned to'be
isothermal, and boundary conditions and soﬁrces/sinks areaset;up

so that no temperature changes occur, ' However, heat-flow calcu- .

lations are always done, so CCC may~not'be”theabest~(fastest)j
program to use for isothermal problems. It should be: noted that
Lippmann et al. (1977c) concluded. that the use of isothermal -

models to simulate nonisothermal systems_may result in predicting-

somewhat larger and more conservative consolidation values than
nonisothermal models. They attributed this to using a constant:
average fluid viscosity and, to a lesser extent, a constant-
average fluid density.
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<. Connections between-nodes: are.assigned heat-transfer coef~ -
ficients for heat conduction and:convection across.:the connected
interface. - A heat-transfer coefficient of 1012 corresponds
to-a.:perfect thermal connection, while a coefficient less than
this, to a minimum;of_10?24,#includeS'the:effectS'of’afsur- .
face film,'gas gap, contact resistances, or an open space and
signifies a less-than-perfect thermal connection..

CCC uses.an- upstream weighting: factor of 0.7 in calculating
"heat convection.: ' s i .

'éCCC7cannotamode17chemiCal_reactiOnszorhsalt precipitation
that might occur when waters .of a different temperature and sal-
inity than those in. a reservoir are’injected into the reservoir.

P o

7.3.3 ~Material PropeftiES' R el KT IL

CCC can handle heterogeneous isotropic systems with a maxi-
mum of 10 materials. Material and thermal properties of  the rock
(intrinsic permeability, specific heat, and thermal conductivity)
may be constant or tabulated as linear or nonlineaprfgnctionsﬁofA
temperature or pressure. Twelve points are allowed on each
table.. Permeability may. be-a function of the void ratio if the
void ratio is a function ofvthézlbgarithmﬁof'effective,stress”"“
(nonelastic materiel). The'relationship assumed between/k‘
(permeabillty) and e (void ratio) is: e +- Ck 1og (k/k ) ¢
~ where: € ko are- initial conditions and q;is the slope of the
eurve: (Lambe and’ Whitman: 1969 ‘Narasimhan and Witherspoon 1977)
When this relationship is used, intrinsic permeability,cannot‘be
tabulated as a function of temperature or pressure.

~-;,-']Ef«fco'xirsol'ida,tion calculations are desired, they must: be done
for the entire system, with each material designated as indepen-
dently elastic or nonelastic. In calculating effective stress,
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pendently elastic or nonelastic.: In calculating effective stress,
CCC: assumes:that the total stress is constant and due to the :
weight of the overlying: rock. When consolidation calculations-
are not desired, all the materials of the entire system are as-
signed individual coefficients of :specific storage.

7.3.4 Other Capabilities and Limitations

- -CCC is . capable of producing output on punched cards (or,
with minor modifications, on a magnetic disk or tape) when a -
problem ends normally and giving the final conditions at the end
of a simulation.  These conditions include temperature, fluid
pressure, fluid source/sink flow rate, specific heat content of a
fluid source or heat source/sink, preconsolidatibn stress, and
nodal volume change. This output, which can be used to continue
the problem, ensures that the initial and maximum allowable
problem times are updated.

7.4 USABILITY

7.4.1 - Documentation

A fairly comprehensive users' manual by Lippmann and Mangold
(1977) is: available. Golder Associates' experience with. the
program has been incorporated into a revised'input‘manual."All'
input parameters are clearly explained in the input manual,
although explanations of protocols for the preparation of grids
and the use of run parameters DELTO, SMALL, TVARY, DELTOF, SMALLF,
and RVARY are weak. - C ' ‘ a ‘ ‘

Edwards (1972) provides a reasonably thorough 1ayman's
explanation of the way the integrated-finite-difference method

"works.: .
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7.4z Inpit East

Coding for CCC is fairly complicated not only the location

Lign, il

specified.

e e T
L T R AR ) o

The degree of sophistication of heat and mass flow analysis
with CCC requires ‘a comparable 1eve1 ‘of sophistication in input.
Where functional relationships are required between material S
properties and temperature, the'relationship must be input point
by point on input cards. Tt '

Program efficiency is highly dependent upon the selection of
parameters DELTOF SMALLF and RVARY. These parameters control
tolerance. It is difficult to determine the proper values for
these parameters, their selection in one of the most significant
1imitations on the ease of input.‘ '

Grid coding is aided somewhat by provisions for automatic
generation of repetitive identical elenents., Unfortunately, this
facility is limited to’ identical elements. This greatly limits
the number of elements which can be generated automatically,
espe01a11y in geothermal reservoir problems. -

.»Ex

7.0.3 'oafpuf’ c,o.;..;ai%.na‘* Cfdxf’pféﬁéﬁélﬁiiifv e o

utput is’ available at three levels'? ﬁbrﬁai'fﬁihimun,”and '

. maximum. Generally, the maximum level available is desirable.

~0utput includes node stresses, volumes, temperatures and densi—
'ties at each time step, total change since initial conditions,
change during time step,'and ‘conditions’ at” the end of time step.
Output is generally fairly well labeled and organized. One weak-
ness in program output is that only node and total volume changes

{
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are output. This makes calculation of compaction tedious. Sum-
mation of column volume changes would be desirable. B

Output can, theoretically, be taken at any desired time in-
terval within the time period being simulated. However, CCC
chooses time steps according to internal criteria of gradients
_ and times and can only adjust time step calculations by a max1mum
of 33 percent.v Th1s results 1n 1ntermed1ate output at quite ir-
regular 1nterva1s.

7.4.4 SolutionvEfficiency

) Figure 7- 1 shows the relationshlp between problem complex-
1ty;'as represented by the number of nodal points, and compu-
tation time in CPU seconds of Boeing Computer Service's EKS- CDCe
system. Costs increase roughly linearly with the number of nodes
for a constant‘time period. Due‘to the time—step algorithm used
by CCC time period and cost are not clearly correlated. A time
period of 10 years costs less than 10 times what a time period of
1 year costs.

7.4.5 . Resume of Performance on Sample Problems

and Case Studies

CCC was used to predictfmass and heat flow in the aquifer‘
and aquitard for sample problems 2. and 4, CCC was unable to
analyse sample problems 1, 3, 5, and 6 because no pore-pressure
gradient exists which can cause flow.

Sample problem 2, a simple one—dimens1ona1 problem, produced
a steady-state pore-pressure gradient after about 30 years. Com-
paction predicted at the reservoir surface was 1 08 feet or ;_.
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0.76 feet after 5 years, depending on the use of either constant
or void-ratio dependent permeabilities.

Sample problem 4 can be viewed as either plane-strain or
axisymmetric. In both cases a pore-pressure gradient similar to
. that of sample problem 2 occurs over the reservoir, and the
aquifer's effect dissipates rapidly past the edge of the aquifer
in the lateral direction. Compaction follows a similar pattern
and is identical in the plane-strain and axisymetric cases.

CCC was impiemented for the Austin Bayou case study, the
only case study in which.flow was modeled. CCC produced results
comparable to those of hand calculations and CONSOL3.

7.5 PERFORMANCE ON TEST PROBLEMS AND CASE STUDIES

7.5.1 Sample Problem 2: Infinite>Reservoir
With Permeable Confining Layer

Sample problem 2 (Figure 1-2) is a simple,dne-dimensional
problem. A one-dimensional, l4-element-grid (Figure 7-2) was
used to model the géometry."Special élements with "infinite"
(1012) volume were used to maintain constant pressure
boundaries. Since there was no temperature gradient, only mass
flow calculations were necessary.  Oné‘of”théVadvanced features of
CCC is its ability‘to'modelﬁvariable permeability.materials.
Therefore, in addition to modeling sample problem 2 with constant
k, it was also modeled with a e-log k relationship with a slope of
Ck = 0.15. |

With constant permeability, solution to 5 years required 1.7
CPU seconds and solution to 30 years required 3.5 CPU seconds.
With e-log k, solution to 5 years required 1.8-CPU seéonds,
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Figure 7-3 shows the change in pore pressure with time in
the clay aquitard. Steady-state is reached in about 30 years, as
predicted by Terzaghi calculations. A linear gradient between
two constant head boundaries results, as expected.

Compaction of the clay aquitards is shown in Figure 7-4.
Both constant permeability and e-log k results are shown. A
compaction of approximately 2 feet occurs after 30 years. The
use of a void ratio dependent permeability decreases the rate of
compaction by approximately 25 percent in the first 5 years, but
probably will not affect steady-state compadtion.

7.5.2 Sample Problem 4: Finite Reser&oir
With Permeable Confining Layer

Sample problem 4 (Figure 1-4) was modeled as both planar-
flow and axisymmetric. The grid which was used in both cases is
shown in Figure 7-5. As in sample problem 2, infinite-volume
- elements were used to simulate constant-pressure aquifers.
Solution required 18.75 CPU seconds for either planar or axi-
symmetric cases. '

Pore pressures are plotted at différent elevations above the
constant-pressure aquifer (Figure 7-6) and at the surface of the
aquifer as a function of lateral distance (Figure 7-7). Varia-
tion of pressures with elevation are identical to those of sample
problem 2 at the center. This isfnot,surpriéing since one-
dimensional conditions are approximated at the center. There is
also little variation of pore pressure horizontally above the
sand. Edge effects are noticeable only to a small degree in the
node nearest the edge. Pore-pressure changes fall rapidly to
zero past the edge of the aquifer.
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Compaction at the reservoir surface is shown in Figure 7-8.
Compaction is identical to one-dimensional results for 400 feet
near the center of the aquifer.:UTwpfdimensional effects at the
edge of the reservoir result inMdégréased compaction neaf‘the
edge. Compaction past thé edge of the reservoir is apprbximately
constant, with horizontal distance for 1000 feet from thé'
aquifer.

7.5.3 Case Studies

CCC was used to study Austin Bayou. One-, two- and three-
dimensional andvaxisymmetric models were used. All modelsk
produced approximately the same result, indicating that simple
CCC models are frequently as accurate as more expensive models.
Heat gradients were used in the model; but it was found that heat
flow played an insignificant role.

CCC models for Austin Bayou were difficult to code because
of the complexity of parameters coupled with temperature and
pressure and because of the lack of an effective automatic node
generation routine in the program.

7.6 CONCLUSIONS

CCC is a powerful tool for studying complex heat- and mass-
flow problems in reservoirs. Due to high cost and the complexity
of input for the model, however, CCC should only be used where
the sophistication of the problem warrants it and where suffi-
cient field data are available to completely‘deSCribe the
geology. ' '
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LIST OF SYMBOLS

A areaw(Lz)

ay slope of curve in "e-o'
plot," coefficient of
compressibility (M—1Lt2)

Ce slope of virgin curve in
"e-log ¢' plot," compres-
sion index

Cxk slope of straight line in
"e-log k plot"

Cs  slope of swelling-recom-
pression curve in "e-log
o' plot," swelling index

CF fluid specific heat capacity
at constant volume (L2t2T7-1)

dp,m distance between nodal point
n and interface between nodes n and m (L),

e void ratio
I acceleration due to gravity (Lt—2)

Km thermal conductivity of
solid-fluid mixture (MLt-3T-1)

Kk intrinsic permeability (L2)
n outward unit normal on
surface S
fluid (pore) pressure (ML‘lt‘z)
mass injection rate per
unit volume (ML-3t-1)
q energy injection rate per
unit volume (ML~1t-3)
S surface (L2)
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ds surface element (L2)

Sg coefficient of specific

storage(L-1)

T temperaturer(T)

time (t)

\'s volume (L3)

dv volume element (L3)

V4 Darcy fluid velocity (Lt-1)

B “'first coefficient of fluid

. thermal expansion (T‘l)

;’ ,;ncoefficient of volume |

e q_fluid expansion (T“ ) -

Y second coefficient of fluid
L - expansion, (T‘ ) :
| Tt difference between the mean

temperature within volume

N - element dV and that.on sur-

- tface dS (T)

;ﬁﬁfm | direction cosine of the ,
’ angle between the outward
~normal of node n and § -

K fluid‘compressiblitYi(MtiLtz):{
}fﬁiﬂf-;j; fluid visc051ty (ML“lt'l)
P _j&xﬂfluid density (ML‘ )

'gﬁééaciifffgpheat capacity per. unit
R Yolume of the solid-fluid
- mixture. (ML-lt-ZT- ).
7ﬁ6f} iiieffective stress (ML‘lt‘z)
*"Superscripts T T

average
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Subscripts

m B at node m

n at node n

n,m at interface betweeninodes:n andwn
o reference quantity
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8.0 THREE~-DIMENSIONAL DISPLACEMENT-DISCONTINUITY

 MODEL "NFOLD"

8.1 . INTRODUCTION . - . . .-

. NFOLD is:a three-dimensional displacement-discontinuity -

imodel;developed}by:Sinhe:a.nd_;.Crouch,_a,t the University of Min- .

- nesota in-.1976 and enhanced and adapted by Golder Associates in

1978 and 1979. The displacement-discontinuity technique allows
"~ the modeling of thin seams with complex, nonelastic properties

within-an. isotroplc, homogeneous elastic space. The advantage of
NFOLD over: other displacement—discontinuity models is that it
handles three-dimensional geometries and incorporates several
efficiency-enhancement features. NFOLD is not suited for one- or
two-dimensional problems because all problems must be modeled in
three dimensions. ‘ ' '

NFOLD was desigued-as a model . for- the mechanichof;un@er-.

ground mining, As & result,:NFOLD deals exclusively with stress-

deformation mechanics and cannot handle flow, thermal effects,

effective stress,kor'coupling of properties., ' ..

Golder's adaptation of NFOLD for geothermal problems allows
it to be used to compute;thefeffectﬁof reservoir deformations at
depth on-surface deformations and ontdeformation-of'edjacentfgeo-’
logic features such as faults, : NFOLD,: which- models;the propoga-
tion .of. deformation:and - stress outside a: reservoir, complements a
model such as. CCC, which. models only behaV1or within a reservoir.
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8.2 SOLUTION METHOD - GENERAL THEORY

8.2.1 Theory

Within an elastic body, & displacement at one point produces
a change in stress at every other point in the body. The dis-
placement discontinuity method is based -on this fact. It re-
placéS'a thin seam by a number of rectangular elementS'andvthen
solves equations for the closure and shear displacements at each
element. RO - : B

- The theory of elasticity is used in NFOLD to determine the
coupling coefficients which relate the stress at one element to
the displacements at the others. ’ '

8-1 |
[ ] (5‘ =Gio +2 Cijdj
J .

oi 1s the stress at element i

oio 1s the initial stress before any displacements
“occurred ' '

Cij is a coupling coefficient

dj is the displacement at element j

Coupling.cOefficiehts are computed for each of three stress
components at element i and for each of three displacements at
element j. The three directions used are closure, shear parallel
to strike, and shear downdip. JﬁFOLD solves the above equations
by temporarily fixing all the values of>disp1acement at elements
other than i. This produces an equation with two unknowns:
oi and §j. | '
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Thls ‘equation. is now solved simultaneously 'with: the equation

descrlbingvthe ‘seam's .stress-deformation relation. :The result is
an estimate ‘of ‘the stress: and:- displacements ‘at. element. i. NFOLD
solves the equatidnsffor,each'element:in:turn‘and}iteratively'
repeats the solution until the computed displacements stabilize.

The nature of the seam's stress-deformation relation is
quite general. In the case studies, seam elements .were used to -
model the geothermal reservoir, those faults that,weuld slip if
overly stressed, and the surface: of the earth. : NFOLD has five
different types of seam behavior models (see Section 3.3).

~NFOLD ‘was ‘modified by:GolderbAssociateSxto%ineorporate the

| effects of pore pressure or temperature ehanges, -Assuming a thin
‘reservoir; ithe initial strain due to .pressure and.temperature is
integrated’over“the depth‘of the . reservoir'and then lumped as a
fixed<amplitude normal displacement at an otherwise-rigld seam -
element, :It “is also possible to- account for.-a reservoir having

- different elastic_properties,from the ‘rest Jof the continuum; this
feature;=however4§wés not:incorporated;into3NFOLD,;nv‘fvJ

8.2,2\;NnmeriealﬁMethods;

+'The: d1sp1acement discontinuity method requires solution -of
"equllibrium ‘between the seam stresses and the continuum stresses
at each element, where the continuum stresses of each element are
dependent on the displacements of-all- the elements. Therefore,. ’
the number of simultaneous equations to be solved is equal to
three times the number of elements. . To simplify ‘the ‘equations,
the effects . due toadistantrelementsHare-apprdximated byflumpingf
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five-by-five sets of elements into an'equivalent‘largerfelement
and using the average displacements of the 25\§ube1ements. This:
simplification can reduce computations by an order of magnitude
without compromising accuracy (Figure 8-1). NFOLD carries out
all calculations in three dimensions, so use of NFOLD for: one- or
two-dimensional problems is inefficient. Two-dimensional plane-
strain versions of the displacement-discontinuity method are
available. |

8.3 CAPABILITIES AND LIMITATIONS

8.3.1 Geometric Capabilities and Limitations .

NFOLD is designed for three-dimensional analysis and can
therefore be used for three-dimensional or any -simpler geometry.
It is extremely inefficient for simple geometries, however,
because three-dimensional calculations must still be performed;
NFOLD has no capability for handling symmetry and must therefore
be used to model the entire problem, even where:axes of symmetry
exist. - NFOLD is dimensioned for an array of "large" elements
(each consisting of 25 true elements) that is up to ‘10 "large"
elements along strike, Any number of seam planes.can be used,
but all must have the same strike direction and the combined num-
ber of downdip "large" elements can be no more than 25. All
elements must have the same dimensions. Different material pro-
perties may be specified for each true element. All seam planes
must have the same number of elements in the striketdirection.

8.3.2 ‘Flow Capabilities and Limitations

NFOLD handleSr¢n1y streSSﬁdisplacement calculations aﬁd
therefore has no facilities for modeling flow. In addition,



129

' individual -
element group . element

L - : NFOLD COUPLlNG OF DEFORMAT!ONS
e|ement iis coupled with 1

» : Q—-———" lndmduul element of neighboring groups-
B o—-—-—-—g Group average for distant groups

‘ ' FIGURE 8-1- ‘
THREE—DIMENSIONAL DISPLACEMENT-DISCONTINUITY MODEL
' COUPLING OF ELEMENTS AND ELEMENT GROUPS

et el T o . R ST, i




130

NFOLD ignores all time-dependent phenomena. NFOLD takes as input
the reservoir compaction based on assuming a constant total ver-
tical stress, which must be determined by a reservoir-flow pro-
gram such as CCC.

8.3.3 Material Properties

NFOLD handles six different types of materials. One
material repreSents the elastic space, which must be isotropic,
homogeneous, and linearly elastic, and which is described with
the two parameters, vand E. The other five materials are |
discontinuity materials (see Table 8-1).

TABLE 8-1
NFOLD ELEMENT TYPES

ELEMENT NAME NﬁMBER - DESCRIPTION
Mined o g, =0
Rigid 1 6, =0
Linear 2-6, 8-10 5, = it
| t Es
Nonlinear (See Figure 8-2) 11-51 . r*’di = f (Gi)
Aquifer 7 | Gi = cbnstant
0j = stress within element
6; = deformation within element -
t = element thickness
Oit/Es 07 < Ormax
‘F(O'i) = 9 Omayx /Es+0T/Er Omax L O < Oryp
1.

C > Grup
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Mined. Mined elements have zero internal stress;
therefore, deformations must occur that cause the
induced stresses to exactly cancel initial stresses.
Mined elements are used in reservoir modeling to
represent the ground surface.

Rigid. Rigid elements have zero deformation. No eoup-
ling coefficients are computed for rigid elements.

Linear Elastic. NFOLD allo&s specification of linear
elastic properties for eight discoptinuity materials.

These may be used tqwmedel aquitards or compressible
layers. E and v must be;theeste for all elastic mater-
ials, but thicknesses may be different.

Nonlinear. As many as'39 materials can bevspecified
with nonlinear properties (see Figure 8-2). Nonlinear
elements are ideal for modeling faﬁits. The elastic
position of the nonlinear stress-strain curve must be
the same as that for thefl;near-elastic discontinuity

material.

mpquifer." NFOLD 'fiéf**adépté&“ to the reservoir modeling

problem withethe_"equifer“ element. "Aquifer" elements

_are rigid elements with‘fixed displacements. As pre-
ﬁdicted by computer program CCC the fixed displacements
 can be taken as reseryoir compaction.; NFOLD adjusts

displacement throughout the elastic space to reflect
disdisplacements in the reservoir. ‘ '
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r NFOLD. allows -specification of different .discontinuity
'materials for .each -of. 25 small elements. within ‘each "large" -
element. . . - onlyooon ciecll o R

8.4 USABILITY

8.4.1 Documentation

NFOLD has. a :users' manual: that provides.a .thorough explana-
tion of. all dinput- parameters.,,The manual lacks sample problems:
that would facilitate. coding. considerably.v;NFOLD's.source/codeﬂ
is fairly: well commented and: therefore relatively easy to e,i~
follow,. - . :fw}fniﬁz R | : )

Few case histories of NFOLD's use are publicly available,
although Golder Associates -does. have .access to some.r An analog
scribed_in Crouch.anthairhurstz(1973),— The theory of two-
dimensional-displacement discontinuities is developed in Crouch
-(1976). .Sinha (1979) discusses the development. of NFOLD in three
dimensions.

8.4.2;ginpnthaseicg"

Coding for NFOLD is quite 81mp1e and logical. Complex
three-dimensional geometries can be described on & few. cards by
use of element grouping and automatic generation.

;— i TEe

fik NFOLD ignoresiflow, thermal dynamic, and coupled material
'propertyreffects ;and: therefore requires only . stress-strain
consxitutive relationssaswlnput,, : ’
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The displacementfdiscohfinuity methbd'é~accuracy is highly
dependent upon ‘proper selection of element sizes: and inter-
relationships. An understahding of these dependencies is essen-
tial to accurate modeling and represents the only significant
constraint on ease of input. oo

8.4.3 Output Control and Comprehensibility

- - NFOLD has two levels of output, standard ‘and complete.’
Standard:‘output includes an echo of all input data ‘and line-
printer contour plots offétfessesfdndVdeplacements at every grid
square of every element. : Complete output ‘includes summary
statistics as each iteration is completed and printout of all:
stresses and displacements at every grid square. .

Unfortunately, in its present‘form;ﬂNFOLD'lineprintef plots
require specification of a scaling ‘factor with input ‘and ‘can ‘only
output scaled values from -9 to 99.. For problems with signifi-
cant results outside of that range, lineprinter contour plots
cannot be used, and output values available only with complete
output must be used. '

NFOLD dnly outputs results at elements, so elements must be
included wherever output is desired, including the surface.

8.4.4 Solution Efficiency - -

NFOLD is designed for three-dimensional problems and is
thereore most efficient in that mode. One-dimensional ‘and’ two-
dimensional problems can be implemented on NFOLD, butionIbeyw‘l?
modeling the simple geometry in three dimensionS;»'Thisffeéﬁlts1?
in extreme inefficiency for simple geometries.
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NFOLD's solution time depends upon two factors: the total
number of "large" elements and the number of elements between

which complete coupling exists. Costs increase linearly with the

number of elements (see Figure 8-3).

- NFOLD is considerably more efficient for three-dimensional
problems than it is for three-dimensional finite elements or for
finite~-difference models.

8.4.5 Resume of Performance on Sample Problems
and Case Studies

The Sampié Problems for which feservoir compactions are

known are all either one- or two-dimensional and are therefore

not reaily appropfiate for use with NFOLD. NFOLwaas used only
with sample problem 5‘ which is two-dimensional. NFOLD was given'
reservoir compaction and" ‘was used to predict surface subsidence.
However, the cost to obtain accurate subsidence profiles was
prohibitive. S

¢

Due to its assumption of "thin" seams, NFOLD was used only

- for the Austin Bayou case study. 1In this case study, NFOLD pro-

duced reasonable, three-dimensibnal results.gt a relatively high

cost.

8.5 DERFORMANCE ON SAMPLE PROBLEMS e
’ AND CASE STUDIES o

'NFOLD is & three-dimensional model and is therefore inap-

;pfopriate for all Sample Problems except Problem 6. Reservoir
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deformation values from sample problem 6 are, however, unavail-
able, so NFOLD could not be used for that problem. NFOLD was
~used to model sample problem 3, a two-dimensional problem. Res-
ervoir compaction from the hand calculations was used. Solution
of the two—dimensional problem in three dimensions was very inef-
ficient and required 130 CPU seconds.

To model the two-dimensional ‘geometry of sample problem 3,
the ground surface and the aquifer were modeled as close to infi-
nite planes as possible,‘with attention to the avoidance of edge
effects and interference between adjacent discontinuity planes.
The model used is illustrated in Figure 8-4, ,"Mined“ elements at
elevation zero were used to create the zero—stress condltion at
the ground surface.irur~-*\ - RE '

"Aquifer" elements with compaction equal tobthet{predicted
for the reservoir~by the hand calculations (0.972 feet) were used
to model the reservoir. S :

The model for sample problem 3 shown in Figure 8-4 resulted
in a maximum displacement- ‘at the: surface of 2,35 feet--over twice
‘as large as the reserVOir,compaction.uwThisnis the ‘result of the

- use of elements offdimension 100 feet by 100 feet - while the dis-

- tance between the surface and the reservoir is only 500 feet.
Reducing elements: to 10 feet by 10 feet produces 2 -maximum

settlement of 0. 69.feet, The number of elements, however, is
increased 25 times, and so are the costs. -

o R | ,
8.5.2 Case Studies

NFOLD was only used on the Austin Bayou case study. Model
CCC was used to determine the compaction of the reservoir. NFOLD
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was then used to model therpropogation of stresses and strains to
the surface and to nearby faults. Figure 8-5 is a sketch of the
element layout.

The use of NFOLD allowed determination of three-dimensional
settlement‘at the surface at a cost of approximately 300 CPU
seconds--considerably less than the cost of a compareble finite
element or finite difference model, but still a very significant
cost.. In'addition, stresses on the faults were computed, and it
was predicted that no slip'would occur, However, this result is
apparently due to the large fault and reservoir elements that had
to be used to obtain a solution at a. reasonable cost. A much-
improved determination of. stresses on, the faults was achieved
with the two-dimensional displacement-disoontinuity program
DDJ2D.

8.6 CONCLUSIONS

NFOLD is a very useful broéram for analyzing three-
dimensional propogation of reserv01r deformation effects and is
therefore an excellent companion to a reservoir-flow modeling
program such as CCC. Simpler displacement-discontinuity programs
such as DDJ2D and- MINAP (Crouch 1976) are useful for one- and
two-dimensional geometries. The major limitations are (1) the

kgssumed homogeneous linear-elastic continuum 1u,wh1ch the "seams"

are embedded and (2) the requirement that the "séahsﬁ be thin.
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APPENDIX A

USERS' MANUAL
PROGRAM "SUBSID"'

D84







A.1 INTRODUCTION

: The program SUBSIDmodels geothermal reservoirs subject to:
pore—pressure changes1usingfsphericalsnucleiwofgstrain.,eThis-
users' manual describes the use of SUBSID but does not present
'thertheory of the{methodjemployed.'-The;detailednreportpon.SUBSID
provides.that_background and,should be -read in .conjunction with .
this users' manual.- i '

_ Although“this manual does'not'refer to temperature changes, -

they . can: be specified by.- applying ‘a pressure change equal to
3KadT, where K is the bulk modulus (K.= 5?1"2—7)’ a is the coef-.
ficient of linear thermal .expansion;,  and 8T is the temperature
change. - ;. -

"Pressure increases and compressive stresses are positive,
wvhile pressure decreases and tensile stresses are negative. The
pressure change Ap and volume: v of a particular sphere should be
‘chosen so that ApV "APoVo» ‘where Apo and V are
the pressure change and volume of the corresponding portion of
. the reservoir. If this is done, then displacements and stresseS‘
at p01nts away from the reservoir will be calculated correctly.
Points within either the model or the actual reservoir will show
incorrect values for displacements and stresses, since a model
made of spheres does not conform well to an actual nonspherical
reservoir. 4*’ At o L

: :The‘program allows 500 obser;atio%'points at which dis-
placements and stresses are ‘to be calculated and a total of 700
observation points plus spherical nuelei: of strain.

The reservoir pressure change and the modulus of elasticity
must be specified in the same units. The units of length used in
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describing the reservoir geometry need not‘be consistent with
this. Displacement will be output in- the units of :length used
and stresses will :be output 'in'the units of pressure used. -

‘The. subroutine CYLIN in 'SUBSID combines spheres with centers
in the same XY plane ‘to form & cylinder. The user specifies the’
depth of the centerplane of the cylinder, the number’ of spheres
in the cylinder and the radius of these spheres. The center of
the cylinder, 'is assumed to be at (X, Y) = (0, 0). Table A-1
presents the number of spheres that may be'specified,*their~ar+
rangement in rings from the center out, the radius of the spheres
as a function of cylinder radius, and the aspect ratio (h/R =
height/radius) of the cylinder whose volume exactly equals the
volume of the spheres in the model.

"‘TABLE - A-1
CYLINDERS' MODELED WITH SPHERES

NUMBER OF = NUMBER RADIUS . EFFECTIVE

RINGS  OF  ARRANGEMENT OF ASPECT RATIO
N ° . SPHERES IN RINGS - SPHERES." _H/R

1 1 R R 4/3 = 1.333
2. 9 1,8 . | R/3  4/9 = 0.444
3 25 1,8,16 R/5 4/15 = 0,267
4 49 1,8,16,24 R/7 4/21 = 0.190
5 81 ©1,8,16,24,32 . R/9 - 4/27 = 0.148
6 121  1,8,16,24,32,40  R/11 . 4/33 = 0.121
7 169 1,8,16,24,32,40,48 R/13 . . 4/39 = 0.103




A.2 INPUT

SEEEUTL IOy Ty ey

There are five'iypes of 1input cards. ~Only one card of each
of types 1, 2; and 4 is used. " The number of cards of type 3.SOR
(where SOR varies from:0 10‘5)'is“eqﬁ£1‘tO”LAYER as specified on
card type 2.v The number ‘of cards of type 5 is equal to NOB

which is specified on ¢ard type 4. "

- Card 1: FORMAT (2F8.2) NU, E

COLUMN -

1-8 NU value of ‘v for the half-space
- 9-16 E value of Young's modulus in units of ML“lvt‘2

-for the half-space

Card 2: FQRMAT>(2IS;fFSEOvaAYER;*IR}fSORAﬁf%5

. pre T R T
- COLUMN ,
- 1-8 - LAYER: 4 numberof" reservoir arrays (integer)
9-16 IR ... total: number of reservoir spheres (integer)

17—24y»“‘SOR1;%6<fftype ofrrese:voir arrays: "

Y B Ve

4.
5.

TR
A W
2.
8.

SRR S

single spheres e

»horizontal rectangles (in X-Y plane)

lines in the X direction

1ineés: the Y ‘direction

lines ‘in the’Z direction (depth)
cylinders (in X-Y plane)

LAYER cards of type 3.SOR331@5?‘

‘v§:r.._

Card 3.p: (used if SOR = @.): FORMAT (18,5F8. 2) I, x(I), Y(I),'
_&ﬁg ' Z(1), A(I1), BETA(I)- FREY




COLUMN
1-8 I
9-16. . . X(I).

17-24 . Y(I) .
25732: 1,2(1)
33-40 . A(I) |
41-48 BETA(I)

(note that LAYER =

number of reservoir sphere (integer)

X coordinate of center of ith. sphere
.Y coordinate of center of ith sphere
. % coordinate of: center of ith sphere
. radius of ith sphere \

pressure change in ith sphere (ML-1l t-2)

IR for SOR = @.)

Card 3.1: (used if SOR = 1.) FORMAT (6F8.2, 3I8, F8.0) Rp, X0,
Y9, 29, OX, OY, I, NX, NY, BET

COLUMN

1-8 RQ
9-16 . X9
17-24 Yo
25-32 vAY)
33-40 0X
41-48 . OY
49-56 I
57-64 NX
65-72 NY

73-80 BET

radius of spheres

spacing of sphere centers in X direction
spacing of sphere centers in Y direction
Z coordinate of sphere centers

X coordinate. of rectangle,midpoint,

Y coordinate of rectangle midpoint

number of first sphere in rectangle (integer)
number of spheres in X direction (integer)
number of spheres in Y direction (integer)

.pressure. change -in- spheres (ML‘l t'2)

Card 3.2: (used if SOR = 2.) FORMAT (5F8.2, 8X,; 2I8, 8X, F8.0)
R¢! X¢) Y¢D‘Z¢9 0, Ia ‘Nr—BET‘_:-«

COLUMN

1-8 RQ

1 9-16 XQ
17-24 . YQ .
25-32 zp

radius of spheres : s

spacing of sphere centers in X d1rect10n

Y coordinate of sphere centers _
Z coordinate of sphere centers ' (-




33-40 0 : X coordinate of first sphere center
49-50 I " number of first sphere inh’ line (integer)
57-64 N  ‘number of ‘spheres in’line” (integer)
73-80  BET = :preséurévchange’in spherestML-l t-2):

Card 3.3: (used if SOR =:3.,) FORMAT (5F8 2 BX 218 SX F8. 0)
R¢: x¢: Y®,: Z¢;' I, N “BET

- COLUMN
1-8 RO radius of spheres
9-16 X0 X coordinate of sphere centers
17-24 Yp . - ‘spacing of sphere centers in Y direction
25-32 " Z9 j’>7*‘Z£ccordinate'6f sphere centers ’
33-40 0O a Y coordinate of first sphere center
49-56 . I : number of first-sphere in line (integer)
57-64 N number Qf‘spheres in line (integer)

73-80 LBETn~”1.:fpressurefchahge7infspheres“(ML‘i*t“z)

- Card 3.4: (used if SOR = 4.). FORMAT (5F8 2, 8X, 2I8, 8X, Fs8. 0)
RY, X9, YP, Zp, O, I, N, BET .

"~ COLUMN ~ R
1-8 ) Rp ;””dradlus of " spheres .
9-16- Xp < X coordinate of sphere centers
17-24 Y9 55;~#'Y coordinate Jof sphere centers
'25-32 - Zp i . spacing of sphere’centers: in Z direction
33—40%155031 . Zcoordinate of" first sphere center -

49-50 SR S ﬂ??number of’” first sphere in ‘1ine (integer)

57-64 N i . pumber of spheresvin line  (integer) ‘)

73-80  BET = pressure change in spheres (ML-1 t-2)

card 3.5: (used if SOR = 5.) FORMAT (5F8.2, 218, F8.0) R®, Z@,
I, N, BET ‘




o'

COLUMN e A S ,
1-8 -R® .~ radius of spheres in array .
9-16 Zp . .. . Z coordinate of sphere.centers
17-24 I .. number :of first sphere in cylinder (integer)
25-32 N number of spheres in cylinder (intéger =1, 9,

oL e . 25, 49, 81, 121, or 169) =
33-40 BET pressure change in'spheres'(M_L‘1 tfz)

Card 4: FORMAT (2I8) NOB, IO

COLUMN , o . L
1-8 . NOB.. number of .observation arrays (integer)
9-16 10 . total number of observation points (integer)

NOB Cards of Type 5.0BS:

Card 5.1: (used if OBS = 1.) FORMAT (6F8.2, 3I8) OBS, X@, Yp,
zp, 0X, OY, I, NX, NY

COLUMN

1-8 - OBS 1. (indicates rectangular observation array)
9-16 X@ X spacing of observation points

17-24 YO Y spacing of observation points

25-32 29 Z coordinate of observation points

33-40 OX X . coordinate of rectangle midpoint

41-48 . 0OY .. . Y coordinate of rectangle midpoint

49-56 1 -~ . number of first point in rectangle (integer)
57-64 NX ~_ number of points in X direction (integer) .
65-72 NY . humber of points in Y direction (integer)

Card 5.2: (used if OBS = 2.) FORMAT (5F8.2, 8X, 2I8) OBS, X0,
YP, 29, 0; I, N




COLUMN
1-8
9-16-
17-24
25-32
33-40
49-56
57-64

Card 5.3:

'COLUMN
1-8
9-16:+.
17-24
25-32

© 33-40

. 49-56

57-64

Card 5.4:

 COLUMN

- " OBS |
- '5':‘X¢.' .
Yp:

1-8
9-16
17-24
25-32
33-40
49-56
57-64

OBS 2. (line of observation points in X direction)
b.() X spacing of observation points
YO Y coordinate :of observation points
A1) Z coordinate of observation points:
0 X coordinate of first point in line
I number of first point in' line (integer)-
N number of points in line (integer)
(used of OBS = 3.) FORMAT (5F8.2, 8X, 2I8) OBS, X9,
Yp, 20, O, I, N+ e
OBS 3. (line of observation points in Y direction)
XQ s X coordinate of observation points' | :
“YQ .Y spacing of observation points
0 "”Z’coordinate of»observationfpoints
0 8 Y coordinate of firSt~pointiin 1inefT'
I  number of first point in line (integer)
N

number of points in line (integer)u

(used if OBS = 4,) FORMAT (5F8 2, 8X 218) OBS, X0,

"YQ, L@, O

Z¢»

- O

P N

‘4. (1ine of observation’ p01nts in 7 d1rection)

X ‘coordinate of obsérvation points RO

'Y coordinate of observation: points’

stpacing;of observation points
7 coordinate of first point in line
number of first point in line (integer)

"‘nUmbeffof»pointsiinfliné (integer)
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A.3 OUTPUT

Most output from SUBSID is automatic; however, the user must
specify a grid of points at which displacements and stresses are

to be determined.
The following parameters are automatically output:

1. Poisson's ratio and Young's modulus

2. Echo of reservoir spheres input

3. Echo of observation points input

4, Positions of sphere centers, and observation points
5. Strength and radius of reservoir spheres.

Displacements and stresses are output at observation points
specified by the user. Quantities output are displacements U, V,
and W in the X, Y, and Z directions; normal stresses Gx,Gy,
and 05, shear stresses Txy, Txz, and Typ, and the mean
stress Op.  The observation points are ordered as follows:

1. Arrays (rectangles or lines) are output in the order
bf_input

2. Within a line array, the points are ordered from the
lowest to the highest coordinate

3. Within a rectangle, the points are ordered from the
lowest value of Y, with X varying from its lowest to
highest value, up to the highest value of Y, with X
varying from its lowest to highest value (Figure A-1).

A.4 SAMPLE PROBLEM

A reservoir is to be modeled by seven spheres whose geometry: 7
is shown in Figure A-2. Five spheres have their centers on a \_J
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FIGURE A-1 =

" SUBSID USERS' MANUAL

+ ORDERING OF  NODAL POINTS
'WITHIN RECTANGULAR GRIDS

| _FIGURE A-2
. SUBSID USERS'' MANUAL "
GEOMETRY OF SPHERES

REPRESENTING SAMPLE PROBLEM RESERVOIR




A-12

horizontal line with coordinates (Yjp, Z3). The sphere

radii are the same and are equal to aj. The sphere centers
are spaced one diameter apart with the first sphere center at
coordinates (X1, Y1, Z1). The two other spheres have

their centers on a horizontal line with coordinates (Y1,

Zog). Their radii are equal to ag. The sphere centers

are a distance sg9 apart. The coordinates of the first sphere
center are (X2, Y1, Z3). The pressure changes of

the five spheres and the two spheres are Apj and Ap2o,
respectively. Material parameters for the half-space are E and
Vv,

Observation points are chosen to form a 7 by 6 rectangle at
the surface % = 0. The points are spaced at dy in the X di-
rection and dy in the Y direction. The center of the rec-
tangle has coordinates (X3 + 4ajp, Y1, 0).

Input values for this problem would be:

Card 1 9 17 25 33 41 49 57 65 173

1 v E

2 2 7 2. ;

3.2 a; 2 Y, Z; X, ? 1 5 Apl
82 Sy Y3 Zp X S

4 1 42 '

5.1 1. dx dy 0. X +da Yy, 8 7 6

Values will be assumed for the as’yet unspecified parameters as

follows:
v = 0.25, E = 109 1b/in2
a1= N

50 ft, Y7 = O, Z; = 400 ft, Xj = 100 ft o
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~300 1b/in2 -

100 ft, 'sg’= 300 ft, Zp = 550 ft, Xy = 200 ft
-300 1b/in2

50 ft, dy = 30 ft.

Apy .
ag
w2’
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A.4.1

.25 1 0Quuo.
2 . 12,
%0. 100. 0.
100. 300. 0.
| 42
1. 50. 30.

RIV £

g
«250 100900,

Input Data for Sample Problem

400
550

O.

. 100.

. 200.
300.

A.4.2 OQutput for

RESERVOIR SPHERES INPUT

Sample Problem

50.u00  10v.u0 U.00 - 4u0.00 ivo.00 0.00 1 o]
100,00 300.00 0.00 550.00 200.00 g.0u 6 2
OdSERVATION POINTS [4PUT
1.u0 50.30 30.90 0.00 300.00 0.00 8 7
POSITIONS OF SPHERE CENTERS AND OBSERVATION POINTS
130, 200. 300. 400. 500, 200. 500. 150, 200, 250. 300.
499, 150, 200, 250. 300. 350. 400. 450. 1%0. 200. 250.
400. 450, 150, 200. 250. 300. 330. 400, 450.
0. o, 0. 0. 0. g. 0. <75, =75, =15, =75,
=45, =15, =15, =I5, =1, =1%. =15, =]5, 15, - 15, 15,
43, 45, 13. ED 75. 15. 15, 5. 15.
400. 400. 400. 400. 400. 550. 550. 0. 0. 0. C.
0. . 0. Q. 0. 0. u. 0. 0. 0. 0.
0. 0. U. 0. 0. 0. 0. 0. 0.
STRENSIH AND RADIUS OF RESERVOIR SPHERES .
=.00239 50,0 -,00259 50,0 -,00251 30.0 -.00250 30,0 -,0025)0 S0
0.00990 0.0 0.00000 0.0 0.,00000 0.0 0.00000 0.0 0,0000D O
0,019000 0.0 0.00000 0.0 0.00u00 0.0 0.00000 0,0 0,00000 1]
0.09000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0
0.00000 0,0 0,90000 0.0 0,00000 0.0 U,U0000 0.0 U,00000 ©
0.00000 0.0 0.00000 0.0 0. 0.0 v.00000 0.0

00000

v -3o00.
¢ =~300.
6
350. 400,
300. 3s50.
=15, =I5,
i5, i5.
0. Q.
o. 0.
«0 =.00250 10
.0 0.00900
.0 0.00000
0 0.00000
<0 0.90000

450.
400.

150.
450,
~-45,
15.
0.
0.

=15,
15.

0 -.00250
0 0.00000
U 0.00000
0 0.09009
0 0.00000

~300.
-300,
6
il
[
-
200. 250. 300. 330. 400~
150, 200. 250, 300, 350,
~45. 45, -45,- =43, -45,
45. 45, 45..- 45,
0. o. 0. 0.
o. 0. o M
100.0 0.00000 0.0 0.00000. 0.0
U.0 0.00000 0.0 0.09000 0.0
0.0 0.00000 0.0 0.00000. 0.0
0.0 0.00000 'U.0 9.09000°" 0.0
0.0 0.00000 0.0 0.00000 - 0.0




- fiu
o ,00582

.00433

. 00275

20Ul04
- 0M)2
-.00244
-4, 00405
00592
w00 446
.00281
:00108
-:00073
-.00243
-~.004}2
L00597

00449

. «00283
< #00106
- =«00074
. =+00251

-.00416

¢ 00597
T 00449
2002483

00105 .
=.00074

=.00251
~ -=,00416
Q00592
©. «00446

2002381

~+ 00105
L =400073

-.00245
T =.00412
T .00582
B 00430
S .00276
©.00104
L =e00072
¢ =.00244

-090405 

Vo

.00308
«00326
© 00338
00345
-)344
00338
00325
001y
«00200

L00208

+00211
00211
.00207
+00199
.00064
T 00067
00070
00071
00071
+00070
Lo <00067
=, 00064

=.00067

. =, 00070
~.000 /1
-.00011
-.00070
-.00067

<0018y
-.00200 -

-.00208
-.002H1
-.00211
-.00207
=.00199

7, 0308

~ =.00326

i =-.00338
k. =+.00345

L-=e00344
.=+00338

Ve 00325

L02192°7 ¢
2020157

a

01992
02107

~e02t87

.02229
.02239
L02192
02115
.02033
02152

‘402234

02211
02214
.022338
«02159

- «02034 .

02174
.02258
.02301
02303

.02262

«02181

.«02054

.02174
«02258
.02301
+02303
02262
02181
.02033

02152
02234

02211

02278
202238
“02159
101992
L2100 -
G218

202229
» 02230,

i =4, 346

SloY

-4,791
-5.142
~5.319
-5.497
=5.493
-5.369
-5.130
-5.04%
-5,456
=5.7110
=5.83%
-5,830
~5,694
-5,43%
-5,236
~5.621

‘5;884‘

‘600'3
~6.006
-5,865
-Hs5%0
-5.236
-5:621

-5,884
-6,013
-6.006
=5.805
=-5.5v0

=5.085"

-5.456
-5,710
~5.835
-5.830
-5,694
-5, 435

T =45191

~5.142

-5,319
-5.497
‘544?3:
=5.369

~5.130

1] $¢74
000

<000 .

.000
-.000
<001
+000
.000
<000
«000
0.000
«.000
-.000
=4 000
=+000
-.000
000
.. 000
-.000
«000
.000

o L 000
f4000
000
000
-, 000

.2 0007

4000
_.«000
000
«Q00
~0s0ud
-.000
=,000
‘;000
+.000

L, ...000

MRS ¢ 01}
-+ 000

- =000 . -

000
<000
© <000

0.000

0.000:

0.000

0.000

0.000
0.000
0.000

0.000 .
- 0.000
0.000;,

0.000

0.000

0.000
0.000

-.0.000
:0.000
0.000

0,000

- 0,000
.0.000
©0.000

" 0.000
- 0.000
0,000

iYZ,;
0,000
0.000
0.000

9. 000

9.009
02000
0.000

0. 00 -
0,007

0.002
04000,
0.000;

Q.009 .
0,909 -

0.00):

" 0000
* 0,000

0.000

7 0.00T

0% 000°
0.000
0,000

0.0U0~

0.000.
0.000.

0,000
. 0,000 -

0.000
0.000
0,000
0.000"
0,093
0009
0,000°
0.000
0.000"
0.000.
0.009
0.000
0.009
0,000
0.009:

SIGM
=2.881
~3.168
~3.363

-3,459
~3.456

-3.355

=3.159
-3.016
-3.3117
-3.321

-3,621

-3.611
-3.510
-3.303

.. =3.086

-3.395
~3.604
-3.706
=3.701
=3.591

-3.379

=3.086
-3.395
-3.604
=-3.706
-3.701

T =359

=3.31Y
-3.016

"o =3.317

-3.521

To=3i621

=3.611
=3.510
-3.303
-2.881
~3.168

T =3,363

~3.459

- =3.496

=3.3%5

: -3}!59

g1-v
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A.5 MODELING A CYLINDER WITH SPHERES

The ariangehént of spheres to form‘a‘cylihder‘that'was used
in SUBSID is'derived as follows. The cylinder radius is divided
into 2n-1 equal segments. Rlng boundarles are drawn at the
division point closest to the center and at every two division
points thereafter to form n rings (the middle ring is a cylinder)
Figure A-3 illustrates this with n = 4, Ring volumes,Vr are:

Vr = Th (déz— a-.‘)

where a, and aj are the outer and inner ring radii,
respectively, and h is the cylinder height. This may be written

as.

V, = ZTR_‘ 2 (2_|<—|> (zk-s)

for the actual rings and

TR*h

vV, = —4m™MmM@™M™ ™M
< (zn-1)?

for the center cylinder.

The ring volumes relative tp the center cylinder are then

Vi
:8<K—l> k=Z,....’n
C - S
Therefore, if the central cylindér'is~modeledrwith one
sphere, the surrounding rings must have in order 8, 16, 24, 32,
esee, 8(n-1) rings. The aspect ratio of the cylinder whose volume S

y;
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: ”TJ.E 7 : : 3
Vo is exactly equal to the totul volume of spheres is found
by comparlng \ aud Vo'for each n.’ For n = 4 there are 49'
spheres. Since the}r_rgdiihequu;s one-seventh ofjthe‘cylinder

radius:

voem(ETEPR) L

and Vo =?f33b}

\'

Thus; for Y = V0 we must have

hoos(u) u

R~ 3 (73 - :
This means that the generated cylinder for n = 4 (49 spheres) has

dan effective aspect ratio of h/R = 4/21. Table A-1 gives the
aspect ratios for the other[generated cylinder types.

A.6 CHANGING THE PROGRAM

The limits on the number of observation points and spherical
nuclei of strain may be increased by making the following

changes:

Main Program SUBSID

o Increase dimension of arrays B, C, XX, YY D w1, S1,
52, 83, Tl and T2 in the 'DIMENSION list to the number
of observation points desired.*

o ,increase dimension of‘arrays v, v, W, S1GX, SIGY, SIGZ,
TXY, TXZ, TYZ, BETA, and A in the DIMENSION list and X,
Y, Z in the COMMON list to the number of spheres plus
observation points desired.
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o) Increase the upper 11m1t of the DO loop in 11ne 15 to
the number of spheres plus observation points des1red.

R

FI

Subroutines XLINE, YLINE, ZLINE, RECT, CYLIN

o) Increase dimension of arrays X, Y, Z in the COMMON list
to the number of spheres plus observation point desired.

The subroutine CYLIN could be easily changed so that a
smaller aspect ratio cylinder could be generated. For example, a
cylinder with aspect ratio 4/45 = O, 089 would be modeled by 196
spheres of radius R/15 arranged in eight rings, with thefopter-
most containing 56 spheres. . ’




A-19

S

FIGURE A—3' Lo
: SUBSID :USERS' MANUAL SRR
7FORMING MODEL CYLINDER WITH SPHERES (N-'4) :

L Syl DR LEE S, RO ianE ] Tt e
o PRAAANO ; .




HOO

oco

200
199

699

700

130
131
132

133
140

13

A-20

A.7 SOURCE LISTING OF SUBSID

CALCULATION OF DISPLACEMENTS AdD STRESSES DUE TO SUBSIDENCE

PROGRAM SUSSTJCINPUT, YTPUT ,TAPES=INPUT,TAPES=TPUT)
DIMENSION U(700),V(700),1{790),S10X(700),51GY(700),5132¢700)
S.IXY(700).TXZ(700).TYZ(700).BETA[700).A(700).8(500).0(500).

$XA{500), YY(500),0(500),11 (500) -.
$,31(503),82(500),S3(590), T1(500),T2(500)
CO440N X(700),Y(700),2¢700) N
REAL NU. . ’
READ(5,200)-NJ, &

WRITE(S,199) U, E

FORAAT(2F8,2) :
FORMAT(* ~ NU E - */F8.3,F8.0/)
0o 5 I=1,700 ' :
BETA(L)=0., §  A(I)=y,

CONTINUE

RESERVOIR MODELLED WITH SPHERES

WRITE(6,699) '

FORMAT(/* RESERVOIR SPHERES INPUT)
REAU(5,400) LAYER, IR, SOR

IF(SOREQ.0.) GO TO 14

DO 13 K=1,LAYER

IF (SOR.NE.5.) GO TO 1

READ(5,700) RO,20,1,N,BET

HRITE(6,700) RO,Z0,I,N,BET
FORMAT(2F8.2,218,r8.0)

CALL CYLIN(RO,ZO,I,N)

GO TO 140 .

READ(5,500) RO,X0,Y0,Z0,0X,0Y,1,NX,NY,BET
WRITE(6,500) RO,X0,Y0,20,04,0Y,1,NX,NY,BET
IF (SOR.NE.1.) GO TO 130

CALL RECT(X0,Y0,20,0X,0Y,I,NX,NY)

NaNX%*NY -

GO TO 140

O=Q0X $ NaNX

IF (S92-3,) 131,132,133

CALL XLINE(X0,Y0,20,0,I,N)

GO TO 140

CALL YLINE(X0,Y0,20,0,1,N)

GO TO 140

CALL ZLINE(X0,Y0,22,0,1,i)

JEnl+N-1

DO 13 J=],JF

BETA(J) aBET#(1 (+NUI* (] (=2, %NJ)/ ( () .=NU)*E

$ ACD=RO

B(J)=3eTA(JI*A(I)*#%3/3, § C(J)=B(JI*E/(].+NU)

CONTINUE
GO TO 3

SINGLE SPHERE IWNPUT
DO 15 J=1,IR
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READ(5,30001,X¢1), Y(I),Z(1)  ACI) (BETACT)
FORAAT( 18, 5F8.2)

BETACL)=HETACLI%( 1. #NUI*(1.=2. *NUD/ ((1 .=HUD*E)
BOII=UETACD*ACII*¥*3/30 5 8 CUII=BUII*E/L] L #NU).
CONTINJE , R

WRITE(S, 101) IR ‘

FORAAL (1K, 15, %' SINGLE SPAERES*)

OBSERVATION POINTS

RbAD(9.400) N)B IO
rJRMAT(ZIB rd 0)

- IT=TR+1D -

WRITE(6,499) : :
FORUAT (7% ossERVArlon POINfS INPUT*)

DO 110 II=1,NOB

REAU(5,500)°08S,X0, Y0, 20, 0X,0Y,1, NX Y
WRITE(6,500)° 085, X0, Y0420, 0K, 0V , 14 NK 4 NY
FORMAT(6F8.2,318,F8.0)

IF(OBS.NE.1.) GO TO 120

<1 CALL  RECT (X0,Y0,20,0X,0Y,1,NX, NY)

GO TO 110

0=0X $. N=NX

IF(0BS~3.) 121, 122.123 L S

CALL XLINE(XO, YO‘ZO 0, 1, N)‘ LT oRTEE ,

GO TO 110 gl Sl

gAL% YLINE(XO Yo; 20, o 13H) L

CALL ZLINE(XO Y0,2050,1,0) o r LT hen

CONTINUE . g i L .
NRITE(6,599) " * '

FORMAT( /% POSITIONS OF SPHhRE LENTERS AND' JBSEQVAT!ON POINTS*)
ARITE(6,600) (X(J)J=1,1T)

ARITE(6,600) “(Y(J) ,J=1,1T) PR

ARITE(6,600) (2(J) J=|.Ir) T
FORMAT (i X, 20F56:0)" AR R

ARITE(6,797) -

FORUAL (/% STRENGTH AND RADIUS OF. RESERVOIR. SPHERESX)

CHWRITECS, 8000 (BETALJIVA(YD) o J=1,1T)"

FORMAL(9(F8.5,F6.1))

e

HRITE(5,99)

 FORAAL( 7779X, *U vii A w7“4:1' SToxe, ax.

$*STGY CSIGZ o TRY . UerTXZ T sz~ 9X, *aIQM*/)

DO 20 I={RR;IT - ,
U= V(l)—d(l)=0. .
SIGX(D)=SIGY(1)=S1GZ([)=0; |
'Txv<1)=rx2(x)=rv1(11=u.,
CHECK=1, - i
DO 25 J=1,IR
IF(BEFA(J).EN.0.) GO TO 25 -
XX(I=XCII=X(I) - $  YY(DI=Y([)=Y(J)

CZZ=2(1)-2(3)  § Z1=Z(1)+2(J)

RI=SQART (XX(J) **2+YY(J) ¥%24 7L xk2)




aacaGo
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R2=SQRT (XX (J) **2+ YY(J ) *k2+ L1 %%2) - _
IF(R1.3T.ACJ)) GO TO 30 .
IF((A(J)=R1),LE..001 . AND.CHECK. LE..001) GO TO 30
IFCCACJ)=RI) LE.. 001 ) CHECK=.00)

PARTIAL DIbPLACuHLJfS AND STRESSES AT OBShRVATIUN POINT IlrtRI)R TO-
A RESERVOIR SPHERE

DOJ)=t,7A(J)*%3+(3,~4, *NU)/RZ**3-6 *Z(I)*lI/RZ**b

WI(J)=Z2Z/A(d) %43=(3.=4 . kNUDI*ZI/R24%3+2. *Z(I)/RZ**J
S=5.%Z(1)*ZI**2/02%*35

S1(J)==2./A(J) *%3+ (3, =8.*HJ ) /R2¥%3=6. *ZI*([(I)-2.*NU*ZI)/R2**5
S2(J)=3.% (=3, +4 ., % dU+1 0. %Z(] )xZ] /R2%%2) /R2%% 5

$3(J)==2./A0J) %x3~1, /R2%k3+3 . kL1 (L] =6, kl(I)+l0*£(1)*21**2/92kk2
$)/R2%x5 ©

T1(J)=(3,=4.%MU=10,%2C 1) &Z] /224X2) /R2 %5

T2(J)=(3.%2(1)+2(J)~10, *l(l)*él**Z/R’**Z)/R2**5

G) TO 40

PARTIAL DISPLACEMENTS AND 3TRta$LS AT OBJhRVATION POINT EXTERIOR
TO A RESERVOIR SPHERE

D)= 1./RI*%3+(3.-4 . %kNU)/R24x3=6.%L([)*Z] /R2%%5
A1 (J)=s ZZ/RV**3=(3.~4 %N ) *Z] /R2%*3 : :
$+2, *¥Z(1)/R2x43=6 . %L (1 )X LI *52/02%k5

C ST(I)=1 . /R %43 4(3 . =8, &NU) 7R2*43~6 %L %

S(Z(I1)=2,%NUXZI)/R2%*5

S52(J)=3 ok (10 AZC1IXL] /R2%kx2=3 ., +4 ,%NU) /
SR24%*5=3 . /R *%5

S3(J)==1,/R2**x3+3  kZI ¥ (Z1~6%L (1)) /H2x%%
$+30.%Z( 1) %Ll *x3/R2%xT+ () o=3.%(Z22/R] ) %%2)
S/R|1 %%3

TIJ)=(3.-4, *NU-I0.*1(1)*41/R2**2)/R2**b
S+1. /R *x5

T2(J)=(3.4L(1)+2(J)-10, *Z(I)kll**2/R2**2)
S/R2*%x5+ ZZ/R1 *%5

TATAL OTSPLACEMENTS ANU STRESSES AT AN OBSERVATION POINT

UCDI=JCT+AXCI I *B(J)%D(J)
VD=V +YY(J) %8 (J)*x0(J)

ACLI=ACT)+8CJ )%l (J) )
SIGX(II=SISX(I)+C(JI* (ST (J)+XX(J)*%2552(J))
SIGY(II=SISY(I)+C(II*(SILII+YY(J)*x2%52(J))
SIGZI)=SIGZ(I)+C(JI*33(J)
TXY(D)=TXY(I)=3,*%C(J)&XX(JI*YY(J)%T1(J)
TYZUI)=TYZ(1)=3.%C(J)*YY(J)*[2(J)
TXZCI)=TXZ(I)=3.%C(JI*XX(JI*[2(J)

CONTIANUZ

MEAN STRESS _
SIGA=(SIGX()+SIGY(1)+SIGZ(11)/3,



R

}gg. g OUTPUT DISPLACEMENT IN UNILS OF LENGTA AND STRESS IN UNITS OF €
k 165: N ARITE(6,100)U(1),V(I), N(I) SIUX(I) QIUY(I) SIbL(I),
1664z 5 STXYCL), TXZUD) ,TYZC1), 5164 :

15817, 100 rQRdAf(lX 3F12.5,1F12.3)
16d. 20  CONTIUE

169, 2 sSTOP AR
170, EilD Sl e
1. SUBROUTINE XLINE(X0,Y0,Z0,),1,N)
112, ., ,CO#0d . X(700), Y(/qu) Z(IOO)A
173, 7 XtD=0 " s Y(I)=Y0 s 201)=20
174. IN=I+N~2
175. po 1 J=1,IN S
1716, X(JH1)=X()+X0 s Y(J+l)=Y0 $ 2Z(J+1)=20
177. I . CONTINUE ¢
178. .. .. _END: g
179, i SUBROJTINE YLINE(XO YO zu Je I.N) L
130. COMHON  X(700),Y(700),2(700) R
13t. X(1)=X0 s Y(I)=0 s 2(13=20 IR b
182, -~ IN=I+N-2 S ERE
183, DO 1 J=f,IN"
184, . X(J+l)=X0 LS XS+ )=Y (d)+Y0 1 S . Z(J+|)=£0
185. 1 CONTINUE ‘
186. . END
137, SUBROJTINE ZLINE(X0,Y0,20,0,14N)
188, COH40N  X(700),Y(700),2{700) L
189, XCI)=X0 s Y(I) YO s Z(1)=0
190. r;:urv..]qglfq-z Cailiy R T A :
191, TUDo vV J=1, IN o e TR
192, X(JH13=X0 § Y(J+1)=Y0 § Z(J+i)=z(J)+z0
193, 1 CONTINUE
194, END . .
195, SUBROUTINE RECT(XO, vu 20, 0%, ov.l NX.NY) ,
195. f;ﬂ;gtLCOMﬂpﬂ‘_X(]OO);YKIDU)WA(7OJ) S ,
197, ° REAL LX,LY,LL i et
198, LX=(NX-1) /2. S$ LY=(IY-1)/2. s LL=(NX+1172;=1”
199, X(I)=0X=LX*X0 '$ Y (I)=0Y-LYAY0. $ :Z(I)=20"" ' o )
. 200, KI=l § KFaKI+NX=2 ARERER R e
201, DO 2 J=1,NY- v S RS e
202, DO | K=KI,KF S 15 USSR R EL R
253. XCK+1)=X(K)+X0 § Y(K+1)={(1)+(J=-1)%Y0 §  Z(K+1)=20
204, S ULF(X(LH] ) JENLOX+LL*X0) X(K*l)=OX—LX*x0 SR
275, 1 COATINIE -
236. KI=I+JxNX-1" § KbéKI*NX—
207, 2 - CONTINUE :
208, END
209. SUBROJTINE . CYLIW(RO 20,1, N
210. . CO#MON X(700),Y(700), 2¢700)
211, 1F(N.LE.49) GO TO 8
212, [F(N-§21}) 3,2,1
213, 8 IF(NLED.)) GO TO 7
214, IF(N=25) 6,5, 4

2150 1 JI=I+12)
216. DO 60 JJ=1,48 -
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J=JJ-t R
X(JI+J)=12,.%COS5(J*,.]1308997)
Z(JI+J)=20

COATIHUE

JI=l+dl

U9 50 JJ=1,40

J=JJ-1 .
X(J1+J)=10.%CIS(J*. 15707v6)
20J1+J)=20

CONTIWUE

JI=1+49

DO 40 JJ=1,32

J=JJ=-1|
X(JI+J)=08.4COS(J*.1963495)
Z(JI+J)=4£0

CONTIANUE

JI=[+25

DO 30 JJ=1,24

J=JJ-1

X(J1+J)=6.%COS(J*.2617994)

2(Ji+J)=20
CONTIHUE |
JI=1+9

DO 10 JU=1,16
J=JJ=-|
X(JI+J)=4 . %#COS(J*.3926991)
2(J1+J)=20
CONTLUE
JI=I+]|

DO 20 JJ=1,8
J=JJ=1

X(JI+J)=2,%COS (J*. 1353982)

Z2(J1+J)=20
CONTINUE
X{I)=Y(1)=0.
JE=1+:-1

DO 70 J=I,JF
X(J)=r0xX(J)
CONTINUE
END

$ Z(I)=Z20

$ Y(J)=ROxY(J)

S Y(JI+J)=12.4SINC(I%. 130899 1)

S Y(J1+3)=10.*SIN(I*. 1570795)

Y(JI+J)=8. %S IN(J*. 1963495)
Y(JI+J)=6,#SId(JI*. 261 1994)
Y(J1+J)=4 ,*SIN(J*.3926991)

Y(JI+0)=2 %S IN (J%, 7853982)
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B.1 INTRODUCTION )
The boundary integral equation OF "boundary element” method'

does not represent the continuum by discrete elements as do most

numerical methods (e.g., finite elements).: ' 'In: the - boundary—*'

element method, the problem configuration is described through

the . use of boundary" elements, ‘linear elements that represent the

boundaries ‘of excavations, contours of temperature changes, or

contours of pressure changes. ‘The‘supporting load*on‘boundary

elements representing eéxcavdtions can be described. -Ground

surface must be’ described by elements with the supporting ‘load

 set to zero. - ’ '4 ' ' o e '

"Regionsfof'temperaturé“or pressure change are prescribed by
contours. = Each of these contours is ‘additive, i.e., 'if contours
are circumscribed, the pressuré ‘éhange 'in the outer contour also
applies to the material within the inner contour.

T
[SEPERY I ‘

The number of elements used to describe each boundary sur-
face can affect the accuracy of ‘the ‘results: Smaller elements
are needed where the stress“field’is‘changiné"rapidly.f The 'user
must experiment with element size until he is satisfied with the
accuracy of. the results for ‘each’ particular problem. The. excep—
tion to this is the temperature- and pressure-change contours.
These need only one elémentlfor‘évery”changé“in“the'direction of
the boundary surface (e. g., a square contour would need Just four
elements). RS SRR TS T

A general discussion of the‘theory and application of BIEM2D
cn'be found in the detailed report on' BIEM2D, which should be
read in conJunction with this users' manual. T




B.2 DISCUSSION OF INPUT PARAMETERS .

B.2.1 .Boundary Segments

- In representlng a boundary or pressure/temperature change .
contour of arbitrary shape, the boundary. is divided into a number
of segments. These segments may be of three types: (a) straight
linee,”(b)rcircular ercs, and (c) elliptical arcs. In the fol-
lowing specifications, reference is made to the end points of a
segment,‘whichvare described as the initial and final points. 1In
deciding which is which, the rule is that when the boundary’or
contour is traced from the initial to the final point and one
faces the-difection of travel, the solid material (the outside of
the contour) lies on the right-hand side.

Straight-Line Segments (Figure B-1) .

X0, 70 coordinates of initial point

XL, ‘ZL

coordinates of final point

Circular-Arc Segments (Figure B-2)

XC, 7C

= coordinates of center of circle
RAD = radius of circle
THET1 = polar angle of initial point
THET2 = polar angle of final point

,Line CB is drawn from the center C in the direction of the
+7 axis.

The polar angles are measured in a counter-clockwise direc-
tion from CB.
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Elliptical Arc Segments (Figure B-3)

XC, ZC = coordinates of center C

SEMIAX = length of one semi-axis (a) »

RATIO = b/a, where b is the length of tﬁe other semi-axis
PSI = polar angle of axis a

THET1 = polar angle of initial point

THET2 = polar angle of final point.

These polar angles are measured as described above.

These segments may be combined to form a boundary of
virtually any shape (see Figure B-4).

NSEG = the total number of segments used in definiﬁg all the
boundary surfaces of the problem.

B.2.2 Elements

Each segment is divided into a number (NELR) of elements.
In the case of straight-line and circular segments, the elements
are all straight and of equal length. To understand the for-
mation of elliptical segments, note that an ellipse may be rep-
resented in parametric form by the equations: ‘

m=a cos ¢

=]
I

b sin ¢ .

where m and n represent coordinates measured parallel to the a
and b axes of the ellipse. Each element corresponds to the same
increment of the angle ¢. It follows that the length of the
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' l
element varies, since it is small»where the radius of curvature
is small. o

It may be necessary to divide a sihgle segment into a number
- of separate segments (a)’to-achieve a variation in length along
the original segment and‘(b)ﬁte allow for the application of
‘loads to specified portions'ef’thegsegment which would not be
possible with a uniform division of the original segment. Note
that a relatively high density of elements is desirable in re-
gions of high-stress gradiehts. However, accuracy does not im-
prove with increased numbers of pressure-change elements.
Therefore, a pressure change segment need not be subdivided. The
elements are numbered progressively from I = 1 to I = MAXJ over
all segments. There is currently;an-upper'MAXJ limit of 60
elements. ’

B.2.3 Gaussian Averaging

Usually, the stress along an element due to a load on ano-
ther element is approximated by the stress at the center of the
element. This can lead to error if the stress distribution along
the element is not linear. Gaussian averaging allows the user to
approximate the stress distribution by the average of the stress
at the two Gauss points of the element (each approximately one-
sixth of the length from the center). While this uses more solu-

tion time, it may lead to a more accurate solution.

B.2.4 Symmetry

In order to minimize the storage requirements for doubly
‘subscripted variables, advantage should be taken of any symmetry
, exh1b1ted by the system under 1nvestigat10n.' This. can be  done
only if the symmetry refers to both the geometry of a11 |
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fboundaries;and the disposition of all loads. The presence or

absence of symmetry is indicated in the program by the values
aceorded to the codes KXS, KZS. The following rules apply:

o KXS 0, KZS = 0 indicates. that there is no symmetry

(o} KXS = 1, KZS = 0 indicates symmetry about the X-axis, in
which case only the boundaries or parts of the boundaries
which lie on the positive side (or,ialternatively, the
negative side) of the Z-axis are to be specified (see
Figure B—S) ' |

o KXS = 0, KZS = 1 indicates symmetry about the Z-axis;
only half the system is to be specified

o KXS = 1, KZS = 1 indicates symmetryIEBOut both axes;
only one quadrant of the system must be specified.

B.2.5 - Loading

/  FPX and FPZ_denefewihe”pringipalgfieié‘sffesses, parallel to
the X and Z axes. These can be uniform stresses or can vary with
depth, depending on the type of input.

BDPX (BPZ) denotes the X (Z) components of load applied to
given boundary elements per unit of area projected’on to the 2
(X) planeQ The range of elements over which %his load is applied
is specified by giving: the numbers (LP1, LP2) of the first and
‘last elements of the loaded section.

B.2.6 Pressure Contours

PRESS denotes the normal traction applied at given elements
\sJ due to changing fluid pressure or material temperature. For
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purposes of calculating stress at interior points, a-material .
'number is assigned to the interior region of a températurelor'

:poreepressure change surface., If. pressure-change surfaces are

- not closed (e.g., hydrostatic fluid:pressure), variable. NCODE on
. the segment card should be set to 1. Using NCODE, the,pressure,_,:
change is applied to all materials below the element surface -
where Z increases with depth. However, the pressure tractions =
that are applied to the pressure—change surface must still follow
 the rule that, as you traverse the element from start“to;finish,.ﬂw
the pressure change should occur in the material to the left.

Care must be- taken wheh;using unclosed . pressure- change surfaces,

' For contours of pore-pressure. change,wPRESS should.equal -the
pore-pressure drop multiplied. by (1- K—), where K is the bulk
modulus (K = ET%:E"))and Kg is the bulkvmodulus,of;the solid
matrix material (note that for soils and soft rocks, K/Ks << 1,
so that PRESS'would equal the pore  pressure drop).‘ For. contours
of temperature change, PRESS should equal the, temperature drop
multiplied by 3Ka : where o, is the coefflcient of linear thermal
expansion, fansiegety

B‘2'7 _L_.____C cles L .’."-’> ' Poesieson e

Part of the analytic procedure involves the solution of the
matrix equations. This is carried out by a simple .iteration and
the maximum number of cycles of iteration has to be decided. For v

most problems, 25 cycles is sufficient, but a .greater number may. .

be required where the boundaries are close together. The program
- will iterate until the maximum error . is, less ‘than TOL or the
',maximum number of 1terations is reached.
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B.2.8 Grid Points
Inﬁe}halrstreSSés and displacements are determined at the
nodes of horizontal and vertical grid lines as specifiéd in the
input. o i ‘ '
B.3 INPUT
Card 1: Title card (80 characters)

Card'2i"ICODE; NSEG, ‘KXS, KZS, NCYC, I, TOL, E, RNU (615, 3F10.0)

" ICODE = 1 for infinite isotropic medium
| = 2 homogeneous gravitational medium where Z = 0 at
‘the ground surface. o

'NSEG = number of segments .

" KXS' =1 for symmetry about the X (horizontal) axis
C (Seejszmmetrz, above) :

KZS =1 fbr:symmetry:éBOUt the 2 (downward) axis

(see Symmetry, above)

NCYC = maximum number of iterations (see Cycles above)
I = if I # O, Gaussian averaging will be performed
TOL = Tolerance of error (default value = 1x10-9)

“E = Young's modulus o '

“RNU = Poisson's ratio

Card 3: SIGC, SIGT, M, S (4F10.0)

SIGC

Ocs uniaxial compressive strength-
SIGT = o,, uniaxial tensile strength

M U empirical constants describing failure criterion
S (see Hoek and Brown, p. 141)



B-13; -

The stresses are tested against the strength at each observation
point and an informative message is printed if the strength is

o

exceeded.

Card

card

4y

“Option 1: ° ICODE =

“ FPX, FPZ"(2F10.0)

FPX’ ‘='uniform horizontal field stress
FPZ = uniform’vertical field stress

Option 2: ICODE = 2

GAMMA FSR (2F10 0)

GAMMA = unit weight of the‘material.
FSR = field stress ratio, K = 0,/0,
5: (NSEG cards) (see- ré?éviéus note)

bption”iid straight 1ine segments

PRESS, NELR, XO, ZO XL, ZL NCODE MAT
~(F8.0, I2, 4F10 0 20X 215)

' PRESS,’é fluid'(or equivalent‘temperature) pressure‘drop on

7 left-hand side of element: (=:0 if :not on:pressure
'iﬁﬁacontour) representing discretized fluid or temper-

;ature force.

NELR:'

number of elements into which the segment is
‘divided. oo o ,t?ff”
X0, 20 = coordinates of the first point ‘in the segment (so

that the ‘winside" of the element is on the left
hand side as you move along the segment). Note: X
is positive to the right 7 is positive downward.
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VI

XL ZL = coordinates of last point of segment. :

NCODE = code indicating whether boundary material is a
closed or open surface (used for pressure change
surfaces). NCODE = 0 for closed contours, 1 for
open contours.

MAT = material type on "inside" of contour when segment
represents a pressure.contour. For normal boundary
elements, leave MAT = 0. Material types must be
consecutively numbered, i.e., materials 1 and 3
cannot be used without defining a material 2,

- Option 2: Circular Segments : D
PRESS, NELR, XC, ZC, THET1, THET2, RADIUS, NCODE,
MAT (F8.0, I2, F10.0, 10X, 2I5)

PRESS } = as above.

NELR = gs above.

XC, ZC = coordinates of circle center.

THET1, THET2 = angles in degrees of initial and final p01nt
of segment (measured counter—clockw1se from
the Z- direction) ’

RADIUS = circle radius.

NCODE } = as above.

MAT = as above.

Option 3: Elliptic¢al Segments » :

- PRESS, NELR, XC, ZC, THET1, THET2, SEMIAX, RATIO,
PSI, NCODE, MAT (F8.0, I2, 5F10.0, 2F5.0, 2I5)

PRESS } = as above.

NELR = as above. L ;

XC, 7C ‘l = coordinates of ellipse center.

THEfl, THET2 = as above. o o T

SEMIAX»;d = length of one semi-ax1s»"a " -



B-15 -

ratio of semi-axes 'a/b."

RATIO =

- PSI Cao ;?,anglefinldegreos;of»gomi-axis "a."
NCODE = as above.
- MAT }' = as above.

2

. Card 6: LP1, LPZ BPX, BPZ (2110, 2F10 3) . :
i - Note: .These cards may .not be used when the problem does
‘,goﬁwoontalq,qormalwbpundary elements.

LP1, LP2 = = initial and final element numbers to which
loads are applied . i
- +BPX, BPZ . .= components of. load per unit of projected area
. in the X and Z directions. Note that
. .BPX. and BPZ are positlve when acting into the
material.

~..The. last. card of :the.applied . loads should ‘be, . zero. . If there
" are no applied loads. but there .are . normal boundary elements, a
"blank card is needed.

Card 7: NXR,ENZP,_XMLN;;ZMIN; xMAx,_zMAx (215, 4F10.0) -

,Wﬁyxga,NZPgﬁar number of rows .and columns of grid of interior

. ,points. to have stress and displacement
L | licalculated. Sl
; XMIN,-ZMINr =lmin1mum X and Z coordinates. ‘
XMAX, ZMAX = maximum X .and Z coordimates.. ...

‘The last grid-card should be blank, .
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RATIO = ratio of ‘semi-axes "a/b."

pST ' 2 angle in degrees‘bf semi-axis "a."
NCODE = as above. . ' |
MAT 4 = as above.

Card 6: LP1, LP2, BPX, BPZ'(2IlO,'2FIO.3) ,
T “Note: These cards may not be used when the problem does
- not contain normal boundary elements.

LP1, 'LP2- = initial and fihdl’element-numbers to which -
loads are applied ’ )

BPX, BPZ = components of load per unit of projected area
in the X and Z directions. Note that
BPX and BPZ are positive when acting into the
material, R

" The lastbcard of the applied loads should be zero. If there
are no applied loads but there are normal boundary elements, a
blank card is needed.

Card 7: NXP, NZP, XMIN, ZMIN, XMAX, ZMAX (2I5, 4F10.0)

- 'NXp, NZPp = number of rows and columns of grid of interior
points to have stress aund displacement

calculated.
XMIN, ZMIN = minimum X and ‘Z coordinates.
XMAX, ZMAX = maximum X and Z coordinates.

The last grid-card should be blank.
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B.4 OUTPUT =
1. Echo of input data
2. Boundary stress distribution for "normal” boundary elements,

tabulated as follows:

I CX CZ SIG1 SIG3 ALPHA UX UZ FOS BETA failure

type
where:
I = element number
CX, CZ = coordinates of center of element
SI1IG1, SIG3 = principal stresses at centér of element
ALPHA = angle that SIGl makes with the normal to the
boundary \
UXx, Uz = displacements
FOS = factor of safety against failure

3. Internal stresses,atabulated under the same headings-as in
(2), but now I, CX, CZ, and ALPHA have different meanings:

I grid point number 7
CX, CZ = coordinates of grid point

ALPHA = angle that SIG1 makes with ‘the Z axis
UX, UZ = displacments
= factor of safety against failure

FOS
B.5 SAMPLE PROBLEM

BIEM2D was used on a sample problem of an infinite reservoir
(Figure 1-1). 1In practice, the model used symmetry about the Z
axis and extended the reservoir only to X = 6300 feet. The

&/
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elements representing the ground surface were extended to X =

25,000 feet.
this problen.

The following pages present the input and output to
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B.5.1 Inﬁut Data for Sample Problem .

\

PROBLEM 1 -— 1-D» IﬁFINIfE RESERVOIR. UNITS- FEET:POUNDS
P

2 9 )] 1 50 2.146E06 25
1000, "1000" 10, 1, .
144, 1..
4 0. [+ 2} 200, 0.
3 200, 0. 500, - 0. ]
3 500, 0. 1100, 0. :
4 110047 0. 2700. 0.
S 2700, 0, 6300, - 0.
. . 10 - 6300, 04 25000, - 0.
5.04E04 1 T 0+ 620, 6300, 6204 1
5.04E04 1 " 6300,. 620, 6300, 5704 1
5.04E04 1 6300, 570, . 0 570, 1
] ’ o . /;
11 - 1 0. 0. : 750. 0.
21 1 1000, 0. 6000, . 0,
1 21 ’ [+ 9 [+ : . © 18500,
0 . g v -

L




B.5.2 Output for Sample Problem

.

¥ %X % X X ¥ X %X X ¥ x ¥ X ¥ X %X ¥
2~ STRESS ANALYSIS RY THE ROUNDARY ELEMENT METHOD
FLANE STRAIN CONDITIONS, FICTITIOUS STRIF LOADS
INCLUDING FLUID FRESSURE AND TEMPERATURE EFFECTS
X %X % X X X X X %X %X X X %X X ¥ X x

E 2R

FRORLEM 1 ~- 1-It» INFINITE RESERVOIR. UNITS- FEETsFOUNDS

ROCK PROFERTIESS
MODULUS OF ELASTICITY = «216E407

POISSON’S RATIO = +250

BULK MODULUS = «144E407
GHEAR MODULUS = +BLAEH06
COMPRESSIVE STRENGTH = «100E+04

TENSILE STRENGTH = -100,

M = 10.0
S = 1,00

THE ANALYSIS IS IN AN HOMOGENOUS GRAVITATIONAL MEDIUM
UNIT WEIGHT OF ROCK = 144,000

HORIZONTAL STRESS RATIO = 1.000

MAXIMUM NUMBER OF ITERATIONS = 50
TOLERANCE = .10000E~-05

X - SYNMMETRY? NO

Z - SYMMETRY: YES

NUMBER OF SEGMENTS = @

M % W N

0z-d




. ELEMENT DEFINITION DATA - . S R g
T ELEMENTS PRESS. ' CENT X© CEMYZ. U CTHETL T THET2 0 RADIUS URATEO .. #SI HAT
o (FIRST-X) (FIRST-Z) “(LAST-X) - (LAST=Z) . o N

’

0.7 T ee T ew i iBéo. 0

4 . E ' [ '
U0 L 2000 0, 500, e 04 0
30 Co 8000 0s 7 '110E404 O, . Coo o ‘
P40, U J120E404 0 0T T ,270E404 000 T Lo o k
LIS 0. +270E404 0. 1630E¥04. 04 e \ : 0 :
10 00 T (630E404 0. o U 250E405 O [ '
UYL JS504E405.0. 0 6204, WAB0EHO4 620, : : o 1 :
1. +SOAE+05  ,&30E+04 620, +430E4+04 570, A 1 !
1. SOME40S  L430E404 570, . 7 0J 570, o 1
THE SYSTEM HAS CONVERGED AFTER 1S ITERATIONS = o
1 NN = "0 v )
N “ﬁ“ B e ;\‘w Lo . S - . . ,
. “STRESSES AND DISPLACEMENTS » AND FAILURE CRITERION AT CENTERS DF BOUNDARY ELEMENTS :
. IS THE ANGLE FROM THE ELEMENT NORMAL TO' THE MAJOR PRINCIPAL STRESS :
S SROUR £z = 'PRESSURE | 'SIG1 . SIG3  ALPHA ux . uz F.0.8 BETA e ‘
1 25,0 e +100E-03 311, “215E-06 .3370E-02-.5863 4318 K- TR TENSILE FAILURE
J2 [ 75.0000 O +100E-03 ~311, " v283E~06 . 1013E-01-.5863 _+318 0. TENSTLE FATLURE
B T T3 TR 0. "+100€-03 311, +258E-06 ;16B9E-01~,5862 318 <0, TENSTLE FALLURE
4 175, 0 20, +100E~03 311, +208E-06 +2345E-01-,5862 C318 0. - TENSILE FAILURE
5 .3%0, . T0s .. J100E-03 -312, +107E~06 +3379E-01-,5861 «318 0. TENSILE FAILURE
6 3500 " 0. <4 100E~03 ~312., +8673E-07 A733E-01~,5860 o317 o, { TENSILE FAILURE
|7 450, T0. ' 4100E-03 ~313. +324E-07 +6070E~01~, 5858 +317 0. TENSILE FAILUKE
..B 600, 0. " +1006-03 ~314. -«717E~08 ,8130E~01-,5654 +316 - 0. . TENSILE FAILURE
-9 "800, 0. . _+100E-03 ~316, ~i287E-07 1087  ~,5048 313 0. TENSTLE FAILURE
10 J100£104 0. . J100E-03 <319, ~2419E-07 (1362 ' =.5839 +310 0. TENSILE FALLURE
11..2130E404 0. 2 100E-03. ~324, -+ 442E-07 41781 -.56821 +306 0. TENSILE FAILURE
127 170E404 [ J100E-03 ~334, ~SSOPE-07 2353 —/5790 . .297 'R UTENSILE FATLUKE
83 W 210E404 L 0e . +100E-03 347, ~i526E-07 42945 ~.5747 42685 0. UTEMSILE FAJLURE
14 .250£104 "0 +100E-03 -~344, - 4B9E-07 43566 -.5691 Th271 o, CTENSILE FATLURE
15 . «JOSE104 0. . ¢100E-03 396, -y 357E~07 4496 ~.557S +250 0. YENSTLE FATLURE
- +100E-03 ~459, ~2299E-07 ,5842 | -.5340 Ch216 0. TENSILE FAILUKE.
70, .. +100E-03 =557, ~J/230E-07 ', 7458 -, 4913 Ce178 0. TENSILE FAILURE
' 04 - V100E~03 ~679. =+167E-07 9501 ~+4001 0146 0. { TENSILE FATLURE
E9AL 404 0. +100E~03 ~426. ~\218E-07. 1,184 ° ~.1638 - ' .232 04 CTENSTLE FAILURE
20 4724E 104 0 (. 3744 =J180E-07? -90.0 1.049 +4795 2,67 Neh NO  FAILURE
21, «9IIEH04 0 262, ~¢273€E~07 ~90.0 «7326 +6548 3.82 N.oA NO  FALLURE
22 J110CH05 0. 152, . =.326€E-07 =90.0 +5643 16945 6456 NoA NO  FAILUKE
23 4)20E405 Ov 10t. = =~,347E-07 -90.0 <4620 ,7089 .93 N.oA NO  FAILURE
24 'L1470405 0. t72.3 ~+340E~07 ~90.0 3920 ' .7149 13.8 S NeA NO  FAILURE
25 +166L408 0. 54.8 ~+310E~07 -90.0 +3405 7172 18.3 N.n NI FATLURF
28 1856405 0.’ " 434 (=e261E-07 ~90.0 ¢ 3008 7171 23.2 NoA NO FAILINE
27 203405 - 04 34,9 ~195E-07 ~90.0 +2691 27154 28,6 NeA N0 FAILURE
28 JR20EH0S 0, 28,7 -+ D74E-08 90,0 «2432 +7119 34,9 N.A MO FALLURE
29 J2A1EHOY N.A NO  FAILURE

0. 22.8° 0. #0.0 »2220 + 72060 4X.9
I L1, B . .

13-4



SIKESSLE AND LISFLACEMENTS) AND £ ALLUKE CRLIEERION a1 DESERVAT LG FOIRTS

l #l*) ALFH TS THE ANGLE FROM THE FOSIVIVE Z-AXIS TO THE  MAJOR PRINCIFAL STRESS

cd

cz FRESSURE £161 5163 ALPHA ux vz CFe048 KETA

1 .CX .
1 J100E~09 100E-09 0. 504 ~-314. +S1IE-02 J16461E~13~,5063 316 0. TENSLLE Fatiunlr
2 75,0 «100E-09 0. «100E~-03 -311, 20IL-06 L 1013E-01-.5043 308 0. PENGTLL FaTLI,
3 150, 7 +100E-09 O, 494 -314., «272E-01 ,2027E- 01 -, 5062 +315 0. TENSTLE T AL TBF
4 22T, - «100E-0? 0. . =e241E-01 ~312, + 184601 (3041E~01--,5862 318 0. TENSTLE FALLULE
5 300, +«100E-09 0. 1.01 -317, 101 «A0SAE-CL-.tiB61 312 0. TENSTILE Fall b
6 375, © +100E-0% 0. «708E~01 312, -+164E-01 .S5072E-01-,5%859 317 0.’ TENSILE FATILURC
7 4%0. +100E~0% O. +100E~03 -313, +323E-07 +6090E-01-,5858 317 0. TUNSLLE FAILURE
8 5295, «100E~-09 0. -.1081 ~313. +6A3E~01 7110E-01-,5456 316 0.’ TENSILE +AN.URE
9 - 600, +100E-09 0. «100E-03 -314, - 717€-00 ', 8130-01-,5854 326 0. TERSLLE AT Hed
10 675, +100E~-09 O, « 376 =315, ~+401E~01 .2153F~01-,58%2. 315 O TENSFLF. faYH i
11 750, +100E-09 0. -.208 ~316. +441E-01 .1018 ~-+5850 <314 9. WEHSTLE FAJLURE
12 +100E+04 100E-09 0. +100E~03 -319. ~+419E-07 .1342 -.5839 «310 0. TENSILE FATL N
13 J12GE+04 L, 100E-09 0. -.387 -323. +AL4E-01 1711 - 5825 -307 0. TENSILE FATLURE
14 J150F404 .100E~09 0O, 6.33 -3481, 1.94 + 2065 ~.5807 274 0. TEMSTLE I ALLUKE
15 «175E404 L 100E-09 Q. s 0606 =335, ~+434E-01 2426 -+ 57895 295 O TENSELE FATLURE
16 +200E404 100E-0% O, ~1.38 -344., «151 2799 - 85760 287 [ TENSYLE FATLUKE
17 J225F404  J100E-09 O, 2.76 ~454, = 490CE-01 ,3174 ~¢95727 279 0. TENSTLE FALLURE
18  +250E404 +100E-0? O, +100E-03 ~366. ~1489E-~07 (3566 ~«5691 271 0. TENSTLE FATLURSE
19 J275€404 J100E-09 0. ~6.42 ~386. <953 +3975 ~+56351 257 0, TENSTUT ! FATLIRE
20 ,300E+04 ,100E-09 0. ~1.64 ~392, 130 «4394 - 5592 2252 0. TENSTLE Fafi ikl
21 3256404 L 100E-09 O. 6432 ~411. -e273 » 4829 -+8519 241 0. TEMSILE FALLUFE
22  +350E+04 +100E-09 0. =?+62 ~443, 1.34 +5300 - 5455 223 0. TENSILE FAT)IKE
23 JI7SE404  100E-09 O ~1.37 -4356, «110 +5783 ~.5354 217 0. TENSILE FALLUKT
24 L400E404 +100E-09 O, 12.8 ~-491, ~e562 - 26296 -.5228 202 0. TENSILE FAILUKRE
S +42GE+04 4 100E-09 O, ~14,0 -537. 2,05  .46872 ~e5109 184 0. TENSTILE FATLUKE
26 JAG0E404 <100E-09 O. +100E-03 ~557. ~+230E-07 7458 ~+4913 «178 0. TENSILE FATLURE
27 JA7SE104  +100£-09 O, 28.0 ~632, ~1.42 +8100 - 4664 157 0. TENSILE 1'all URE
28 JSO00EHO4A  L100E-09 0. -13.6 =677 3.90 0365 -+ 4389 144 0. TENSTLE FAJLAIE
29 5256404  100E-0% 0. 3.54 -685. -.578 «9590 =+3939 1144 0. TENSTLE Fatl thd
30 JSS0E404 L 190E-09 O, 60.2 -as52, =St 1.040 -+3311 116 0. TENS T E FALL UKE
3t LJ575E404 4 100E-0% O, 78.9 ~659, 8.27 1,139 —+2448 «150 0, TENSILL FATEURE
32  J400E404 100E-09 O. -25.0 ~358. ~64%56 1.194 -+1342 277 0. TENSILE FALLURE
33 J100E-09 .100E-09 O. « 304 ~314, +511E-02 .1661E~13~-,5863 316 0, TENSILE FATLARKE
34 100E-09 75.0 0. +«108E4+05 ,105E+405  ,407E-12 ,1774E-13-.5896 1.92 N.A ND  FALLIIRE
35 J100E-09 150. 0. «216E405  J213E405  JA07E-12 LAP74E~13-.5930 1.466 N.A NO Fell Uk
36 <100E-09 225, 0, «324E405  J321E405  JAO7E-12 JAF74E--13-.3963 1.54 N.A NO . Faldtne
37  J100E-09  300. 0.’ «432E405  A29E405  L407E-12 L1350E-12-,5997 1.47 Ne.tr NG FATLA
38 J100E-09 375, 0. +540E405 (537E405 LA07E-12 .4263E~-13-.46030 1.42 Hetr NO  FAIILHEE
3% .100E-09 450, 0. «6ABEH05 JEATEHOT  JAO0VE-12-,1421E-13-,4062 1.39 N.A NO  FolLal
40 J100E-09 525, 0. +756E405  (7U3EH0S L 407E~12 ,2842€-13-.46074 1.34 : Nt HD  FALLIG
41 J100E-09? 600. +S04E4+05 .120E4+04 .844E405 90.0 0, - 2929E-01 967 43.0 SHEAR FAlIL
A2 J100E-0%? 675, 0. «P72E405 1 969E405 L AOVE-12-,.5684E~13 3545 1.32 Nen HO  FATURE
43 J100€E-09 7%0. 0. +108E406 108E+06 —~.147E-10~.1705E-12 3534 1.30 N.A NO - FAL URE
44  J100E-09? 825, 0. «119E408 L119€E406 ,407E~120, +» 3503 1,29 N.A NO  FAILUKE
4% 100E-0? 900. 0. +130E406 L 129E406  LAQVE-12 ', 2842E-13 3473 1.28 N.A N FALLIB
44  J100E-09 975, 0. «140E4+04 140E+06 J407E~120. « 3444 1.26 N.A N EaYLURE
A7  +100E-09 +105E+04 O. +151E406  JA1SIEH06 -, 122€-11-,170SE-12 245 1426 N.A NO  FOLLUKE
42 L100E-0%9. .113E404 O, «162E406 J162E+06  (204E-11 (B6B4E-13 3387 1.25 N.A NG AT
49 100E-0? +120E404 0. «173E406  J173E406  (204E-11 .5684E-13 L3359 1.24 N.A NOY At
50 +100E-09 J12BE+04 0. +184E+06 LI183EH0S6  .407E-12-,3411E-12 3332 1.23 e [ LU G IR L
il +100E-09 135E404 0. +194E406 L 194E406 L 244E-11 ,5684E-13 3306 1.23 NeA N FaltbliF
2 +100E-09 ,143E404 0. +205€4+06 J205E+06 - 163E~11 (4547E-12 ,3:81 1.22 N.A N0 FAILHWRE
53 J100E-09 J150E+404 0. +216E406 (216E406 -.BI14E~-11 .56BAE-12 3256 1.21 N.o NG FAILURL

ac-d
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B.6 SOURCE LISTING FOR BIEM2D

FROGRAM BIEMZD(INPUT;OUTPUT.TﬁPElﬂlNPUT,ThPE7=DUTPUT)

**Xt**#**t*tt*********#****t********t*t****************#X*kt*#***t
BOUNDARY ELEMENT PROGRAM FOR TWO-DIMENSIONAL. STRESS hNﬁLY Is
IN HOMOGENEOUS ISOTROPIC MEDIA - J W BRAY 1974 .

v STRAIGHT BOUNDARY :ELEMENTS WITH:STRIP FICTITIOUS LDADS
UPDATED AUGUST-1976 TO CALCULATE DISPLACEMENTS - - --G HOCKING
UPDATED OCT.-1978 FOR GRAVITATIONAL ANALYSIS AND FﬁILURE
CRITERION - E A EISSA . IMPERIAL COLLEGE -LONDON' :
UPDATED JULY»1979 FOR FRESSURE CONTOUR ANALYSIS - GOLDER ASSOC.
********#**t*t*********#*****************************##*****t*t***

"DIMENSION CX(60)vCZ(60)vEX1(60)yEX2(60)vEZi(60)rEZQ(éO)vPN(bO)v
"PNM(60) »yOM(S60) s AN(L0) s EMM(60260) y BMN(50960) yBNM(60560) »
ENN(60260) s DM(60260) s DN(60260)9SIG1C60)»SIG3(60Y .

ALFPHA(60) » SINE(60) yCOSR(S0) »UX(60) yUZ(60) 2 FOS(SH0) yRETA(SL0) »
FPX(60)sFPZ(40) » TITLE(20) sLPTS(30)> s XLIN(CE0230) »ZLIN(SO»30)
PR(BO)vPRESM(éO)yPRESN(éo)vPRES(éO)vPRSS(éO)1CXN(2)9CZN(”)

vSDAT(2) ) :

LOGICAL GAUSSsDEEUGDEEUGL -

DATA-SDAT/® NO*®» ‘YES'/ :

SUDLINe

. READING AND FRINTING: OF INPUT DATA I

URITE(7712) .
FORMAT(*1%y/// R - ST

«10Xs°% X X X X % ¥ X ¥ ¥ X .-%x X%k %X % % X %x*/
+10Xs*x 2-D STRESS ANALYSIS BY THE:<BOUNDARY :ELEMENT METHOD %*/
+10Xs %% PLANE STRAIN CONDITIONS, FICTITIOUS STRIF:LOADS - %/
+10Xs*%x  INCLUDING FLUID PRESSURE AND TEMFERATURE EFFECTS x*/
«10Xs*%k X x ¥ X % %X %X ¥ X # * X X % X X Xx X°///)
REﬁB(lrlO) (TITLE(I)!I”I!ZO) :

10 FORMAT(2

URITE(7;9) (TITLE(I):I=1:20)

FORMAT(7X220A4//7/7) -

DEBUG=,FALSE.

DEBUG1=,FALSE.

READ(1¢11) ICODE,NSEGsKXSsKZSsNCYCy I2TOLsEsRNU»JsK

11 FORMATC(E(2XyI3)»3F10.3r18Xr21I1)

GAUSS=.FALSE,
L IFCINEO)  BEBUG=.TRUE Y
IF(K.NE.0) DERUG1=, TRUE,
IF(1.NE.O)GAUSS=,TRUE, .
'IF(ICODE.GEoioﬁNDoICOﬂEolEoZ) GD TO 319
“WRITE(7:318)

318 FORMAT(1H ///97Xr'¥*t ERPDR —CODE OF PROBLEM TYPE IS URONG*)

GO.TD 503

319 CONTINUE

READ(1,35) &IGLvQIGTvPM:S

35 FORMATCAF10.5) - Tl -g;;e;fn’

=BMDB’E/(3o¥(1.—2 XRNUD )

SMOD=E/ (2% €1 +RNU) )

. WRITE(7436) vRNUvﬂHOH:QNDH-SIGCOSIGTvRHvS
) FORHAT(?XV'ROCK FROPERTIES! *» /710Xy *MODULUS OF ELASTICITY = *,61

%0,39/710Xs *FOISSON’S RATIO = *»610.3+//10X,*BULK MODULUS = *,

%*G10.32//10Xs *SHEAR MODULUS ‘= 2y G1043¢//10Xe*COMPRESSIVE QTRFNGTH

x ="yGlO.3r//10X"TENSILE STRENGTH = ':GlO.Sr//iOX;'H = “»

*¥G10.37/10Xs*S = *vG10.37/) ‘
IF(ICODE.EQ.2) GO TO 322

120 JWRITE(7+321)

21 FORPAT(IH llrbiv' THE hNﬁLYSIS IS IN AN INFINITE ISOTRDFIC MEDI®.
1°UM*)
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READ(1,21) FPXXsFFZZ
21 FORMAT(2F10.3)
WRITE(7222) FFXXsFFZZ - -
2 FORMAT(1H /97Xy *HORIZONTAL FIELD STRESS = *»F10.3://
. *7Xv'UERTIChL FIELD STRESS = '7F10.3) o
GO T0O 336 o
322 WRITE(72323) .
323. FORMAT(1H //26Xs* THE ﬁNhLYSIS IS IN ﬁN HOMOGENOUS GﬂﬁUITﬁTIONAL *
¥y "MEDIUM® )
- REAR(1y324)GAMMA,FSR
324 FORMAT(2F10.3) .
. WRITE(7+325) GAMMAsFSR : ‘
325 -FORMATC(1H /27Xy *UNIT WEIGHT OF ROCK *sF10.3y//
X7X+ "HORIZONTAL STRESS RATIO = *yF10.3)
336 CONTINUE
T IFCTOLGERVO4) :TOL-.OOOOOI
WRITE (7»13) NCYC,TOL»SDAT(KXS+1)»SOAT(KZS+1) + NSEG
13- FORMAT(///7X» "MAXIMUM HUMRER OF ITERATIONG = *
¥XeISe//7Xs *TOLERANCE = “yG10+S9//7X2*X ~ SYM®y
X*METRY?: *+A32//7Xv*Z ~ SYMMETRY! " *+A3s//
*7Xs "NUMBER OF SEGHMENTS = *,15/)
IF(GAUSS)IWRITE(7,23) -
23 FORMAT(7X» *GAUSSIAN AVERAGING WILL RE PERFORMEDR®)
IF(ARS(SIGT).GE.ARS(SIGC)) WRITE 24
24 FORMAT(//+7X" XXX ERROR -~ MAGNITUDRE OF TENSILE STRENGTH *
Xs "EXCEEDS COMFRESSIVE STRENGTH®)

NN = 0

FI = ATAN(1,0) % 4.0
TA = 2,0%(1.0 -~ RNW)
TJ =

1.0/(2.0%PI%TA)
TU=3.0-4,.0%RNU
G=E/(2,0%(1,0+RNU)
TV=0.5%TJ/6

DATA GNsQM/120%0.0/
DATA LFTS/30%0/
MAT=0

MAXI=0

NMAT=0

INTERFRETATION OF SYMMETRY CODE

aann

KAS = O

IF(KZS5.EQ.-1) KaS=1

KXT = 2%KXS + 1

KZT = 2%(KZS + KAS) + 1

DIVISISON OF EBOUNDARY INTO SEGHMENTS

o0o6

I =0 -
NSEGG = O
WRITE(7+16)
16 FORMAT(///5X» "ELEMENT DEFINITION DATA*// - .
x * ELEMENTS PRESS CENT X CENT Z - "THET1 THET2"»
x * RADIUS RATIO PSI MAT/
x * R (FIRST~X) (FIRST~Z) (LAST-X) (LAST-Z)
%t/ ’ :
(™ : . .
700 IF(NSEGG.EQ.NSEG) GO 70 S0
NGEGG = NSEGG + 1
NELG = 0O
RELG = NELG
READC(Ly17)PRESSy NELR-XD’ZUvXLoZLvRDSrRﬁTIOvFSIrNCODE-ﬂAT
17 FORMAT(GB .2, 12y5610.3» 265, 1, 215) .
NMAT=MAXO (MAT » NMAT) ‘.,}
IF(PRESS.EQ. 0« +ARDI.MAXY1.NE.I) WRITE 326
IF(PRESS+EQ. 0 YMAXI=MAXI4NELF




ano

é

44

326
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FORMAT(1Xrs*%%%x ERROR - ZERO FRESSURE
¥NODES ARE NOT BEINB INPUT FIRST"//)
RELR = NELR :
IF(RDS.ER,0.0) GO TO BOO

" DIVISION OF ELLIFTICAL OR CIRCULAR SEGMENTS INTO ELEMENTS

18

06
605
600

42

IF(RATID.EQ.0.0) RATIO = 1.0 |
WRITE(7,18) NELRvPRESS:XOvZD:XL:ZLnRDSthTIOvPSI!NAT
FORMATCIH s6X2I1398(1X9GP4¢3)217)
SINPSI = SIN(PSIXFI/180,)
COSFSI = COS(FSIXFI/180.)
Gl = J1E-10
GA = RATIOXCOSC(XL-PSI)XFI/180,)
IF(ARS(GA) .LT.GD) GA=GD
GB=RATIOXCOS((ZL~PSI)%PI/180.)
IF(ABRS(GE).LT.GD) GE=GD
CHI1=ATAN2(SIN((XL-PSI)¥PI/180,)GA)
CHI2 = ATAN2(SIN((ZL-FSI)>%PI/3180. )vGB)
DCHI = (CHI2 - CHI1)/RELR
IF(ABRSCOCHI) .LT.GD) GO TO 606
GC = DCHI/ABS(DCHI)
GO TO 405 '
GC=~-1,0%(ZL-XL)/ABS(ZL~XL.)
DCHI = DCHI + ((ZL—XL)/ﬁBS(ZL-XL)-GC)XPI/RELR
I=1I+1
CHI = CHI1 + RELG*DCHI -
EX1(1I) = RDQ*(COS(CHI)*SINPSI+SIN(CHI)#COSPSI*R&TIO)+X0

EZ1(I)> = RDSX(COS(CHI)XCOSFPEI - SIN(CHI)*SINPSI*R&TID) + Z0 .

CHI = CHI + DCHI

EX2(I) = RDSX(COS(CHI)¥SINPSI + SIN(CHI)*CDSPSI*R&TID) + X0
EZ2(1) = RDSX(COS(CHI)%*COSPSI —‘SIN(CHI)*SINPSI*RhTID) + 20

CX(I) = O0.5%(EX1(I) + EX2(I))
CZ(I) = 0.5kC(EZ1(I) + EZ2(I))
= EX2(I) - EX1(I)
DZ = EZ2(1) - EZ1(I) =
IFCABS(DX) LT+ (L 1E~13)%RDS). DX = 0.0
IF(ABS(DZ) LT (LIE~13)XRNS) DZ = 0.0
NS = SERT(DXXDX + DZXDZ) .
SINB(I) = -DZ/DS
COSE(I) = DX/DS
NELG = NELG + 1
RELG = NELG
FRES(I)=PRESS
IF(PRESS.EQ.0.,) GO TO 42
LPTS(MAT)=LPTS(MAT)+1
IC=LPTS{(MAT)
XLINCICsMAT)=EX1(T)
ZLINCICsMAT)Y=EZ1(I)
CONTINUE

* IF(NELG.LT/NELR) GO TD 400
- IF(PRESS.EQ.0.) 60 TO 700 |
{ U IC=ICHY -

 XLINCICYMAT)=EX2(F) = °

ZLINCICsMATI=EZ2(I)
IF(NCODE.ER.1) GO TO 43
XLINCIC41»MAT)=XLINC(LsHAT)
ZLINCICH1+MAT)=ZLINCL» MAT)
GO TO 44
XLINCICH+1 s MAT)=XLINCICYHAT)
ZLINCICH] «MATI=ZLINCICYMAT)
PR(MAT)=FPRESS

GO 70 700




B-26

C
c DIVISION OF STRAIGHT LINE SEGMENTS INTO ELEMENTS
C . .
800 CONTINUE -
WRITE(7s15) NELR,IPRESSsX0»Z0rXLsZL s MAT
15 FORMATC(IH +6XsI3+s5(1X+6%,3)y30X»1I7)

DX = (XL-X0)/RELR
DZ = (ZL-Z0)/RELR
DS = SQERT(DXKOX+DZXDZ)

00 I =1 + 1
SINB(I) = -DZ/DS
COSE(I) = DX/DS |
EX1(I)> = X0 + RELGXDX
EZ1(1) = 20 4+ RELG*DZ
CX(I) = EX1(I) + 0.5%XDX
CZ(I) = EZ1(I) + 0.SXDZ
EX2(I) = EX31(I) + DX
EZ2(I) = EZI(I) + DZ
FRES{I)=FRESS
IF(PRESS.EQ.0.,) GO TO 49
LPTS(MAT)I=LFTS(MAT)+1
IC=LPTS(MAT)
XLINCICsMATI=EX1(I)
ZLINCICMAT)=EZ1(I)
49 CONTINUE -
NELG = NELG + 1
RELG = NELG
IF(NELG.LT.NELR) GO TO 900
IF(FRESS.EQ.0.) GO TO 700
IC=IC+1
XLINCICMATI=EX2(I)
ZLINCICYMATI=EZ2(I)
IF(NCODE.EQ.1) GO TO 45
XLINCICH+1 +MAT)=XLINCLoMAT)
ZLINCICH+1 s MAT)=ZLIN(1yMAT)
GO TO 46
45 XLINCIC+1 yMAT)=XLINCICYMAT)
ZLINCICH1+MAT)=ZLINCIC MAT)
46 FR(MAT)=FRESS
GO TO 700
S0 MAXJ =1
IF(I.GT.60) WRITE 53
53 FORMAT(//5Xs *XXX ERROR - NUMBER OF ELEMENTS EXCEEDS®»
*X* DIMENSION OF ARRAYS®)

C

[0 52 II=1,NMAT
52 LPTS(II)=LPTS(II)+1

IF(NCODE.EQG.1)> GO 7D 51
IF(KXS+KZS.LT.2) GO TO 51
[0 47 II=1,HMAT
IC=LPTS(II)
ICH=IC-1
AL=(XLINCL, TID-XLIN(2y IV ) XK+ (ZLINCL» JI)~ZLINC22 I1) D %k%2
A2=(XLINCICyIID=XLINCICMsTID ) X2+ (ZLINCIC»II)-ZLINCICM,» IX) ) %%2
IFCXLINCLSII)/A1.LT 4. 00001 JANTL ZLINCIC IT)/A2,LT..00001)G0 TO 48
IFC(ZLINC191I)/7A14GE+.00001.0RXLINCICY»II)/A2,6GE..00001) GO TO 47

48 LFTS(ID =L.FTSC(II)F1
IC=IC+1
XLINCIC+1-TI)=XLINCIC,»II)
ZUINCIC+1sI1)=ZLINCIC»ID)
XLINCIC,IX)=0.0
ZLINCICy»11)=0.0

47 CONTINUE

S1 IF(MAXI.EQ.0) GO TO 932
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DETERMINATION OF COEFFICIENTS IN EXPRESSIONS FOR STRESSES
. INDUCED BY FICTITIDUS LOADS - -

THESE COEFFICIENTSy WHEN MULTIFLIED BY THE TRACTIONSs GIVE
TWICE THE STRESS CHANGE.

DM= 2 % SHEAR STRESS (I) DUE TO SHEAR TRACTION ()

ENM= 2 x NORMAL STRESS (I) DUE TO SHEAR TRACTION (J)

DN= 2 % SHEAR STRESS (I) DUE TO NORMAL TRACTION (¢J)

BNN= 2 x NORMAL STRESS (I) DUE TO NORMAL TRACTION (J)

BMN= 2 % DIRECT STRESSr PhRﬁLLEL TO THE: ELEMENT: DUE TO SHEhR
TRACTION-(J) .~ 7 : R -

BMM= 2% DIRECT STRESSv PARALLEL TO THE ELEMENT» DUE TO NORHAL
TRACTION 1) DI S : .

=000 00000000000n

05 PO 101 I = 1,MAXI
CXN(1) = CX(D)
CZN(1) = CZ(Y) " L
IF(NN.GT.0) GO TO 104 :
‘COS2BI = 2,0 % (COSE(I))%%2 - 1,0’
-SINZBI = 2.0 % SINB(I) X COSE(I)
IF(.NOT.GAUSS) GO TO 104
FAC=-1,0
DO 990 IGP=1,2
CXNCIGF)=CX(I)+,288675%(EX2(I)~EXLI(I))XFAC
CZNCIGP)Y=CZ(I)+.288675%(E22(1)~EZL1(1))XFAC
?90 FAC=FAC+2.0 i
104 DO 118 J = 1sMAXJ L
BEMM(I»J)=0. : R
BMN(I+J)=0. , L
BNM(I»42=0.
ENN(I»J)=0,
T DM(T s dI=04
S DNCIs =0,
‘10991 IGP=1s2
TK = 0,0
TL .=
. TR =
TN =
T0 =
TF = .
DO 102 KXU = 1,KXT»2
KX = 2- KXU :
RX = KX _
00102 KZU=1»KZT»2 <
KZ = (2-KZU) ¥ (1-KAS) +KABXKKX o
RZ = KZ R e R LA i
COSBJ- = RXXCOSB(J) . R R A
SINRJ = RZXSINE(J) : N St
EX1J = RZXEX1(J)
EX2J = RZXEX2(J)
EZ1J = RXXEZ1(J) )
EZ2J = RXX¥EZ2(.J) : L :
LL = KX+hZ-°+10#(I~J)+1000*NN R R
IF(LLoEGoO) GO 10 135 N

RN=LOCAL Z »RM1=LOCAL X1, RM2=LOCAL X2 RSO1= RADIUS 1s
RSO2= RKADIUS 2, N e AT O

NEoOo

JRN = (CZNCIGP)Y - EZ1XCOSEJS + (CXNCIGP) ~ EX1¥SINBJ"
RM1 = (CXNCIGF) « EX1J)XCOSEJ - (CZIN(1IGP) - EZ1J)XSINEJ

> RM2 = (CXNCIGP) -EX”J)*CU‘FJ - (CZNCIGF) ~ EZ2J)XSINBJ
IF(RN.NE.O.) GO TO 135
1F(RM1.EQ.0+) GO TO- 1343' AN

IF(RM2.NE.0,) .GO TO 1352

- “RM2=-, 0001 ¥RM1 XRX%XRZ "~ : o
RM1=(1., 0+RZ*RX*.0001)*RM1
GO TO 1352
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1353 RM1=0.0001%RM2%RZ%RX
RM2=(1.,0-RZXRX%.0001)%kRM2
1352 RSQ1 = RM1kRM1-+- RNXRN-
RSQ2 = RM2X¥RM2 + RNXRN
TB=RNXRN+RM1XRM2
IF(DERBUG1) WRITE 140vIrJvRNrRMt;RM”;EZIJyEXIJr
XEZ2HEX2Js TR
140 FORMAT(1X»21I5,1FPBE12.4)
IF((TB).NE.0,0) GO TO 138
B=GSIGN(PIs (RM1-RM2)%XRN)
GO TO 139

138 TR = 2.0*ﬁThN"((FM1 - RM2)%XRN» (TR))

139 TC = 2.0 ¥RN % (RM1/RSQ1 - RM2/RSQ2)
T = (RN**2 - RM1X%2)/RSR1 - (RNX%2 - RH“**Z)/RSGZ
TE = ALOG(RSQA1/RSQ2)

COS2F = 2.0%(COS2RI*(COSBJ%%X2 ~ 0.,5) + SIN2BIXSINEJXCOSRJ)
SINZF = 2.0*(SIN281*(CUSBJ**° - 0+5) - COSZBI*SINBJ*CUSBJ)

GO 70 137
135 TB = 2.0%FI
1352 TC = 0.0
T = 0.0 -
TE = 0.0
COS2F = 1.0
SINZ2F = 0.0

137 CONTINUE
K TK + TEXRXXRZ

TL = TL + TE

TH = T + (TD + TAXTE)XCOS2F + (TC - TAXTRIXSIN2F

TN = TN + (((1.0-TAIXTB-TCIXCOS2F 4+ (TD+(1.0-TAIXTE)XSIN2F)%*RXXRZ
TO = TOH(THTAXTE) XSINZF~(TC-TAXTR)IXCOS2F

TP = TP + (((1.0-TAIXKTE~TCIXSINZF — (TD4+(1.0-TAIXTE)XCOS2F ) XRX*RZ
102 CONTINUE

BMM(IsJ) = BMM(IsDH(TL + TH) X% TJ
BMN(IsJ) = BMNC(Iy DDH(TK + TN) % TJ
ENM(Ir ) = BNMC(Is DH(TL - TH) %XTJ

BNN(IyJ) = BNN(Is DH(TK -TN) % TJ

DM{IsJ) = DM(I»J)4TO %TJ

DNCIrJ) = DNCI» DD4TP %TJ

IF(.NOT.GAUSS) GO TO 118

9?1 CONTINUE
BMM(I»J)=EMM(I»J)/2,
BMN(IrJ)=BMN(I»J)/2,
BNM(I»J)=BNM(I»J)/2,
BNN(IyJ)=BNN(I+J)/2,
DM(TI s D=DM(Is /2,
DNC(I»J)=DN(IsJ) /2,

118 CONTINUE
IF(.NOT.DERUG1) GO TO 101
WRITE 98,1+ (BMM(IsJ)rJ=1,10)
WRITE 98T (BMN(IsJ)r»Jd=1,10)
WRITE 98¢ I» (BNM(I2J)»J=1,10)
WRITE 98»I+(BNN(I»J)rd=1+10)
WRITE 9851y (DM(1»J)»J=1,10) -
WRITE 98sIs(DIN(IeJ)»J=1510)

28 FORMAT(1X-ISy1F10E12.49)
101 CONTINUE
M =0
JF(DEBUG) WRITE 112+ (IsLPTS(T)oFPRIX) p(XLINCI» I s ZLINCI»IY»d=10

%*5)+1=1+30)
112 FORMAT (//5X» *MATERIAL ZONE DBEFINITIONS® »/5X»Z215911610.4)
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C - DETERMINATION OF FRESSURE DIFFERENCE

DO 435 I=1,MAXI .

CALL SZONE(CX(I)vCZ(I)oPRE”S9XLIN'ZLINvLPTSrPR)

435 PRSS(I)=FRESS -

c .
IF (DERUG) URITE 113y (PRSS(I) 5y I=1sMAXI) ‘ S
113 FORMAT (//5X+ *PRESSURE . OF BOUNDARY ELEHENT OR INTER'
**IOR POINT'v/SXrlOGlO‘B)

v

DETERMINATION DF BDUNDﬁRY¢TRACTIONS EQUIUALENT TO FIELD STRESSES
ADD THE CHANGE IN PRESSURE TO THE'FIELD STRESS:

o000 0n

PO 100 I = 1sMAXI
IF(ICODE.EQ.1) GO TO 328
FFPZ(1) = GAMMAXCZ(I)+FRSS(I) .
FPX(I) = FSR*(FPZ(I)-PRSQ(I))+PRSS(I)
GO 10 329
328 FFPZ(I) = FPZZ+PRSS(I)
FPX(I) = FPXX+FRSS(I)
329 * IF(NN+GT.0).GO TO 100
FN(I) = 2, 0*((FPZ(I))*(COSB(I))**2 + (FPX(I))
XX (SINB(I))*%2)
o PNMCI) = 2.0%(FPX(CI) —FPZ(I))*SINB(I)*COSB(I)
QM(I) = FNM(I)
2 GNCI) = PNCTD)
100 CONTINUE s
IF(NN.GT.0) GO TO 108

aoon

ADDITION OF BOUNDARY TRACTIONS DUE TO BOUNDARY LOADS

106 READ(1+19) LFP19LP2yBPX»BPZ
19 FORMﬁT(SXrIS;SX'ISvZFI0.0)
IF(LP1.EQ.0) GO TO 404~
WRITE(7,20): LPlrLPZpBPXvBPZ :
20 FORMAT(///7X» "ELEMENTS®» 5 ? TO'vIuv' HAUE HDRIZDNThL APPLIED TRA®
*»"CTIONS OF*rF10.3»" AND hPPLIEﬂ UERTICAL TRACTIONS UF‘;F10.3///)
[0°107 Ii= LP1,LP2 .
PNCI) = FNCI) =2, 0% ((BPX~ BPZ)*(SINB(I))**2+BPZ)
PNM(I) = PNM(I) - 2 *(BPX BPZ)*aINB(I)*COSB(I)
107 CONTINUE: :
GO TO 106

ADDITION OF EFFECT. OF TRACTIDNS FROM fﬁE PRESSURE CONTOUR

04 IF(MAXIEQ.MAXD) GU TO 400
- MM=MAXI+1 .
O 111 I=1,MAXI
PRESH(I)=0, :
FRESN(I)=0.
0o 110 J=MMsMAXJ
PRESH(I)‘DN(I’J)*PRES(J)*PREQM(I)
110 PRESN(ID=ENN(I,» J)XFRES(J)IPRESN(I)
IF(DERUG) WRITE 109 IyPRESNCI)»FPRESM(I) " - f'o- -
109 FORMAT(1XsIS»®  NORMAL STRESS = *»510.3»" - SHEAR STRESS = *»G10,3)
©OPNMOT) =FNMOI) +PRESHM(I). ’ . LTI
111 PN(I)=FN(I)+PRESN(I)}

hOO0O

DETERHINhTION OF FICTITIOUS LUADS

o000

TOL1=0,
400 DO 401 I = lvﬂﬁXI

QMI = PNM(I)

GNI = PN(])

00 402 J = 1.MAXI

IF(I.EQ.J) GO TO 402

aMI = QMI - DM(Is ) %QMCS) -~ DN(IDJ)*(“N(J))

ONI = ONI < RNM{Is DD XQM(J) —BNN(T+ DR(ANCI))D
402 CONTINUE
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EQUATION 1: DM % QM1 + DN ¥ QN1 = QMI
EQUATION 2 ENM % QM1 + ENN ¥ ON1 = ONI
SOLVE THE TWO EQUATIONS FOR THE FICTITIOUS 7hﬁCTION
‘e - WHICH ARE TWICE THE AFFILIED STRESS
GMI AND QN1 ARE THE FICTITIOUS TRACTIONS
DENOM = BNNC(I»IDXDM(IvI) ~ DNCIsY)RBNM(I»I)
QM1 = (QMIXENN(ISI) — QNIXDNC(IsIX))/DENOM
‘ [GN1 = (ONIXDMCI»I) ~ OMIXBNM(Y»I))/DENOM
TOLM=ABS(QM(1)-0M1) :
TOLN=AES(QN(I)-QN1)
QM(I)=aM1
AN(I)>=0GN1
TOL1=AMAX1(TOLN,TOLM)
401 CONTINUE
M=K+ 1
IFCCTOLLGT.TOL)Y JAND.M.LT.NCYC) GO TO 400
IF(TOL1.6T.TOLYWRITE 980,TOL1
980 FORMAT(///7Xs*THE SYSTEM DIDL NOT LONUERBE. MAXIMUM *
X*ERROR IS *+0610.4//) '
IF(TOL1.LE.TOL} WRITE 981+M
981 FORMAT(///7Xy *THE SYSTEM HAS CONVERGED AFTER®sIS»*® ITERATIONS®*//)

00000

DETERMINATION OF STRESS COMFONENTS» PRINCIFAL STREGSES
ANDI' DIRECTIONS

aooon

108 IO S00 I = 1,MAXI
SMI = 2L.0X(FFX(I))
GNI = 2.0%(FPZ(I))
SNMI = 0,0
IF(NN.GT.0) GO TOD 405
SMI = 2,0%k((FFX(I) - FPZ(I))X(COSB(II XX2 + FFPZ(I))
SNI = 2,0%((FPX(I) -~ FPZ(I))>X(STNR(I))X%2 + FFZ2(I))
SNMI = 200X (FFX(I) — FPZ(I))%XSINB(I)XCOSR(1)
4035 DO S01 J = 1sMAXJ
c ADD EFFECTS OF FICTITIOUS LOADS AND PRESSURE TRACTIONS
SNI SNI - BNM(I»J)XQM(J) — BNN(I. D X(AN(J)-FRES(Y))
SMI SMI-BMM(I» JIXAM(J)-BMNC(I s JYR(AN(S) -FRES(J))
SNMI = SNMI ~ DM(I+s DXQM(S) = DN(I»J) X(QN(ID-PRES()
S01 CONTINUE
SDI = 0.5%(SMI-SNI)
TAUMAX = 0.5XSQRT(SDIXX2 + SNMIXk2)
SIGI(I) = 0.20K(SMI+SNI) + TAUMAX
SIG3(I) = 0.20%(SMI+SNI) -~ TAUMAX
TR = 2.0%TAUMAX + SNMI - SDI
IF(TR.EQ.0.0) TR = 0.,00001 .
ALFHA (I) = (180./PI)XATAN(1.0 + 2.%5DI/TR)
G500 CONTINUE

C .
c DETERMINATION OF INDUCED DISFLACEMENTS
c

DO 601 T=1,MAXI -

CXI=CX(I)

CZI=CZ(I)

UXX=0.0

UZ2=0.0

DO 602 J=1+MAXJI

DO 603 KXU=1»KXT»2
KX=2-KXU

RX = KX

DO 603 KZU=1,KZT,2
KZ=(2-KZU) X (1-KAS)+KASKKX
RZ = KZ

COSEJ = RXXCOSE(J)

SINEJ = RZXSINI(Y)
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EX1J = RZXEX1(J)
EX2J = RZXEX2(J)
EZ1J = RXXEZ1.(J)

. EZ2J = RXXEZ2(J) ‘ )
© RN s (CZI-EZIJ)*COSBJ+(CXI—EXIJ)*SINBJ
LL=KX+KZ-2410X ¢ 1-J) +1000%XNN
SIF(LLJER.O) RN = 0,0001
IF (ABS(RN) LT40.0001) RN=0. ooo1
RM1 = (CXI - EX1J)%COSBJ - (LZI ~ EZlJ)*SINBJ
RM2 = (CXI = EX2J)%COSBJ ~ (CZI - EZ2J)%XSINEJ
RSA1 = SART(RM1%RM1 + RNXRN)
RSA2 = SORT(RM2XRMZ + RNXRN)
RNO = -EZ1J%COSEJ - EX1JRSINEJ
IF(ABS(RNO).LT,0,0001) RNO = 0.,0001
- RM10 = EX1J%COSEJ - EZ1J¥SINBJ
. RM20 = EX2J%COSBJ - EZ2JXSINEJ
RSQ10 = SORT(RM10%KRM10 + RNOXRNO)
"RSQ20 ‘= "SORT (RM20XRM20 ' + KNOXRNO)
IF(RSO10,LT+0,001) RSG10 = 0.001
© IF(RSQR20,LT.0,001) RSQ20 = 0,001 ' :
IF (ABS(RND) LT +0.0001 . ANDsRSG20 LT +0+001) Rqazo = 0,001 .
©.T8 = RNOXALOG (RSA20/RSQ10) -RN¥ALOG (RSO2/REA1)
TR = RNOXATAN2((RM20 - RM10)%XRND, (RNOXRNO + RMiU*RNZO))
1 - RNXATAN2(C(RM2 - RM1)XRNs (RNXRN 4+ RM1%RM2)) -
_TT = TUX(RMZ0%ALOG(RSQ20) - RM10XALOG(RSQ10) - RMZ*ﬂLOB(RSGz)
e +RM1XALOG(RSQ1)~RM20+RM10+RM2-RML1+TR)Y -
UM = TUK(TSXCONC(JI)-FRES(J) IXRXXRZ — (TTHTRIXQM(J))"
UN = TUKCTSXGM(J) = (TTHRM20-RM10-RM2HRM1-TR)XRXXRZK(ANCJ)-
XFRESC())))
. UXX = UXX-UMXCOSBJ-UNXSINBJ
Uzz = Uzz + UH*SINBJ - UN*COSBJ
603 CONTINUE - ~ © =« .
602 CONTINUE
o TUXCE) s UXX
uz(1y = uzz

. 601 CONTINUE

1

anon

WRITE(7¢119) NN.

19  FORMAT(®1%»SX»*NN =*5I3) °
IF(SIGC.ER.0.,0) GO TO 420
IF(NN.GT.0) GO TO 611
WRITE(7¢612) '

612 FORMAT(1H ///+4X/B2HSTRESSES ANE DISPLACEMENTS » ﬁND FhILURE CRITE
‘IRION AT CENTERS OF BOUNDARY ELEMENTS)
_ WRITE (7¢314)
316 FORMAT(/7X, "Xkt ALFH IS THE ANGLE FROM THE ELEHENT NORHﬁL TO THE MAJO
XAJOR PRINCIPAL STRESS®)
. 60 TO 613
611 WRITE(7+614)
614 FORMAT (1H J77v4Xs "STRESSES AND DISPLACEMENTS- AND FATLURE CRITER®
1+*I0N AT OBSERVATION POINTS®) - .
WRITE(7»315)
315 FORMAT(/7Xs*%%% ALPH IS THE ANGLE FROM THE POSITIVE z-nxxs T0 THE
8 MAJOR PRINCIPAL STRESS®/)
613 WRITE(7,2 _ , o
25 FORMAT (1H //.3x.2H Is4X2HCX»9X»2 HCZv4X-BHPRESSUREo4X»4H5!Gi-
1 6Xr4HSIG3rSXsSHALFHAPEX 1 3H UXs 7Xr3H UZr 7X15HF 40452 6Xy AHEETA)

FAILURE CRITERION AN FﬁCTOR OF SAFETY DETERMINATIONS

DD 620 I=1,MAXI

IF(ARS(SIGI(T)).LT.0,0001) SIGI(]I) = 00,0001

PSRAT = SIG3(IY/SIGL(I)

JF(PSRAT LE« (-RM/150,0).0R.SIG3(1)LE.SIGT) GO TO 422
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.CHECN FOR SHEAR FAILURE

TSC = SQRT(RMXSIGCXSIG3(I)+SXSIGCXSIGE)

FOS(I) = (SIG3(I) + TSC)I/SIGI(I)

IF(FOS(I).GT.1.0) GO TO 421

“TAUM = 0 SX(SIGI(I) - SIG3(I))

TCM = 0.25%SIGCXRM T

TCML SART(TAUNXTAUM + TAUMXTCM) :

TCM2 O.5%TCH

BETA(I) = 0.5%(180. O/PI)*ﬁ‘ﬁN‘TChi/TCH")

URITE(75616) (I+CXCI)»CZ(L)»FRES(II»SIBLICI),S IG3(I);ﬁLPHﬁ(I);
1 UXCI)sUZ(I)sFOS(I)sRETACI))

616 FORMAT(1H sI4s6(1Xs59:3)92610.4s2(1X»59. 3);4Xn13H8HEhR FAILURE)

GO TO 620 .

CHECK FOR TENSILE FAILURE

622 TCT = RM ~ SQRT(RMXRM + 4.0%S)
FOS(I) = SIGCXTCT/(2,0%8IG3(1))
IF(FOS(1).6T+1.,0) GO TO &21.
RETACI) = 0.0
WRITE(7+617) (I!CX(I)’CZ(I)vPRSS(I)98161(I);SIB?(I)rﬁLPHﬁ(I)y
1 UXCIX»UZCI)»yFOSCI)YRETACI)) .
617 FORMAT(1H »J4+6(1X+69.3)22610, 4!g(lX;G9.3)34X115HTENSILE FAILURE)
GO TO 620 .-

621 URITF(7;625)(IrCX(I)vCZ(I)vPRSS(I)vSIGI(I)ySIG3(I),ALPHﬁ(I)y

cONO0

"

1 UXCI)»UZ(Y)»FOSCI))
4625 FORMAT(1IH »JX496(1XrGP+3)92610,421XvGP.397XsZHN.A»6X»11HND FAILUR
XE) : ’
620 CONTINUE
GO TO 450
420 IF(NN.GT.0) GO TO 422
WRITE(7,421) '
421 FORMAT(1H ///»4X»SBHSTRESSES AND UISPLﬁCEHENTS AT CENTERS OF ROUND
1ARY ELEMENTS)
60 TO 425
422 URITE(7+423)
423 FORMAT(1H ///+4Xy4SHSTRESSES AND NISFLACEMENTS AT INTERIOR FODINTS)
425 WRITE(7+430)
430 FORMATCLIH ///23X»2H Is6Xs2HUX»9Xy2HCZ » X BHFRESSURE y 4X» 4HSIG1 9 6X
1 y4HSIG3»SXrSHALPHA» 6Xr3H UXs» 7X»3H UZ)
WRITE(77440) (I+CX(I>9CZ(I)sPRSS(I)»SIGLI(I)sySIGI(I)rALFHACT) +UX(I)
. S UZLI) y I=1 9 MAXTD
440 FORMAT(1H sI4,6(1Xs569.3)+2G10,4)
450 CONTINUE
IF(NN.GT.0) GO TO 503

GENERATION OF TNTERIOR POINTS» STRESSES AND DISPLACEMENTS
DETERMINED BY LOOFING TQ 105 -

NN = NN + 1
IF(NN.GT.1) GO TO 503
COS2RI = 1.0

SIN2RI = 0.0

NF=0

504 READ A74sNXFsNZF, XMINy ZMINY XMAX » ZMAX

IF(NXP.LE.O) GO TO S05
474 FORMAT(2IS:4F10)

¥=0.

DZ=0,

IF(NXF.ER.1) GO T0. 475

DX=(XMAX~XMIN)/ (NXP—1)

475 IF(NZF.EQ.1) GO TO 476

DZ=(ZNAX~ZMIN) /7 (NZF-1) :

476 CONTINUE >
[0 502 I=1sNXP \'ﬁ
no s02 J= lyNZF
MP=NF+1




c
c
C S/R
c
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CX(NF)=XMIN+(I-1)%DX

CZ(NP)=ZMIN+(J-1)%DZ

IF(KXS+KZS.EQ.0) 60 Y0 502

IF(CX(NP)EQ40,+ ) CX(NF)I=,0000000001
IF(CZ(NF).EQ:0.)CZ(NF)=,0000000001

CONTINUE

GO TO S04

HAXI=NP -

GAUSS=.FALSE.

GO TO 105

CONTINUE

sTOP

END

SUBROUTINE SZONE(X»YsFRESS»XLIN»YLINSLFTSsFR)
DIMENSION XLINCS0s30)»YLIN(S0930)9LFPTS(30)PR(30)

TO DETERMINE THE SOIL ZONE OF A FOINT.

€ LOOP THRU ALL THE LINES,

o0aaon (9]

- 30

PRESS=0,

DO 40 M=1+30

LINE = M

IF(LFTS(LINE).LE.0) GO TO 40

NUMCRS=0

ACRSS=1.E30 )

LOOF THRU THE SEGMENTS WHICH MAKE UP THE LINE.
ISEGS=LFTS(LINE)

DO 30 ILINE=1,ISEGS :

CROSS DRAWS & VERTICAL LINE THROUGH XeY. ON RETURN,

IFABOV=1 IF THE VERTICAL LINE INTERSECTS THE SEGMENT ABQUE XrY
IFABOV=-1 IF THE VERTICAL LINE INTERSECTS THE SEGMENT RELOW X,Y
IFAEROV=0 IF THE VERTICAL LINE DIES NOT INTERSECT THE SEGHMENT.
YCROSS =-THE Y-VALUE OF THE INTERCEPTION.

CaLL CROSS(IFhBOV-YCRSS:XvaXLIN(ILINE;LINE)vYLIN(ILINEyLINE))
IFC(IFAEOV)20+30910. )

‘CROSSING AROVE X»Y%IS IT LDUER THhN THE PREVIOUS LOWEST FOR THIS

ZONE
ACRSS=AMIN1 (YCRSS,»ACRSS) .
GO 70 30 : .
CROSSING RELOW X'Y* INLREMENT THE CRDSSING CDUNTER.

- NUMCRS=NUMCRS+1 :
- CONTINUE
: IF(HOD(NUHCPS:Z)-EG 0) GO TO 40

THE FOINT IS WITHIN THE CLOSED LOOF.
FIND THE - CUMULATIVE FRESSURE.,
PRESS=PRESS+FR(LINE)

CONTINUE

. RETURN

RETURN

_END
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