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This report is the second in a series of three companion 
reports presenting the results of an investigation into the use 
of mathematical models for predicting subsidence caused by geoi 
thermal extraction. The simulation of results of the investi- 
gation are summarized in the report, "Simulation of "Geothermal 
Subsidence" (LBL 10571). The titles of the supporting reports 
are listed below. 

Report No. Title 

1 Physical Processes of Compaction LBL-10838 
3 Case Study Data Base LBL-10839 

An additional report on the subject of reservoir models was 
generated as part of this project. The report was produced in 
1979 by Dr. George F. Pinder under subcontract to Golder Asso- 
ciates and is titled "State-of-the-Art Review of Geothermal 
Reservoir Modelling" (LBL 9093). 

- 

, 
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ABSTRACT 

The Lawrence Berkeley Laboratory of the University of 
California is conducting an ongoing research program aimed at 
improved understanding and control of ground movements caused by 
geothermal power production. 
Golder Associates, acting under subcontract to the University, 

subsidence simulation and prediction. This report presents 
detailed analyses of the theory, power, usability, and perform- 

As part of this research program, 

I performed an assessment of existing mathematical models for 

ance of the seven models used in conjunction with this research. 
The models used were: 

Hand-calculation techniques 
The nucleus-of-strain method 
The one-dimensional Terzaghi consolidation method 
The two-dimensional boundary-integral-equation method 
Two-dimensional finite-element coupled fluid flow 
and deformation 
Three-dimensional integrated finite difference, coupled 
f l u i d  f l o w ,  heat f l o w ,  and porosity change 
The three-dimensional displacement discontinuity method. 
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1.0 INTRODUCTION 

This report presents detailed analyses of the theory, power, 
usability, and performance of the seven models used in conjunc- 
tion with the report, "Simulation of Geothermal Subsidence" 
(Miller et al. 1980). Each model has unique capabilities and 

l each has value in the simulation of geothermal subsidence. 

- . I. 
A chapter is devoted to the study of each model. The models 

are listed below. 
I 

Chapter I ' ,  

2 Hand Calculations 
3 SUBSID - Nucleus of Strain 
4 UPDOWN - One-Dimensional Consolidation 
5 BIEM2D - Boundary71ntegral-Equation Method 

CONSOL3 - Nonlineac Finite Element ccc - ~ - Heat-and-Mass F l o w  , 
6 
7 ~ -. 

- 3-D Displacement Discontinuities 

&ms developed or 
appendices A and B. 
loped on the basis 
is users' manual 
y at University 

r Associates to solve geo- 

he facility of each 
model. Figures 1-1 through 1-6 present the sample problems. 
Material properties are summarized in Table 1-1. 
summary of the sample problems. 

Table 1-2 is a 
Solution efficiency is measured 

k.8 by the number of CPU seconds required to achieve solution. 
ues are for Boeing Computer Services' CDC Cyber A5 computers 

Val- 
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TABLE 1-1 
MATERIAL PROPERTIES 

LINEAR ELASTIC E-LOG P COMPRESSIBILITY 

K =  

v =  

1.44 x 1016 
(bulk modulus) 

Cc = 015 
(compaction coefficient) 

(void ratio) 
e = 0.3 

0.25 
(Poisson's ratio) (coefficient of volume comp) 

mv = 1.111 x 10-6 psf 

Cv = 1.736 x low6 ft2/sec 

k = 1.208 x 10-10 ft/sec 
(coefficient of consolidation) 

(hydraulic conductivity) 

c 



9 .  

1 Uniform l i n e a r  elastic material propert ies  throughout 
h a l f  -spac I 

Rock mass saturated from surface downward. 

Reservoir i n t e r v a l  bounded 
impermeable bounda'rfes a 

I n i t i a l  pore' pre'ssure~ d i s t r i b u t i o n  as shown i n  
F 

Uniform pressure drop of 5.04 x lo* psf  i n  reservo ir .  
I J  

" I ,  
" I  

;,* 

undaries aro 

._ _-. . " I  .-_ .__ ~ ~ 

Uniform -pressure dr of 5.04 x 104 i n  k/l reservo ir ;  



TABLE 1-2 (C.0 
SAMPLE PROBLEM 

Properties of shale l a y e r  above r e s e r v o i r :  e-log p -' 

c o m p r e s s i b i l i t y .  

Impermeable boundary below r e s e r v o i r .  

Cons tan t  head boundary at  .top of shale,  

Besides shale l a y e r ,  material l i n e a r % , e l a s t i c .  

Uniform p r e s s u r e  drop of 5.04 x 104 psf maintained 

I n i t i a l  and f i n a l  pore p r e s s u r e  as shown. 

. i n  r e s e r v o i r .  

5 Th ick ,  c y l i n d r i c a l l y  shaped r e s e r v o i r .  

Uniform elastic material properties throughout .  

Uniform p r e s s u r e  drop of 2.16 x lo4 psf i n  

Impermeable boundar ies  sur rounding  r e s e r v o i r .  

C o n s t a n t  i n i t i a l  pore-pressure  g rad ien t  of 61.92 
psf from s u r f  ace downward. 

Wedge-shaped r e s e r v o i r .  

Uni form elastic material properties throughout ,  

Uniform p r e s s u r e  drop of 2.88 x lo4 psf i n  r e s e r v o i r .  

- .  6 

Impermeable boundar ies  surround reser 

Cons tan t  i n i t i a l  pore p r e s s u r e  grad ie  
61.92 p s f / f t ,  

L 
"___ - ~ _ _  



operating under EKS1. Cost (1979) is approximately $1 per CPU 
second 

1.1 REFERENCES 

I 

Miller, I., W. Dershowitz, K. Jones, L. Meyer, K. Roman, and M. 
Schauer (1980). 
pared for Lawrence Berkeley Laboratory, University of Cali- 
fornia, Berkeley, LBL 10571, 

"Simulation of Geothermal Subsidence," pre- 
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. I  2 00 ’ HAND ’ CALCULATIONS 

I T  2.1 INTRODUCTION 

There. are a -number of techniques avaklable .which allow an 
. ,  

investigator to estimate’ subsidence in simple systems. 
study we have selected 
vertical compaction of 
t ions . Propag o ground surface is 
modeled using deertsma (i973 j which 
treats the reservoir as an infinitely thin, horizontal disc. 
relatively thick reservoir may be modeled using a stack of these 

For this 
and-calculation technique. that computes 
reservoir using one-dimensional wua- 

A 

disks 

v .  

2.2.1 Theory 

2.2.1.1 Compaction 

is computed 
onstant vertical stress. Com- 

nion Report 1 (Miller et al. 1980) presents 
equations for this case. The compaction coef cient (Miller et 
a1 
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X is Lame's elastic coefficient or the reservoir 

G is the shear modulus of the reservoir material. 
material 

It is commonly assumed that Ks is much greater than K, 
which gives Cm the same value as used in the conventional 
(Terzaghi) effective stress law: C, = 1 - 

X+2G 

The amount of compaction in a layer due to pressure drop 
AP is: _ ,  

7 [ 2-2a] 

where zb, Zt are the elevations at the base and top of 
the layer. 

The amount of compaction due to temperature drop AT is: 

[ 2-2bI rz::G A T d t  

J 
z b  

where c1 is the coefficient of isotropic linear thermal expansion 
of the reservoir material. 

If the reservoir is homogeneous and of thickness H, then the 
total compaction is: 

2-3 1 3 K a  c = H(+ AP+ AT) 
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r 

where AP and AT are'vertically averaged. 
equation [2-31, it is 'necessary to know AP and AT from reservoir- 
flow modeling calculations. 

In 
I - *  . 

An altern e one-dimensional com- 
paction is bas oduced. The 
resulting eiua h'e thermal ex- 

pansion of the nion Report 1 
(Miller et al. 1980): 

r 1 

L 

where AV, is t e uid produced divided by the 

V is reservoir volume 

. . ,  
is the coefficie . ,  n for 
the reservoir fluid 

uf 

Kf is the bulk modulus (l/compressibility) of the reser- 
r 3  voir fluid. 

he bulk rnod 
te for stea 

of the fluid is 

reservoirs. 

If the assumption is made that the b 
matrix material, Ks, is much greater than t Other 

parameters ( A ,  G, Ks, Kf), then equation [ 2  
simpler . becomes -. 
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--no(+ AV AT 
V 

2-5 1 
c = HC, 

A common nonlinear approach estimating 
based Terzaghi’s -dimensional e-log p re1 ionship. The 
relationship is in t 

where: e is the void ratio -volume of voids 
volume of solids ( 

P is the effective vertical compressive stress = 
. overburden weight minus the pore pressure 
C, is the compression index, a material property 

eo, Po are the initial state. 

Assuming that the volume of solids is constant, the vertical 
compressive strain is: 

Two alternate forms of the relationship are based on differ- 
entiating it and are only valid for small changes in P: 

2-8 1 e = e, + a,iw 



3 

and 

= -m,AP 2-9 1 

- - ' - . 434cc 

P,o 

The reservo ir  compaction is found by in tegrat ing  %: 

2 .2 .1 .2  Subsidence 
Q 

reservo ir  and the  sur- 
' i d e n t i c a l  materials with 

i n g  presentation 

of radius R and 
The ground movements at a radius r from the buried at depth D. 

i n t  over ly ing  the  center  of the  reservo ir  are: 

I _  

. I  I 

id [ 2-11] R 

0 
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where Jo and J1 are Bessel functions of zero and first 
order, respectively. 

Geertsma (1973) went on to tabulate specific values of the 
integrals in equations 12-10] and 12-11] in terms of specific 
values of the radius ratio p = r/R and the depth-to-radius aspect 
ratio of the reservoir q =.D/R. The tabular values are used in 
the following equations. 

1) 

Specific values of A and B are given in tables 2-1 and 2-2. 

2G+X Note that the ratio 2 ~ + 2 ~  equals 1-V where V = Poisson's 
ratio. If the method is used for cases where the reservoir 
properties are different from the overburden properties , the 
compaction C should be computed using reservoir properties, 
the Poisson's ratio for the overburden should be used when com- 
puting 2G+X e 

2G+2 X 

2.2.2 Numerical Methods 

Application of the technique is straightforward. 
reservoir compaction is determined using equations 12-31, 
or 12-51. 
equations 12-12] and 12-13] and tables 2-1 and 2-2. 

The 
[2-41, 

The surface deformations are then computed using 
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W 

‘ 
TABLE 2-1 VALUES O F A  FOR RAN 

0.0 ‘ - 0.2 A 0.4 ‘ X . 1  I. * L - - -  
0.0 l.OOb 0.8039 0.6286 
0.2 1.0000 0.7983 0.6201 

0.5000 0.3828 0.3105 
0.0000 0.1544 0.1871 
0.0000 -: 0.0717A 0.1101 

1.6 O.OOO0 0.0400 0.0682 
1.8 0.0000 0.0249 0.0449 
2.0 0.0000 0.0168 0.0312 
3.0 aoooo 0.0092 0.0082 

0.6 0.8 -’ - -  

0.1795 0.1621 
0.1216 - 6.1197 
0.0829 0.0876 
0.0580 , .‘O.O647 
0.0418 0.0485 

.0.0118 0.0149 

LO * E.2‘  -1.4 ‘ 
9,2929 ‘i Q.2318 0.1863 
0.2876 02279 ’. 0.105 

- - -  
0.2720 0.2167 0.1754 
0.2470- 0.1989 0.1628 

.0.2147 0.1762 0.1465 

0.0865 0.0324 >0.0768 
.-a0668 . 4.0659 0.0633 

0.0519 0.0528 0.0520 
0.0174 0.0193 0.0207 

1.6 1.8 2.0 
0.1520 0.1258 I 0.1056 
0.1500 0.1244 8.1045 
0.1442 0.1202 . 0.1014, 
0.1351 0.1135 ‘ 0.0965 
0.1234 0.1049 0.0901 

.0.1102 60951 0.0827 
O.W$S 0.0848 04748 

j 0.0831:’ 0.0744 ‘0.0667 
0.0707 0.0646 0.0589 

‘, 0.0597. : 0.0557 0.0516 
0.0502 0.0477 0.0450 
0.0216 0.0221 0.0222 

- - -  - 3.0 
C.0513 
0.0510 
0.0502 

’ 0.0488 
0.0470 

‘ 0.0443 
0.0424 
0.0395 
0.0370 
0.0343 
0.0315 
a0198 

- 

6 ,  

 TABLE^ 2-2 VALUES OF B FOR RANGES OF VALUES *OF p =  r/R AND q =  D/R 

L 
030 
0.2 
0.4 
0.6 
0.8 
1 .a 
1.2 
1 .4 
1 1 
1.8 
2.0 
3.0 

0.0 0.2 0.4 
o.oo00 0.0000 0.0m 
0.1015 0.0951 0.0840 

- - -  0.6 
O.oo00 
0.0628 

02134 0.1979 . 0.1622 0.1238 
0.3530 0.3163 0.2443 0.1789 
0.5721 0.4573 0.3151 0.2197 

m 0.5456 0.3422 0.2355 
0.5235 0.4278 0.3072 0.2237 
0.3293 0.3026 0.2482 0.19511 
0.2338 0.2228 0.1962 0.1650 
0.1767 0.1711 0.1566 0.1377 
0.1390 0.1358 0.1272 0.1152 
0.0580 0.0576 0.0562 0.0541 * 

- 
* 

0.8 1.0 1 2  1.4 1.6 
0.OoM) o.oo00 o.oo00 0.0ooo 0 . m  
- - - - -  

0.0854 0.0648 0.0500 
0.0945 0.0726 0.0567 
0.0976 : 0.0764 0.0605 
0.0958 0.0766 0.0619 

0.1180 0.0997 0.0838 0.0703 0.0590 

0.0514 0.0483 0.0449 0.0414 0.0380 

0.1358 0.1110 am07 0.0743 0.0611 

0.101s 0.0805 0 . 0 ~ ~  a00653 o m 9  

- 
1.8 

0.OoMJ 
0.0113 
0.022Q 
0.0314 
0.0391 
0.0468 
0.0485 
0.0504 
0.0506 
0.0196 
OM78 
0.0346 

- 2.0 
O.oo00 
0.0089 

0.0248 
0.0311 
0.0359 
0.0393 
0.0414 
0.WZ 
0.0420 
0.0410 
0.0314 

- 
0.0173 

- 
3.0 

0 . W  
0.0032 
0.0062 
0.0090 
0.0117 
0.0139 
0.015B 
0.0174 
0.0185 
0.0194 
0.0199 
0.0190 
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2.3 CAPABILITIES AND LIMITATIONS 

2.3.1 Geometric Capabilities and Limitations . .  . 

The ground surface is assumed to be horizontal--an assump- 
tion that might be poor in mountainous areas. 

The model computes deformations only for the ground surface 
and provides no values for subterranean deformations. It does 
not compute stress. 

2.3.2 Flow Capabilities and Limitations 

The model does not simulate flow. 

2.3.3 Material Properties 

The model assumes a linear elastic isotropic homogeneous 
half-space. All of these assumptions are questionable. The 
model can be used with nonlinear reservoir properties when com- 
puting the reservoir compaction, but this will induce some error. 

2.4 USABILITY 

The method is very simple to use and requires the minimum 
amount of input data. tj 



2.4.1 Resume of Performance on Sample Test Problems 

and,Case Studies 1 . A  

i . , .  
servoir compa 

determined for each sample prob ere neces- 
sary, the reservoir was d the half-space 
materiar properties were 
subsidence could be approxima 

'1 , 
MS 

or Sample Problem 1 (Figure 1-1) 
is computed as: 

, 

and G are readily 
ersions) from 

C = 50(3.86 x loo7 x 5.04 x lo4) 

horizontal 



ions presented Companion Re 
al. 1980), it is possible to compute changes in the horizontal 
stresses and in the pore volume as well as the quantity of fluid 

In Sample problem 2 ( e b  
exists between the reservo 
consequently, ormations and stress changes mus 
culated for th liyer . Displac ts and* stress 
reservoir interval will be the same as those ob ined in sample 
problem~l. 

The compressibility assumed for the confining shale layer 
was nonlinear, represented by an e-log p type expression. Dis- 
placements in the shale layer were therefore calculated using 
classical soil mechanics formulations. Pressures were assumed to 
be steady-state; therefore, the calculations represent ultimate 
displacement of the shale layer. 

Assuming the uniform initial voi 
confining layer, the total compaction 

- 
C =  I,,O cc [ 10;9,0: CT dZ 

3 

Because the upper boundary of the clay or shale 1 
to remain at a constant pore'pressure, the pore-p 
varied with position in the layer from a maximum of 5.04 x 10 

9 
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ki 

at the reservoir top.to zero-at 
(Figure 1-2). 
vary with position. 
4-.lo4 x lo4 psf at 2 = 500 feet to 2.45 x lo4 psf at 2 = 
570 feet. In equation form: 

Consequently., effective stress changes will also 
The initial effective stress varied from 

- = 1 .593  x lo5 - 236.62 
5 3  

Af ady-state pregsures h bed, the effective 
stress varies from 4.104 x 104 psf at 2 = 500 feet to - 

7.49 x 104 at 2 = 570 feet. 
effective stress is thus: 

An expression for the final 

- 
Q = -2.007 x lo5 + 483.42 

ment would also be magnified by 2(1-V), giving 
2.97 feet at the ding the &for 
layer to the defo he reservoir 1 
surface displacement of 4.425 feet for sample probl 

' I 

r yierds a total 

2 . 5 . 3  

I q_g Problem 3 (Figure 1-3) is like problem 1 except that the 
I reservoir ha6 a finite lateral extent. The reservoir compaction 
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. 
is t h e  same as w a s  computed i n  problem 1 (0.972 f t ) .  I f  one as- 
sumes an axisymmetr ic  reservoir, t h e  s u r f a c e  subs idence  can be 
c a l c u l a t e d  u s i n g  e q u a t i o n  [2-121 wi th  q = 595 = 1.19. - 

500 

= -2( .972)(  .75)A(p, 1.19) 

A p l o t  of s u r f a c e  subs idence  as a f u n c t i o n  of d i s t a n c e  from 
t h e  r e s e r v o i r  c e n t e r l i n e  is p r e s e n t e d  i n  F i g u r e  2-1. The maximum 
Subs idence  is 0.342 feet. 

2.5.4 Sample Problem 4:  F i n i t e  Reservoir 
With Conf in ing  Layer 

Sample Problem 4 ( F i g u r e  1-4) ,  is l i k e  problem 2 e x c e p t  t h a t  
t h e  r e s e r v o i r  has  f i n i t e  lateral  e x t e n t .  The r e s e r v o i r  and 
shale l a y e r  compaction and t h e  r e s u l t i n g  s u r f a c e  subs idence  may 
be  approximate ly  c a l c u l a t e d  by s i m p l i f y i n g  t h e  system. 
t h a t  compaction i n  t h e  s h a l e  occurs on ly  i n  t h a t  p o r t i o n  of t h e  
l a y e r  v e r t i c a l l y  a d j a c e n t  t o  t h e  reservoir r e s u l t s  i n  a lower 
bound on s u r f a c e  subs idence .  A t  s t e a d y - s t a t e  t h e  compaction of 
t h e  shale w i l l  be 1.98 f e e t ,  as is computed i n  problem 2 ,  whi le  

t h e  r e s e r v o i r  compaction is 0.972 f e e t .  
ca l  symmetry, t h e . s u r f a c e  subs idence  can be c a l c u l a t e d  u s i n g  
e q u a t i o n  [2-121, modeling t h e  t w o  l a y e r s  w i th  d i s k s  a t  d e p t h s  of 
535 f e e t  and 595 f e e t :  

Assuming 

I f  one assumes c y l i n d r i -  

UZ = -2(.75)(Oo972A(p9 1.19) + 1.98A(p, 1 .07) )  

Uniform material p r o p e r t i e s  i n  t h e  ha l f - space  wi th  P o i s s o n ' s  
r a t i o  e q u a l  t o  -25  bavefbeen assumed. 
p l o t t e d  i n  F i g u r e  2-2. 

c, 
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a 

. . ,. . 
~. - .  . .  

> 260 4btJ 6bo S b O  lobo 1Sbo *!do0 i -  

Radial distance from center (feet 

FIGURE 2-1: HAND-CAXULATION METHOD, . SURFACE + “ 8  SUBSIDENCE, 
SAMPLE PROBLEM 3 ’ ’ 

I 
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2.5.5 Sample Problem 5 :  Thick Finite Reservoir 

The reservoir in sample problem 5 (Figure 1-5) is like that 
in sample problem 3 but is 10 times as thick, and the pressure 
drop is only 2.16 x lo4 psf, 
same. The compaction of the 500-foot interval is then: 

The material properties are the 

/ 

c = 500(~.86xl0'~)(2.15~10~) = 4.17 ft. 

Assuming the reservoir is axisymmetric, the surface subsidence 
may be calculated using equation [2-123. The reservoir may be 
modeled with either a single disk at the reservoir mid-depth or, 
more accurately, with a number of disks distributed over the res- 
ervoir depth. For a single disk: 

= -2(4*.17)(0.75) A(P, 1.5) uZ \ 

Ten disks spaced 50 feet apart from D = 525 feet to D = 975 feet 
represent the thick reservoir more accurately and give: 

IO 

= -2(4.17)(.75)1/10 A ( p , n k )  
rc= I 

with nl; = 1.05 + O.lO(k-1). 
single disk and the stack of 10 disks is plotted in Figure 2-3. 

2.5.6 Sample Problem 6 :  Confined Prismatoidal Reservoir 

The surface subsidence for both the 

Compaction and subsidence due to a uniform pressure drop of 
2.88 x lo4 psf in the prismatoidal reservoir of problem 6 
(Figure 1-6) can be approximately calculated by hand. The ma- 
terial properties are the same as in sample problem l. The 
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prismatoid can be modeled as being uniformly 135 feet thick to 
give a one-dimensional compaction of: 

C = (3.86~10'~)(2.88~10~) 135 = 1.50 ft. 

By molding the prismatoid into a cylinder of the same 
volume, the approximate surface subsidence caused by the pressure 
drop can be determined. The corresponding cylinder thickness is 
135 feet, the depth is 732.5 feet, and the radius is: 

I 

R = 600 = 338.5 ft. - 
J7F 

Thus, q = 732.5/338.5 = 2.16 and the surface subsidence is given 
by: 

= -2(.75)(1.50)A(p, 2.16). uZ 

This is plotted in Figure 2-4. The actual surface subsidence 
profile is not axisymmetric, and the point of maximum subsidence 
is offset toward the thick end of the reservoir. 

2.5.7 Case Studies 

The reservoir interval compaction and surface subsidence 
were calculated by hand for Wairakei, The Geysers, and Austin 
Bayou Prospect. 

Wairakei was assumed to be LL one-dimensional system, as the 
reservoir horizontal extent is much greater that its depth. A 
reservoir compaction of 2.25 feet was determined, giving a sur- 
face subsidence of 3.6 feet. 

i 
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, I  

The Geysers system was assumed to be axisymmetric. A reser- 
voir compaction of 1.03 feet was calculated. Two different 
models were then utilized to predict surface subsidence. A 
single disk modeled the reservoir in one case. In the other 
model, 12 disks were used to better represent the vertical extent 
of the reservoir and the lateral distribution of pressure and 
temperature change. The maximum subsidence predicted by the two 
models was 0.344 and 0.410 feet. 

Austin Bayou was also modeled as being axisymmetric. The 
compaction of the reservoir interval after 1000 weeks of pumping 
was determined to be 5.31 feet, Modeling the reservoir interval 
with a cylinder of equal volume gave an axisymmetric surface 
subsidence with a maximum of 1.29 feet. 

2.6 CONCLUSIONS 

The hand-calculation method presented above provides a 
simple model which is applicable to a number of systems. It is 
easy and inexpensive to use. 
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3.1 INTRODUCTION- 
i * - \ ,  

A program name n 

formulation to caiculate displacements and stresses due to reser- 
voir pore pres n by Golder Associates, The 
nucleus-of-st ation, solution 
nally developed for point temperature changes in an infinite 
space (Goodier 1937), 
to calculate stresses and.displacements due to a 

strain in an infinite h f-space. It was also used by Mindlin 
and Cheng (1971) totUi1 late stresses .and‘ displacements both 
interior and exterior to a spherical inclusion with a uniform 
temperature change. 
similar manner. Geertsma (1973) calculated analytically the 
surface vertical and horizontal displacements due to a uniform 
pressure change over an infinitel 
integrating nuclei of strain bver ‘the disk. 

- -  

This solution was later used by Sen (1951) 

A point-pressure change can be treated in a 

thin disk in a half-space by 

In SUBSID, the ‘and Cheng (1971) solution for a uni- 
form spherical -’ternbe transformed to 
Cartesian coordinates, was used. Arbitrarily shaped reservoirs 

y’radii. The . 
ic, linearly 

elastic half-space. 

erica1 nucleus of 
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l + v  'b B = - _I AP for a p r e s s u r e  change 1-v 3 

l + v  c r ~ ~  

where: 

fo r  a tempera ture  change B - E  

a = sphere r a d i u s  
v = P o i s s o n ' s  ratio I 

c = depth  of sphere c e n t e r  

E = modulus of e l a s t i c i t y  
c1 = c o e f f i c i e n t  of thermal expansion 

= (x2 + y2 + [z+c] 2 ) 1 / 2  
R2 

Cb = 3(1-2v)/E c o m p r e s s i b i l i t y  

x,y,z = C a r t e s i a n  coordinates of .observa t ion  p o i n t  

E x t e r i o r  t o  t h e  sphere, t h e  displacement f i e l d  is g i v e  
i d e n t i c a l  formulas  w i t h  l / a3  w i t h i n  t h e  brackets replaced by 
l / R 1 3  ( w i t h  R1 = [ x ~ + Y ~ + ( z - c ) ~ ] O * ~ ) .  

The stresses i n  t h e  sphere i n t e r i o r ,  are: 
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The exterior stress field is: 

3 - 4 v  - b;l'EA.6 I+V 3 ks ' $3-83 RZs 
-sxy++ 7 

sumed to be at--(s;y,z-) = (O,O,c), but it may be taken at (xo, 

yo,c) and x 'and y ih 'equations [I] 121, and 131 'being 
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replaced by x-xo and y-yo. The stress and displac 
fields that are caused by a number of spherical inclusions in the 
half-space are found by summing the contributions due to each 

- >  

sphere. 

If a portion of the reservoir being modeled is of a differ- 
ent compressibility from the rest of the half-space, that effect 
may be included by adjusting the pressure change in that region, 
taking 

(AP) actual (%)actual 
(%)half-space 

(AP)equivalent = 

This adjustment is only approximate, however, as the effects of 
"soft" and "hard" nuclei of strain cannot be linearly super- 
posed * 

3.2.2 Numerical Method 

In SUBSID the contributions to the stresses and displace- 
ments at a particular point in the half-space from all spherical 
nuclei of strain are calculated using equations [3-11, [3-21, and 
[3-31 and summed. 

For most reservoirs, the total volume of the spheres used to 
' model the reservoir will not be equal to the volume of the ac- 
tual reservoir. 1n.these cases, each sphere pressure change (Ap) 
should be adjusted so that Ap = VoApo/V, where V is the sphere 
volume and Vo and Apo are the actual reservoir volume and 
pressure change represented by the sphere. This adjustment*makes 
the stresses and displacements exterior to the . 

sphere correct, as there; Ap and V appear only in the combination 
ApV. However, in the interior of the sphere, the sphere volume 
occurs both alone and in the pV combination in the expressions 
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for displacement (see equation [3-11) and normal stress (see 
equation [3-21). These quantities, therefore, will be incorrect, 

& ”  

The program outputs displacements; normal stresses; shear 
stresses, and mean stress Urn = 1/3 (ax + ay + Qz)  at observation 
points chosen by the user in the semi-infinite space. 

3.3 CAPABILITIES AND LIMITATIONS 

tric Capabilities and Limitations. 
I .  

A reservoir may be modeled as a single sphere, as a linear 
array of spheres in the x, y, or z direction; as a rectangular 
array in any xy plane; or as a disk-shaped array centered at x = 
y = 0 in any xy plane. Any number of arrays of one of these six 
types may be used, but different types may not be _combinedb 
line or rectangle is made up of an arbitrary number of spheres 
with arbitrary. but --equal miiii. The sphere center spacing is 
constant and specified .by the user rectangle the spacing J -  

of centers in the x and’.y directio eed not be the same. A 
d i s k  is made up of 1, 9, 49 , -81 ,  121, or 169 spheres. Obser- 
vation points are specifi imilarly on lines in the x, y,  or z 
direction or in rectangular arrays in any xy plane, 
tion of lines and rectangles may be used to form th 

Each 

llow 500 observation 
vation points.. The 

it any size problem, The ~ - 

ed‘ need. not ’be consistent 

In a number of :problems, stresses were calculated in- psi and 
displacements in feet, 
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3.3.2 Flow Capabilities and Limitations 

Flow is not cons n SUBSID. The material in .the ha 
space is assumed to react instantaneously to a pressure-(change in 
the reservoir. I 

3.3.3 Material ProDerties 

The reservoir and the surrounding material are assumed to be 
made of the same homogeneous, iso'tropic, linearly elastic mate- 
rial. The material properties specified by the user are Young's 
modulus; E and Poisson ' s . ratio v. 

3.4 USABILITY 

3.4.1 Documentation- 

For further discussion of the nucleus-of-strain method see 
Geertsma (1973). A users' manual developed by Golder Associates 
is included as Appendix A,. The manual includes a discussion of 
input parameters, a. program listing, and a sample problem. 

3.4.2 Input Ease 

Input to SUBSID is straightforward. It is compact if the 
reservoir is of a regular shape with uniform pressure changes so . 

that combinations of disks, rectangles, or lines form an appro- 
priate model. Hovever, if he reservoir is large and irregular 
in shape or if the pressure change varies within the reservoir, 
many single spheres are required for the model, and the input can 
become lengthy. 
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3.4.3 Output Control and Comprehensibility 

The user specifies at which points in the half-space dis- 
Also output are the placements and stresses are to be output. 

half-space material properties, the coordinates of the sphere 
centers and the observation points, and the strength and radius 
of each source sphere. Card images of the reservoir spheres 
input and the observation points input are also printed. 

3.4.4 Solution Efficiency 

Solution cost is directly related to the product of the 
number of source spheres and the number of observation points. 
Cost in CP secoLds is shown in Figure 3-1. 
dimensional solution, SUBSID is extremely efficient. 

For a three- 

3.4.5 

Three sample problems, (3, 5, and 6) were solved with 
SUBSID. Surface displacements from problem 3 were comparec, witll 
Geertsma's ( nalytic solution a uniform 'pressure drop 
on an infini of Geertsma's 
disks was used to calculate surface displacements to compare with 

om problem 5. The Geerts isplacements agree with the 
SID displace 

No independent 
nt in problem 3 

culated surface 
displacements from the prismatoid of problem 6 .  In all cases, 
the stress and displacement fields within and in the immediate 
neighborhood of the actual reservoir are not accurate because 
sphere arrays do pot conform well to the actual reservoir shape. 
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Number of source spheres X Number of observation points 

FIGURE 3-1 
NUCLEUS-OF-STRAIN MODEL 

SOLUTION T I W  AS A FUNCTION 
OF NUMBER OF SOURCE SPHERES 

AND NCJMBER OF OBSERVATION POINTS 



ers and Wairakei, were model 

Sample problem 3 (F igu re  w i t h  SUBSID, us ing  
d i s k s  of 9 ,  25, and 169 spheres. 11 cases t h e  p r e s s u r e  drop 
i n  t h e  model r e s e r v o i r  had t o  be u s e  volume of the  

d i s k  of spheres was no t  t h e  a c t u  
9, 25, and 169 spheres r e q u i r e d  

cases were taken  
e s s u r e  drops were 

anged i n  t w o  r i n g s  
a = 1/3 R = 166.67 f t  

I -  V = 40/9 Vo * Ap = Q/4O.Apo -= -11340 - _  pSf 

case a :  XI spner 
a = 1/5 R = 100 f t  

1 

169 spheres ar ranged  i n  seven 
a = 1/13 R = 38.46 f t  

where : a * =  sphere  r ad i i  
R = r e s e r v o i r  r a d i u s  
V = volume of model r e s e r v o i r  

Vo = volume of a c t u a l  r e s e r v o i r  
Ap = p r e s s u r e  change i n  spheres 

u 
 AD^ = p r e s s u r e  change i n  t h e  a c t u a l  r e s e r v o i r  
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Surface vertical and horizontal displacem along y = 0 
are shown in figures 3-2 and 3-3. Ta w(O,O,O) and 
u(500,0,0) for the three cases and nalytic solu- 
tion for a pressure drop of 50,4 an infinitely 
thin disc at z = 595 feet. The 169-sphere disk comes closest to 
matching the as ratio (h/R) of the actual reservoir' ever, 
the displacemen rom even the rough phere model ar 
agreement with the more precise values. 

TABLE 3-1 
COMPARISON OF VERTICAL AND 

HORIZONTAL SURFACE DISPLACEMENT 
SAMPLE PROBLEM 1 

VERTICAL DISPLACEMENT HORIZONTAL DISPLACEMENT 
AT SURFACE AT SURFACE 

MODEL w(O,O,O) (ft) u(500,0,0)(ft) 

9 spheres - 3608 - 0 1493 
25 spheres - 0 3487 - 0 1430 
169 spheres - 03421 - 0  1398 
Geertsma - 3419 -01398 

3.5.2 Sample Problem 5: Thick Finite Reservoir 

Sample problem 5 (Figure l-5), a high-aspect ratio cylin- 
drical reservoir at a mean depth of 750 feet subject to a 21,600 
psf pressure drop, was modeled with four large spheres and with 
four overlapping 25-sphere disks. The surface displacements 
obtained were compared to those found from the superposition of 
10 of Geertsma's infinitely thin discs. Solution with four large 
spheres required 0.1 CPU seconds; solution of the 100-sphere 
model required 0.7 CPU seconds. 

hpl The geometries and applied pressure drops for the two cases 
were as follows. 
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I 

i 
~ 

1 Loterol distance from (feet) 

200 . . - - 4  ,800 
I - 
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xx 

.I 

J! 

Lateral distonce from center of reservoir (feet) 
200 400 600 800 

%spheres ' 9 spheres 

FIGURE 3-3 
NUCLEUS-OF-STRAIN MODEL, 

HORIZONTAL DEFORMATION OF THE SURFACE 
USING 9, 25, AND 169 SPHERES, 

SAMPLE PROBLEM 3 
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CIS 

i 

1 

Case 1: 4 spheres with ' c  
a = 250 ft; sphere 

V = 2/3 Vo 

4 disks each made up of 25 spheres 
disk centers at z = 600, 700, 800, and 900 ft 

(0,250), (-250 
-+ Apt= 3 

> ^  - 
Case 2: 

V = 16/15 Vo -+ Ap = 15/16 ApO = -20250 psf 

Surface vertical and horizontal displac i 
I are shown in figures 3-4 and 3-5. Table 3-2 re gives W ( O , O * O )  

I 

i 

i 

and u(600,0,0) for the two cases and for Geertsma's analytic 
solution for a pressure drop of 21,600 lb/ft2 on each of 10 
infinitely thin disks spaced 50 fee 
975 feet. d e disk model 
agree to 

= 525 ft to z = 

! 
. TABLE 3-2 

RISON ,OF' VERTICAL AND 
AL SURFACE DISPLACEMENT 
SAlUPLE*-PROBLEM 5 

i 

i 
i 
I 
I 

4 x 25 spheres 
Geer tsma 

~ 

I 

I 
i 
I 
, 3.5.3 I 

I 
I 

1 

Sample prob eservoir sub- 
ith spherical I 

ject .to a. pressu 
~ U nuclei of strain the reservoir is at z = i 



44 

Lateral distance tom center of reservoir (feet) 
200 400 600 800 

I 
a I - 

Surface subsidence 

- c 
0)  g .4- 
Y 

0 
0 
C 
0 
U 
(D 5 .0  

8 

8 

to 4-25sphere disks 
'0 

r 
b 

1.2 

t 

FIGURE 3-4: NUCLEUS-OF-STRAIN MODEL, 
SURFACE SUBSIDENCE USING 4 AND 100 SPHERES, 
SAMPLE PROBLEM 5 

Lateral distonce from center of reservoir (feet 1 
c a f 200 400 600 800 

f .I- 

E .2- 

5 - g .3- 

0 r 

0 
0 

1 

Y 

a 
(I) 
r 
0 

0) 

a 
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800 feet. The r e s e r v o i r  t h i c k n e s s  ranges  from 70 t o  - .- .- 200 f t .  

models of t h i s  r e s e r v o i r  were tested. The simpler model (27 
sphetes)  r e q u i r e d  0.4 CPU seconds  for  s o l u t i o n ;  t h e  more complex 
model (128 spheres) r e q u i r e d  0.9 CPUseconds for s o l u t i o n .  

3.5.3.1 Setup  

Two 

.A 

The two models of t h i s  prismatoidal r e s e r v o i r  had very  
d i f f e r e n t  t l i s t r i b u t i o r i s i o f  spheres. One con ta ined  128 spheres, 
t h e  other con ta ined  27. The geometries and the -applied p r e s s u r e  
drops are as follows. * ,  

e 11: Case 1 u s e s  128 spheres a r r anged  + i n  three rec- 
t a n g l e s .  
765,695 and 630 feet and c o n t a i n  64, 48, and 16 
spheres. 
i n  t h e  x and y d i r e c t i o n s ,  and t h e  sphere diameters 
are a l l  75 feet. 

The r e c t a n g l e  c e n t e r  p l a n e s  arejat z = 

The sphere c e n t e r s  are *spaced a t  75 feet 

_ _  

a n d ' 9  spheres in t h e  y d i r e c t i o n .  The 

nding sphere diameters, 
e center spac ings  i n  
0, 120, 100, and 66.7 

u 
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3.5.3.2 Results 

Both vertical and horizontal surface displacements from the 
two models agree to within 1 -percent. A contour .plot of the 
surf ace vertical displacement is presented in Figure 3-6. 

3.6 CONCLUSIONS 

The nucleus4of-strain formulation used in program SUBSID is 
unique in that it allows the solution of complex, 
dimensional geometries at relatively low cost and minimal effort. 
Solutions obtained by use of SUBSID suffer primarily from the 
simplification of material properties that is required to allow 
solutions. 

3.7 LIST OF SYMBOLS 
/ 

a - radius of sphere 
x, Y, z - Cartesian coordinates of observation 

C - z coordinate of sphere center 
R1 = @+f+&c)) 

point 

2 Y2 - distance to center of image sphere 
at (O,O,c) from observation point at 
(X,Y,Z) 

R2 = ~ ~ z + ( ~ + C ) ~ ”  - distance to center of image 

AP 
V 

E 
= 3(1-2~)/E 

a 
u, v, w 

sphere at (O,O,  z )  from observation 
point at (x,y,z) 

- pressure change within sphere 
- Poisson’s ratio 
- modulus of elasticity - compressibility 
- coefficient of thermal expansion 
- x, y, z displacements tId 
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aAT B = -  l+v 
1-v 
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4.1 INT CTION 

UPDOWN is a one-dimensional consolida 
public domain written by Don Helm while wo 
Geological 
tards with 
upper and lower boundaries may be 
According to Terzaghi's +t 
aquitards are assumed to 
profiles within the aquit 
idation are output at user-specified time inte 

4.2 SOLUTION METHOD - GENERAL THEORY < 

fective stress, t 
when p is greater than the past 

functions of Z .  If 
stress, the Terzaghi 

ive stress, then S 

transformati n. The resulting u 
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linear equation is exact only if the ratio K/S does not depend 011 

effective stress. The line the equation is approx- 
imately correct if K/S is weakly stress-dependent or if the ef- 
fective stress in the aquitard does not change significantly. 

4 . 2 . 2  

linear ̂ finite 
c’ients is: 

n n-i + E ~ J  ’ 0-1 +Apj”;’ 
[ 4-2 1 + Pj- I j+/ 

B = 1 + 2 A  

E = 1 - 2 A  

The superscript (n) indicates a discrete point in time and 
the subscript (j) a discrete point on the vertical grid. Uniform 
steps in space and time are denoted by z and t (see Figure 
4-1) .  This finite-difference equation is solved deterministi- 
cally by an adaptation of an efficient forward and backward sub- 
stitution method developed by Thomas (see Remson et al. 1971, pp. 
168-171). The nonconstant coefficient and the stress-dependent 
coefficient formulations of equation [4- ed in a sim- 
ilar but more complex manner’(see equati 

4 . 3  CAPABILITIES AND LIMITATIONS 

4 . 3 . 1  Geometric Capabilities and Limitations 

The aquitard modeled may be of arbitrary vertical extent. A 
uniform vertical grid and uniform time steps are specified by the 
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i d  

user. Helm (1976) suggests that the grid spacing be less than 1 
foot. Arrays within UPDOWN are dimensioned to allow 150 grid 
lines, but the array sizes may be easily increased. The time 
step size chosen should reflect the complexity of the loading. 
Length is input in feet, time is input in days, effective stress 
is input in feet of water, hydraulic conductivity is input in 
feet per year, and specific storage is input in feet-l. 
option to the basic program allows the effective stress at the 
upper and lower aquitard boundaries to be specified indepen- 
dently. This option was not extensively used by Helm (1976) and 
still needs to be debugged. 

' An 

4.3.2 Flow Capabilities and Limitations 

The fluid is assumed to be incompressible. Hydraulic con- 
ductivity may be taken as constant, as a function of z ,  or as a 
function of effective stress. Fluid-flow calculations can be 
performed at user-specified time steps to provide any desired 
time history. 

4.3.3 Material Properties 

The aquitard specific storage parameters Se and SP may 
be constant, may vary with z, or may both be functions of effec- 
tive stress. 
hydraulic conductivity must also vary with effective stress. The 
user then has the choice of making K/Se and K/Sp either 
constant or functions of effective stress. The program has not 
been tested with the heterogeneous (K = K [ z ]  and/ or S = S[z]) and 
nonlinear (K = K[p] and S = S[p]) options superposed but, according 
to Helm (1975), should work. Neither the heterogeneous nor the 
nonlinear options can be used when the upper and lower boundary - 

Tf Se and Sp vary with effective stress, the 

conditions are specified independently. L 
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4 04 USABILITY 
I 
i . A. 

. -  - .  

1 
I r A / I  

, e numerical solution 
method, and numerous examples using homogeneous, heterogeneous, 
and nonlinear aquitard parameters are presented in Helm (1975; 
1976). The analytic and UPDOWN solutions to a simple consoli- 
dationeproblem @re given in Helm (1975) and can serve as a check 
on the user's-comprehension of .the basic program. 

and changes have apparently been made to the original manual. 
For the most part, the input parameters are clearly defined and, 

, 

I 

~ 

where necessary, are further explained. 
I 

The NDDD = 1 option, wh er and lower 
I 1 

I 
boundary con specified-independently, was added to i UPDOWN in or particular problem and ;ts not well 
documented. 

~. 
4.4.2 Input Eas 

Only eight ~ . -. ards are required to sp 
erties, geometry boundary conditions. 

time intervals aquitard compaction and .effective stress profiles 
within the aquitard are to be output. Effectiveistresses are , 

' 
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given at every grid point. If the nonlinear option is used, pro- 
files of hydraulic conductivity, elastic specific storage, and 
virgin specific storage are printed with the corresponding effec- 
tive stress -profiles. 

4.4.4 Solution Efficiency 

The solution cost for UPDOWN increases with the number of 
time steps and the number of grid lines in the aquitard. Some 
examples of solution times for aquitards with constant permea- 
bTlity and specific storage coefficients for different numbers of 
time steps and grid lines are given in Table 4-1. 

TABLE 4-1 
UPDOWN SOLUTION EFFICIENCY 

SOLUTION TIME 
GRID LINES TIME STEPS (CPU SECONDS) 

21 11 0.222 
15 60 0.725 
141 60 5.664 

4.4.5 Resume of Performance on Sample Problems 

Sample problem 2 was solved with UPDOWN. The aquitard 
permeability and specific storage were assumed constant. 
Ultimate consolidation was 1.945 feet, agreeing with the one- 
dimensional analytic solution. The aquitard was found to be 98 
percent consolidated at 30 years. u 
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4.5 PERFORMANCE ON SAMPLE PROBLEMS 

4.5.1 Sample Problem 2: Infinite Reservoir 
With Permeable Confining Layer 

Sample problem 2 (Figure 4-2) was solved with UPDOWN. 
aquitard properties K and S were calculated from values of m,, 
Yw, and cv and converted to the units required by UPDOWN: 

The 

K = mvYwCV = 3.78604 x ft 

Se * S = mvYw = 6.9151 x loo5 ft”. 
P 

The aquitard was divided into 140 
with Helm’s suggestion that t 
foot. Effective st and bottom boundaries were 
specified every 1 year is taken as 360 days by UPDOWN) 
for 10,800 days ( The effective stress on the upper 
boundary remaine t of water) while 
the effective st 24,480 psf (392 ft 
of water) at t = water) thereafter. 
The sample problem n Figure 4-2. The 

solution required 

intervals in accordance 
spacing be less than one 

Effective s ervals: The 

efSective stress pro- 

effective stress = 0, 2 ,  and 20 

years are plotte 
file in Figure 4-3. 

Aquitard compaction was output at 0.5-year intervals. 
plot of compaction as a function of time up to 30 years is pre- 
sented in Figure 4-4. 

A 

u, The ultimate compaction is 1.945 feet. 
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Caprock effective stress p=41,040psf 

Reservoir permeable boundary \ 

0 

time axis 

\ .d 
reservoir 
effective 
stress 
p= 24,480psf 

detail of grid 

FIGURE 4-2 
ONE-DIMENSIONAL CONSOLIDATION MODEL, 

SET UP FOR SAMPLE PROBUM 2 
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-DIMENSIONAL CONSOLIDATION MODEL, 
VARIATION IN EFFECTIVE STRESS WITH TIME, ~ 

SAMPLE PROBLEM 2 

FIGURE 4-4: ONE-DIMENSIONAL CONSOLIDATION MODEL, 
AQUITARD COMPACTION AS A FUNCTION 
OF TIME, SAMPLE PROBLIEM 2 

W 
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4.6 CONCLUSIONS 

UPDOWN is useful for simulation of the compaction of simple 
one-dimensional flow-consolidation systems. Unfortunately,' one- 
dimensional conditions are rarely found in real geothermal reser- 
voirs, and multidimensional flow is frequently a controlling 
factor in subsidence behavior. On the other hand, UPDOWN is con- 
siderably cheaper and easier to use than mor ophisticated flow 
models such as CCC. 

UPDOWN ignores the effect of the lateral b ndries of the 
reservoir. As demonstrated by the hand calculation method (Sec- 
tion Z O O ) ,  this can cause it to significantly underestimate the 
subsidence of homogeneous systems. However, when the compacting 
layer is much more compressible than the surrounding material, 
UPDOWN's assumption is valid and subsidence will equal 
compaction. 

4.7 LIST OF SYMBOLS 

P 
t 
Z 

mV 

YW 
cV 

- hydraulic conductivity 
- specific storage, elastic specific 
storage, virgin specific storage 

- effective stress 
- time 
- vertical position 

volume change 
of water 
consolidation 

- coefficient of 
- weight density 
- coefficient of 
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. -  BOUNDARY-ELEMENT MODEL !'BJ.EM2D1' 
! I  i =  

5 .0  

The Boundary- tegral ~ I /  Equation or Boundary-Element method is 

y-integral equation method is a powerful numerical tech- 
boundary 'value problems and is used in a 

ess analysis of underground 

urpose of this project to 
ffects (see Section 2.0). 

d from Hoek and 

The two-dimensio 

solution is 

In most of the literature on boundary-element or boundary- 
integral methods, the principles of the method, which in reality 
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are quite simple, are' often- cured by the formal mathematical 
presentation. The following simplified explanation of the basis 
of the method is based on Hoek and Brown (1980). 

The problem is to determin he 'Stresses "around a long exca- 
vation 
(vertfcal) and Kp (horizontal) (see' Figure 5-1, a) 
excavation, the rock that is to be removed provides support for 
the surrounding rock. This support may be represented in terms 
of normal and tangential ractions (a, T) on the potential 
boundary' of the excavation. 
will vary 'from point to point, depending 'upon the orientation of 
the various parts of the potential boundary. When the hole is 
excavated, these tractions are reduced to zero; thus, the exca- 
vation can be regarded as being equivalent to applying a system 
of negative tractions to a boundary in a solid mass without an 
excavation. The resultant state of stress can then be considered 
as the superposition of two stress systems: the original uniform 
stress state and the stresses induced by the negative surface 
tractions (-3,-T). The distribution of induced stresses in the 
medium corresponding to the negative surface tractions can be 
determined using the analytic solution of stress and strain due 
to strip loads (Brady and Bray 1978). 

specified cross section, given the field stresses p 

The magnitude of these tractions 

Figure 5-1 compares a "real" sit ion (a) to an imaginary 
situation (b) in which there is an infinite 
nary case, there is no hole in the plate. Znste , one imagines 
a line inscribed on the face of the plate corresponding to the 
boundary of the hole in the first plate. The line is divided 
into a series of elemental lengths and the elem ts are numbered 
consecutively. One now imagines that each element is subjected 
to an external force whose line of action lies in the plane of 
the plate. 

te. In the imagi- 

The force is resolved into components Fn and Ft, L 
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normal and t a n g e n t i a l  t o  t h e  e lement ,  and these are taken  t o  be 

uni formly  d i s t r i b u t e d  over  t h e  l e n g t h  of t h e  element.  Because 
t h e y  do no t  correspond to  t h e  forces applied t o  t h e  boundary of 
t h e  real excava t ion ,  these forces are called f i c t i t i o u s .  The 
procedure  now is t o  a d j u s t  t he  forces so t h a t  the ' to ta l  normal 
and shear components of stress (8 ,  5) a t  t h e  c e n t e r  of each ele- 
ment are e q u a l  t o  t h e  cor responding  normal and shear t r a c t i o n s  
(-B,-T) of t h e  real plate  (zero for an unsupported excava t ion ) .  
There are v a r i o u s  ways of ach iev ing  t h i s  r e s u l t ,  bu t  i n  t h i s  

program an i t e r a t i v e  procedure (Gauss-Seidel method) is used. 
S t a r t i n g  w i t h  element 1, t h e  forces Fnl,  Ftlare adjusted so that 

Simi la r  ad jus tment  for the  

e l e m e n t s  is carried out i n  t u r n .  I n  c o r r e c t i n g  t h e  v a l u e s  of Q 

and T for  any g iven  e lement ,  t h e  stresses 11 t h e  other ele- 
ments are d i s t u r b e d ;  hence,  the  procedure must be cont inued  for a 

- - o1 e q u a l s  -ol and r1 e q u a l s  -rl. 

series of c y c l e s  around t h e  boundary u n t i l  no f u r t h e r  adjustment  
i s  cons idered  necessary .  

Once t h i s  process is complete, t h e  d i s t r i b u t i o n  of t r a c t i o n s  
on  t h e  real  boundary is i d e n t i c a l  t o  t h a t  on t h e  imaginary boun- 
da ry .  S ince  these t r a c t i o n s  determine t h e  stress d i s t r i b u t i o n  i n  
t h e  sur rounding  medium, t h e  d i s t r i b u t i o n  w i l l  also be the  same 
fo r  t h e  two cases. To compute t h e  stresses- a t  any p o i n t  i n  t he  

imaginary plate,  a l l  t h a t  has to  be done is t h e  con t r ibu -  
t i o n s  of t h e  v a r i o u s  f i c t i t i o u s  forces such as Fn1, F t l ,  
Fn2, and Ft- (see F igure  5-1, d ) .  

Once t h e  stresses due t o  t h e  n e g a t i v e  s u r f a c e  tractions have 
been determined,  they  may be added t o  those of t h e  o r i g i n a l  
stress f i e l d  t o  g i v e  t h e  r e q u i r e d  stresses fo l lowing  excavat ion .  
Elast ic  d isp lacements  around t h e  excava t ion  can be c a l c u l a t e d  by 
u s i n g  t h e  s t a n d a r d  s o l u t i o n s  for  d isp lacements  due t o  l i n e  loads 
i n  an i n f i n i t e  medium. 
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I 5.2.2 Modification for Incorporation of Fluid Pressure 
and Temperature Effects 

i The boundary-element program was'modified*to incorporate 
effects of fluid'pressure or temperature !changes. 
is a description of the theory supporting the modifications.' 

The following 

The basic stress-governing equation is .the equilibrium- 
equation : 

\ 

Indicia1 notation is used 
I 
1 s is assumed. ' 

i 

~ ~ 

, In dry, isothermal elastic materials, the stress can be ex- 
I 

pressed as a function of the strain: ~ , ,  
1 

f 
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Note that equation [5-41 assumes that the pore pressure inter- 
action factor is unity, an assumption that is questionable for 
low porosity materials. 

Substituting [5-41 into [5-11 produces the equilibrium equa- 
tion used in the modified BIEMBD program: 

This can be' compared with elquation [ 5-31, which is formulated for 
the dry, isothermal case. The difference between equations [5-51 
and 15-31 is in the inclusion of two pseudoforces (those of tem- 
perature and fluid pressure). 

5.2.2.1 Pseudo Body Forces 
s 

For an isotropic material, the temperature pseudoforce is 
-3Ka times the temperature gradient, where K is the bulk modulus. 
The pore-pressure pseudoforce is equal to minus the pore- 
pressure gradient. 

By applying the pseudoforce as external strip loads around 
the edge of a temperature or pore-pressure change contour (the 
temperature and pore pressure changes are assumed to occur in 
steps at contoured lines), the computed deformation using equa- 
tion [5-51 will be correct. The stresses are computed using 
equation [5-41 where the thermal and pore-pressure changes are 
applied as body forces .within a pressure-change contour. 
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I 
I 5.3.3 Material Properties 

5.3 CAPABILITIES AND LIMITATIONS ,.. . 
, I .  . 1 . 8  

5.3.1 Geometric Capabilities and Limitations . 

BIEM2D is limited to~two-dimensional plane-strain problems 
within elastic whole ;spaces. Excavations.and,pressure-change 
surfaces must be modeled by combinations of straight-line . 
elements . 

The boundary elements can be placed in any combination or 
orientation within the elastic space. Boundary elements can 

I ratio. 

, 
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5.4 USABILITY e ,  

5.4.1 Documentation 

The original users' manual for'BIEM2D is not appropriate for 
use with the reservoir modeling version of BIEM2D developed by 
Golder Associatesci A new, updated*users' manual. incorporating 
recent program enhancements and an improved discussion of input 
parameters is included as Appendix B. 

5.4.2 Input -Ease 

Coding'of input is relatively easy in BIEM2D because of the 
In ad- simple geometric and material property assumptions used, 

dition, automatic generation of elements along linear or curved 
segments simplifies the specification of boundary elements. 
feature allows the user to specify whole series of elements by a 
single segment specification. 
specified with similar ease. 

This 

Observation point grids can be 

The program can handle symmetry+about either one or two 
axes, which further simplifies the input . 
5.4~3 Output Control and Comprehensibility 

' BIEM2D produces only one level of output. 
cludes stresses and deformations at the midpoint of each boundary 
element. In addition,srock-failure information is 
relevant. Although not important in'the cases studied, rock 
failure information may be useful in other cases. 

The output in- 
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In addition to producing output at elements, BIEM2D can pro- 
duce output at any desired locations within the elastic space 
when a grid of observation points is specified by the user. 

Output is well labeled and easy to .understand. 

5.4.4 Solution Efficiency 

The BIEM2D program is a very efficient method for homo- 
geneous, isotropic, linearly elastic stress-strain problems in 
two dimensions. 
the demands on computer ‘storage and time are very low. 
solution time is also dependent on the formulation of the problem 
(ill-formed problems require more iterations), there is no direct 
relationship between solution time and the number of elements. 
However, Figure 5-2 gives some indication of solution time versus 
number of elements for the problems 

Beca e of the small number of elements needed, 
Because 

led in this study. 

504.5 Resume of Performance on Sample Problems 

One of the most 
method is that the su 
geneous, isotropic, linear 
considered reasonable 
BIEM2D was used to model these problems. 
reasonable for pr 
important role. 

tical assumptions of the boundary element 
e modeled as a homo- 
This assumption was 
8 3, 5 ,  and 6 ,  and 

It was not considered , 

I Problem 1 is 
1 
I reservoir and gr 
i depth. 

compares well with the exact result. 
Predicted settlement at the surface was 1.3 feet, which 1 

w 
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FIGURE 5-2 
BOUNDARY-INTEGRAL-EQUATION METHOD 

SOLUTION EFFICIENCY 
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Two-dimensional problems 3 and 5 had maxima of 0.6-foot and 
2.5-foot surface settlement, respectively, over the center of the 
reservoir. Compaction of the reservoir surface exceeded surface 
settlement. Unexpected edge effects were observed at the sides 
of the reservoirs. 

i 

Three-dimensional problem 6 was modeled in two dimensions 
with BIEM2D. Maximum surface subsidence and maximum reservoir 
compaction occurred at the same horizontal location. 

Results of sample blems' are discussed in greater detail 
in Section 5 . 5 .  

and bottom of the nded to 6300 feet 
(about 10 times the depth ir) on the positive side 
of X = 0 (the axis of symmetry). This length was judged suffi- 
cient to eliminate the effects at X c 0 of the end6 of the seg- 
ments. The ground- to X = 25,000 

feet. Figure 5-3 

The 'initial element lengths along the ground surface were 
chose0 to be about one-tenth of the depth to the reservoir at X = 
0 and increased as X = 6300 feet was approached. 
model the reservoir in sample problem 1, it was necessary to have 
an upper-pressure drop contour of -50,400 psf where the drop 

In order to 

bi 
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Number of elements = 21 
E X  2.16 X IOs psf 
V = .250 
y= 144 Ibr/ft. 

FIGURE 5-3 
BOUNDARY -INTEGRAL-EQUATION METHOD 

ELEMENT CONFIGURATION OF SAMPLE PROBLEM 1 



appl ied  t o  t h e  material below t h e  contour  l i n e .  Then a second 
p r e s s u r e  con tour  of +50,400 psf was used t o  raise t h e  material 
below t h e  r e s e r v o i r  back t o  a c o n d i t i o n  of no p r e s s u r e  change. 
F i g u r e  5-4 shows t h e  v a r i a t i o n  of vertical displacement  wi th  
depth.  
a t  1000 feet .  

Note t h a t  these v a l u e s  are r e l a t i v e  t o  t h e  displacement  

Sample problem 1 was r e r u n  w i t h  t h e  ground-surface elements  
h a l f  as l ong  as i n  t h e  first run  (twice as many elements). 
was no change i n  t h e  r e l a t i v e  deformation.  
c luded  tha t  t h e  s u r f a c e  element size i n  t h e  first run  was 
adequate .  

There 
Therefore it was con- 

Sample problem 1 n eded 13 i t e r a t i o n s  t o  produce a s o l u t i o n .  
Run t i m e  was 0.888 CPU seconds.  

5.5.2 Sample Problem 3: Confined F i n i t e  Rese rvo i r  

Sample problem 3 (F igu re  l e m  1 except  
t h a t  t h e  r e s e r v o i r  is of f i n i t e  l e n g t h  (1000 feet) and is con- 
s i d e r e d  i n f i n i t e l y  long  i n  t h e  Y-direct ion.  
a t i o n  w a s  used tha t  w a s  similar t o  t h a t  in sample 
F i g u r e  5-5). 

An element conf igu r -  

F igu re  5-6 sho cements t h a t  occur red  
due t o  a p r e s s u r e  d . A t  t h e  

center l i n e  of -the 
feet .  As expec ted ,  
from t h e  r e s e r v o i r .  

Closure i n  t h e  r e s e r v o i r  a t  t h e  c e n t e r  l i n e  was 0.93 feet. 
T h i s  decreased  t o  0.458 f e e t  at  t h e  reservoir edge. 

r3 
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. .  

Alldisplacement is relative to that at 1000 ft. depth. 

0 

Displacement (feet) 

FIGURE 5-4 
BOUNDARY-INTEGRAL-EQUATION METHOD 

VARIATION IN VERTICAL DISPLACEMENT WITH DEPTH, 
SAMPLE PROBLEM 1 
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cu) 
I 

. .  v =  .250 
y: 144 Ibr/ft. 

A l l  dltplocement 
Is relotlvs t o  tho? 
at 1000 tt depth. 

ATION METHOD 

SAMPLE PROBLEM 3 



The s o l u t i o n  for problem 3 r e q u i r e d  13 i t e r a t i o n s .  Run t i m e  
I 6  , 

was 0.970 CPU seconds.  

5.5.3 Sample Problem 5: Thick F i n i t e  Reserv.oir 

Sample problem 5 ( F i  
e v e r ,  t h e  r e s e r v o i r  i n  pr 
500 feet  t h i c k .  The elem 
same (F igure  5-7). 

Figure  5-8 shows t h e  v e r  
t o  a pore-pressure  drop of 50,400 psf i n  t h e  r e s e r v o i r .  A t  t he  
c e n t e r  l i n e  of t h e  r e s e r v o i r  t h e  ground surfac rapped 2.54 

feet .  The top of t h e  r e s e r v o i r  dropped 3.05 feet a t  t h e  c e n t e r .  
Closure  in‘  t h e  r e s e r v o i r  was 3.23 feet a t  t h e  center l i n e .  T h i s  

decreased t o  1.67 feet  a t  t h e  r e s e r v o i r  edge ( t h e  base moved up 
0.18 fee t ) .  

T h e  s o l u t i o n  of problem 5 r e q u i r e d  15 i t e r a t i o n s .  Run t i m e  
w a s  0.956 CPU seconds.  

5.5.4 Sample Problem 6:  Prismatoidal Confined Rese rvo i r  

Sample problem 6 (F igu re  1-6) c o n s i s t s  of a wedge-shaped 

r e s e r v o i r  a t  a depth of 600 feet. The r e s e r v o i r  is assumed 
i n f i n i t e  i n  t h e  y -d i r ec t ion .  The element c o n f i g u r a t i o n  used is 
shown i n  F igure  5-9. 

Figure  5-10 shows t h e  v e r t i c a l  d i sp lacement  that occurred  

Maximum r e s e r v o i r  c l o s u r e  
due t o  a pore-pressure  drop of 21,600 psf .  
s u r f a c e  displacement  was 0.38 feet. 
was 1.08 feet. 

Maximum ground 
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FACE 



c 

Number of elements = 42 
E = 2.16 X IO6 psf 
u =  .250 
y =  144 Ibs./ft. 

. 
. b  FIGURE 5-9 

BOUNDARY-INTEGRAL-EQUATION kETHOD , 
ELEMENT CONFIGURATION OF SAMPLE PROBLEM 

c 
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The solution of sample problem 6 required 15 iterations. 
Run time was 1.227 CPU seconds. 

5.5.5 Case Studies 

5.5.5.1 The Geysers 

The Geysers area consists of a basically three-dimensional 
system but is simplified to two dimensions for this model reser- 
voir. Its geology is apparently unknown in detail and is assumed 
homogeneous, isotropic, and linearly elastic. The pressure of 
the reservoir has been dropping due to steam extraction. 

BIEM2D solved the system by assuming that the reservoir 
could be represented as a series of concentric pressure/ 
temperature change contours within an elastic half-space. The 
element configuration was-not difficult to code. The solution 
conformed well to those obtained by other methods. The solution 
required only 2.47 CPU seconds. 

5.5.5.2 Austin Bayou 

The Austin Bayou model consists of a* reservoir at a depth of 
about 15,000 feet. The rock in both the reservoir and overburden 
is inhomogenous, consisting of inter-layered sands and shales. 
The problem was simplified to a homogeneous material for the 
boundary-element model . 
reservoir was determined to give a reserv ction consis- 
tent with that determined by CCC. Again, coding was relatively 
easy and the solution was inexpensive (1.312 CPU seconds). 

An equivalent. pressure drop in the 
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5.6 CONCLUSION 

d previously are 
input is short and 
ry for choos 
nts of "infi 

boundaries. One distinct drawback to using the method for geo- 
thermal subsidence problems is that the temperature or pressure- 
drop contours must be already known. 

5.7 LIST OF SYAIBOLS 

P vertical field stress (ML'lTW2) 
KP horizontal field stress (&-ITm2) 
Q normal traction (ML-~T-~) 
? tangential traction (ML-IT-2) 
Fn normal force (MLT-~) 
Ft tangential force (MLT-~) 
P density (ML-3) 
g acceleration of gravity (LT-~) 
z depth (L) 

1 2  stress tensor (ML- T' ) 

initial stress tensor (ML-~T-~) ' 
strain tensor 
initial strain tensor 
coefficient of = linear thermal expansion ("~-1) 

Kronecker delta 
pore pressure (ML-~T-~) 

13 
E 

€if 
U 

T change in temperature ('C) 

13 
P 
K bulk modulus (ML-IT-2) 
V Poisson's ratio 

G shear modulus ( MLm1Y2) 
V E elastic modulus (ML-IT-2) 
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6.0 FINITE-ELEMENT.STRESS-STRAIN FLOW MODEL "CONSOL3" 

6.1 INTRODUCTION 

imensional finite-element program CONSOL3, written 

The.program has been used to model the 
by R. W. Lewis, solves a system of first-order nonlinear flow and 
consolidation equations. 
subsidence of Venice (Lewis 1978), the subsidence of the Polesine 
area in northeast Italy (SchrefleP et al. 1977), and the pro- 
gressive deformation under foundations of offshore structures due 
to both static and cyclic loading (Zienkiewicz et al. 1976). 

6.2 SOLUTION METHOD 

e. system of fi low and consolidation 
equations,solved by. 

elationships 

c is due to 

S ,.. is:due to the matrix,.soil solid, and fluid 

., 

compressibilities 
b+ 
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More complete definitio'ns of the parameters in this system 
can be found in Lewis and Schrefl 
(1976) 

(1978) or Zienkiewicz et al. 

This system of equations is symmetric and can be solved for 
specifiea initial displacements, yore pressures, and stresses. 
Isoparametric finite elements are used. A complete consolida- 
tion history may be obtained using various time-stepping 
schemes 

~ 

6.3 CAPABILITIES AND LIMITATIONS 

6.3.1 Geometric Capabilities and Limitations 

CONSOL3 may be used to solve two-dimensional plane strain, 
plane stress, or axisymmetric systems in any consistent set of 
units. A unit width of material is considered in the plane- 
strain and plane-stress formulations and 1 radian of material is 
used in the axisymmetric formulation. In the latter system, no 
point loads or outflows may be specified at the axis of symmetry. 
We expected the units of outflow to .be volume per time, but found 
that they were volume/time step. Finite elements are isopara- 
metric quadrilaterals with either linear or quadratic shape 
functions. 
Irregular quadrilaterals were employed for a two-dimensional 
Wairakei model; for undetermined reasons, however, the model was 
unstable. Arrays within the program are dimensioned to allow up 
to 200 elements and 300 nodes, of which 150 may have specified 
boundary conditions (displacements or pore pre'ssures) and 100 may 
have specified point loads or outflows. Boundary conditions and 
point loads or outflows may both be functions of time. The 
maximum node number difference allowed is 40, and 100 time steps 

In all models but one, a rectangular mesh was used. 

may be taken. The time-stepping scheme is specified by the user td 
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and may,be either forward difference, central difference, or 
backward difference. .With some difficulty, because of the lack . 

of documentation, ,we were able to increase~array size limits in 
CONSOL3, . A  single Gauss point or a two-by-two or three-by-three 
grid of*Gauss points in each element is-specified by the user to 
integrate !over elements. 

6.3.2 

I 

CONSOL3 allows a only a single fluid phase. The ratio of 
hydraulic conductivity to the weight density of the fluid must be 
constant for a given material but need not be the same 
vertical and horizontal directions. The effects of ch 
temperature,and pressure-on hydraulic conductivity: are not 

I t  ~ 

I 

I 

I 
I 

I CONSOL3 .$s dgmensioned to, allow up to 200 different materi- 

1 
I 

The materials are assumed .to be :isotropic. Four different 
failure criteria (Mohr-Coulomb, Roscoe.-Critical State Ellipse, 
Displaced Critical State Model, and Combination Model of Mohr- 
Coulomb and Critical State Ellipse)*are incorporated in the 
program, In most models we specified,Moh2-Coulomb.material 
failure with a very high value for cohesion so that the material 
behavior would always be linear. Our attempts to allow . - _  ‘ - nonlinear 
material beha ing either the Displaced Critical State Model 
or the Koscoe Ellipse..were unsuccessful,,for 
termined reas he displacements, due 0 .  a pore-pressure 
decrease whic determined in those. tests depended strongly 
on the specif 
failure .parameters Pco~ and X .  

e. of Young’s modulus and very weakly, on the 

~ . ., : w  [ ‘ ,  

I 



Initial stresses are specified by supplying the material 
weight and the .elevation of *the upper boundary of each layer of ' 

different weight material., Up to 10 strata may be used. The 
users' manual indicates that the program also allows the user to 
specify initial stress values at each node by reading them from 
tape or disk, but this option does not work. Positive normal 
stresses indicate tension and positive pore-pressures 

compression. - -  

6.4 USABILITY 

6.4.1 Documentation 

Program documentation.is almost nonexistent. There is a 
sparse users' manual in which the input parameters are, for the 
most part, undefined and apparently often misnamed. A number of 
options described by the manual do not exist. Published papers 
by Lewis and his colleagues (Lewis and Schrefler 1978; Schrefler 
et al; 1977; Zienkiewitz et al. 1976) seemed to have only a 
tenuous relation to the CONSOLS solution method. Comment cards 
within the program are'few and far between. 

Improved documentation is now being prepared and presumably 
will be available-in the future. 

6.4.2 Input Ease 

Assuming that the user can come up with appropriate defini- 
tions for the input parameters, the input itself is fairly 
straightforward. It can, however, become lengthy and, in the 

simple but time-consuming calculations. 
ments or pore pressures are nonzero, they must all be specified. 

f an applied distributed load'sr outflow, require some 
If any initial displace- 
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There is no provision for automatic generation of equal pore- 
pressure or displacement values for a series of nodes. If the 
system is subject to a uniformly distributed boundary load, the 
user must calculate and input the equivalent point loads that are 
unique to each finite-element mesh. 

6.4.3 Output Control and Comprehensibility 

The user may ask for (1) full output, (2) no stress output, 
or, (3) no input data output or stress output.: In case (3), a 
portion of the input data is printed out along with initial 
stresses at Gauss points. For every time step, displacements and 
pore pressures at each node and reactions at nodes-where dis- 
placements or pore pressures were specified are printed. In case 
(2), additional input data including element nodes, nodal coordi- 
nates, boundary conditions, and initial conditions are also 
output. If full output is specified, stresses trains at all 
Gauss points are included in the time-step information. The mag- 
nitudes of reactions corresponding to specified pore pressures in 
all the cases we ran seemed much too large. We conjecture that a 
normalization factor included to. make the matrices well-condi- 
tioned was not removed. 

6.4.4 Solution Efficiency 

Th ti0 e 
steps used. For a given number of time steps, the cost varies 
with the number of elements and nodes in the model and the maxi- 
mum node number difference in the elements. Some examples of 
costs are given in Table 6-1. 
number of elements for five time steps in Figure 6-1. 

Costs are plotted against the 
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0 
0 

1 I F 
100 200 

Number of elements 

6 - c a - 
100 

FIGURE 6-1 
TWO-DIMENSIONAL FINITE-ELEMENT MODEL 

SOLUTION EFFICIENCY AS A FUNCTION OF NUMBER OF ELEMENTS 
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TABLE 6-1, 

6.4.5 
and Case Studies 

Two of the sample problems, 2 an 
CONSOL3 . The reservoir and aquitard 

compaction. In sample 
finite-element model so that the surface subsidence due to the 
reservoir system compaction could be determined. 

questions. 

In all the s 
definitions were used 
the input manual: 

where n is the porosity of the material and Kf is 
the fluid compressibility 

W '  
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o permeability per unit weight of fluid: 
- K = hydraulic conductivity per unit weight of fluid 
yw 

'e 

o submerged unit weight of solid: 
= saturated weight of  solid minus initi 
pressure gradient 

o pore pressure: 
Pe = actual pore pressure minus initial equilibrium 
pore pressure 

o stress: 
Ue = effective stress 

0 r a system with its upper boundary at a depth d below 
the ground surface, the uniform vertical load P at the 
upper boundary was calculated as: 
P =Yed 

Using these definitions, the systems modeled were in equi- 
librium; that is, there were no vertical or horizontal displace- 
ments and no change in pore pressure as long as the system 
remained undisturbed. 

6 . 5  PERFORMANCE ON SAMPLE PROBLEMS AND CASE STUDIES 

6.5.1 Sample Problem 2: Infinite Reservoir 
With Permeable Confining Layer 

Sample problem 2 (Figure 1-2) was modeled as a two-element, 
two-material, plane-strain system with an applied pore-pressure 



. .  
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drop at the aquifer-aquitard boundary. The finite-element grid 
with element dimensions, ov-erburden loads, and material proper- 
ties is shown in Figure 6-2. 

The nodes at x = 0 and 1 foot were constrained to have no 
- horizontal displacement, and those at y = 0 were allowed no 
vertical displacement. The fluid was assumed incompressible 
(S = 0). Pore pressures Pe at y = 50 feet were decreased 
instantaneously by 50,400 , those at y = 120 feet held 
constaut, and the system w allowed to equilibrate . 

Solution of sample problem 2 required 0.85 CPU seconds. 

At 3000 years, after three time steps, the aquifer compac- 
tion was .97 feet and the combined aquifer-a itard compaction 
was 2.93 feet. The pore-pressure change in the aquifer was uni- 
formly -50,400 psf and, within the aquitard, varied linearly from 
zero at the upper boundary to -50,400 psf at the aquifer-aquitard 
interface. 

6.5.2 Sample Problem 4: Finite Reservoir 
With Permeable Confining Layer 

Sample problem 4 (Figure 1-4) was modeled with 42 quadratic 
elements. Aquifer and aquitard properties are the same as in 
sample problem 2, Overburden with E = 2,160,000 psf was included 
in the model. The finite-element grid is shown in Figure 6-3. 
Nodes at x = 0, 5000 feet were constrained to have no horizontal 
displacement, and those at y = 0 were allowed no vertical dis- 
placement. However, horizontal displacement was allowed at y = 

0, which is equivalent 
below the reservoir. 

to specifying infinitely soft material 
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Solution of sample problem 4 required 22.14 CPU seconds. 

As in sample problem 2, the equilibrium pore-pressure drop 
above the aquifer varied linearly from 50,400 psf at the 
aquifer-ayuitard interface to zero at the upper aquitard boun- 
dary. In the horizontal direction, the effect of the aquifer 
pore- pressure drop was significant only out to x = 775 feet. In 
figures 6-4 and 6-5, pore pressure drops along x = 0, and y = 0, 
respectively, are presented. 

The maximum compaction of the reservoir system at equi- 
librium was 2.68 feet, and the maximum surface sub'sidence was 
2.27 feet. Compaction and subsidence out to x = 1600 feet are 
shown in Figure 6-6. Note that the reservoir system compaction 
in this problem is less 'than that found in sample problem 2 (2.93 
feet). This occurred because the system here was allowed to 
deform horizontally and a substantial portion of the reservoir 
system compaction showed up in the horizontal displacement. 

6.5.3 Case Studies 

CONSOL3 was implemented for both Wairakei and Austin Bayou 
case studies. The Wairakei case study involved only deformation, 
but utilized a variety of complex trapezoidal element shapes. It 
was unstable. The Austin Bayou Case Study involved both flow and 
deformation and was used in a parametric study with considerable 
success . 
6 . 6 CONCLUSIONS 

With the current users' manual, CONSOL3 is an extremely 
difficult program to use. As a result, solutions obtained by 
CONSOL3 are sometimes suspect due to the possibility of errors in L j  
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input. In addition, the complexities of CONSOL3 can lead to 
excessive cost in some cases. 

The ability of CONSOLS to perform coupled deformation-flow 
calculations andlto model inhomogeneous cases, however, makes it 
extremely valuable for geothermal subsidence modeling . 
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7.0 MASS AND HEAT FLOW MODEL "CCC" 

7.1 INTRODUCTION ' 

Single-phase, water-dominated geothermal systems are charac- 
terized by a.circulating liquid that transfers most of the heat 
and largely controls subsurface pressures. Fluid production from 
the ,reservoir of such a system results in a reduction of pres- 
sures and vertical consolidation in the whole system (reservoir 
and .surrounding rocks) and may lead to land surface subsidence. 
CCC (for Conduction Convection Consolidation) is a numerical 
model developed at the Lawrence Berkeley Laboratory that simu- 
lates both the transport of water and heat through saturated, 
porous, single phase, water-dominated geothermal systems and the 
vertical deformation of the flow region. 

SOLUTION METHOD - GENERAL THEORY 

7.2.1 Theory 

Based on the, principles of .conservation of mass, momentum, 
and energy, several authors have developed the 'equations govern- 
ing the transport o 
Faust and Mercer 19 
pressible fluid (e. 
expressed as (Lippm 
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A list of symbols and their definitions is given at the end 
of this chapter. 

The left-hand side of the fluid-flow equation [7-11 is the 
capacity term, which incorporates the one-dimensional consoli- 
dation theory of Terzaghi (1925). According to this theory, the 
void ratio of a material is a function of its present (vertical) 
effective stress and, for nonelastic (nonlinear) materials, its 
previous stress history. From the effective-stress law, vertical 
effective stress is the vertical total stress due to the weight 
of the overlying rock minus the fluid (pore) pressure, 

Linear, elastic, consolidation behavior is described by a 
linear void ratio versus effective stress curve. As the effec- 
tive stress increases, the void ratio of the material decreases. 
The absolute value of the slope of this curve is the coefficient 
of compressibility of the material (av). 

Nonlinear, inelastic consolidation behavior is described by 
void ratio versus logarithm of ef fective-stress curves. As the 
effective stress increases, the void ratio of the material 
decreases. There is a virgin curve with a slope whose absolute 
value is the compression index (C,) and a series of parallel 
swelling-recompression curves (CCC neglects the hysteresis 
between swelling and recompression curves) with slopes whose 
absolute values are the swelling index (Cs). If the effec- 
tive stress is greater than or equal to the previous maximum 
effective stress, the virgin curve is followed and the rock is 
said to be normally consolidated. If the effective stress is 
less than the previous maximum effective stress, the swelling 
curve is followed and the rock is said to be overconsolidated. 
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Thus, deform for n o n e l a s t i c  
materials. 

S i n c e  pore p r e s s u r e  and e f f e c t i v e  stres ated by t h e  
e f f e c t i v e  stress l a w ,  pore p r e s s u r e  changes cted by ef- 
f e c t i v e  stress changes,  which i n  t u r n  are related to  void  ra t io  
changes.  Void ra t io  changes - g i v e  pare 'volume changes i f  t h e  
s o l i d  volume is def ined  t o  remain c o n s t a n t .  Because of t h e  one- 
d imens iona l  n a t u r e  of Terzaghi's consolidation theo ry ,  v e r t i c a l  
s t r a i n s  a placeme e s u l t  i n ,  are 'restric - 

s a t u r a t e d  formations which r e l e p s e  water from storage dur ing  
f l u i d  product ion .  These v e r t i c a l  d i sp lacements  may or may not be 

idence .  The 
e x t e r n a l  l o a d i  t i ca l  defor- 

mation of the  deeper s a t u r a t e d  formations, may r e s u l t  i n  displac- 
ements a t  t h e  ground s u r f a c e  t h a t  are d i f f e r  
d i r e c t i o n  t h a n  those a t  t h e  top of the  s a t u r  
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The equations governing fluid and heat flow (equations 7-1 
and 7-2) are interconnected or coupled by the following: 

o The second-order equation of state for the fluid 
(Lippmann et al. 1977~): 

L -J 

o The Darcy fluid velocity (vd) used in th 
term of the heat equatio 

o The temperature and/or pressure dependence of certain 
parameters used i he equations (Lipp a1 . 
1977c) . 

7.2.2 Numerical Method 

The numerical plodel CCC, developed at the Lawrence Berkeley 
Laboratory, is d on computer programs SCHAFF (Sore 
fluid and heat sport through saturated porous medi 
(Narasimhan 1975) for one-dimensional consolidation. CCC num- 
erically solves the fluid- and heat-flow equations by an Inte- 
grated Finite-Difference Method (Narasimhan and Witherspoon 1976) 
by using a mixed explicit-implicit iterative scheme and variable 
time steps chosen by the program to advance in time. CCC also 
computes the vertical consolidation of simulated systems using 
Terzaghi’s one-dimensional consolidation theory. Details of the 
various applicable algorith are given by Edwards (1972), 
Narasimhan I (197 975). In finite difference form, 
the fluid- and heat-flow equations (equations 7-1 a 
given by Lippmann et al. (1977a): 



103- I '  

CCC solyes the ,fluid and heat flow equations (equations 7-5 

and 7-6)  coupled by. equation 7-4 by alternatzvelf interlacing 
them in time, For temperatures. below the reference*temperature, 
CCC uses -the folaowing coupling equation with a different co- 
efficient of uolume,fluid *thermal expansion 

'Po 7-7 1 

The flow e es for P, pd, and e 
assuming that the temperature-dep operties of the fluid a 

and rock remain conetant. Then-the heat equation (equation 7-6)  

pressure-dependent 
ince pressure 

varies muc eps have to 
cycles $han in *$he heat cycles in 

accurately (Lippmann et a1 
1977~) 

plicit-implici t iter- 
eat calculations, 

all nodes are ar (explicit) nodes 
unless otherwis (impzicit) nodes, +Regular 
nodes are reclassified as special nodes only when necessary to u 
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main ta in  t h e  s t a b i l i t y  l i m i t  of a node above t h e  t i m e  step. A l l  
heat c a l c u l a t i o n s  are' I first done e x p l i c i t l y ;  c o r r e c t i o n s  are then  

t o  any special nodes and t o  any 'nodes connecte  
cia1 node. Therefore, t h e  i n t e r p o l a t i o n  factor for a r e g u l a r  
node is 0.0 and t h e  forward-d i f fe rence  method is used. For t h e  

1 node c o r r e c t i o n s ,  t h e  i n t e r p o l a t i o n  factor i r i e d  from 
e n t r a l  d i f f e r e n c e  method) t o  1.0 (backward d i f  nce 

method) by t h e  program. S t a b i l i t y  is then  uncond i t iona l ,  and t h e  

i t e r a t i o n  a c c e l e r a t i o n  factor is set a t  0 . 2 .  

~ For f l u i d  c a l c u l a t i o n s ,  a l l  nodes are cons idered  t o  be 
special nodes. A l l  f l u i d  c a l c u l a t i o n s  are done e x p l i c i t l y  and 
t h e n  c o r r e c t i o n s  are applied to a l l  nodes. The i n t e r p o l a t i o n  
factor is 1.0 (backward d i f f e r e n c e  method), t h e  i t e r a t i v e  scheme 
is u n c o n d i t i o n a l l y  stable, and t h e  i t e r a t i o n  a c c e l e r a t i o n  factor 
is set a t  0.2. 

I t  is also possible t o  use either an e x p l i c i t  or an  i m p l i c i t  
scheme for  t h e  heat c a l c u l a t i o n s .  With an  e x p l i c i t  scheme, a l l  
nodes are always r e g u l a r  nodes w i t h  an I n t e r p o l a t i o n  factor of 
0.0 (forward d i f f e r e n c e  method). With an impl ic i t  scheme, a l l  
nodes are special nodes w i t h  an i t e r a t i o n  a c c e l e r a t i o n  
a t  0.2 and a choice of d i f f e r e n c i n g  methods. 'If t h e  i n t e r p o l a -  
t i o n  factor is 1.0; t h e  backward d i f f e r e n c e  method is used;  i f  
t h e  i n t e r p o l a t i o n  factor is 0 . 5 ,  t h e  c e n t r a l  d i f f e r e n c e  method is 
used. - F o r  both of  t h e s e  it is appa ren t  that  s t a b i l i t y  is 
uncond i t iona l .  

A maximum of 80 i t e r a t i o n s  is. allowed for b n v e r g e n c e  i n  
heat or f l u i d  c a l c u l a t i o n s  . If convergence is not+ accomplished 
by . t h e n ,  t h e  t i m e  s t ep  is reduced by" h a l f ,  i f  possible, and t h e  

i t e r a t i o n s  are repea ted .  A similar t h i n g  is done when t h e  maxi- 
mum p r e s s u r e  or tempera ture  change i n  a cycle exceeds twice the  

value of t h e  maximum des i red  change. 

I 



7i.3 : CAPABILITIES AND 

s -  ic CapabiUtfes and Limitations 
I ,  . - 

CCC can model one-, two-,. and three-dimensional problems 
(rectangular coordinates) as well as axisymmetric (cylindrical 

’ coordinates) and centrisymmetric (spherical coordinates) problems. 
ntegrated finite difference:(IFD) method is used, the 
ts. of the modeled.system may be arranged randomly and 
e to be parallel to he coordinate axes. CCC can have 

a maximum of.200 nodal points and 350 connections between nodes. 
Boundary conditions thatican be handled include impermeable 
and/or adiabatic (no Eeat flow) boundaries, constant-pressure 
and/or temperature-boundaries, and constant fluid-flow and/or 
heatbflow boundaries.(including fluid and heat sources [injec- 
tion]-.and. sinks .[production].) Because it considers 
rated fluid flow, CCC cannnot handle free-surfacetor seepage- 
face boundaries. 

calculations, 

e or press 
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If both f l u i d -  and h e a t - f l o w . c a l c u l a t i o n s  are..desired; * f l u i d  
d e n s i t y  cannot  be c o n s t a n t  and w i l l  i n s t e a d  be c a l c u l a t e d  by 
e q u a t i o n s  7-4 or 7-7. So a r e f e r e n c e  f l u i d . d e n s i t y ,  
t empera tu re ,  and t h e  first c o e f f i c i e n t  of f l u i d  thermal expansion 
( B )  must be assigned,  In  t h e  code for ICCC, t h e  second .coeffi-  
c i e n t  of f l u i d  thermal expansion ( a )  and t h e * c o e f f i c i e n t  of 
volume f l u i d  expansion used i n  equa t ion  7- ( B v )  are given i n  
i n v e r s e  degrees C e l s i u s .  Thus t h e  system'of  u n i t s  chosen for 
i n p u t  must g i v e  tempera tures  and thermal  properties of the  f l u i d  
and rock i n  degrees C e l s i u s .  If b o t h . f l u i d -  and heat-flow ca lcu-  
l a t i ons  are desired u n t i l  t h e  f l u i d  flow reaches steady-state and 
t h e n  only  heat-flow c a l c u l a t i o n s  are desired, f l u i d  d e n s i t y  must I 

be c o n s t a n t .  For t h e  case of c o n s t a n t  f l u i d  d e n s i t y ,  any c o n s i s -  
t e n t  set  of u n i t s  can be chosen for i n p u t .  A l i m i t a t i o n  of cal- . 

c u l a t i n g  f l u i d  d e n s i t y  by e q u a t i o n s  7-4 or 7-7 is tha t  only  the  
v a r i a t i o n  w i t h  tempera ture  is considered. Variation w i t h  pres- 
s u r e ,  which is smalzer i n  magnitude, is ignored.  

7.3.2.2 Heat Flow Capabi l i t i es  and L i m i t a t i o n s  

CCC handles  nonisothermal  problems. I n i t i a l  c o n d i t i o n s  for  
heat-f l o w  c a l c u l a t i o n s  are as s igned  through i n i t i a l  t empera tures  . 
CCC can also handle  isothermal (constant tempera ture)  problems i f  
t h e  i n i t i a l  c o n d i t i o n s  of t h e  e n t i r e  system are as s igned  t o  be 
isothermal, and boundary c o n d i t i o n s  and s o u r c e s / s i n k s  are set up 
so t h a t  no tempera ture  changes occur .  However,_ heat-flow ca lcu-  
l a t i ons  are always done, so CCC may not be t h e  best (fastest)  
program to  u s e  for  isothermal problems. I t  should .be noted t h a t  
Lippmann e t  al. ( 1 9 7 7 ~ )  concluded t h a t  t h e  use  of isothermal 
models t o  s i m u l a t e  nonisothermal  systems may r e s u l t  i n  p r e d i c t i n g  
somewhat larger and more c o n s e r v a t i v e  consolidation v a l u e s  than 
noniso thermal  models. They a t t r i b u t e d  t h i s  t o  us ing  a 
average  f l u i d  v i s c o s i t y  and,  to  a lesser e x t e n t ,  a c o n s t a n t -  
ave rage  f l u i d  d e n s i t y .  
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Connections between nodes are assigned-heat-transfer coef- 
ficients for heat conduction and convection across-the connected' 
interface. A heat-transfer .coefficient of 1012 corresponds 
to a perfect thermal connection, while a coefficient less than 
this, to a minimum of 10-24, includes the effecte of a sur- 
face film, gas gap, contact resistances, or an open space and 
signifies a less-than-perfect.~thermal connection. 

CCC uses;an upstream weighting. factor of 0.7 in calculating 
heat convection. 

CCC cannot-model chemical reactions or salt precipitation 
that might occur when waters of a different temperature and sal- 
inity than those in a reservoir are;-injected into the reservoir. 

7.3.3 Materia3 .Properties - 

CCC can handle heterogeneous isotropic systems with a maxi- 
mum of 10 materials. Material and thermal propertiee of the rock 
(intrinsic permeability, specific heat, and thermal conductivity) 
may be constant or tabulated as linear or nonlinear functions- of 

ure or pressure. Twelve points are allowed on each 
Permeabi,litf may- be- a. function of the void ratio if the 

void ratio.is a f e logarithm of effective stress 
(nonelastic mater lationship assumed between k 

+ ck log (k/ko) 
s and %is.the slope of the 

, 'curve (Lambe 69; Narasimhan and Witherspoon 1977) . 
When this rela sed, intrinsic permeability cannot be 

s are desired, they 'must ' be done 
for the entire system, with each material designated as indepen- 
dently elastic or nonelastic. In calculating effective stress, 
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pendently elastic or nonelastic. In calculating effective stress, 
CCC assumes that the total stress is constant and due to the 
weight of the overlying- rock. When consolidation calculations- 
are not desired, all the materials of the entire system are as- 
signed individual coefficients of specific storage. 

7.3.4 Other Capabilities and Limitations 

CCC is capable of producing output on punched cards (or, 
with minor modifications, on a magnetic disk or tape) when a 
problem ends normally and giving the final conditions at the end 
of a simulation. These conditions include temperature, fluid 
pressure, fluid source/sink flow rate, specific heat content of a 
fluid source or heat source/sink, preconsolidation stress, and 
nodal volume change. This output, which can be used to continue 
the problem, ensures that the initial and maximum allowable 
problem times are updated. 

7.4 USABILITY 

7.4.1 Documentation 

A fairly comprehensive users' manual by Lippmann and Mangold 
(1977) is available. Golder Associates' experience with the 
program has been incorporated into a revised input manual. All 
input.parameters are clearly explained in the input manual, 
although explanations of protocols for the preparation of grids 
and the use of run parameters DELTO, SMALL,, TVARY, DELTOF, SMALLF, 
and RVARY are weak. 

Edwards (1972) provides a reasonrtbly thorough layman's 
explanation of the way the integrated-finite-difference method 
works . 
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7.41.2 
I .  

Coding for CCC is f a i r l y  complicated; not  on ly  the  l o c a t i o n  
and s ize  of each e lement  

The d of heat and mass flow a n a l y s i s  
w-ith CCC r e q u i r e  l e  l e v e l  of soph ication i n  i n p u t .  
Where f u n c t i o n a l  relationships are r e q u i r e d  between material 
properties and t empera tu re ,  t h e  r e l a t i o n s h i p  must be i n p u t  p o i n t  
by p o i n t  on i n p u t  cards. 

I 

Program e f f i c i e n c y  is h i g h l y  dependent upon t h e  s e l e c t i o n  of 
parameters D parameters c o n t r o l  

s, and convergence 
proper v a l u e s  for 

these parame st' s i g n i f i c a n t  
l i m i t a t i o n s  on 

G r i d  coding is aided somewhat by p r o v i s i o n s  for 
g e n e r a t i o n  of repet 
facility i s  limited 

Output is a v a i l a b l e  
maximum. G 

Output is g e n e r a l l y  f a i r l y  w e l l  labeled and organized.  One weak- 
n e s s  i n  program o u t p u t  is that o n l y  node and total  volume changes 

1 
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are o u t p u t  . T h i s  makes c a l c u l a t i o n  of compaction t e d i o u s  . Sum- 
ma t ion  of column volume changes would be desirable . 

Output can ,  theoretically,  be taken  a t  any desired t i m e  in -  
t e r v a l  w i t h i n  t h e  t i m e  period be ing  s imula ted .  However, CCC 
chooses t i m e  steps accord ing  to  i n t e r n a l  criteria of g r a d i e n t s  
and  times and can only  a d j u s t  t i m e  s tep c a l c u l a t i o n s  by a maximum 
of 33 percent. T h i s  r e s u  i n  i n t e r m e d i a t e  ou tp  a t  q u i t e  ir- 
r e g u l a r  i n t e r v a l s .  

7.4.4 S o l u t i o n  E f f i c i e n c y  
, 

Figure  7-1 shows t h e  r e l a t i o n s h i p  between problem complex- 
as r e p r e s e n t e d  by t h e  number of nodal  p o i n t s ,  and compu- 

t a t i o n  t i m e  i n  CPU seconds  of b e i n g  Computer S e r v i c e ' s  EKS-CDC* 
sys tem.  C o s t s  rease roughly l i n e a r l y  w i t h  t h e  number of nodes 
fo r  a c o n s t a n t  t i m e  period. Due t h e  time-step lgor i thm used 
by CCC, t i m e  period and cost are not  c l e a r l y  correlated. A t i m e  
period of 10 y e a r s  costs less t h a n  10 t i m e s  what a t i m e  period of 
1 y e a r  costs. 

7.4.5 Resume of Performance on Sample Problems 
and Case S t u d i e s  

CCC was used t o  predict-mass heat flow i n  t h e  a q u i f e r  
and  a q u i t a r d  for sample problems 2 nd 4. CCC was unable  t o  
a n a l y s e  sample problems 1, 3, 5 ,  a 6 because no pore-pressure  
g r a d i e n t  e x i s t s  which can cause flow. 

Sample problem 2 ,  a simple one-di i o n a l  problem, produced 
a steady-state pore-pressure  g r a d i e n t  r about  30 years. Com- 
p a c t i o n  predicted a t  t h e  r e s e r v o i r  s u r f a c e  was 1.08 feet or 

- .  

L' 
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' ., I ' ( l ime 0 to 1000 weeks) 
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b 
0.76 feet after 5 years, depending on the use of either constant 
or void-ratio dependent permeabilities. 

Sample problem 4 can be viewed as either plane-strain or 
axisymmetric. In both cases a pore-pressure gradient similar to 
that of sample pmblem 2 occurs over the reservoir, and the 
aquifer's effect dissipates rapidly past the edge of the aquifer 
in the lateral direction. Compaction follows a similar pattern 
and is identical in the plane-strain and axisymetric cases. 

CCC was implemented for the Austin Bayou case study, the 
only case study in whichtflow was modeled. CCC produced results 
comparable to those of hand calculations and CONSOL3. 

7.5 PERFORMANCE ON TEST PROBLEMS AND CASE STUDIES 

7 . 5 . 1 Sample Problem 2 : Infinite Reservoir 
With Permeable Confining Layer 

Sample problem 2 (Figure 1-2) is a simple one-dimensional 
problem. A one-dimensional, 14-element grid (Figure 7-2) was 
used to model the geometry. Special elements with "infinite" 
(10l2) volume were used to maintain constant pressure 
boundaries. Since there was no temperature gradient, only mass 
flow calculations were necessary. One of th nced features of 
CCC is its ability to model variable permeability materials. 
Therefore, in addition to modeling sample problem 2 with constant 
k, it was also modeled with a e-log k relationship with a slope of 
ck = 0.15. 

With constant permeability, solution to 5 years required 1.7 
CPU seconds and solution to 30 years required 3.5 CPU seconds. 
With e-log k, solution to 5 years required 1.8'CPU seconds. 

L i d  
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Figure  7-3 shows t h e  change i n  pore p r e s s u r e  w i t h  t i m e  i n  
t h e  c l a y  a q u i t a r d .  S teady-s ta te  is reached i n  about  30 y e a r s ,  as 
predicted by Terzaghi c a l c u l a t i o n s .  A l i n e a r  g r a d i e n t  between 
t w o  c o n s t a n t  head boundar ies  r e s u l t s ,  as expected.  

Compaction of t h e  c l a y  a q u i t a r d s  is shown i n  F igure  7-4. 

Both c o n s t a n t  p e r m e a b i l i t y  and e-log k r e s u l t s  are shown. A 
compaction of approximately 2 feet occur s  af ter  30 y e a r s .  The 
u s e  of a void ra t io  dependent p e r m e a b i l i t y  decreases the  rate of 
compaction by approximately 25 p e r c e n t  i n  t h e  first 5 years, b u t  
probably  w i l l  no t  affect s t e a d y - s t a t e  compaction. 

7.5.2 Sample Problem 4:  F i n i t e  Rese rvo i r  
With Permeable Confining Layer 

Sample problem 4 (F igu re  1-4) was modeled as both  p lanar -  
f l o w  and axisymmetric.  The g r i d  which was used i n  both cases is 
shown i n  F igu re  7-5. As i n  sample problem 2 ,  in f in i te -volume 
e lements  were used t o  s i m u l a t e  cons t an t -p res su re  a q u i f e r s  . 
S o l u t i o n  r e q u i r e d  18.75 CPU seconds  for either p l a n a r  or ax i -  
symmetric cases. 

Pore p r e s s u r e s  are p lo t ted  a t  d i f f e r e n t  e l e v a t i o n s  above t h e  
cons t an t -p res su re  a q u i f e r  (F igu re  7-6) and a t  t h e  s u r f a c e  of the  

a q u i f e r  as a f u n c t i o n  of lateral  d i s t a n c e  (F igu re  7-7). Varia- 
t i o n  of p r e s s u r e s  w i t h  e l e v a t i o n  are d e n t i c a l  t o  those of sample 
problem 2 a t  t h e  c e n t e r .  T h i s  is no t  s u r p r i s i n g  
d imens iona l  c o n d i t i o n s  are approximated a t  t h e  c e n t e r .  There  is 
a l so  l i t t l e  v a r i a t i o n  of pore p r e s s u r e  h o r i z o n t a l l y  above the  

sand.  Edge effects are n o t i c e a b l e  only  to a small degree i n  t h e  
node n e a r e s t  t h e  edge. Pore-pressure changes f a l l  r a p i d l y  to  
zero past t h e  edge of t h e  a q u i f e r .  
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Compaction a t  t h e  r e s e r v o i r  s u r f a c e  is shown i n  F igure  7-8. 

Compaction is i d e n t i c a l  t o  one-dimensional r e s u l t s  for 400 feet 
n e a r  t h e  center of t h e  a q u i f e r .  Two-dimensional effects at  the  

edge of t h e  r e s e r v o i r  r e s u l t  i n  decreased compaction near  t h e  
edge. Compaction past the  edge of t h e  r e s e r v o i r  is approximately 
constant,  w i t h  h o r i z o n t a l  d i s t a n c e  for 1000 feet from the  

a q u i f e r  . 
7.5.3 Case S t u d i e s  

CCC was used t o  s tudy  Aust in  Bayou. One-, two- and three- 
d imens iona l  and axisymmetric models were used. A l l  models 1 

produced approximately t h e  same r e s u l t ,  i n d i c a t i n g  t h a t  s imple 
CCC models are f r e q u e n t l y  as a c c u r a t e  as more expens ive  models. 
Heat g r a d i e n t s  were used i n  t h e  model, bu t  it w a s  found t h a t  heat 
f l o w  played an i n s i g n i f i c a n t  role. 

CCC models for Aus t in  Bayou were d i f f i c u l t  t o  code because 
of t h e  complexi ty  of parameters coupled w i t h  tempera ture  and 
p r e s s u r e  and because of the  lack of an e f f e c t i v e  au tomat ic  node 
generat ion r o u t i n e  i n  t h e  program. 

7.6 CONCLUSIONS 

CCC is a powerful tool for s tudy ing  complex heat- and mass- 
f low problems i n  r e s e r v o i r s .  Due to  h igh  cost and t h e  complexity 
of i n p u t  for t h e  model, however, CCC should only  be used where 
t h e  s o p h i s t i c a t i o n  of t h e  problem w a r r a n t s  it and where s u f f i -  
c i e n t  f i e l d  data are a v a i l a b l e  t o  completely describe t h e  
geology. 
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LIST OF SYMBOLS 

area ( ~ 2 )  

slope of curve  i n  "e-o' 
p l o t  , It c o e f f i c i e n t  of 
c o m p r e s s i b i l i t y  (M'lLt2) 

slope of v i r g i n  curve  i n  
"e-log CT p l o t ,  I' compres- 
s i o n  index  

slope of s t r a i g h t  l i n e  i n  
"e-log k plot"  

s l o p e  of swelling-recom- 
p r e s s i o n  curve  i n  "e-log 
u t  p lo t , "  s w e l l i n g  index 

f l u i d  specific heat c a p a c i t y  
a t  c o n s t a n t  volume (L2t2TD1) 

d i s t a n c e  between nodal  p o i n t  
n and i n t e r f a c e  between nodes n and m (L) 

vo id  ra t io  

a c c e l e r a t i o n  due to  g r a v i t y  (Lt-2) 

thermal c o n d u c t i v i t y  of 
solid-f l u i d  mixture  (MLt-3T-l) 

i n t r i n s i c  p e r m e a b i l i t y  (L2)  

outward u n i t  normal on 
s u r f a c e  S 

f l u i d  (pore) p r e s s u r e  ( M L ' k 2 )  
mass i n j e c t i o n  rate per 
u n i t  volume ( ~ ~ - 3 t - 1 )  

energy i n j e c t i o n  rate per 
u n i t  volume (ML-lt-3) 

s u r f a c e  ( ~ 2 )  
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dS surface element ( ~ 2 )  

SS , coefficient of specific 
storage(L-1) 

T 

t 

V volume ( ~ 3 )  

dV volume element ( ~ 3 )  
- luid velocity (Lt-l) 

oef f icient of f 
thermal expansion (T-l) 

T 
temperature within volume 
element dV and that on sur- 

“n,m 

Y second coefficient of fluid 
expansion (T-2) 

average 
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Subscripts 

m at node m 

n at node n 
n ,m at interface between nodes n and m 

0 reference quantity 
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8.0  THREE-DIMENSIONAL DISPLACEMENT-DISCONTINUITY 
MODEL "NFOLD" 

8.1 INTRODUCTION . 

NFOLD is a three-dimensional displacement-discontinuity 

1 
I 

model developed by Sinha and Crouch at the University of Min- 
nesota ia,1976 and enhanped and adapted by Golder Associates in 
1978 and 1979 . The displacement-discontinuity technique allows 
the modeling of thin seams with complex, nonelastic properties 

NFOLD over other displacement-discontinuity models is that it 
handles three-dimensional geometries and incorporates several 
efficiency-enhancement features. NFOLD is not suited for one- or 
two-dimensional problems because all problems must be modeled in 
three dimensions. 

! 
I 

1 
, within .an. isotropic, homogeneous elastic space, The advantage of 

NFOLD was designed as a model for the mechanics8 of under- 
ground mining,, 
deformation mechanics and cannot handle flow, thermal, effects, 
effective stress, or coupling of properties,. 

s a result , . NFOLD deals exclusively With stress- 

Golder's adaptation of NFOLD for geothermal problems allows 
it to be used to eformathm at 
depth on surface f adjacent geo- 
logic features s the propoga- 
tion- of deformation complements a 
model such as CCC, or witbin. a reservoir . 
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8.2 SOLUTION METHOD - GENERAL THEORY 
8.2.1 Theory 

Within an elastic body, a displacement  at  one' p o i n t  produces 
a change i n  stress a t  every  other poin t  i n  t h e  body. The d is -  
placement d i s c o n t i n u i t y  method is based on t h i s  fact. I t  re- 
places a t h i n  seam by a number of r e c t a n g u l a r  elements and then  
s o l v e s  e q u a t i o n s  for  t h e  c l o s u r e  and shear d isp lacements  at  each 
e lemen t  . 

The theo ry  of e l a s t i c i t y  is used i n  NFOLD t o  determine t h e  
coup l ing  c o e f f i c i e n t s  which relate t h e  stress at one element to  
t h e  d isp lacements  at t h e  others. 

a i  is t h e  stress at element i 
a i  o is t h e  i n i t i a l  stress before any d isp lacements  

occur red  
C i J  is a coupl ing  c o e f f i c i e n t  

d j  

Coupling c o e f f i c i e n t s  are computed for each of three stress 

is t h e  displacement  at  element j 

components at  element i and for each of three d isp lacements  at  
element  j. The three directions used are closure, shear parallel 
t o  strike, and shear downdip. NFOLD s o l v e s  t h e  above e q u a t i o n s  
by t empora r i ly  f i x i n g  a l l  t h e  v a l u e s  of displacement  at  elements  
other than  i. T h i s  produces an equa t ion  w i t h  two unknowns: 
C r i  and 6 i .  

* 
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T h d s  equa t ion  is' now solved  s imul t aneous ly  :w i th  . the equa t ion  
d e s c r i b i n g  t h e  seam's s t r e s s -de fo rma t ion  r e l a t i o n .  The r e s u l t  is 
a n  estimate .of the  s t r e s s .  and d isp lacements  a t  element i. NFOLD 
s o l v e s  t h e  e q u a t i o n s  for-each element i n  t u r n  and i t e r a t i v e l y  
r e p e a t s  t h e  s o l u t i o n  u n t i l  t h e  computed d isp lacements  stabil ize.  

The n a t u r e  of t h e  seam's s t r e s s -de fo rma t ion  relation is 
q u i t e  gene ra l .  I n  t h e  case s t u d i e s ,  seam 'elements were used t o  
model t h e  geothermal r e s e r v o i r ,  those f a u l t s  t h a t  would s l i p  i f  

o v e r l y  stressed, and t h  u r f a c e  of t h e  earth. NFOLD has  f i v e  
d i f f e r e n t  t y p e s  of seam behavior  models (see S e c t i o n  3.3). 

NFOLD was modif ied by Golder Associates t o  i n c o r p o r a t e  t h e  
effects  of pore p r e s s u r e  or tempera ture  changes. -Assuming a t h i n  

i n t e g r a t e d  ove r  t h e  depth of t h e , r e s e r v o i r  and then  lumped as a 
f ixed-ampli tude ~ normal displacement  at an .otherwise-rigid seam ' 

.It is also..possible t o  account  f o r  a r e s e r v o i r  having 
d i f f e r e n t  elastic properties from the rest of t h e  continuum; t h i s  

t h e  i n i t i a l  s t r a i n  due t o  p r e s s u r e  and tempera ture  is 

ts . Theref  ore, 

three times t h e  number of elements .  
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five-by-five sets of elements into an equivalent larger element 
and using the average displacements of the 25 subelements. This 
simplification can reduce computations by an order of magnitude 
without compromising accuracy (Figure 8-1). NFOLD carries out 
all calculations in three dimensions, so use of NFOLD for one- or 
two-dimensional problems is inefficient. Two-dimensional plane- 
strain versions of the displacement-discontinuity method are 
available . 
8.3 CAPABILITIES AND LIMITATIONS 

, 

8.3.1 Geometric Capabilities and Limitations 

NFOLD is designed for three-dimensional analysis and can 
therefore be used for three-dimensional or any simpler geometry. 
It is extremely inefficient for simple geometries, however., 
because three-dimensional calculations must still be performed. 
NFOLD has no capability for handling symmetry and must therefore 
be used to model the entire problem, even where axes of symmetry 
exist. NFOLD is dimensioned for an array of "large" elements 
(each consisting of 25 true elements) that is up to 10 "large" 
elements along strike, Any number of seam planes can be used, 
but all must have the same strike direction and the combined num- 
ber of downdip "large" elements can be no more than 25. All 
elements must have the same dimensions. Different material pro- 
perties may be specified for each true element. All seam planes 
must have the same number of elements in the strike direction. 

8.3.2 Flow Capabilities and Limitations 

NFOLD handles only stress-displacement calculations and 
therefore has no facilities for modeling flow. In addition, 

- 

b 
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NFOLD ignores all time-dependent phenomena. NFOLD takes as input 
the reservoir compaction based on assuming a constant total ver- 
tical stress, which must be determined by a reservoir-flow pro- 
gram such as CCC. 

8.3.3 Material Properties 

NFOLD handles six different types of materials. One 
material represents the elastic space, which must be isotropic, 
homogeneous, and linearly elastic, and which is described with 
the two parameters, vand E. The other five materials are 
discontinuity materials (see Table 8-1). 

TABLE 8-1 
NFOLD ELEMENT TYPES 

ELEMENT NAME NUMBER DESCRIPTION 

Mined 

Rigid 

Linear 

0 ai = 0 

1 6i = 0 
- ait 

2-6, 8-10 6i - - 
ES - 

Nonlinear (See Figure 8-2) 11-51 6i = f pi) 

Aquifer 7 6i = constant 

ai = stress within element 
6i = deformation within element 
t = element thickness 
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1. Mined. Mined elements have zero internal stress; 
therefore, deformations must occur that cause the 
induced stresses to exactly cancel initial stresses. 
Mined elements are used in reservoir modeling to 
represent the ground surf ace . 

2. Rigid. Rigid elements have zero deformation. No coup- 
ling coefficients are computed for rigid elements. 

3 . Linear Elastic . NFOCD allows specification of linear 
elastic properties for eight discontinuity materials. 
These may be used to model aquitards or compressible 
layers. E and v must 
ials, but thicknesses may be different . the same for all elastic mater- 

I 

4. Nonlinear. As many as aterials can be specified 
with nonlinear properties (see Figure 8-2). Nonlinear 
elements are ideal for modeling faults. The elastic 
position of the nonlinear stress-strain curve must be 
the same as that for the near-elastic discontinuity 
material. 

5 .  "Aquifer." NFOLD i to the reservoir modeling 
problem with the "aquifer" element . "Aquifer" elements 

ents. As pre- 

displacement throughout the e c space to reflect 
disdisplacements the reservoir . 
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THREE-DIMENSIONAL DISPLACEMENT-DISCONTINUITY MODEL 
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w 
NFOLD allows specification of different discontinuity 

materials for each-of 25 small elements within each "large" 
element. I 

- 

8.4 USABILITY 

8.4.1 Documentation 

NFOLD has &,user provides a thorough explana- 
tion of I a1 anval lacks sample problems 
that .would facilitate. coding considerably. -NFOLD's source code 
is fairly well commented and therefgre relatively easy to 

FOLD'S use are publicly available, 
although Golder Assoc$.ates -does ,have.access to some, 

scribed in Crouch. and .Fairhurs$ -(1973). The theory of two- 
dimensional. dispxacemept discontinuities is developed in Crouch 

dimensions. 

An analog 
odel;.ytiliaing the .-same principles as NFOLD is de- 

inha >( 1970) <discusses .the evelopment of NFOLD in three 

, and coupled material 
heref ore requ 
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The displacement discontinuity method's .accuracy is highly 
dependent upon proper selection of element sizes and inter- 
relationships. An understanding of these dependencies is essen- 
tial to accurate modeling and represents the only significant 
constraint on ease of input. 

8.4.3 Output Control and Comprehensibility 

NFOLD has two levels of output, standard and complet 
 standard^ output includes' an echo of all input data and line- 
printer contour plots of-stresses 'and dfsplacements at every grid 
square of every element. Complete output includes summary 
statistics as each iteration is completed and printout of all 
stresses and displacements at every grid square. 

I 

Unfortunately, in its present form, NFOLD lineprinter plots 
require specification of a scaling factor with input and 'can only 
output scaled values from -9 to 99.- For problems with signifi- 
cant results outside of that range, lineprinter contour plots 
cannot be used, and output values ,available 'only with complete 
output must be used. 

NFOLD only outputs results at elements, so elements 
included wherever output is desireq, including the surface. 

8.4.4 Solution Efficiency 

NFOLD is designed for three-dimensional problems and is 
thereore most efficient in that mode. One-dimensional and-two- 
dimensional problems can be implemented on NFOLD, but only by 
modeling the simple geometry in three dimensions. This results 
in extreme inefficiency for simple geometries. 

t 

kr 
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NFOLD's solution time depends upon two factors: the total 

number of "large" elements and the number of elements between 
which complete coupling exists . Costs increase linearly with the 
number of elements (see Figure 8-3). 

NFOLD is considerably more efficient for three-dimensional 
problems than it is for three-dimensional finite elements or for 
finite-difference models. 

8.4.5 Resume of Performance on Sample Problems 
, 

and Case Studies 

The Sample Problems for which reservoir compactions are 
known are all either one- or two-dimensional and are therefore 
not really appropriate for use with NFOLD. 

reservoir compaction and was used to predict surface subsidence. 
However, the cost to obtain -accurate subsidence? profiles was 
prohibitive. 

NFOLD was used only 
I 
1 with sample problem 3, which is two-dimensional. NFOLD was given 
, 

,< 
I 

Due to its assumption of "thin" ams, NFOW was used only 
for the Austin Bayou case study. In this case study, NFOLD pro- I 

I 

I duced reasonable, three-dimensional results relatively high 
! 

I 
I 
I cost 

8.5 PERFORMAN 

8.5.1 Sample Problem 3 

NFOLD is a three-dimensional model and is therefore inap- 
Reservoir propriate for a l l  Sample Problems except Problem 6. 

I 
I 
/ 

' C I S  

I 
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1 deformation values from sample problem 6 are, however, unavail- 
able, so NFOLD could not be used for that problem. NFOLD w a s  
used to model sample problem 3, a two-dimensional problem. Res- 
ervoir compaction from the hand calculations was used. Solution 
of the two-dimensional problem in three dimensions was very inef- 
ficient and required 130 CPU seconds. 

I 

To model the two-dimensional ‘geometry of sample problem 3, 
1 

i the ground surf ere modeled as close to infi- 

I effects and int adjacent discontinuity planes . 
I 

I 
i 
I 

nite planes as ion to the avoidance of edge 

The model used elements at 
elevation zero 
the ground surface: 

I 

I 
i 

for the reservoir by the hand calculations (0.972 feet) were used 
to model the reservoir. 

I 
I 
I 
i 

The model for sa n in Figure 8-4 resulted 
in a maximum displace of 2 . 35 f eet-over twice 

rge as the reser result of the 
f elements of dimension 100 feet by 100 feet, while the dis- 

tance betwee 
Reducing ele 
settlement of 0.69 feet. 
increased 25 times, and so are the costs. 

8.5.2 Case Studies 
4 

NFOLD was only used on the Austin Bayou case study. Model 
1 CCC was used to determine the compaction of the reservoir. NFOLD 

I 
I 
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THREE DIMENSIONAL VIEW 

dimensional results 
taken at this location 

contains 25 
true elements 

SECTION A-A' 

Mined"surface elements 

T i f e r "  elements 

COMPACTION OF AQUIFER ELEMENTS = 0.97 FEET 

FIGURE 8-4 
THREE-DIMENSIONAL DISPLACEMENT-DISCONTINUITY MODEL 

FOR SAMPLE PROBLEM 3 
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was then used to model the propogation of stresses and strains to 
the surface and to nearby faults. Figure 8-5 is a sketch of the 
element layout. 

The use of NFOLD allowed determination of three-dimensional 
settlement at the surface at a cost of approximately 300 CPU 
seconds--considerably less than the cost of a comparable finite 
element or finite difference model, but still a very significant 
cost. In addition, stresses on the faults were computed, and it 
was predicted that no slip would occur. However, this result is 
apparently due to the large fault and reservoir elements that had 
to be used to obtain a solution at a.reasonable cost. A much- 
improved determination of stress on, the faults was achieved 
with the two-dimensional displ'ac ent-discontinuity program 
DDJBD. 

8.6 CONCLUSIONS 

NFOLD is a very useful or analyzing three- 
dimensional propogation of mation effects and is 
therefore an excellent comp a reservoir-flow modeling 
program such as CCC. Simp1 -discontinuity programs 
such as DDJBD and MI (Crouch 1976) useful for one- and 
two-dimensional geo 
assumed homogeneous linear-elastic continuum in ich the "seams" 
are embedded and (2) the requirement that the "seams" be thin. 
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APPENDIX A 

, USERS' MANUAL 
PROGRAM "SUBSID" 
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A.1 INTRODUCTION 
* .  

The program SUBSID,models geothe reservoirs subject to 
pore-pressure changes using spherical nuclei of ,strain 
users' manual describes the use of SUBSID but does not present 
the theory of the method :employed. The ?detailed-.report. on SUBSID 
provides that back be -read in conjunction with 
this users' manual 

A1though.thi.s manual does not refer to temperature changes, 
they can be specified by applying.,a pressure change equal to 
3Kcr6T, .where K is the bulk modulus (K = 3&) ,- u is the coef- 
ficient of lineEtr thermal expansion, and 6T is the temperature 
change. 

Pressure increases and compressive stresses are positive, 
while pressure decreases and tensile stresses are negative. The 
pressure change Ap d volume V ar sphere should be 
chosen so that ApV 

olume of the corresponding portion of 
placements 

lculated correctly. 
model or the 1 reservoir will show 

ts and stresses, since a model 
well to an-actual onspherical 

'points at which dis-  
a1 of 700 

-" I * -  -~ - -  

The reservoir pressure change and the modulus of elasticity 

'points at which dis-  
a1 of 700 

-" I * -  -~ - -  

The reservoir pressure change and the modulus of elasticity 
must be specified in the same units. The units of length used in 
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d e s c r i b i n g  t h e  r e s e r v o i r  geometry need n o t  be c o n s i s t e n t  with 
t h i s .  Displacement w i l l  be o u t p u t  i n - t h e  u n i t s  of l e n g t h  used 
and stresses - w i l l  .be o u t p u t  i n  t h e  u n i t s  o f -  p r e s s u r e  used. 

- .  

The subrout ink CYLIN i n  SUBSID combines s p h e r e s  wi th  centers 
i n  t h e  same XY p l a n e  t o  form a c y l i n d e r .  
d e p t h  of t h e  c e n t e r p l a n e  of t h e  c y l i n d e r ,  t h e  number’ of s p h e r e s  
i n  t h e  c y l i n d e r  and t h e  r a d i u s  of t h e s e  s p h e r e s .  The center of 
t h e  c y l i n d e r ,  ;is assumed to  be a t  ( X ,  Y) = (0, 0).  Table A-1 
p r e s e n t s  t h e  number of s p h e r e s  t h a t  may be s p e c i f i e d ,  t h e i r  ar- 
rangement i n  r i n g s  from t h e  center o u t ,  t h e  r a d i u s  of t h e  s p h e r e s  
as a f u n c t i o n  of c y l i n d e r  r a d i u s ,  and t h e  a s p e c t  ra t io  (h/R = 

h e i g h t / r a d i u s )  of t h e  c y l i n d e r  whose volume e x a c t l y  e q u a l s  t h e  
volume of t h e  s p h e r e s  i n  t h e  model. 

The user s p e c i f i e s  the’ 

TABLE A-1 
CYLINDERS’ MODELED WITH SPHERES 

NUMBER OF NUMBER RADIUS EFFECTIVE 

N SPHERES I N  RINGS SPHERES H/R 

1 1 1 R 4 / 3  = 1.333 
2 9 1,8 - R / 3  4 / 9  = 0.444 
3 25 1,8,16 R / 5  4 /15  = 0.267 
4 49 1 , 8 , 1 6 , 2 4  R/7 4 / 2 1  = 0.190 
5 -  81 1 ,8 ,16 ,24 ,32  R/? 4 /27 = 0.148 

7 169 1 ,8 ,16 ,24 ,32 ,40 ,48  R/13 4/39 = 0.103 

RINGS OF ARRANGEMENT OF ASPECT RATIO 

6 1 2 1  1 ,8 ,16 ,24 ,32 ,40  R / 1 1  4/33 _ .  = 0.121 
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There are f i v e "  t y p e s  of i n p u t  c a r d s .  one card of each  
of t y p e s  1, 2 and 4 is us'ed The 'number r d s  of '  t y p e  3.SOR 
(where SOR va r i e s  from 0 t o  5 )  *is eq  
c a r d  t y p e  2. 
which is s p e c i f i e d  o 

I Card 1: FORMAT (2F8.2) NU, E 

i 

*to LAYER, as s p e c i f i e d  on 
The number of c a r d s  of t y p e  5 1s e q u a l  to NOB, 

c a r d .  t y p e  4 

1 

I 

I 

COLUMN 
, 1-8 Nu value of v €or t h e .  ha l f - space  

9-16 E value of Young's modulus i n  u n i t s  of  ML-l t'2 
f o r  t h e  h a l f  -space 

COLUMN 
reservoir arrays ( i n t e g e r  

a1 .number of reservoir s p h e r e s  ( i n t e g e r )  

. s i n g l e  s p h e r e s  
1 n X-Y p l a n e )  
i 
I 1 
I 
I 
I 

i 5 .  c y l i n d e r s  ( i n  X-Y p l a n e )  
1 
i 

I 
I 

I 
' U  I Z ( I ) ,  A ( I ) ,  BETA(1). 

i 

Card 3.9: (used  i f  SOR = 8.) FO 

I 

I 
i 

i I 
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COLUMN 
1-8 I number of r e s e r v o i r  sphere ( i n t e g e r )  
9-16 X(1) . X c o o r d i n a t e  of c e n t e r  of i t h  sphere 
17-24 Y(I) Y c o o r d i n a t e  of c e n t e r  of i t h  #sphere 
25-3 Z(I )  .Z c o o r d i n a t e  of c e n t e r  o 
33-4 M I )  :. r a d i u s  of i t h  sphere 
41-48 BETA(1) p r e s s u r e  change i n  i t h  s 

SOK = (8.) (note t h a t  LAYER = IR for  

Card 3.1:  (used i f  SOR = 

Y@, z(8, ox, oy 

COLUUN 
1-8 RB r a d i u s  

1.) FOHMAT (6F8.2, 318, F8.0) RQ1, X@, 

I, NX, MY, BET 

of spheres 
9-16 xQ1 s p a c i n g  of sphere c e n t e r s  i n  X d i r e c t i o n  
17-24 y(8 spac ing  of sphere c e n t e r s  i n  Y d i r e c t i o n  
25-32 ZB Z c o o r d i n a t e  of sphere c e n t e r s  
33-40 ox , X c o o r d i n a t e  of r e c t a n g l e  midpoint  
41-48 OY c o o r d i n a t e  of r e c t a n g l e  midpoint 
49-56 I number of first sphere i n  r e c t a n g l e  ( i n t e g e r )  
57-64 NX number of spheres i n  X d i rec t ion  ( i n t e g e r )  
65-72 NY number of spheres i n  Y d i r e c t i o n  ( i n t e g e r )  
73-80 BET p r e s s u r e  change i n  spheres (b4L-l t-2) 

Card 3 .2 :  (used i f  SOR = 2.) FORMAT (5F8.2, 8X, 218, 8X, F 8 . 0 )  

RQ), XP, YQ), ZQ, 0 ,  1, N, BET 

COLUMN 
1-8 RQ1 r a d i u s  of spheres 
9-16 XQ spac ing  of sphere c e n t e r s  i n  X d i r e c t i o n  
17-24 ye) : Y c o o r d i n a t e  of sphere c e n t e r s  

25-32 Z@ Z c o o r d i n a t e  of sphere c e n t e r s  i 
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4d 
I 

I. 33-40 0 X c o o r d i n a t e  of first sphere c e n t e r  
49-50 I number of first sphere ‘in: l‘ine ( i n t e g e r )  
57-64 N number of s p h e r e s  i n  l i n e ’  ( i n t e g e r )  
73-80 BET p r e s s u r e  change i n  sph 

- I  

I .  

Card 3.3: (used i f  SOR t 3.).FORMAT (5F8.2,-8X, 218, 8X, F8.0) 
RQ), X9, YQ), ZQ) 0, €,-‘NS BET 

COLUMN 
1-8 RQ) r a d i u s  of spheres 
9-16 XQ) X coordinate of sphere c e n t e r s  
17-24 Y8 p h e r e s c e n t e r s  i n  Y direc 
25-32 Zg, Z c o o r d i n a t e  of sphe re  centers 
33-40 0 Y c o o r d i n a t e  of first sphere c e n t e r  
49-56 I number of first 
57-64 N 
73-80 LBET 

Card 3.4: (used  if SOR = 4.) FORMAT (5F8.2, SX, 218, 8X, F8.0) 
RQ), XQ), YQ), ZQ), 0, 1, N, BET 

COLUMN 

- - l i n e  ( i n t e g e r )  

(used 
I, N, 

Card 3,5: 

kk 
i f  SOR = 5 . )  FORMAT (5E8.2, 218*,: F8.0) RQ), ZS, 
BET 
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COLUMN 
1-8 RQ) r a d i u s  of s p h e r e s  i n  a r r a y  
9-16 w j 2 c o o r d i n a t e  of s p h e r e  c e n t e r s  
17-24 I number of first . s p h e r e  i n  c y l i n d e r  ( i n t e g e r )  
25-32 N number of s p h e r e s  i n  c y l i n d e r  ( i n t e g e r  = 1, 9 ,  

25, 49, 81, 121 ,  or 169) 
33-40 BET pressure change i n  s p h e r e s  (A4L-l t-2) 

1 

Card 4:  FORMAT (218) NOB, I O  

COLUMN 
1-8 NOB number of observation arrays ( i n t e g e r )  
9-16 I O  total  number of o b s e r v a t i o n  p o i n t s  ( i n t e g e r )  

NOB Cards of Type 5.OBS: 

Card 5.1: (used i f  OBS = 1.) FORMAT (6F8.2, 318) OBS, X@, Yp, 
29, ox, OY, I, Nx, NY 

COLUMN 

1-23 OBS 1. ( i n d i c a t e s  r e c t a n g u l a r  o b s e r v a t i o n  a r r a y )  
9-16 XQ) X s p a c i n g  of  o b s e r v a t i o n  p o i n t s  
17-24 YP Y s p a c i n g  of o b s e r v a t i o n  p o i n t s  
25-32 Z@ Z c o o r d i n a t e  of o b s e r v a t i o n  po in t s  
33-40 ox X c o o r d i n a t e  of  r e c t a n g l e  midpoin t  
41-48 OY- Y c o o r d l n a t e  of rectangle midpoin t  , 

49-56 I number of first point  i n  r e c t a n g l e  ( i n t e g e r )  
57-64 Nx number of p o i n t s  i n  X d i r e c t i o n  ( i n t e g e r )  
65-72 NY number of points i n  Y d i rec t ion  ( i n t e g e r )  

Card 5.2: (used  i f  OBS = 2.) FORMAT (5F8.2, 8 X ,  218) OBS, Xq, 
w, w, 0, I ,  N ~ 

Lid 
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COLUMN 
1-8 
9-16 
17-24 
25-32 
33-40 
49-56 
57-64 

OBS 2. (line of observation points in X direction) 
XP X spacing of observation points 
YP Y coordinate of observation points 
ZP Z coordinate of observation points 
0 X coordinate of first point in line 
I ‘  number of first point in line (integer) 
N number of points in line (integer) 

Card 5.3: (used of OBS = 3.) FORMAT (5F8.2, 8X, 218) OBS, X(b, 

YQ), 2% 0, I, N 

COLUMN 
1-8 OBS 3. (line of observation points in Y direction) 
9-16 ‘ xg, 1 X coordinate of observatibn point’s 
17-24 YQ) Y spacing of observation points 
25-32 ZP Z coordinate f observation points 
33-40 0 Y coordinate f first point in line 
49-56 I number of first point in line (integer,) 
57-64 N number of points in line (integer) 

Card 5.4: , 218) OBS,  X(b, 

ts in Z direction) 
X coordina’te of rvation points 

49-56 I number of first point in line (integer) 
57-64 N number of points in line (integer) 
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A . 3  OUTPUT 

Most output from SUBSID is automatic; however, the user must 
specify a grid of points at which displacements and stresses are 
to be determined. 

The following parameters are automatically output: 

1. Poisson's ratio and Young's modulus 
2. Echo of reservoir spheres input 
3 .  Echo of observation points input 
4. Positions of sphere centers,and observation points 
5. Strength and radius of reservoir spheres. 

Displacements and stresses are output at observation points 
specified by the user. Quantities output are displacements U, V, 
and W in the X, Y, and Z directions; normal stresses Qx,IJy, 
and C T ~ ,  shearstresses'rXy, rxz, and 'rYz, and the mean 
stress Om. The observation points are ordered as follows: 

1. Arrays (rectangles or lines) are output in the order 
of input 

2. Within a line array, the points are ordered from the 
lowest to the highest coordinate 

3 .  Within a rectangle, the points are ordered from the 
lowest value of Y, with X varying from its lowest to 
highest value, up to the highest value of Y, with X 
varying from its lowest to highest value (Figure A-1). 

A . 4  SAMPLE PROBLEM 

A reservoir is to be modeled by seven spheres whose geometry 

L is shown in Figure A-2. Five spheres have their centers on a 



X 

x x x  
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. .  

FIGURE A-1 
SUBSID USERS' MANUAL * I  

3 ORDERING OF 
WITHIN RECT 

_ _  -_ 

I .  

FIGURE A-2 
SUBSID USERS'' MANUAL ' 
GEOMETRY OF SPHERES 

REPRESENTING SAMPLE PROBLEM RESERVOIR 
L4 



hor i zon ta  

A - 1 2  

l i n e  w i t h  c o o r u i n a t e s  ( Y 1 ,  Z1). The s p h e r e  
r a d i i  are t h e  same and are e q u a l  t o  a l .  The s p h e r e  c e n t e r s  
are spaced  one d iame te r  a p a r t  w i t h  t h e  first s p h e r e  center a t  
coordinates ( X i ,  Y1, Z1). The two o t h e r  s p h e r e s  have 
the i r  centers on a h o r i z o n t a l  l i n e  w i t h  c o o r d i n a t e s  ( Y 1 ,  
Z2). T h e i r  r a d i i  are e q u a l  t o  a2. The s p h e r e  centers 
are  a d i s t a n c e  s 2  a p a r t .  The c o o r d i n a t e s  of t h e  first s p h e r e  
center are (X2, Y1, Z2). The p r e s s u r e  changes of 
t h e  f i v e  s p h e r e s  and t h e  t w o  s p h e r e s  are Ap1 and Ap2, 
r e s p e c t i v e l y .  Material pa rame te r s  f o r  t h e  ha l f - space  are E and 
v .  

Observa t ion  p o i n t s  are chosen t o  form a 7 by 6 r e c t a n g l e  a t  
t h e  s u r f a c e  Z = 0. 

r e c t i o n  and dy i n  t h e  Y d i r e c t i o n .  
t a n g l e  h a s  c o o r d i n a t e s  (XI + 4a1, Y1, 0 ) .  

The p o i n t s  are spaced  a t  dx i n  t h e  X d i -  
The center of t h e  rec- 

I n p u t  v a l u e s  fo r  t h i s  problem would be: 

Card 1 9 17 25 33 41 49 57 65 73 
1 V E 

2 2 7 2. 

*P1 
*pa 

1 5  
6 2  

3.2 a1 2al y1 z1 x1 
&2 s2 y1 z2 *2 

4 1 42 
5.1 1. dx dy 0. 5 + 4 a l  y1 8 7 6  

Values w i l l  be assumed f o r  t h e  as y e t  u n s p e c i f i e d  pa rame te r s  as 
f o l l o w s  : 

v = 0.25, E = l o5  l b / i n 2  
a1 = 50 f t ,  Y1 = 0,  Z 1  = 400 f t ,  X i  = 100 f t  
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V 

= 300 ft, 22 = 550 ft, X2 5; 200 ft 

30 ft. 
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A . 5  MODELING A CYLINDER WITH SPHERES 

The a r rangement  of spheres  t o  form a c y l i n d e r  t h a t  w a s  used 
i n  SUBSID is d e r i v e d  as follows. The c y l i n d e r  r a d i u s  is d i v i d e d  
i n t o  2n-1 e q u a l  segments.  R i n g  b o u n d a r i e s  are drawn a t  the  
d i v i s i o n  p o i n t  closest t o  t h e  c e n t e r  and a t  e v e r y  two d i v i s i o n  
p o i n t s  thereafter t o  form n r i n g s  ( t h e  middle r i n g  is a c y l i n d e r )  
F i g u r e  A-3 i l l u s t r a t e s  t h i s  w i t h  n = 4. Ring volumes V r  are: 

V, = TTh (UO' -A~ ' )  

where a. and -ai are t h e  o u t e r  and i n n e r  r i n g  r a d i i ,  
r e s p e c t i v e l y ,  and h is t h e  c y l i n d e r  he igh t .  T h i s  may be w r i t t e n  

c 
as: 

- 8(k- l )  
(Zn - I)= 

for  t h e  a c t u a l  r i n g s  and 

k =  2, ....,n 

TTR' h v, = 
(2n -1 )Z  

for  t h e .  c e n t e r  c y l i n d e r  . 
The r i n g  volumes r e l a t i v e  t o  t h e  c e n t e r  c y l i n d e r  are then  

vr 
v;, 

-= 8 (k-I) k= 2,.. . ., n 

Therefore, i f  t h e  c e n t r a l  c y l i n d e r  is modeled w i t h  one 
sphere,  t h e  s u r r o u n d i n g  r i n g s  must have i n  order 8 ,  16,  24 ,  3 2 ,  ..., 8(n-1)  r i n g s .  The aspect ra t io  of t h e  c y l i n d e r  whose volume - 
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v, is 
by co 
s p h e r e s ,  S i n c e  t h  one-seventh of t h  

r a d i u s  : 

n = 4 t h e r e  are 49 

and Vo = ?r 

-= h 4 W )  
K 3 (7’) 

T h i s  means t ha t  t h e  g e n e r a t e d  c y l i n d e r  for  n = 4 (49 

a n  e f f e c t i v e  a s p e c t  ra t io  of h/R = 4/21. 
a s p e c t  ra t ios  f o r  t h e  o t h e r  gene ra t ed  c y l i n d e r  t ypes .  

Table A-1 g i v e s  t h e  

, A . 6  CHANGING THE PROGRAM 
I 

I 
I The l i m i t s  on t h e  number of o b s e r v a t i o n  p o i n t s  and s p h e r i c a l  
I n u c l e i  of s t r a i n  may be i n c r e a s e d  by making t h e  fo l lowing  

changes  : 
I 

Main Program SUBSID 

o I n c r e a s e  dimension of a r r a y s  B ,  c, xx, w, D,  w 1 ,  S I ,  
S2, S3, T1,  and T2 i n  t h e  DIMENSION list t o  t h e  number 
o f  o b s e r v a t i o n  p o i n t s  d e s i r e d .  

o Increase dimension of a r r a y s  U, V, W, SlGX, SIGY, SIGZ, 
TXY, TXZ,  TYZ, BETA, and A i n  t h e  DIMENSION list and X,  
Y ,  Z i n  t h e  COMMON list t o  t h e  number of s p h e r e s  p l u s  
o b s e r v a t i o n  p o i n t s  d e s i r e d .  

1 

I 
i 

I 

I 
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o Increase t h e  upper l i m i t  of t h e  DO l o o p  i n  l i n e  15 t o  
p h e r e s  p l u s  observation PO 

S u b r o u t i n e s  XLINE,  YLINE, ZLINE, RECT, CYLIN 

o Increase dimension of a r r a y s  X ,  Y ,  Z i n  t h e  COMMON list 
t o  t h e  number of s p h e r e s  p l u s  o b s e r v a t i o n  p o i n t  d e s i r e d .  

The s u b r o u t i n e  CYLIN could  be e a s i l y  changed so t h a t  a 
smaller a s p e c t  r a t i o  c y l i n d e r  could  be gene ra t ed .  For  example, a 
c y l i n d e r  w i t h  a s p e c t  r a t i o  4/45 = 0.089 would be modeled by 196 
s p h e r e s  of r a d i u s  R / 1 5  a r r anged  i n  e i g h t  r i n g s ,  w i th  t h e  -outer- 
most c o n t a i n i n g  56 s p h e r e s .  
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1 .  
2. 
3. 
4. 
5, 
6. 
7. 
6. 
9.  

10. 
1 1 ,  
12. 
13. 
14. 
15. 
16. 
17. 
Id. 
19. 
20. 
21. 
22. 
23. 
24 
25 
26, 
27. 
23. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38 
39. 
40 
41 
42. 
43. 
44. 
45. 
46 
47. 
48 
49. 
50. 
51. 
52 
53. 
54. 

C 
C 
C 

200 
192 

5 
c 
c 
C 

699 

700 

I 

130 

13 I 

I32 

I33 
I40 

13 

c 
c 
C 

14 
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A .  7 SOURCE LISTING OF SUBSID 

CALCULATION Or' DISZLACEMZNI'S Ail0 STRESSES 3UE TO SilI3SII)ENCZ 

00 TO 140 
O=OX S N=NX 
IF (532-3.) l3I*l32*133 
CALL XLINE ( X O  *YO, ZO I 1 
GO TO 140 _ _  . . _  
CALL f L 1  NE ( xo *YO * 20 *o*  I *N ) 
cio ro 140 
CALL ZLINti(XO,YO,Z3,0, I * r J )  
JF* I +.+ I 

(io i o  3- 

S1:JGLd SPHERE IdPUI' 

00 15 J=l,IH 
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103. 
110. 
1 1 1 .  . 
112. 
113. C 
114. C 
115. c 
116. C 
117. 
I Id.  
113, 
120. 
121. 
12%. 
123. 
124. 
125. 
126. 
127. C 
128. c 
129. C 
130. c 
131. 30 
132. 
133. 
134. 
135. 
136. 
137. 
133. 
139. 
143. 
141. 
142. 
143. 
144. 
145. C 
146. C 
147. C 
14Y. 40 
I4Y. 
150. 
151. 
152. 
153. 
154. 
155. 
156. 
157. 25 
158. c 
159. C 
150. c 
161. 
162. C 

T9TAL 3ISPLACEdENTS AI40 SfRESStS AT A N  OBSERVATION POINT 
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21 7. 
218. 
219. 
220. 
221. 
22%. 
223. 
224. 
225. 
226. 
227. 
228. 
229. 
230. 
231. 
232. 
233. 
234. 
233. 
236. 
237. 
23d. 
239. 
210. 
241. 
242. 
243. 
244. 
243. 
244. 
247. 
243. 
249. 
253. 
251. 
252. 
253. 
234. 
255. 
255. 

‘6 0 
2 

50 
3 

40 
4 

30 
5 

I O  
6 

20 
7 

70 
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J= JJ- I 
X (J I +J I =  I 2 .*COS( J*. I 30UY’N J 
Z(JI+J)=LO 
CWT1:JUr‘ 
JI=I+dI 
00 50 JJ=I,40 
JxJJ-I 
X( JI+ J 1-1 0 .*C3S (J*. 1570 736) 
Z(JI+J)=ZO 

J I= 1+43 
DO 40 JJ=1,32 
J= JJ- I 

S Y (J I +J J= I2 .*SIH( J*. I 30dYY I J 

f Y (J1 +J ) = I  0 .*SILV 

coxr I I ~ U E  

J I= I+25 
L)O 30 JJ-I ,24 
J= JJ- I 
X(JI+J)=6.*CDS( J*.2617YY4) S Y(JI+J)16.*SI~~(J*.26I IY94j 
Z(JI+J)=LO 
CO:JTI:4;ld 
JI=1+3 
03 IO JJ=l,l6 
J= JJ- I 
X (J I+ J 1 =4 .+COS( J* .3326WI 1 
Z( JI+J)=LO 

S Y (J I +J )=4 .*SIN( J*. 3Y209Y I ) 
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B.l INTRODUCTION 

The boundary integral equ "boundary element". method 
does not represent the continuum by discre elements as do most 
numerical methods (e.g., finite elements) . In 4 the bouhdary- 
element method, the problem configuration is described through 
the use of boundary'elemen linear elemdnts that rep 
boundaries of excavations 
contours of pressure changes. The- supporting load on boundary ~ 

elements representing kxcavations can be described.' Ground 
surface must be described by elements with supporting load 

ntbtirs of temperature 

.. 

f temperature 'or pressure cha e prescribed by 
h df these conto if contours 

er contour also 
\ 

are circumscribed, the pressur 
applies to the material within the inner contour. 

^ ^  

The number of elements used to describe each boundary sur- 
face can affect the accuracy of t ller elements 
are needed where the stress 'field' is changing idly. ' The user 
must experiment with element siz til he is satisfied with the 
accuracy of the results for each 
tion to this is the temperature 
The'se need only one element €or 

the boundary surface (e. 
elements). 

A general discussion of ion of BIEMBD 
cn be found in the detai'led report 
read in conjunction with thi 
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tirp.' 

B.2 DISCUSSION OF INPUT PARAMETERS 

R . 2 . 1  Boundary Segments 

I n  r e p r e s e n t i n g  a boundary or p r e s s u r e l t e m p e r n t u r e  change 
c o n t o u r  of a r b i t r a r y  shape, t h e  boundary is d i v i d e d  i n to  a number 
of segments .  These segments  may be of three t y p e s :  (a) s t r a i g h t  

l i n e s ,  (b) c i r c u l a r  arcs, and (c) e l l i p t i c a l  arcs. I n  t h e  fo l -  

lowing  s p e c i f i c a t i o n s ,  reference is made to  t h e  end p o i n t s  of a 
segment ,  which are described as t h e  i n i t i a l  and f i n a l  p o i n t s .  I n  
d e c i d i n g  which is which ,  t h e  r u l e  is t h a t  when t h e  boundary or 
c o n t o u r  is traced from t h e  i n i t i a l  t o  t h e  f i n a l  p o i n t  and one 
faces t h e  d i r e c t i o n  of t r a v e l ,  t h e  so l id  material ( t h e  o u t s i d e  of 
t h e  c o n t o u r )  l i es  on the r igh t -hand s i d e .  

S t r a i g h t - L i n e  Segments ( F i g u r e  B-1) 

XO,  ZO = c o o r d i n a t e s  of i n i t i a l  po in t  
XL, ZL = coordinates of f i n a l  p o i n t  

C i rcu la r -Arc  Segments ( F i g u r e  B-2) 

XC, ZC = coordinates of center of c i rc le  
RAD = r a d i u s  of circle 
THETl = polar a n g l e  of i n i t i a l  p o i n t  
TFIET2 = polar a n g l e  of f i n a l  p o i n t  

L i n e  CB is drawn from t h e  c e n t e r  C i n  t h e  direct ion of t h e  
+Z a x i s .  

The polar a n g l e s  are measured i n  EL coun te r - c lockwise  direc- 
t i o n  from CR. 



, 
I 

I 
i 
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Elliptical Arc Segments (Figure E-3)  

XC, ZC = coordinates of center C 
SEMIAX = length of one semi-axis (a) 
RATIO = b/a, where b is the length of the other semi-axis 
PSI = polar angle of axis a 
THETl = polar angle of initial point 
THET2 = polar angle of final point 

These polar angles are measured as described above. 

These segments may be combined to form a boundary of 
virtually any shape (see Figure B-4). 

NSEG = the total number of segments used in defining all the 
boundary surfaces of the problem. 

B.2.2 Elements 

Each segment is divided into a number (MELH) of elements. 
In the case of straight-line and circular segments, the elements 
are all straight and of equal length. To understand the for- 
mation of elliptical segments, note that an ellipse may be rep- 
resented in parametric form by the equations: 

m = a cos 9 
n = b sin Cp a 

where m and n represent coordinates measured parallel to the a 
and b axes of the ellipse. Each element corresponds to the same 
increment of the angle Cp. It follows that the length of the 



i 
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I 
FIGURE 3-3 

BIEM2D USERS’ MANUAL 
ILLUSTRATION OF I 

I 

ELLIPITICAL-ARC BOUNDARY ELEMENT I 



element Aaries, since it is small where the radius of curvature 
is small. 

It may be necessary to divide a single segment into a number 
of separate segments (a) to achieve a variation in length along 
the original segment and (b) ow for the application of 
loads to specified portions segment which would not be 
possible with a uniform division of the original segment. Note 
that a relatively high density of elements is desirable in re- 
gions of high-stress gradients. However, accuracy does not im- 
prove with increased numbers of pressure-change elements. 
Therefore, a pressure change segment need not be subdivided. The 
elements are numbered progressively from I = 1 to I = MAXJ over 
all segments. There is currently an upper MAXJ limit of 60 
elements. 

B.2.3 Gaussian Averaging 

Usually, the stress along an element due to a load on ano- 
ther element is approximated by the stress at the center of the 
element. This can lead to error if the stress distribution along 
the element is not linear. Gaussian averaging allows the user to 
approximate the stress distribution by the average of the stress 
at the two Gauss points of the element (each approximately one- 
sixth of the length from the center). While this uses more solu- 
tion time, it may lead to a more accurate solution. 

B . 2 . 4  Symmetry 

In order to minimize the storage requirements for doubly 
subscripted variables, advantage should be taken of any symmetry 
exhibited by the system under inves This .can be done 
only if the symmetry refers to both 
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boundaries and the disposition of all loads. The presence or 
absence of symmetry is indicated in the program by the values 
accorded to the codes KXS, KZS. The following rules apply: 

o KXS = 0, KZS = 0 indicates. that there is no symmetry 

o KXS = 1, KZS = 0 indicates symmetry about the X-axis, in 
which case only the boundaries or parts of the boundaries 
which lie on the positive side (or,-alternatively, the 
negative side) of the Z-axis are to be specified (see 
Figure B-5) 

.. _ I  I 
,. _ _ , I  ~ ,- 

o KXS = 0, KZS = 1 indicates symmetry about the Z-axis; 
only half the system is to be specif 

o KXS = 1, KZS = 1 indicates symmetry about both axes; 
only one quadrant of the system must be specified. 

B .  2 .5  Loading 

I FPX and FPZ den es, parallel to 
the X and Z axes. These can be uniform stresses or can vary with 
depth, depending on the type of input. , 

BPX (BPZ) denotes th of load applied to 
given boundary elements per unit of area projected on to the 2 
(X) plane. 
is specified by giving the numbers (LP1, LP2) of the first and 
last elements of the loaded section. 

I 
~ 

The range of elements over which this load is applied 

1 

B.2.6 Pressure Contours 
I 

I 

PRESS denotes the normal traction applied at given elements 

i 

~ 

cccd due to changing fluid pressure or material temperature. For 
I '  
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Lid 

X +- CLI 

KXS = 0 
KZS= I 

K X S =  I 
KZSZO 

.FIGURE B-5 
BIEMBD USERS' MANUAL 

EXAMPLES OF SYMMETRY CONDITIONS 
. -  

< 
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purposes  of ca lcu la t ing  stress a t  in te r ior  p o i n t s ,  a.materia1 
number is as s igned  t o  t h e  inter ior  region of a t e m p  
po re -p res su re  change s u r f a c e , ,  .If pressure-change s u r f a c e s  are 
n o t  c l o s e d  (e.g., h y d r o s t a t i c  f l u i d - p r e s s u r e ) ,  v a r i a b l e  NCODE on 
t h e  segment card should  he set t o  1. Using NCODE, t h e  p r e s s u r  
change is appl ied t o  a l l  materials below t h e  e lement  s u r f a c e  
where Z i n c r e a s e s  w i t h  depth.  However, t h e  p r e s s u r e  tractions 
t h a t  are appl ied  t o  t h e  pressure-change s u r f a c e  must still follow 
t h e  r u l e  t h a t ,  as you t r a v e r s e  t h e  element from start  . to  f i n i p h ,  
t h e  p r e s s u r e  change should occur  i n  t h e  material t o  t h e  lef t .  
Care must be taken  when .us ing  unclosed p r e s s u r e  change" s u r f  aces 

For  c o n t o u r s  of pore-pressure change, PRESS s h o u l d - e q u a l - t h e  
K pore-pressure drop  m u l t i p l i e d - b y  (1- r), 

modulus ( K  = ) and Ks is t h e  .bulk .modulus, of t h e  so l id  
S E 

of tempera ture  change, PRESS shoul 

expansion.  

s o l u t i o n  of the 
m a t r i x  equa t ions .  T h i s  is c a r r i e d  o u t  

most problems, 25 c y c l e s  is s u f f i c i e  r number may,, , 

1 
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B.2.8 Grid  P o i n t s  

I n t e r k a l  stresses and d i sp lacemen t s  are determined a t  t h e  

nodes of horizontal  and v e r t i c a l  g r i d  l i n e s  as s p e c i f i e d  i n  t h e  
i n p u t  . 
B . 3  IPTPUT 

Card 1: T i t l e  c a r d  (80 c h a r a c t e r s )  

Card 2: ICODE, NSEG, KXS, K Z S ,  NCYC, I ,  TOL, E ,  RNU (615,  3F10.0) 

ICODE = 1 for i n f i n i t e  i s o t r o p i c  medium 
= 2 homogeneous g r a v i t a t i o n a l  medium where 2 = 0 a t  

t h e  ground s u r f a c e .  
NSEG = number of segments 
KXS = 1 f o r  symmetry about t h e  X ( h o r i z o n t a l )  a x i s  

K Z S  = 1 for symmetry about  t h e  Z (downward) a x i s  

NCYC = maximum number of i t e r a t i o n s  ( s e e  Cycles  above)  
I = i f  I # 0 ,  Gaussian ave rag ing  w i l l  be performed 
TOL = Tolerance of error ( d e f a u l t  v a l u e  = 1x10'5) ' 

E = Young's modulus 
RNU = P o i s s o n ' s  ra t io  

( s e e  Symmetry, above) 

( s e e  Symmetry, above) 

Card 3: SIGC, SIGT,-N, S (4F10.0) 

SIGC 
SIGT 

= ac,  u n i a x i a l  compressive s t r e n g t h  
= at, u n i a x i a l  t e n s i l e  s t r e n g t h  
= e m p i r i c a l  constants d e s c r i b i n g  f a i l u r e  c r i t e r i o n  

(see Hoek and Brown, p. 141)  / 

L 
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u 
The stresses are tested a g a i n s t  t h e  s t r e n g t h  at  each obse rva t ion  
p o i n t  and an  i n f o r m a t i v e  message is p r i n t e d  i f  t h e  s t r e n g t h ' i s  
exceeded. 

Card 4: ' 

$ 9  

FPX, FPZ' (2FiO.O) 

zontal f i e l d  stress 
FPZ = u d i f o r m ' v e r t i c a l  f i e l d  stress 

Option 2: ICODE = 2 

GAMMA = u n i t  weight of t h e  material 
FSR = f i e l d  stress rat io ,  K = Q 

Card 5 :  (NSEG card 

Opt ion  1: st 
PRESS, NELR, XO, 

(F8.0, 12, 4F10.0 

PRESS = f l u i d  (or equ iva len  
l e f t -hand  s ide  of e 
c o n t o u r )  r e p r e s e n t i n  d or temper- 

number of e lements  i n t o  which t h e  segment is 
d i v i d e d  . 
a t u r e  ,force. a -  

XO, ZO = coord s of t h e  firs 
is on t h e  l e f t  

hand side as you move a egment). Note: X 
s i t i v e  downward. 

W 
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nates of last poin t  of segment. 
NCODE = code i n d i c a t i n g  whether  boundary material is a 

c l o s e d  or open surface (used  f o r  p r e s s u r e  change 
s u r f a c e s ) .  NCODE = .a for c l o s e d  c o n t o u r s ,  1 f o r  
open con tour s .  

r e p r e s e n t s  a p r e s s u r e  contour. For normal boundary 
e l e m e n t s ,  l e a v e  MAT = 0. Material t y p e s  must be 

c o n s e c u t i v e l y  numbered, ., materials 1 and 3 
canno t  be used wi thout  d e f i n i n g  a material 2. 

MAT = material t y p e  on " ins ide"  of contour when segment 

O p t i o n  2: C i r c u l a r  Segments 
PRESS, NELR, XC, ZC, THET1, THET2, RADIUS, NCODE, 

MAT (F8.0, 12,  F1O.O, lox, 215) 

= as above. 
= as above. 
= c o o r d i n a t e s  of circle c e n t e r .  

' THET1, THET2 = a n g l e s  i n  deg rees  of i n i t i a l  and f i n a l  point  

1 

1 

} 

PRESS 
NELR 
xc, zc 

o f  segment (measured counter -c lockwise  from 
t h e  Z-d i r ec t ion ) .  

RADIUS = circle r a d i u s .  
NCODE 
MAT 

= as above. 
= as above. 

Option 3: E l l i p t i c a l  Segments 
PRESS, NELR, XC, ZC, THET1, THETB, SEMIAX, RATIO, 
PSI ,  NCODE, MAT (F8.0, 12, 5F10.0, 2F5.0, 215) 

= as above. 
= as above. 
= c o o r d i n a t e s  of el l ipse center,. 

PRESS 
NELR 
xc, zc 
THET1, THET2 = as abov 
SEMIAX = l e n g t h  of one semi-axis "a." 
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RATIO = . ra t io  of semi-axes 
PSI ' = a n g l e  .-in . deg rees  of i - a x i s  "a . 
NCODE 
MAT 

= as above. 
= as above. 

. .  

) ' , ,  

Card 6 :  LP1, LP2, BPX, BPZ (2I10 , ,2F10.3)  
EJote,: 1 . .  .These cards may be used when t h e  oproblem does 

rmal -boundary elements . 
i a l - a n d  f i n a l  element numbers t o  which - 

loads are applied 
s of. load p e r  u n i t  of projected area 

PZ are p o s i t i v e  when a c t i n g  i n t o  t h e  
i o n s .  Note t h a t  

1 
I 

I 

1 
! applied .loads should be zero . If there 
~ re normal boundary, e 
I b lank card is n 

, 

, 4F10.0) . 

, 
1 f g r i d  of i n t e r i o r  

The las t  grid-card should be blan 
i 
I 
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RAT 0 = r aAo  o semi-axes "a/b." 
PSI = a n g l e  i n  degrees of semi-axis tla.tt 
NCODE = as above. 
MAT = as above. 

Card 6: LP1, LP2, B P X ,  BPZ (2110, 2F10.3) 
These cards may not  be used when t h e  problem does 
n o t  c o n t a i n  normal boundary e l emen t s .  

LP1,  LP2 = i n i t i a l  and f i n a l -  e l e m e n t  numbers t o  which 
loads are applied 

i n  t h e  X and Z directions. Note t h a t  
BPX and BPZ are p o s i t i v e  when a c t i n g  i n t o  t h e  
material. 

BPX,  BPZ = components of load per u n i t  of projected area 

The l as t  card of t h e  applied loads should be zero. If there 
are no appl ied loads but  there are normal boundary e lements ,  a 
blank card is needed. 

Card 7: N X P ,  N Z P ,  XMIN,  ZMIN, XMAX, ZMAX (215,  4F10.0) 

N X P ,  NZP = number of rows and columns of g r i d  of in te r ior  
p o i n t s  t o  have stress and displacement 
c a l c u l a t e d .  

XMIN,  ZMIN = minimum X and Z coordinates. 
XMAX, ZMAX = maximum X and Z coordinates. 

The l as t  grid-card should be blank. 
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w 
. .  

~ . 4  OUTPUT 
3 ;  

1. Echo of i n p u t  data 
2. Boundary stress d i s t r i b u t i o n  for "normal" boundary e l e m e n t s ,  

t a b u l a t e d  as follows: 

I CX CZ SIGl SIG3 ALPHA UX UZ FOS BETA 
type  

where : 

I = e lement  number 
cx, cz = c o o r d i n a t e s  of center of element 
S I G 1 ,  SIC3 = pr inc ipa l  stresses at  c e n t e r  of e lement  
ALPHA = a n g l e  t h a t  SIGl makes w i t h  t h e  normal t o  t h e  

ux, uz = disp lacements  
FOS = factor of s a f e t y  a g a i n s t  f a i l u r e  

boundary 

3. I n t e r n a l  stresses, t a b u l a t e d  under t h e  same headings as i n  
(2), b u t  now I ,  CX, CZ, and ALPHA have d i f f e r e n t  meanings: 

I .  = g r i d  po in t  number 
CX, CZ = c o o r d i n a t e s  of g r i d  p o i n t  
ALPHA = a n g l e  t h a t  S I G l  makes w i t h  ' the  Z a x i s  
UX, UZ = displacments 
FOS = factor of s a f e t y  a g a i n s t  f a i l u r e  

B.5 SAMPLE PROBLEM 

BIEM2D was used on a sample problem of an i n f i n i t e  r e s e r v o i r  
(F igu re  1-1). I n  p r a c t i c e ,  t h e  model used symmetry about' t h e  2 

a x i s  and extended t h e  r e s e r v o i r  on ly  t o  X = 6300 feet. The 
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elements representing the  ground surface were extended to.X = 
25,000 feet.  The fo l lowing pages present the  input and outpu-t to 
this problem. 



B-19 -' 

8.i 

B . 5 . 1  Input Data for Sample Pkoblem. 

PROBLEM 1 -- 1-Dv I N F I N I T E  RESERVOIR* UNITS- FEETvPOUNnS 
2 9 0 1 5 0  2.16E06 25 
1000. -1001 lo* 1. 
144. 1. 

4 0 .  Ob 200 O *  
3 500 * 0. 
3 1100. O *  
4 2700 e 0 .  
5 6300* O *  

I 

I 

8 io o *  25000. , 0 .  
5104E04 1 6300. 620 e 1 
5*04€04 i 6300 570. 1 
5*04€04 1 6300 570 ~ o *  570 1 

0 I 

11 ' 1 . Ob 0 1  . 750. 0 .  
21 , 1 1000. O *  6000 0. 
1 21 O *  O *  0. isoo. 
0 

1 
1 
1 



B . 5 . 2  Output f o r  Sample Problem 

1 

* X * * ~ * * * * * * * * * $ * * * *  * :)-Ll GTktES!i ANALYSIS R Y  TIlE POUNDARY ELEMENT MEltiOD X 
$ PLANE SlEihTN C:~NDITIONSP FICl IT lOUS STRIP LOADS $ 
Z INCLUDING FLUID PRESSURE AND TEMPERhTlJRE EFFCCIS * * * * * * * * * * * * * * * * * * * *  

PFWELEM 1 -- ~ - D I  I N F I N I T E  RESERVOIRt UNITS- FEETIPOUNDS 

ROCk PROPERTIES: 

MODULUS OF ELASTICITY = ,216Et07  

t'OISSON'S R A T I O  = ,250 

DU1.K MOL1IJL US = 1 4 4 E f 0 7  

SHEAR MDDlJL IJS = 864Ei 0 6  

CC)Mf.'RESSIVE STRENGTH 100Ei.04 

TENSILE STRENGTH = -100. 

5" 
h) 
0 

n =  l0.0 
!3 = 1.00 

THE ANALYSIS IS I N  AN HOMOGENOIJS GRAVITATIONAL MEDIUM 

UNIT WEIGHT OF ROCK = 144tOOO 

HORIZONTAL STRESS RATIO = 1.000 

MAXIMUM NlJMBER OF ITERATIONS = $0 

TOLERANCE = .10000E-OS 

c 



PSI 

200. 0. 
500. 0. 
.llOEC04 0 .  
r270Et04 0. 

30Et04 620. 

NTERS OF BOUNDARY ELEMENTS. 

nnT 

0 
0 
0 
0 
0 
0 
1 
1 
1 

' *** ALPH I S  THE ANGLE FROM TWE ELEMENT NORMAL TO THE MAJOR PRINCIPAL STRESS 

29 r l r ) l C ' & O S  V. 0. 22.H 0. 

.623€-07 .4733E-01-.5860 
,324E-07 ~6090E-01-.5858 

-.717E-O9 .8130E-01-.5854 
-8287E-07 .lo87 -.SO48 

-.442E-07 ,178t *e5821 
-.SO9E-07 ,2353 e.5770 
-r526E-07 e2945 -*5747 
-.489E-07 ,3566 -e5691 
-.357E-07 -4496 -.5575 
-9299E-07 ,5842 -e5340 
-.230E-07 ,7498 m.4913 
-+167E-07 .9501 -*4001 

-.419~-07 ,1362 -.st139 

- 1 z i 6 ~ - 0 7  1.194 - . i .ae  
-96.0 1.049 ,4795 
-90.0 ,7326 ~6548 
-YOSO -5643 ,6945 
-90.0 e4620 -7083 
-90.0 ,3920 ' ,7149 
-90.0 e3405 m7172 
-90.0 .3OOi3 ,7171 
-9O.r) ,2691 ,7154 

90.0 ,2432 ,7119 
YO.0 -2220 ,7060 

I tIN - I 

BETA 
usiLE P A I ~ ~ ~ R E  

TENSILE FAILURE 
TEt4SILE FAftlJh'F 
lENSlLE FAILIjHE 

TENSILE Fh1LW:E 
TENSILE FAILllHE 
TENSILE FAILURE 
TENSRE FAILtIRE 

TEHSILE FAlLllRE 
TENSILE FAILIRF 
TEttSILE FAILURE 
TENSILE FAILLBI: 

TENSILE FAILWL 
TENSILE FAILURE 

TENSILE w w m L  

TENSILE rnii IH:E 

TENSXE FnILifitE 

N.h 
N.h 

N.A 
N.6 
N.6 
N . 6  
N.A 
N.A 

t4.n 

n.A 

c 

NU FAILIfCE 
NO FAILIRC 
NO FAILURE 
NO FAILIIRE 
NII Fh71 IIIiF 
NI1 CAILlH!F. 
NO FAILIIRE 
EIO Fni i  W:I: 
NO inxi II(CI. 



I 
1 
2 
3 
4 
5 
6 
7 
e 
9 

10 
11 
12 
13 
14 
1s 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1  
32 
33 
34 
35 
36 
3 7  

39 
40 
4 1  
42  
43 
44 
45  
46 
47 
40 
49 
so 
5 1 
52 
53 

3a 

cx 
1OOE-09 

79.0 
150. 
22s 
300. 
375. 
450. 
525. 
000. 
675. 
750 
,100Et04 
12SEt04 
15061.04 
175Et04 
200Et04 

e22SFt04 
250EI 04 

-275Et04 
.3OOEt04 
+32SEtO4 
,350Et04 
-37SEIOI 
.400Et04 
a 42SE t o 4  
.450E104 
~ 4 7 5 E t 0 4  
SOOE t04 

.5256t04 
550EtO4 

.S ISEi  04 

.600Et04 
100E-09 
1OOE-09 . 10OE-Q9 

e100E-09 
.'100E-09 
-1OOE-09 
~100E-09 
,100E-09 
~100E-09 

100E-09 
IOOE-09 
1OOE-09 

a100E-09 
1OOE-09 
100E-09 

I 10OE-09 
I 100E-09 
.100E-09 

CZ FItESULlfiE C l l j l  5103 ALPHA LIX UZ 
*1OOC-O9 0 .  8504 -314. 
.100E-09 0 .  
.100E-09 0 .  
.100E-09 0 .  
,100E-09 0 .  
a100E-09 0 .  
.100E-09 0 .  
.100E-09 0 .  
.100E-O9 0 .  
.lOOE-09 0 .  
~100E-09 0 .  
0100E-09 0 .  

IOOE-09 0 .  

.100E-03 I .{I 1. 
,494 -514. 

-.241E-01 -312. 
1.01 -517. 
-708E-01 -312. 
~100E-03 -313. 

- . I 8 1  -313. 
a100E-03 -314. 
e376 -315. 

a100E-03 -319. 
-e387 -323. 

-.2oa -316. 

100E-09 0 .  6a.33 -301. 
100E-09 0 .  606 -335. 

IOOE-09 0 .  2.76 -354. 
1OOE-09 0 .  -100E-03 -366. 
100E-09 0 .  -6.42 -386. 
IOOE-09 0 .  -1.64 -392. 

100F-09 0 .  ' -1.38 -344. 

1OOE-09 
100E-09 
100E-09 
IOOE-09 
1OOE-09 
100E-09 
loo€-09 
100E-OY 

s 1OOE-09 
a 1OOE-09 
a IOOE-09 
100E-09 

0 .  6.32 
0. -9.62 
0. -1.37 
0. 12.8 
0. -14.0 
0. 100E-03 
0 .  28.0 
0. -13.6 
0. 3.54 
0. 60.2 
0. 78.9 
0. -25.0 

-411. 
-443. 
-456. 
-491 s 
-537. 
-557. 
-632 
-677, 
-685. 
-R52,  
-659 
-358. 

.lOOE-09 0 .  
75.0 0.  
150. 0 .  
225. 0. 
300. 0 .  
375. 0. 
450. 0.  
525. 0.  
600 504Et05 
675. 0 .  
750. 0 .  
82s. 0 .  
900. 0 .  
975. 0. 
.lOSEt04 0 .  
. l l J E t 0 4  0 .  
e120Et04 0 .  
,128Et04 0 .  

.100E-09 ,135Et04 0.  
+100E-09 ,143Et04 0 .  
.100E-09 .15OEt04 0 .  

504 
.108EtOS 
.216Et05 
e324Et05 
,432Et05 
.540Et05 
648Et05 

.7568t05 

.120Et06 
,972EtOS 

lOHEt06 
.119Et06 
,130Et06 
.140Et06 
. l S l E i 0 6  
162Et06 
173Et06 

+ 184Et06 
19481.06 

*205EtO6 
,216Et06 

.s i  IC-of . i 6 ~ i r - i 3 - . 5 t i ~ ~  

.7r131-06 . i o i . ~ - o i - . s n 4 3  
,272E-01 ,2027E3- 0 1  - .5RA7 
,104r-01 . 3 0 4 i ~ - o i  -.sa62 
* 101 .405AE-V1-.5a61 

-.164E-01 .5072F-01-95859 
.313E-07 .6090E-01-.5058 
-643E-01 31 lOt'-Ol-.!W56 

- a  717E-OR .81501:-01-.5854 

,441E-01 a 1 0 1 8  -+SI50 
-*419E-07 -1362 -.SO39 

.464E-O1 .1711 -.5825 
1.94 ,2065 -.5fl07 

,151 -2795 -.5760 
-.6VOC-O1 -3174 -a5727 
-*4R9E-07 ,3566 -.!5691 

.953 ,3975 -.5651 
,170 ,4394 -.5YY2 

-e273 ,4829 -.5519 
1.34 ,5300 -.5455 
,110 .5783 -.5354 

- . S f 2  ~ 6 2 9 6  -a5228 
2.05 e6872 -e5109 

-.230E-07 -7458 -e4913 
-1.42 ,8100 -04664 

3.90 .fl865 -e4389 

-5.11 1.040 - .3311 
8.2)  1.149 -.2448 

-6.56 1.194 -e1342 

-.~OIE-OI . ~ I s ~ ~ - o ~ - . J R w  

- . 4 3 4 ~ - o i  ,2426 -.57as 

-.s7a .9s90 - . 3 9 ~ 9  

-314. ,511E-02 .1661E-13-.5863 
,105Et05 ,4078-12 .17768-13-.5896 
,213EtOJ .407E-12 .4974E-13-.5930 
.321€tO5 .407&-12 .49746--13-.5963 
.42YEtOS 0407F-12 .1350E-12-*5997 
.537Et05 ,4078-12 .4263E-13-.6030 
,645Et05 .407E-12-.1421E-13-.6062 
.753E105 ,407E-12 .2842E-13-.6094 
.864EtO5 90.0 0 .  -.292YE-01 
,969Et05 .407E-12-.5684E-13 ,3565 
.108Et06 -.147E-l0-.1705E-12 ,3534 
.119Et06 .4078-120. ,3503 
,129Et06 +40?8-12 ,2842E-13 ~ 3 4 7 3  
,140EJ.06 .407E-120. 3444 
151 Et06 - a  12X-11 - a  1705E- 12 -34 15 

. l6?Et06 ,204E-11 .5184E-13 .3387 
a173E1.06 ,204E-11 .5604E-13 ,3359 
.983EtO6 .40/C-12-.3411E-12 ,3532 
,194Et06 ,244E-11 .5684F-13 -3306 
.205Et06 - .163E-l l  a4547E-13 .:3:'81 
.216Et06 -.814E-ll .S684€-12 ,3256 

F.0.S 
.31A 
.SI0 
,315 
*:i10 
,312 
a317 
031 7 
0 . 5 1 6  
.3t6 
,315 
-314 
e310 
-307 
a274 
* 295 
.7n7 
,779 
,271 
+ 257 
.252 
,241 
,223 
,717 
.202 
. l e 4  
-178 
-157 
.146 
e 144 
,116 . IS0 
.277 
,316 
1.92 
1.66 
1.54 
1.47 
1.42 
1.39 
1.36 
,967 
1 e32 
1.30 
1.2v 
1 I 1 R  
1.26 
1.2.5 
1.25 
1.24 
1.23 
1.23 
1.22 
1.21 

0 .  
0 .  
0 .  

0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  
0 .  

n. 

NO F h l L I J I i F  
N l l  FnlLII4:r 
NO I A I 1  III'L 
NO F A l l  1I I .F 

NlI I A l l  111'1 
Nfl I A l l  1lNI 

NII I nri I I I : I  

NI) rn i i  iwr 
NU CAILII~~C 
NO F A I L I J R L  
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B.6 SOURCE LISTING FOR BIEM2D 

C 
C 
C 
C 
,C 
C 
C 
C 
C 
C 
C 

C 
c +  
C 

12 

- 
FROGRAM B I E H ~ D ( I N P U T I O U T P U T ~ T A P E ~ * I N P U T ~ T A P E ~ ~ O U T P U T )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ROUNDARY ELEMENT PROGRAH FOR TWO-UIHENS1ONAL STRESS ANALYSIS 
IN HOHOGENEOUS ISOTROPIC MEDIA - J W BRAY 1974 
STRAIGHT BOUNDARY ELEMENTS WITH STRIP FICTITIOUS LOADS 
UPDATED AUGUST-1976 TO CALCULATE. DISPLACEMENTS - . G HOCKING 
UPDATED 0CT.-1978 FOR GRAVITATIONAL ANALYSIS AND FAILURE 
CRITERION - E A EISSA t IMPERIAL COLLEGE LONDON 
UPDATED JULYvl979 FOR PRESSURE CONTOUR ANALYSIS - GOLDER ASSOCt 
.................................................................. 

DIMENSION CX(60) ;CZ(60) vEXl(60) rEX2(60) rEZl(b0) rEZ2(60) rPN(60) 
1 P N M ~ 6 0 ~ ~ Q M ~ 6 0 ~ r Q N ~ 6 0 ~ r B N M ~ 6 0 ~ 6 O ~ r B M N ~ 6 0 ~ 6 O ~ ~ ~ N M ~ 6 0 ~ 6 O ~ r  
2 B N N ~ 6 0 ~ 6 0 ~ r D M ~ 6 0 r 6 0 l 1 D N ~ 6 O ~ 6 O ~ ~ S I G l ( 6 O ~ ~ ~ I G 3 ~ 6 O ~ r  
3 A L P H A ~ 6 0 ~ ~ S I N B ~ 6 0 ~ r C O S ~ ~ 6 O ~ r U X ~ ~ O ~ ~ U ~ ~ 6 0 ~ r F O S ~ 6 O ~ ~ ~ E ~ A ~ 6 O ~ r  
4 F P X ~ 6 0 ~ r F P Z ~ 6 0 ~ r T I T L E O r L P T S O r X L I N ~ 6 O ~ 3 O ~ ~ Z L I N ~ 6 O ~ 3 O ~ ~  
'5 FR(30)rPRESM(60)rPRE8NorPRES(6O)~PRSS(6O)~CX~(~)rCZN(~) 
6 rSDAT(2) 
LOOICAL GAUSSvDEBUG,DEBUGl 
DATA SUAT/' NO'raYES'/ 

READINO AND PRINTINQ OF INPUT DATA . 
WRITE(7r12) 
FORHAT('l'r/// 
*lox?'* t * * * * * * * * * * * * * t * * *'/ 
rlOX~'l: 2-D STRESS hNALYSIS BY THE?BOUNPARY ELEMENT tiETHOD I r a /  
*iox,.* PLANE STRAIN CONDITIONS, FICTITIOUS STRIP Lams 8.1 
rlOX,'$ INCLUDING FLUID PR&SURE AND TEMPERATURE EFFECTS *'/ 
tlox?.* * * * * * * * 1: * * * * t * * * * La/ / / )  REhD(1rlO) (TITLE(I)rI~lr20) I 

10 FORMAT(20A4) 
WRITE(7r9) (TITLE(I)rI=lr20) 

9 FORMAT(~XI~OA~///) 
DEBUG=tFALSE* 
DEBUGlatFALSEt 
REhD(lr11) ICODEpNSEGrKXSpKZStNCYCII1TOLIEIRNUIJ,K 

11 F O R f l ~ T < 6 ( 2 X 1 I 3 ) r 3 F 1 0 1 3 r S 8 X I a I 1 )  
. GhUSSs t FALSE t 

IF(JeNE*O) DERUG=.TRUE* 
IFIti .NE.0)  DEBUGlarTRUEt 
IF(I.NE.O)GAUSS=tTRUE* 
IF(ICODEtGEelihND+ 
WRITE(7r318) 

GO TO 503 
318 FORMhT(1H ///r7X1' WRONG' ) 

319 COWTINUE 

35 FORMAT(4FlO+S) 

OF FLASTICITY 'rG1 
*O,~,//~OXI'POISGON'S RATIO = 'r010,3,l/lOX,'DULK MODULUS = " P  

* t '~GIO.~~//LOXI*~ENSILE GTKENLiTtI Z. '~GlO,3r//lOX,'tl = ' V  

$G10*3r//lOX,'SHEAR tiODULU3 = .* GlO~3r//lOX~'COtlPRESSIVE STRENGTH 
$G10.3r/10Xp9S =s 'vGl0*3//) 
IF(ICODE.EO.2) GO TO 322 

320 ,WRIE(7r321) 
321 FOHPATI1H I/* INFINITE-ISOTROPIC HEDI'* 

1 .Uti' 1 
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READ ( 1 r 21 ) 

WRITE(7 r22 )  FFXXvFFZZ - 
FFXX r FF'ZZ 

21 FORMAT(2F10.3) 

22 FORMAT(1H / Y ~ X V ' H O R I Z O N T A L  F I E L D  STRESS 'rF1013r// 
*7XvaVERTICAL F I E L D  STRESS = 'rF10.3) 

GO TO 336 
322 WRITE(7 r323)  
323 FORMAT(1H / / r6Xv '  THE ANALYSIS I S  IN AN HOMOGENOUS GCAVITATIONAL ' 

*?'MEDIUM' ) 

324 FORMAT(2FlOi3)  

325 FORMAT(1H /P~XI*IJNLT WEIGHT OF ROCK = 'rF10139// 

READ(lr324)GAMMAvFSR 

WRITE(7 r325)  GhMMApFSR 

*~XI'HORIZONTAL STRESS RATIO 'rF10.3) 
336 CONTINUE 

13 

23 

2 4  

C 
C 
C 

C 
C 
C 

16 

c 

IF(TOL.ER.0.) TOL=.000001 
WRITE (7913) NCYC,TOLrSDAT(KXStl)rSL)AT(KZStl)rNSEG 
FORMhT(///7Xt'MAXIMUM NUMRER OF ITERATIONS = ' 

*~ISI / /~XP*TOLERANCE = ' rG lO+Sv / /7Xr 'X  - SYM'v 

I7Xr'NUMHER OF SEGMENTS *?IS/) 
*-HETRY: * r n 3 V / / 7 ~ r - ~  - SYMMETRY: B , A ~ ~ / /  

IF(GhUSS)WRITE(7r23)  
FOKI14T(7Xr'GhUSSIAN AVERAGING WILL PE PERFORMED') 

FORMhT( / / r7X* tS IX  ERROR - MAGNITUDE OF TENSILE STRENGTH ' 

N N  = 0 
PI = ATAN(1.0) d 4 r 0  
TA = 2,0*(1+0 - RNlJ) 
T J  = 1+0/<2.0*PI*TA) 
TU=3*0-4,O*RNU 
G=E/(2+0*<1.0tRNU>) 
TU=O+S*TJ/G 
DATA RN1RM/l20$0.0/ 

IF(nnS(SIGT).GE.ARS(SIGC)) WRITE 24 

Yv'EXCEEIIS COMPRESSIVE STRENGTH') 

D A T A LYTS/?IOXO/ 
MAT=O 
M A X I = O  
NMhT=O 

INTERPRETATION OF SYMMETRY CODE 

KAS = 0 
IF (KZS*ER. - l )  KAS= l  
KXT = 2 W X S  + 1 
KZT = ~ ( K Z S  t tins) t i 

D I V I S I S O N  OF BOUdDARY INTO SEGktENTS 

I s 0  
NSEGG = 0 
W R I T E ( 7 r l 6 )  
FORnAT(///SXv.ELEMENT DEFTNITION DATA'// 

1 : '  ELEMENTS PRESS CENT X CENT Z THETS 1HET2.r * .  R n a r u s  R ~ T I O  F'S I MAT'/ 
X '  (FIRST-X) (FIRST-Z)  (LAST-X) (LAST-Z) 
*'/) 

- 
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326 FORHAT(lXv*Xt* ERROR - ZERO PRESSURE 
, *NODES ARE NOT BEINO INPUT FIRST'//) 

RELH = NELR 
fF(RDS*EQtO*O) GO TO 800 

c .  - 

C DIVISION OF ELLIPTICAL OR CIRCULAR SEDMENTS INTO ELEMENTS 
C 

IF(RATIO*EQ*O,O) RATIO 0 l e 0  
WRITE(7rl8) NELRvPRESSvXOvZOvXLtZLIRDSlRATEOIPSIlMAT 

SINPSI SIN(PSI*PI/~~OI) 
18 FORHAT(1H r6XvI3r8(1XtG9*3)rI7) 

COSPSI = COS(PSIXPI/180r) 
GD = rlE-10 
GA 6 RhTIO~COS((XL-PSI)XPI/180~) 
IF(ARS(GA)*LT*GD) GAaGD 
F R ~ R A T I O ~ C O S ~ ~ Z L ~ P S I ~ ~ P 1 / 1 8 0 ~ ~  
IF(ABS(GE).LT*GD) GB=GD 
CHIlPATAN2(SIN((XL-PSI)*PI/~8O*)~GA) 
CHI2 5 ~ T A N 2 ~ S I N ~ ~ f L ~ P S I ~ ~ P I / l 8 O ~ ~ ~ G ~ ~  

IF(hBS(DCHI).LT.GU) GO TO 606 
DCHI = (CHIP - CHIl)/RELR 
GC - DCHI/ARS(DCHI) 
GO TO 605 

606 GCP-lrO*(ZL-XL)/ABS(ZL-XL) 
605 DCHI = DCHI t ((ZL-XL)/ABS(ZL-XL)-GC)tPI/RELR 
6 0 O I = I t l  

CHI 5 CHI1 t RELG*DCHI 
EX1 ( I ) - RDSL ( COS ( CHI ) t6INPSI +SIN (CHI ) YCOSPSI1: 
EZl(1) = RDS*(CQS(CHI)fCOSPGI - SINCCHI)*SINPSItRATIO) t ZO 
CHI - CHI + DCHI 
EX'L(1) - RDS*(COS(CHI)#-SINPSI t S HI)*60SPSItRATfO) t XO 
EZ2CI) * RDSX(COS(CH1)XCOSPSI - 8IN(CHII*SINPSI*RATI0) t 20 
CX(1) O.Jt(EXl(1) t EX2tI)) 
CZ(1) O*St(EZl(I) t EZ2(I)) 
DX = EX2(1) - EXl(1) 
DZ 0 EZP(1) - EZl(1) 
IF(hBS<DX)rLT*(.lE-l3)*R~S) DX I 090 
IF(ABS(DZ)*LTI(.lE-l~)*R~S) DZ = 0.0 
DS = SQRT(DX*DX t DZ*DZ) 
SINB(1) -DZ/nS 
COSE(1) = DX/DS 
NELG = NELG t 1 
HELG = NELG 
PRES(I)=PRESS 

LPTG(HAT)=LPTS(HAT)tl 
IC=LPTS(HAT) 
XLIN(ICvHAT)~EXl(I) 
ZLIN(ICvHAT)~EZl(I) 

IF(NELG.LT*NELR) GO TO 600 
IF(PRESS.EQ.0.) GO TO 700 

IF(PRESS*EQ*OI) GO TO 42 

XLIN(ICvMAT)=EX2(I) 
ZLIN(JCiHAT)=EZ2(1) 

XLIN(ICtlrMAT)~XLIN(l~~~'r) 
ZLZN(IC+lrMAT)~ZLIN~lrKAT) 
GO TO 44 

43 XLIN(IC+lrMAT)=%LIN(ICvhAT) 
Z L I ~ f I C t lrMhT)~ZLIN(I~~H~T) 

44 PR(UAT)=YRESS 
GO TO 700 

IF(NCODE.EQ.1) GO TO 43 



C 
c 
C 
El00 

15 

900 

49 

45 

4 4  

50 

53 
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m v I s I n N  OF STRAIGHT LINE SEGHENTS INTO ELEMENTS 

CONTINUE 
W R I T E ( 7 r l 5 )  NELRIPRESSIXOPZOPXL,ZL~~AT 
FORMhT(1H ~6X,I3~5(1XrG9~3)~30X,I7) 
DX = ( XL-XO ) /RELR 
UZ (ZL-ZO)/RELR 
DS = SQRT(DX$DXtDZ*DZ) 
I - I t 1  
SINR(1 )  = - D U D S  
COSB(1) = DX/DS 
E X l ( 1 )  = XO t RELG*DX 
E Z l ( 1 )  = 20 t RELtiSDZ 
CX(1 )  = E X l ( 1 )  t 0.5SDX 
CZ(1 )  = E Z l ( 1 )  t 0.5XDZ 
EX2(1 )  = E X l ( 1 )  t DX 
E Z 2 ( I )  = E Z l ( 1 )  t DZ 
PRES(I)=PRESS 

LPTS( f lAT)=LPTS(nAT) t l  
IC=LPTS(t lAT) 
X L I N ( I C r M A T ) = E X l ( I )  - 
Z L I N ( I C r f l A T ) = E Z l ( X )  
CONTINUE 
NELG = NELG t 1 
RELG = NELG 

IF(PRESSeEQt0.) GO TO 49 

IF(NELG.LT*NELR) GO TO 900 
IF(PRESSIEQIO.) GO TO 700 
I C = I C t l  
XL IN( ICrHAT)=EX2(1 )  
Z L I N ( I C i M A T ) = E Z 2 ( 1 )  

XLIN(ICtlrMAT)=XLIN(lvMAT) 
Z L I N ( I C t l r t l h T ) = Z L I N ( l , k A T )  
GO TO 4 6  
X L I N ( I C t l r M A T ) = X L I N ( I C 1 M A T )  
Z L I N ( I C t l r M h T ) = Z L I N ( I C , M A T )  
PR(MAT)=PRESS 
GO TO 700 
HAXJ = I 

FORMAT(I/SX,'*$t ERROR - NUMBER OF ELEMENTS EXCEEUS'r 

IF(NCODE.EQ.1) GO TO 45 

IF( I .GT.60)  WRITE 53 

* *  DIMENSION OF AmnYs.) 
C 

UO 52 11-1rNf lAT 

IF(NCODEeEQt1) GO TO 51 
IF(KXStKZS.L l .2)  GO TO 51 
DO 47 I I = l r N f l A T  
I C = L P T S ( I I )  
ICM=IC- l  
~ 1 = ~ X L I N ~ 1 , T I ~ - X L I N ~ 2 r I I ~ ~ ~ * ~ t ~ z L I N ( 1 , I I ~ - z L I N ~ 2 ~ I I ~ ~ ~ * ~  
A ~ ~ ~ X L I N ~ ~ C ~ I I ~ - X L I N ~ I C M , I I ~ ~ $ ~ ~ ~ ~ Z L I ~ ~ I C ~ I I ~ - Z L I ~ ~ I C M P I I ~ ~ ~ ~ ~  
I F ~ X L I N ~ 1 ~ I I ~ / ~ 1 ~ L T ~ . 0 0 0 0 1 r A N D I Z L I N ~ I C I I J ~ / A ~ ~ L T ~ ~ ~ 0 O ~ l ~ ~ O  TO 4R 
I F ~ Z L 1 N ~ 1 ~ l I ~ / A 1 ~ G E t ~ O O O O l ~ O R . X L 1 N ~ I C 1 1 I ~ / A ~ ~ G E t ~ O O O O l ~  GO TO 47 

I C = I C t l  
X L I N ~ I C t 1 - I I ) = X L I N ( I C , I I )  
ZLIN(ICtlrII)=ZLIN(ICvIl) 
XLTN(ICPI I )=O.O 
Z L I N ( I C P I I ) = O , O  

52 L P T S ( I I ) = L P T S ( I I ) t l  

48 LPTS(II)=L YTS( JI).C~ 

47 CONTTNUE 
51 IF(f lAXI.EQ.0) ti0 TO 932 
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c 
C 
C 
c 
C 
C 
C 
C 
C 
C 
c 

DETERMINATION OF COEFFICIENTS I N  EXYRCSSIONS FOR STRESSES 
INDUCED EY FICTITIOUS Lonm 

THESE-COEFFICIENTS? WHEN MULTIPLIED BY THE m n c T I o m 9  GIVE 
TWICE THE STRESS CHANGE. 
DM= 2 * SHEAR STkESS (1) DUE TO SHEAR TRACTION (J)  
RNM= 2 1t NORMAL STRESS (I) DUE TO SHEAR TRACTION (J) 
DN= 2 1t SHEhR STRESS (I) DUE TO NORMAL ~RACTICIN (J) 
RNN= 2 8 NORMhL STRESS (I) W E  TO NORMAL TRACTION (J)  

BMN= 2 1t DIRECT STRESS? PARALLEL TO THE ELEHENT? DUE TO SHEAR C 
~ C TRACTION (J) 

C BMM- 21t DIRECT STRESS? PARALLEL THE ELEMENT? DUE TO NORMAL 
C TRACTION (J) 
C 
c 

I r 
105 DO i o 1  I P i rnnx I  

CXN(1) = CX(1)  
CZN(1) = C Z l I )  
I F ( N N I G T ~ O )  GO TO 1 0 4  
COS2Bi 5 2tO X ( C O S B ( I ) ) Y t 2  - l o 0  
S I N 2 E I  = 2tO 1: S I N B ( 1 )  It COSR(1) 
IF(eN0ToGAUSS) GO TO 1 0 4  
FACS-1 0 

C X N ~ I G P ~ ~ C X ~ I ~ t ~ 2 8 8 6 7 5 t o - E X 1 ~ I ~ ~ E X l ~ I ~ ~ ~ F A C  
C Z N ( I G P ) ~ C Z ( I ) t t 2 8 8 6 7 J X ( E Z 2 ( 1 ) - E Z l ( I ) ) X F A C  

DO 990 IGP=192  

I 990 FACzFACt2  e 0  

BMM(I,J)=O. 
PMN(IIJ)=O. 
B N M ( I ? J ) = O t  
ENN(IIJ)POI 
D H ( I ? J ) 4 .  
D N ( I ? J ) = O t  

TK n 010 
T L  0.0 

. TM = oto 
TN * OtO 
TO = 010 
TP = OtO 
DO 102 t iXU = l r t i X T . 2  

104  DO 118 J = 1 r M A X J  

DO 991 IGPelr2 

~ 

KX = 2- KXU 
RX = KX 
DO 102 K Z U = l r K f T ? 2  
tiZ = (2 -KZU) t ( l -KAS) tKAGtKX 
RZ = KZ 
COSBJ = RX*COSB(J) 
S I N E J  = RZSSINR(J)  
E X l J  R Z X E X l ( J )  
E X 2 J  = RZSEX2(J)  
E Z l J  R X t E Z l ( J )  
EZZJ c: RX*EZ2(J)  
LL K X + K Z - 2 t l O t ( I - J ) + 1 0  
I F ( L L t E Q . 0 )  GO TO 135 

C 
c RNtLOCAL Z rRMl=LOCAL X l r  
C HSQ2s: RADIUS 2t 
C 

*RN =z (CZNt IGP)  - EZ1J)YC 
R M l  .I (CXN(IGP) - EX lJ )%CUSbJ  - (CZN(1GP) - E Z 1 J ) t S I N b J  
RH2 = (CXNtIGP) -EX2J)XCOSPJ - (CZN(IGF') -, E Z 2 J ) t S I N B J  
IF(RN.NE.0.) GO TO 1352 
1F(RHt tEQ.0, ) 

R M 2 ~ ' t 0 0 0 1 ~ H H l S R X * R Z  

GO TO -1353 
IF(RH~.NE.OI) GO TO 1352 

R n i m ( i . o t ~ z * R x * o ~ o o l ) * R n i  
U 

GO TO l35? 
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140 

138 
i 39 

135 
1351 

137 

io2 

991 

118 

98 
101 

C 
C 

1353 R~l=O.OOOl$RM2*RZ*RX 
RM2~(1~0-RZbRXY~OOOl)*RM2 

1352 RSRl = RHltRHl-t-RNXRN- - ' . ._ 
RSR2 = RM2tRM2 t RNORN 
TB=RNtRNtRHlXRM2 
IF(DEBUG1) WRITE 140rIrJ,RN,RMlrRM2rEZlJrEXlJr 

FORHAT(lXr215rlP8E12.4) 
tEZ2JrEXZJvTB 

IF((TB)rNE*O*O) GO TO 138 
Tn=SIGN(PIr(RHl-RH2)SHN) 
GO TO 139 
TA = 2rOXhTAN2((RH1 - RH2)*RN,(TB)) 
TC 2.0 t R N  Y (RMl/RSOl RM2/RSQ2) 
TD ( R N t t 2  - RMltt2)/RSRl - (KN*Xt2 - RM2**2)/RSR2 
TE = ALOG(RSRl/RSR2) 
COS2F = 2*0t(COS2BIt(COSBJtS2 - 0 . 5 )  t SIN2BI1SINBJtCOSBJ) 
SIN2F = 2.Ot(SIN2EIX(COSBJtt2 - 015) - COS2BI*SINBJXCOSBJ) 
TB = 2eOXPI 
T C  010 
TD = 0.0 
TE 0.0 
C082F 1 e 0  

SINSF = 0.0 

GO TO 137 

CONTINUE 
TK = TK t TDtRX*RZ 
TL = TL t TE 
TM = TM t (TD +.TA*TE)tCOS2F t (TC - ThtTR)XSIN2F 
TO = TOt(TDtTAITE)*SIN2F-(TC-Tn$TE)XCOS2F 

CONTINUE 
BKM(IIJ) = BHH(IrJ)t(TL t TH) t TJ 
RM(N(1rJ) = EHN(IvJ)t(TK t TN) t TJ 
RNH(IrJ) = BNH(IrJ)t(TL - TH) tTJ 
PNN(1rJ) = BNN(IrJ)t(TK -TN) t TJ 
DM(I,J) = DH(1rJ)tTO tTJ 
DN(IvJ) = DN(1rJ)tTP *TJ 

CONTINUE 

TN TN t (((1.0-TA)*TR-TC)*COS2F t <TDt(lrO-TA)tTE)$SI~2F)tRXtRZ 

TP TP t (((lrO-Th)tTR-TC)*SIN2F ( T D t ( l . O - T A ) * T E ) t C O 8 2 F ) * R X R Z  

IF(.NOTeGAUSS) GO TO 118 

BMM(IPJ)=BMH(IPJ)/~. 
BMN(IrJ)=BMN(IrJ)/2r 
RNH(IPJ)=BNM(I~J)/~. 
RNN(IIJ)=BNN(IIJ)/~~ 
DM(IvJ)=DM(IvJ)/~. 
DN(IPJ)=DN(IIJ)/~. 
CONTINUE 

WRITE 98rIi(RHM(I,J)rJ=1,10) 
WRITE 98rJ,(FflN(IrJ)rJ=1,10) 
WRITE ?8,Ir(RNM(IrJ)rJ=lrlO) 
WRITE 98rI.(ENN(IrJ)1J=1,10, 
WRITE 98rlr(DH(lrJ)rJ=lrlO) 
WRITE 98r11(DN(I*J)rJ=lrlO) 
F O R M A T ( ~ X ~ I S I ~ P ~ O E ~ ~ ~ ~ ~ )  

IF(*NOT.DERIJGl) GO TO 101 

CON T I W E  
M = O  
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C 
C . DETERMINATION OF PRESSURE DIFFERENCE 

DO 435 x=irmnxI 
CALL SZONE(CX(I )~CZ(I )~PRESS,XL~NIZLIN,LFTS~PR) 

435 PRSS(I)=PRESS 
C 

113 FOHMAT(//~XI'PRESSUHE OF BOUNDARY ELEMENT OR INTER'r 

C 
C 
C DETERMINATION OF BOUNDARY TRACTIONS EQUIVALENT TO FIELD STRESSES 
C ADD THE CHANGE IN PRESSURE TO THE FIELD STRESS 
C 

IF(DEBUG) WRXTE i 1 3 r ~ P R S S ~ I ~ r l ~ l ~ ~ n X ~ ~  

t'IOR POINT'r/5XrlOGlO.3) 

DO 100 I - 1rMAXI 
IF(ICODE.EQ.1) GO TO 328 
FPZ(1) = GAMMAtCZ(I)tFRSS(I) 
FPX(1) f FSRt(FPZ(I)-PRSS(I))tPRSS(I) 
GO TO 329 

328 FPZ(1) = FPZZtPRSS(1) 
FPX( 1) - FPXXtPRSSt I) 

\ 329 IF(NNIGT~O).GO TO 100 

tY(SINB(I))tt2) 

RMcI) = PNH(1) 
QN(1) - PNtII . 

PNH(1) e 2.0I(FPX(I) -FFZ(I))XSINB(I~XCOSB(I) 

100 CONTINUE 
IF(NN.GT.0) GO TO 108 

C 
C ADDITION OF BOUNDARY TRACTIONS DUE TO BOUNDARY LOADS 
C 
106 READ(ltl9) LPlrLP2rDPXrBPZ 
19 F O ~ M h T ~ 5 X ~ I 5 ~ 5 X ~ I 5 ~ Z ~ l O ~ O ~  

IF(tP1eERrO) GO TO 404 
WRLTEC7r20) LPlrLFZrBPXrBPZ 

20 FORMhT(///7Xr'ELEMENTS.rZS,' TO S t .  HAVE HORIZONTAL APPLIED TRA' 
Sr'CTIONS OF'rF10.3 ERTICAL TRACTIONS OF'rF10*3///) 
DO 107 I = lPlrLP2 
PNM(1) sz PNM(1) - 
GO TO 106 

PN(1) PN(I)*2.0* 

107 CONTINUE 

C 
c ADDITION OF EFFECT 
C 
404 IF(MAXI*ERrMhXJ) GO 

MM=MAXItl 
DO 111 IslrMAXI 
PKESM(I)PO* 
PRESN(I)=Or 
UO 110 J4lMrMAXJ 
PRESM(I)rDN(IrJ)XPHES(J)tPR€SM~I) 

IF(DEBUG) WRITE 109rIrPRESN(I)rPRESM(I) 

PNM(I)=PNM(I)+YRESM(I) 

110 PRESN(I)nBNN(IrJ)XPRES(J)i.PRE~N(I) 

109 FORMAT(lXrISr* NO 

111 PN(I)=PN(I)tPRESN(I) 
C 
C 

C 
t N OF FICTITIOUS L m n s  

400 DO 401 I = irnnxr 

no 402 J = ipmnxI 

RHI = PNM(1) 
CJNI = PN(1) 

IF(1.EQ.J) GO TO 402 
OH1 = OH1 - DM(IrJ)XRH(J) - DN(IrJ)*(RN(J)) 
ON1 O N 1  - BNH(I.J)*QM(J) -BNN(I*J)*(ON(J)) 

'cs 

A@? CONTINtlE 
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C Ef4lJ'tTION 1: rlM $ Q M l  t DN 1: R N l  = OM1 
C EOUATION 2:  ENM $ QM1 t EtNN 1 ON1 = ONI- 
C SOLVE THE TWO EQUATIONS FOR THE FTCTITIOUS Tl+ACTIONCi 
C WHICH ARE TWICE THE APF'I-IED SlRESS 
C QM1 AND ON1 ARE THE F I C T I T I O U S  TRACTJONS 

OENOM = P N N ( I t I ) S I ~ M ( I t I )  - 18N(ItI)$ENM(ItI) 
RM1 = (RMIXHNN( I t1 )  - QNI*DN(I t I ) ) /L lENOM 
RN1 = ( Q N I t D f l ( 1 1 1 )  - RMIYRNM( I t I ) ) /~ lENOM 
TOLM=ABS(QM(l)-QMl> 
TOLN=ANS (RN ( I ) -W1) 
RM( I )=C)Ml 
R N ( I ) = R N l  
TOLl=AMAXl(TOLNITULM) 

4 0 1  CONTINUE 
M = M t l  
I F ( ( T O L l . G T , T O L ) + A N D . M . L T I N C Y C )  GO TO 400 
IF(TOL1.R'T.TOL)WRITE 9 8 0 t T O L 1  

980 FORMAT(/ / /7XtmTHE SYSTEM DIIf NOT CONVERGE: MAXIMUfl ' 
$'ERROR I S  'tG10.4//) 

IF(TOL1.LE.TOL) WRITE 981tM 
981 FORHAT(/ / /7XtaTHE SYSTEfl HAS CONVERGED AFTER'vISI' ITERATIONS'/ / )  
C 
C DETERMINATION OF STRESS COMPONENTSI PRINCIPAL STRESSES 
C AND DJRECTXONS 
C 

108 110 500 I = l t f l A X I  
SMI 2 .OY(FPX( I ) )  
S N I  = 2.01: (FPZ(I ) )  
SNMI = 0.0 
IF(NN.GT.0) GO TO 4 0 5  
SMI 2 + O $ ( ( F P X ( I )  - F P Z ( I ) ) X ( C O S B ( I ) ) $ $ Z  t F P Z C I ) )  
S N I  = S + O $ ( ( F F X ( I )  - F P Z ( I ) ) t ( S J N N ( I ) ) Y d 2  t F F Z ( 1 ) )  
SNMI = 2 + O $ ( F P X ( I )  - F P Z ( I ) ) $ S I N E ( I ) t C O S R ( I )  

405 a0 501 J = l r f l A X J  
C ADD EFFECTS OF F I C T I T I O U S  LOADS hND PRESSURE TRACTIONS 

S N I  = S N I  - B N f l ( I i J ) t Q M ( J )  - PNN(ItJ)*(QN(J)-FRES(J)) 
SMI = S M I - E M M ( I , J ) Y Q M ( J ) - e M N o t ( a N ( J ) - P H E S ( J ) )  
SNMI = SNMI - D M ( I t J ) * Q M ( J )  - D N C I t J )  t (QN(J ) -PRES(J ) )  

SI11 = 0.5*(SMI-SNI)  
TAUMAX = O+StSQRT(SDIXK!  t SNMI*12) 
S I G l ( 1 )  = 0 + 2 5 S ( S f l I t S N I )  t 'TAUMAX 
S I G J ( 1 )  0 . 2 5 b ( S M I t S N I )  - TAUMAX 
TR = 2rOtTALMAX t SNMI - SDI 
IF(TR+EQ.O*O) TR = 0100001 
ALPHA (I) = ( 1 8 O ~ / P I ) * A T A N ( l . O  t 2+1:SUI/TR) 

501 CONTINUE 

500 CONTINUE 
C 
C DETERMINATION OF INDUCED DISPLACEMENTS 
C 

DO 601 I = l t M A X I  - 
C X I = C X ( I )  
C Z I = C Z ( I )  
uxx=o. 0 
uzz=o .o 
[IO 6 0 2  J = l r M h X J  
110 603 h'Xll=.l t K X T t 2  
tiX-2-KXU 
RX = KX 
110 603 k Z U = l r t i Z T I 2  
K Z = ( 2 - K Z U ) $ ( l - h A S ) t k A S ~ k X  

. RZ = KZ 
COSHJ = HXtCOSH(J) 
S INNJ  = RZ$SINI i (J)  
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E X l J  = R Z t E X l t J )  

E Z l J  - R X Y E Z l ( J )  
E Z 2 J  - R X t E Z Z ( J )  
RN = < C Z I - E ~ ~ J ) t C O S f l . ~ t ( C X I - E X l J ) t S I N B J  
LL~KXtKZ-2t10*(I-J)tlOOO*NN 
IF (LLeEQ.0)  RN = 0 .0001 
I F ( A b S ( R N ) r L T ~ 0 . 0 0 0 1 )  RN=O.O@Ol 
R f l l  - ( C X I  - EX1J)XCOSBJ - ( C Z I  .. E Z 1 J ) t S I N B J  
Rf l2  = ( C X I  - EX2J) tCOSBJ - ( C Z I  - EZ2J)XSINBJ  
R S Q l  = SQRT(RfllXRM1 t RNXRN) 
RSQ2 = SQRT (RM2XRM2 t RNJrRN) 
RNO = -EZlJ#COSBJ - E X l J X S I N B J  

RMlO = E X l J t C O S B J  - E Z l J X S I N B J  
RM20 = EX2SCOSBJ. -  E Z 2 J t S I N B J  
RSQiO = SQRT(RH1QtRMlO t RNOtRNO) 
RSQ20 = SQRT(RM20XRfl20 + RNOSRNO) 

EX2J RZlrEX2(J) - 

I F ( A B S ( R N O ) . L T ~ O ~ O O O l )  RNO * 0.0001 

I F ( R S Q l O I L T ~ 0 ~ 0 0 1 )  RSUlO 0.001 
IF(RSQ20.LT.0.001)  HSQ20 = 0.001 
I F ~ A B S ~ R N O ~ I L T ~ ~ I ~ ~ ~ ~ I ~ N D ~ R S Q ~ ~ ~ L T ~ O I O O ~ ~  RSR2O 01001 

TR = RNOtATAN2((Rfl20 - RfllO)XRNO~(RNOXRNO t RMlOtRM20))  
TS = RNOtALOG(RSQ20/RSQ10)-RNtALOG(RSa2/RSal) 

1 - RNtATAN2((Rf l2  - Rf l l ) tRNr(HNYRN t RMlYRM2)> 
TT TUX(RM20tALOG(RSQ20) - Rf l lOthLOG(RSQl0)  - R f l 2 t h L O G  

Ufl = TUt(TSt(QN(J)-FRES(J)) tRXIRZ - ('TTtTR 
UN = T U t ( T S t Q M ( J )  - (TTtRM2O-NMlO-RM2)Rfl l -TR)tRXXRtX(aN 

UXX UXX-UMXCOSBJ-UNSSINBJ 
UZZ = UZZ + UMXSINBJ - UNtCOSBJ 

t R f l l Y A L O G ( R S Q l ) - R M 2 O t R M l O t R M ~ ~ ~ M l + T R )  

t P R E S ( J ) ) )  

RSQ2 1 

J)- 

603 CONTINUE 
6 0 2  CONTINUE 

UX(1)  = uxx 
UZ(1)  = uzz 
W R I T E ( 7 r l l 9 )  NN 

6 0 1  CONTINUE 

119 F O R H A T ( ' ~ ' ~ ~ X P ' N N  ='r13) 
IF(SIGCIEQIOIO) GO TO 320 
I F ( N N * G T * O )  GO TO 611 
WRITE(7r612)  

612 FORMAT(1H ///r4X*82HSTRESSES AND DISPLACEMENTS v AND FAILURE CRITE 
1RIC)N AT CENTERS OF BOUNDARY ELEMENTS) 

WRITE (7~316)  
316 FORHAT(/~XI'XXX ALPH I S  THE ANGLE FROM THE E 

t A J O R  PRINCIPAL STRESS') 
GO TO 613 

611 WRITE(7r614)  
6 1 4  FORflAT(1H / / / r4Xv8STRESSES AND LACEMENTS, AND F(\ILURE CRITER' 

I r ' I O N  AT OBSERVATION POINTS') 
WRITE(7v315)  

315 FORHAT(/7X?'XXX hLPH I S  THE AN OSITIUE Z-AXIS TI, THE 
8 MAJOR PRiNCIPAL STRESS'/) 
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c .  
C CHECK FOR SHEAR FAILLIRE 
C 

TSC = SRRT(RhYSIGCXSIG3(I)tS*SIGC*SIGC) 
FOS(1) = (SIG3CI) t TSC)/SIGi(I) 
IF(FOS(I).GTel+O) GO TO 621 

TCM = 0 25tSIGC*RM 

TCM2 OeSYTCM 

-TAUM = O+Jt(SJBl(I) - SIG3cI)) 
TCMl = SRRT(TAUkS1AUM t TAUhXTCh) 

C CHECK FOR TENSILE FAILURE 
C 
622 7CT RM - SRRT(FIhtRM t 4.0XS) 

F O S ( 1 )  = SIGCdTCT/(2.0XS~G3(X)) 
IF(FOS(I).GT+l*O) GO TO 621 
FETACI) = 010 
wRITE(71617) ~ I ~ C X ~ I ~ ~ C Z ~ I ~ r P R S S ~ I ~ ~ S I G l ~ I ~ r A L P H ~ ~ I ~ ~  

1 UX(I)IUZ(I)I~OS(I)IRETA(I~) 
617 FORHAT(1H I I ~ I ~ ( ~ X I G ~ ~ ~ ) ~ ~ G ~ O ~ ~ I ~ ( ~ X I G ~ ~ ~ ) I ~ X I ~ ~ H T E N S I L E  FAILURE) 

. .  GO TO 620 
621 W R I T E ~ ~ ~ ~ ~ ~ ~ ~ I I C X ~ I ~ I C Z ~ I ~ ~ P R S S ~ I ~ I S I G ~ ~ I ~ ~ S I G ~ ~ X ~ ~ A L P H A ~ I ~ I  

1 UX(I)rUZ(I)rFOS(I)) 

*E 1 
625 FORMAT(1H I I ~ ~ ~ ( ~ X ~ G ~ . ~ ) I ~ G ~ ~ ~ ~ I ~ X I ~ ~ . ~ I ~ X I ~ ~ N ~ A I ~ X ~ ~ ~ . H N O  FAILUR 

620 CONTINUE 
GO TO 450 

WRITE(7r421) 

lARY ELEMENTS) 
GO TO 425 

422 WFr I TE ( 7 I 423 ) 
423 FORhAT(1H ///I~XI~SHSTRESSES AND X'IISF'LACEMENTS AT INTERIOR POINTS) 
425 wRITE(71430) 
430 FORMAT(1H ///r3X12H I I ~ X I ~ H C X I ~ X ~ ~ ~ I C Z ~ ~ X I ~ H P F C E S S U R E I ~ X I ~ H S I G ~ I ~ X  

420 IF(NNeGT.0) GO TO 422 

421 FORMAT(1H / / / I ~ X I ~ ~ H S T R E S S E S  AND PISPLACEMENTS AT CENTERS OF POUND 

1 P ~ H S I G ~ I ~ X P ~ H A L P H A I ~ X I ~ H  UXI7XI3H UZ) 

* UZ(I)rI=l?MAXI) 
W R I T E ~ ~ ~ ~ ~ ~ ~ ~ I I C X ~ I ~ I C Z ~ I ~ I P R S S ~ I ~ I S I G ~ ~ I ~ I S I G ~ ~ ~ ~ I A L P ~ ~ A ~ I ~ I U X ~ I ~ I  

440 FORMhT(1H ~I416(lX1G9*3)~2G10+4) 
450 CONTINUE 

IF(NN.GT.0) GO TO 503 
C 
C 
C DETERMINED BY LOOPING TO 105 
C 

GENERATION OF JNTERIOR POINTS? STRESSES AND DISPLACEMENTS 

Y32 NN = NN t 1 
IF(NN+GT*l) GO TO 503 
COS2BI = 1.0 
SIN2BI = 0.0 
NP=O 

504 READ ~ ~ ~ I N X P I N Z P I X M I N I Z N I N I X ~ A ~ ? Z M A ~  

474 FORMAT(~ISI~F IO) 
IF(NXP*LC+O) GO TO 505 

DX=O. 
ni-0. 
IF(NXP.EQ+l) GO TO 475 
DX=(XHAX-XMIN)/(NXP-l) 

475 IF(NZPeERe1) GO TO 476 
DZ=(ZMAX-ZMIN)/(NZP-l) 

476 CONTINUE 
ao 502 I=irNxP 
ao 502 J=I,NZP 
NF=NP+i 
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, 
, 

CX(NP)=XMINt ( I - l ) tUX 
1 CZ(NP)=ZMINt(J- l ) *DZ 
1 IF(KXStKZS.ER.0) DO TO 502 

IF(CX(NF)+EQ.O*) C X ( N P ) ~ r 0 0 0 0 0 0 0 0 0 1  
I F ( C Z ( N F ) r E R ~ O ~ ~ C Z ( N P ) o 1 0 0 0 0 0 0 0 0 0 1  

I 502 CONTINUE 

505 HAXI=NP 
GO TO 504 

GhUSS=tFALSE+ 
GO TO 109 

503 CONTINUE 
STOP 

, END 
I .  SUBROUTINE SZONE(X,YIPRESSIXLIN,YL~NILPTSIFR) 

DIMENSION X L I N ~ 6 0 r 3 0 ~ r Y L I N ~ l O ~ 3 0 ~ ~ L Y T S ~ ~ O ~ ~ F R ~ 3 0 ~  
C 
C 
C S I R  TO DETERMINE THE SOIL  ZONE OF A YOINTI  

1 C 
c LOOP THRU ALL THE LINES. 

FRESS=O I 
DO 40 H = l r 3 0  
L I N E  - tl 
NUflCRS=O 
IF(LPTS(L1NE)rLE.O) GO TO 40 

hCRSSzleE30 
i C LOOP THRU THE SEGMENTS WHICH MAKE UP THE LINE. 

ISEGS=LPTS(LINE) 
DO 30 IL INEr1 , ISEGS I 

i C CROSS DRAWS A UERTIChL L I N E  THROUQH XIYI ON RETURN, 

I C IFABOU=-l I F  THE VERTICAL L I N E  INTERSECTS THE SEGMENT BELOW XIY 
C IFhBOUZl  I F  THE VERTICAL L I N E  INTERSECTS THE SEGMENT ABOVE XIY 

c ZFhHOV=O I F  THE VERTICAL L I N E  DOES NOT INTERSECT THE SEGtlENT. 
C YCROSS = THE Y-unLuE OF THE INTERCEPTION. 

ALL C R O S S ~ I F A B O V ~ Y C R S S ~ X ~ Y ~ X L I N ~ I L I N E ~ L I N E ~ ~ Y L I N ~ I L I N E ~ L I N E ~ ~  
F ( 1 F A B O V ~ 2 0 r 3 0 1 1 0  

C CROSSING ABOVE X I Y ~ I S  I T  LOWER THAN THE PREVIOUS LOWEST FOR THIS 
C ZONE 
i o  ncRss=AMINi(YcRssIncRss) 

I 

CROSSING BELOW X t Y *  INCREMENT 1HE CROSSING-COUNTER* i 
1 IF(MOD(NUMC~SI~).ERIO) GO 70 40 

C THE POINT IS WITHTN THE CLOSED 1.0IJT'. 
C FIND THE CUHULA'I Y VE PRESSURE + 

I 

FRESS=PRESS+PR(LINE) 
40 CONTINUE 

1 50 RFlURN 
RETUkN 
END 

, 
~ 

I 


	ABSTRACT
	1.0 INTRODUCTION
	HAND CALCULATIONS
	2.1 INTRODUCTION
	2.2 SOLUTION METHOD - GENERAL THEORY
	2.3 CAPABILITIES AND LIMITATIONS
	2 4 USABILITY
	2 5 PERFORMANCE ON S
	2.6 CONCLUSIONS
	2.7 REFERENCES

	3.0 NUCLEUS-OF-STRAIN MOD BS
	INTRODUCTION
	SOLUTION METHOD - GENERAL THEORY

	CAPABILITIES AND LIMITATIONS
	USABILITY
	PERFORMANCE ON SAMPLE PROBLEMS
	CONCLUSIONS
	LIST OF SYMBOLS
	I 4.3 CAPABILITIES AND LIMITATIONS
	AND CASE STUDIES
	5.6 CONCLUSION
	5.7 LIST OF SYMBOLS
	5 8 REFERENCES


	FINITE-ELEMENT STRESS-STRAIN FLOW MODEL "CONSOL3"
	6.1 INTRODUCTION
	6.2 SOLUTION METHOD - GENERAL THEORY
	6.3 CAPABILITIES AND LIMITATIONS
	6.4 USABILITY
	AND CASE STUDIES
	6.6 CONCLUSIONS
	6 0 7 REFERENCES

	MASS-AND-HEAT FLOW MODEL "CCC"
	7.1 INTRODUCTION
	7.2 SOLUTION METHOD - GENERAL THEORY
	7.3 CAPABILITIES AND LIMITATIONS
	7.4 USABILITY
	AND CASE STUDIES
	7 0 6 CONCLUSIONS
	7.7 LIST OF SYMBOLS
	7.8 REFERENCES

	MODEL "NFOLD"
	8 1 INTRODUCTION
	8.2 SOLUTION METHOD - GENERAL THEORY
	8.3 CAPABILITIES AND LIMITATIONS
	8.4 USABILITY
	AND CASE STUDIES
	8.6 CONCLUSIONS
	8.7 REFERENCES

	Material Properties
	Sample Problem Summary
	= r/R and rl = D/R
	= r/R and rl = D/R

	Surface Displacement Sample Problem
	Surface Displacement Sample Problem
	CONSOL3 Solution Efficiency
	NFOLD Element Types



