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ABSTRACT

In this report we review current calculations of pion condensation

phenomena in symmetric nuclear matter. The RPA and MFA methods are

compared. Latest 1resu11:s2 with a relativistic MFA theory constrained

by bulk nuclear properties are them presented. The differences between

equilibrium (condensation) and non-equilibrium (dynamic) instabilities
are furthermore discussed. Finally, two-proton correlation experiments
alued at looking for critical’ scattering phenomena and twe-pion correla-

tion experiments aimed at looking for pion field coherence are analyzed.
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In this report I will first discuss the status of current calculations

of nuclear matter. in the in_ternediote density'range. Po~ 4po, where Py =
0.145 fm » focusing on the topic of pion condensation. Second, I will
discuss current and planned expériments using relativistic nuclear
collisions to search for possih'le signatures of pion field coherence in
this nuclear deasity range. |

Since the mid 1970's, there hss been much theoretical vorkl exploring
the possibilities of new phases of nuclear matter at high densities. This
work was stimulated in part by the need in astrophysics to know the
&qnla;tionaof state of dense nuclear matter in calculating supernova
explosions and pro'p'erties'of neutron stars, and in part by the new
generation of nuclear accelerators that promised to create dense nuclear
matter for the first time in the laboratory. Also, the sheer fun of
speculation has motivsted much work in this area. Had ve a eomplete
solvable theory of vhadronic Ainteractions, s/‘mh speculations would of course
be superflmus.: Boweyer, for now ne are obliged to speculate and extrapo-
1ate into the lmknovn density snd temperature (p,'i') domains using rather
simplified approximation schemes. Progress in this field is then measured
by the extent to which new "realistic" features are possible to incorporate
into any given scheme. For example, the recenmt progressz discusged in
Section II.C concerns our ability to incorporate the eonstraints imposed
by the known bulk properties of normal nuclear matter in a self-consistent
and covariant way into the theory of pion condensation.

In discussing different phases of nuclear matter we could start by

specifying the expectation values of various nuclear current operators
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where Y(x) 18 the nuclear field operator. (Non-relativistically only : -
T = {1,0} ® {1, 1:} are distinct.) In the normal (symmetric) nuclear
state, JP*O only for I' = l,Yo, both of which reduce non-reletiv:l.st:l.cally
to the nuclear density p. A state with J\-l = <wy Ys'l'tp> # 0 :ls, on the
other hand, abnoml and corresponds to what we call the pion condensed
phase. Our problem is to determine under what conditions are Jrq‘O‘f'or
certain T.

Clearly, we first need to know the interactions in all possible
spin and isospin channels. If QCD turns out to be the true theory, then

these interactions would be described by the exchange of one, two, or more

quarks between the nucleons as illustrated here.

Y'Y
e

'l'h:l.a van der Weels Ltype of interaction would be non;10c31 and involve
the unknown 'la!;ge distance properties of QCD. Such ferees are not

celcul.eble as.yet. llowever, an effective descriﬁt:l.on of these forces
may be poss:l.ble by :l.ntroducing 1nterpolat1ng weson fields to represent

.,hese mllt:lquark exchenge proceaaea in apec:l.f:l.c sp:l.n—:lsoap:ln channels.
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This 1s the historical approach to nucleon-nucleon interactions that we
follow here. Thus, an array of meson fields U(J“ - 0+, I=0), A
m(0,1), 17,0, p(1,1), ... is introduced with standard

Yukawa coupling

| x:"ﬁt = 50UV - g u by - e,p il

1 vH
-trfﬂau! VY YgTY 4 -oet (2)

It 1s clear that Eq. (2) caa only be expected to progide a
reasonable description of nuclear forces when the intrinsic quark structure
of the hadrons can be neglected. The relevant quantity here 1s the bag
radius nn of a hadron that,,leads to a critical density pc/po (r /RB) .
beyond which Eq (2) is likely to break down. High energy theorists3
insist that” Rn ~ l fn;"‘lo that Eq. (2) way, at best. barely hold at normal

,J\v 5

nuclear dsity (po - 0 145 fm = 1.18 fm) Low-energy nuclear

theartots®

have argued that RB ~ 0.3 fm so that Eq. (2) may hold up to
very high d:easities of ~§0 Py Not surprisingly, intermediste energy
(w-nucleus) theo:::l’sts5 have argued that By~ 0.72 fm, implying that

Eq. (2) has some limited domain of applicability, perhaps up to ~lop°
Needless to say, none of the above estimates is convincing. My prejudice

leans toward the last estimate and thus towsrd the applicability of some




effective meson field theory :in the -intermediate ‘density range, P ‘S»?A’po.
Having committed ourselves to.a Lagrangian involving :the-interpolat-
ing meson fields, we ‘are then confronted with the task of solving ‘the

following prototype coupled field equations

(3 -m+ BgO ~ B — BB T/2 + £y BT W =0 , (3a)
(o +m)o = gy - /30 , (3b)
(o+ n_)w .- £, 8,0 MY, TV . (3c)
Ouw, - aua“mv + m:,mu = _Eu'T’Yu"’ , (3d)
clgu.-vaua“ Byt 0, = sp{!:;vuw +axam}y (3e)

in standard Bjorken and Drell notation. Although Eq. (3) 1s as yet

intractahle, it shows clearly that

<pp> ¥ 0 - <> 40 |,
S <ﬁy‘u¢> $0 - <mu‘>'* 0 S
Cdnaere = e .
P YEYTE> 0 e <> 40,

Therefore, instead of specifying the expectation value .of the currents in
Eq. (1), we can specify a given phase by the expectation values of ‘the
various meson field operators. These expectation values reflect the
meson field configuration for. a given muclear state. In the. normal

symmetric. nuclear state, €0>#0, <w,>+¢ 0, and all other field
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expéctations vanish. .Ths:.point of ‘displayiig Bq. (3) is'to ‘emphasize the
- highly non-linear ‘structure ‘of ‘these equationa: Thus, it is quite possible
that Eq. (3) can be satisfied by several distinct field configurations:
{oy,7;,0,,p4}.
The study of pion condensation involves finding the conditions
under which < (x)> ¥ 0 as a solution to Eq. (3). ;Ihat differentiates
the calculations in the litetatutel is the nature of the approximation -
scheme used to solve Eq. (3) and the choice of couplings within that scheme.
Two main schemes have been used :1 (1) Random Phase Approximation (RPA)
Jand (2) Mean Field Approximation (MFA), although more sophisticated

variational methods have also been used. In the next section, methods

(1) and (2) are reviewed and then our new resultsz with MFA are discussged.

II. THEORY OF PION CONDENSATION

A. RPA Method

This method, proposed by Migdal and refined by Welse and coworkers
and many others,l searches for the pion condensation point by looking for
cgidstone modes in the sph—i@o&p:lu- (0",1) channel. A new prhase involves
the structural change of the ground state wavefunction brezking some
symmetry such as parity or isospin. The Goldstone theorem asserts that
when a symmetry 1is broken, then there must exist, in particular,a collective
mode of the syatem with zero excitation energy. To calculate the collec~
tive modes:in-a particular ’(J“,I) channel, we need, according to the
Lehmann ‘representation, only calculate the propagator A(uw.k) of the

meson field: with the same: quantum numbers. ' In terms of the proper
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self enmergy or polarization operator’, - H(m,i:), of’ that meson with wmass u
w50

Mk = [0 - - -TeplT (5)

The spectrum w(k) of collective mpd‘ei’,,iﬁ then read off from the singular-

ities of A(w,k) via
87 (u(k) k) = 0 : (6)

Recalling that the propagator :I.A(x,y) = <T(¢(x)¢(y))> measures the

amplitude for f:leld fluctuat:lons, we see that when there exists a

Goldetoue mode m(k) 0 for some k. then this means that it costs no
energy to induce a field fluctuation of wavenumber E in the medium,
Since the meson field is always coupled to some current Erw as in

Bq. (2) with the same quantum numbers, these spontaneous meson field

fluctuations lead ‘to spontaneous current fluctuations. Beyond the phase

‘transition point, when Eq. '(6)-has eolutions for complex w(k) = wy ® fvo .

then as shown for example in Ref.!7, thesé’ fluctuations grow exponentially
intime’, eY°t -ufit1): ¢etrtain® non—van:l.eh:lng values’ of <¢> 0 and
<JRY>i# 0 are'teached.™ OF course;” Ehe! ¢alculation’ oF the £indl- <¢>
1s beyond: the’RPA method=and réqidrés at leset the MPA method.

To calculate thé critical:dénsity of the phase transiticn, wé must

pearch for a value of the aenqity that solves ‘

@ oK = 0 . Q)

Tn actual calculations of ﬁi&n‘dén&eﬂnn&ﬁ,l I s approxiniated by

SuwoackG

the ° pion eelf energy due to the strong p-wave miN and mNA vertices.

t -
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together with en"effective ehort renge :l.nteract:lon g 'bet\;ieen patt:lcle-hole



' paits. .. This leads to the following structure of II. in symmetric..

SRR e

nuclear matter.

+1
T - i 1 A ~ (8)
1- s_';_;;_r(HN+HA) o

where lT.N is the nucleon particle-hole propagator (Lindhand function)

M0,k = f2 (k) Zm*pF/‘n' 9)

with £ R~ llm,", m* :l.s the éffective nucleon mass, pF is the Fermi momentum,
and F'n‘N 15 “‘theé TN fotm factor. The A particle-nucleon hole propagator

o, 1s given by

2, 2,2
I,(0,k) = -fAk A(k)

.

'A 37 . : (10)
where W) = 2.4 m, f; % 5/m;, and E_, is the A form factor.
Est:l.mation £or ‘the value of g' varies between 0.5+ 0.2 and 1s the subject
.-of, cpnsiderable theoretical controversy,-.

T,I;l,le;‘syftmctiomgl _:f,grmg_pf..llmggg.I[A,,,aite, eas:l,.l-yundetétood as follows:
Both My and, Tl describe the awplitude. for,the:pion.to create a virtual-
particle and hole excitation, in thelgmegl_;gnn_. -Therefore, the structure of

both gelf energies is the familiar. perturbation.forn

l<nla, .| Ipb>|?

T = Z S “an

G wtep(@) -u(g+k)

{ime

where mh(q) :ls the enetgy of the :I.nitial '\ucleou (hole) of ‘momentym q
that absorbs the pion with form momentum (m k) and w (q+k) is the energy
iR qrees S fon W

of the intermediate particle with momentum q+k. For HN the intermediate

wnl i ing pseelad oo




part}lcle d._e:izia(n?cflfeqn. 8o that Wy =Wy = =g ljlm* Eor.-I,I-Av;;herainteni'ed:late
) igartiej_.e E"?,,;‘..,A-;;:; Jresonance, go that w, - mﬁ,ﬁ';.,wA'-*,-Z'.lov;n".:i almost’
independent of k and q. Thus_,;__t_t:_le energy denominators for w=0 are
very different for Tl“ and HA
Because both nNﬁ and TNA interactions;are .p-wave, the numerator
|< :l.nt>lz « k . However, fmor‘nucliea_r. j:ntermediate states, Pauli principle
blncke eeenpied states and Ifqlgfintlﬂﬁﬂz « k2 n(q) (1 - n(k+q)), while no
Pen}li b;oclei’f!g Occurs for A and |<“|xint'|Aﬁ>|2 ® k_z-n,(g.) . Heremn(q) is
the Fermi d.;l_a.t:j:ﬂ?ution of occupled states. Because IlA‘ does not involve
Paul:l. blpck:l.ng and the energy demominator. is insemsitive to g, we can
a:lmply sum over q giving IIA =k plm as in Eq. (10). On the other hand,
Pauli blocking severely linits the sum over q- for IIN As k* 0 only those
momenta g,;meide the Fermi sphere that lie within a half: shell of radius
Pp and thicknesu k and oriented such that q° k >0 satisfy
n(q) (l-n(gfp) # 0. The number of states.in that shell :l.al'.p;fk'.é
The particle-hole energy demominator is then on.kIm:*'.r ~g0 finally we:
obtain IlN = k m pF as in Eq. (9), Even for k ~ pp, this form for I,
holde becense then "’p'!fk- < pFlm* ,. while ther sum:over q~‘gives p;'.in
A‘the nmnerator. Therefo;e. ye see that the forms of II and II Ly in .Eqs.. (9)

ST

‘and (10) are eas:l.ly underatood. .

wi
[

with H given by Eq. (@) » 8 typical Feynman many-body diagram that -

has been summed via Dy_son s equation in Eq. £5) s
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s atFrom: such’ graph:lcal analys:[s, it 1% cléar’ that (m*'O k*‘ 2m.") "pion" e
modes-are bagically colierent ‘mady-particle, many=hole’ 'e'xcitatio;asl of the
ground ‘state wavefuniction. Thése plons have very little to do with the
familiar laboratory jlons 0 = Vi + m1'rz . Alfh&uﬁﬁ this po:l.nt :I.s ;bir;l.ous
to most:workers in ‘the field; ‘there ‘{d “often nﬁféhuéc')infusi‘.on':a:isaut
‘expectatichs of copious pion production associdted *rith r;on céﬁdénéat:lon.

- Pion condensation simply ‘reflects ‘a 1onig-range correlation between the
- ‘spin-isospin components of the nuclear wavefunction. It certainly does
not:inply that there'are hundreds of real’ pions in the nucleus.
~ To get a feeling for the magnitude of the self enéréieé involved
- ::An Eqs. -(8-10), conmsider ILy, I, and ‘II' ‘for p= Pos P ~1.8m, g'=0.5,
o = mg, and for pion momentim k & 2m . Setting ?11’8 = P, =1, ve find
:;srllN;(O,Zm.")zl!'-'—Iolm: ‘and Ty & -211.."2 Thus; the Bumerator of Eq. (8) is
~ -12 m, whi. the denominatsr is ~2.5; o that H(0,2m) =~ -5 m”. Thus,
we see that:]l is-large and cancéls the kinetic energy ki+n\: = Smﬂ,z at
about -iormal densitfes, ' i 7 e Lo
2 ""Roi'éonslder the efféct of‘:"fin:l.té‘férm factors., Conveﬁtir)nally,
,m(k)‘ “SHIL(K) = A’-in,,Si(A ¥E%) % 1ol +ul) /A2 1s described by a
{‘mlondpe1é - fgrmtfactor with A~ 1 GeV. ﬁc}re, however, that this large value
of A does not require an assumption that tlie quark 'bags are small, In
Ref; (5); tHé £t factor ‘for the intermediate quark bag of radius
By = 0.72 fu was computed as ' E (k) = E (k) = éilzl(kn.n)‘/kkn = 1- (kr)?/10.
For k=2m - this in fact y:lelds the same result as the monopole form factor
with the large A \/—_ 51 RB = 970 MeV, g:l.v:lng F,.=F

™ . A
&fect 1s to reduce I[NHI ﬁy‘ .about 201 to.a vﬂluef -10 m." at normal

u‘ e P2

density., For m*<mN, this value is further reduced by a factor m"/mN
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We can cunveniently summarize the combined influence of IIA, g', and
F,"N on the self energy, II, in Eq. (8) by defining an effective TNN coupling

constant via

£ .\ ‘
= / eff = - 2 2 * 2
= \ T ) ﬂu feff k 2m pFlﬂ . (13)

Comparing it with Eqs. (8-10), this effective coupling comstant is

given by

2 z

£ P
2 1A Pr ]
ey 1? [1+ £ e

2 2
fogs Gopp) = &

2 2 2m* 1 fA Pp
' 2 im i 4

(14)
Although the form of this "constant" certainly does not look constant
as a function of Pps Table 1 shows that f:ff is actually very insensitive
tom* and p = 2p;/31r2, The remarkable property of Eq. (14) is that in
the density range o to .3p°, where we expect m* to vary between -

(1-0"'0-7)mN, f:ff‘ varies only by ~10%.

TABLE.JIT . Effes’:;}lyetm coupling f.¢¢ in units of fm for k = 2am,, g'=0.5,
' IF’m(k)lz- 0.81 incorporating correlations, A production and
form factors as a fimction of m* and density from Eg, (14).
- - .Compare f.¢f to fr = 1.41 fm in free space.

m"lmN p = p, 2p, 3p,
1.0 feff - 0.93 0.89 0.86
0.75 1.01 0.98 0.96

0.50 1.14 1.12 1.11
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We note that the idea of using an effective coupling to incorporate
A and correlatio"n‘e‘ffects was first pointed out in Ref. (8) in connection
with neutron matter. Sim:l.larly,}we will exploit the near density
indepen&ent ;‘Jf feff for symmetric matter to simplify mean field
calculations in Section II.C.

A last point," _j’ﬁ'e_ wish to stress in:connection with the pion self
eﬁerg} is '§t>he'néai;:“iﬁ;oi:or]éionality of Il to tige effective nucleon mass,
m’;(pf) . This meané that the driving force for condensation depends
sensitively on the deta_.s of the single particle-hole excitation spectrum
and hence on nuclear ‘structure physics. Therefore, pion condensation
calculations should only be carried out with models consistent with known
nuclear properties. An example of a model not consistent with nuclear
properties is the usual chiral model]'3 vhere m*=my. Since m*<mN.
the chiral model can be expected to oVerestimate <1I(x)>.

Thus far, we have discussed the pion self energy in cold (T=0)

E ﬁucle‘“ar—uﬁ:tt'ér:at"h:[ghr densities. Since we are interested in whether T
condensation can occur in rglafiv;;tic nuclear collisions, we need to

know also the effect finite T ~ 50 - 100 MeV has on the condensation,
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In Section III we will consider non-equilibrium effects on conderisation
as well,

At finite T, the plon self energy still hus the same Structure as
Eq. (11), but now the sum over occupied states involves the Fermi-Dirac
distribution rather than a step-function up. to ppé Since N(x,y) measures
the eotrelation function for spin-isospin density fluctuations between
points x and y, it is physically clear that at high T such: correlitions
must wash out. Hence, finite T suppresses:the pion self energy. We can
define a critical temperature, T.(P), analogous to the Curie temperature
in ferromagnets, such that <11(x)> % 0 only for T < Tc(p). In Fig. 1
we reproduce a figure prepared by Gudima and ‘l'oneevn comparing two
10,12

calculations of Tc(p). In addition, Fig, 1 shows the dynamical

trajectory of T vsg. p calculated via the intranuclear cascade code

of Ref, 1l. ’

The difference between calculations BGGIO and Gl?_ lies in the choice
of form factors and g' and reflects typical theoteti‘eggzl{iz\meerta;gties in
the calculation of T (D) 'l‘he other curves 1n Fig. 1 show the calculated
path af temperaturee and dens:l.tiee followed in the reaction Ar+Ca at
0 5 GeV/A and ue+u at 2 1 GeV/A. These ,curves 111uetrate that high
enough dens:lt:l.ee together v:l.th low enough temperatures can be obtained
for pion condeneation to occur via relativistic nuclear collisions.
However, the time spent .in the T condensation region is only t*~ (3-15) fm/c
depending on the particle T (D) curve. As shown in Fig. 7 of Ref. 7, the
time required to create one 'rr+1r or 7' 1r condensate (m-o) palir w:l.th momenta

k and -k is €~ 3 fm/c. Therefore we cannot expect a fully developed L

condensate to form in euch nuclear collisions. However, wve can expect

PR



the spin-isospin. fluctuations associdted with T condensation to increase
significantly (mee Eq. (56)) during the interaction time, As we
discuss in- Section-III-it may be possible ‘to search for evidet;ce of these
increased fluctuations by looking for critical scattering phenomenon.
-Although it is unlikely: that the pion field reaches its final
expectation value <11(x)> -in a nueclear collision, it is interesting to
-compute what the maximm amplitude of the pion field <7> would be. In

the next section we raview the mean field theory methods for calculating

<T>

~

B. MFA Method

For the problem of T condensation, this method was first used by
Sawyer, Scalapino, Baym, Campbell, Dashen, Manassah, and others.l
For symmetric nuclear matter, MFA was used recently in Ref, 13. 1In
Section II.C the most recent appl:lcationz of H?A for symmetric nuclear
matter W11l be described.

’iiilﬁl"ié‘;coﬁiilétély equivalent to the Hartree approximation. The
ground state wavef\mct'.l.on |¢ > '.l.s assumed to be a s:l.ng.l.e Slater determinant
composed of quas:l-péi:i:iéle wavef\mctions satisfying Eq. (3a) with all
meson field “pefators replaced i by the:ir"expectation values:

{o, u,[_l‘, TS e, <"vu>." <m>, ... }. These expectation values are
' computed in turn from Eqs. (3b-...), by replacing the current operators
‘on the Tight-hand side by their expeétation values .as determined by |¢°>.
Since ‘|$°>" 18 a function of the mean fields itself, the <4, ] ¢P¢|¢o>

are Functions of {<0>, V>, . }. Therefore, Eqgs (3b -...) reduce

to attranaciandtal set of equatidns for determining the self-consistent
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field configurations,

In MFA, two-, three-, etc. particle correlations are neglected. Why
can we hope to get away with such a crude approximation? Correlations
lead to a finite probability € for finding a given nucleon in a state
other than single-particle orbitals occupied in |¢°>. This leads to
Bethe's iamiliar observation that the overlap of |¢°> with the true ground
gtate wavefunction in <\p°> is <¢° H)o> ~ (l—t-:)A ~ e'-EA << 1 for many-
body systems. Therefore, |¢°> is always a very very crude approximation
to |¢!o>. Nevertheless, if we are interested only in the expectation
values of few-body operators, then |¢°> may be adequate. For example,
consider a one-body operator, A = Zaib'libi. Since <w° |bIbi| v,> =
B(E, ~w,)(1-€,) + 6w, ~E)e,, while <¢o-|b’{bi|¢o> = 8(Ep-w),
< lAl4y> =~ (1-<e>)<¢ [a]9,> +0(€). Similarly the error made in
evaluating m-body operators using |¢°> is O(me)., This probability, €,

for exciting a particle out of a given orbital, is roughly ¢ = V

corr P»

where vcor’

£ 1s the :correlation volume in which the interactions are so

strong that excitations out of the Fermi sea are possible. Typically,
Vo ™ mES /3 where r _ ~0.5-0.7 fa. Since p~ (4wr /)7,

r, =~ 1,18 fm, we estimate € ~ 0,1-0.2. The Pauli principle helps il'teep
vcorr ‘s0 small, This 18, of course, why the naive shell model of nuclear
structure has been so successful for the past 40 years, and why Hartree-
Fock and time-dependent Hartree-Fock methods have been able to provide
much useful insight into nuclear structure and reactions.

We can see though that MFA becomes less reliable as the density

increases. By 4p,, the MFA results are thus subject to considerable

uncertainties, In using MFA to extrapolate to the intermediate density
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region, this increasing uncertainty must always be .kept.in mind,
To help overcome part of the deflciency dn this method, the coupling
constants can be replaced by effective ones to simulate the effect of
correlation and other higher order effects, ' For example, we saw in: Eq.
Eqg. (8) that correlations via the g' parameter result in significant
. (~50%) quenching of spin-isospin density fluctuations, However, this
. quenching could be taken into account by a nearly density-independent
_renormalization of te 7NN coupling constant via Egqs. (13) and (14),
Therefore, if we replace the free space TNN coupling fﬂ = llmﬂ, in Eq. (2)
by £ off given by Ea. (14), then the main effect of correlation as well
as A production and form factors can be taken into account. This is the
procedure we will adopt in Section II.C.
It is important to emphasize that all parameters in the Lagrangian
Eq. (2) when used in the mean field approximation are then effective
coupling constants. Most of thege effective coupling congtants can be
determined from the bulk properties: of nuclear-matter., -This is how Bg»
B> -and B, are .determine in Walecka's? mean field calculation and how
Skyrme force parameters are determined 1n usual HF and TDHF ‘calcglations.
Having determined the g, .this way, it makes no.sense to sum higher order
diagrams since their .contributions are implicitly built into the values
of g,. . As shown by ,ch:ln,_.l:.s while the g, which:.lead to consistent bulk
nuclear propertieg are sensitive functions of the particular class of
diagrams incorporated into the effective theory, the density dependence
of the equation of state, E/A(P), is not. The reason for this is that the
higher order diagrams are only slowly varying:functions of the. density.’’

..Thus. the density. dependence of the equation of state is mostly determined
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by the mean field diagrams although_' the absqlute scale is seusitive to
all diagrams,

This situation should be contrasted to the traditional nch.ear
physics approach, where the parameters of the Lagrangian are choéen to
reproduce the free space NN cross sections, In that case, correlations
are incorporated by including new classes of diagrams via Breuckner or e®
theory. Except for the questionable non-relativistic approximation made,
these approaches are then more fundamental than the MFA. However, thcy
are rather unwieldy and complicated, especially when asked to calculate
high (p,T) properties. It is here that the MFA has a clear edge in
providing essentially analytical insight into the physics of high (p,T)
nuclear matter.

Up to now, the discussion of MFA was in the context of an approxi-
mation scheme capable of calculating the equation of state, E/A(p,T),
as a function of p and T. In the context of normal nuclear matter, this

approach has been actively pursued by Walecka and covorkers.l»l"ls‘

In: the. context of pion condensed matter, only recently has this approach
been carried out in a. complete form. There results are discussed in
Section .II.C. The large body of previous workl on MFA for 7 condensation
involves a hybrid version of the MFA upon which we now elaborate.

:In these hybrid MFA, no attempt is made to provide a consistent
treatment of both normal ‘and abnormal nuclear matter. -Rather, the normal
nuclear equation of state is assumed to be given. The -effective Lagranglan
is then not constrained by the bulk properties of nuclear matter but rather

by certain fundamental properties of hadronic interactioms. In comnection

with pion interactions, the most fundamental property is assumed to be
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PGACI Tc; v:ieeorbc;tzi:te PcAC the‘-;chh.:al: (o, nj"xniod'ei of the’LAagrahgian

‘tch:l.ral is then used as the starting point. With xchi 1 the mean field
approximation is made replacing the (o, 1r) chiral pair fields by the:l.r
expectation values (O(x) ,1__r(x)). These expectation values are, however,

constrained such thatl3

o = g2 {E@+ |T@|%) - my s (14a)
[m(0) |
tan,, = ——— ' (14b)
¢ loo) |
so that
go(x) = oy cosech s
; etikx 15
gmi(x) = - sin® —_— .
4 My ch "3

Here 0., is the chiral angle. In the normal state 8., =0- Im a T condensed
state, e-ch, >.0,;--The mean field equations are. then solved in the non-
relativistic approximation, obtaining finally. the equation of state:
E/A(py6;y) - :However; as.shown by Kerman and Hiller. E/A(D,O) has no

;. resemblance to the ‘-normel--.nuclear.»eqqat:l.on;of state and does not even
saturate. This is not surprising since ‘there was no attempt to fix o,
from-bulk-nuclear properties and "%ﬁirél does not. provide a complete
--degcription of nuclear forces. To remedy this inherent difficulty, the

...-faollowing procedure is adopted to compute a condensation energy

F -

E/D) = E/A(D,0 W) - HAGO 6)

S Fn@InTe.

It :l.e hoped that the :l.nhert ineccurac:lea aesoc:lated w:l.th the normal

nuclear state are thereby cancelled in the difference.
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For symmetric nuclear matter we saw that the "driving force" toward
condensation was M(w=03k) « i* and is therefore sénaiiive to the |
particle-hole specturm. Thus, the hope that Eq. (16) cancels the inaccu-
rate treatment of the nuclear structure effects is not well founded when
w* is constrained to be Mo Therefore, the driving force iﬁ this approach
is (mNIm*) larger than in an approach where m* is calculated dynam:lcally.2
Typically, m* ~ 0.9 -0,7 in self-consistent treatments. We can therefore
éxpect this hybrid MFA approach to over-estimate both the condensation

energy and <w>. As we shail see below, this does indeed turn out to

be the case.

C. b1 Condensation Consistent with Bulk NuclearLPrqpertiesz

To incorporate the constraints due to bulk nuclear properties in ;
self-consistent way, our starting point is the Walecka model.14 We also
incorporate non-linear scalar field interactions as did Boguta and
Bodmer.;z ‘For:.the:coupling of plons to nucleus we use the pééudo—vedtor

coupling to.avoid the unphysical S-wave interaction of the pseudo-scalar

(Ys) coupling. Our effective Lagrangian density is then
Leff = 3(" - o= (my - 950) - g vgv' - 3u'~')"’
+ -2-(3 oa'% - n o ) + -}(auga“g - m’.)
1E pvalaz vt y(o) .
§ 'w 2V u an

where the scalar potential density is

| Ulo) = (‘5 bmy + -} c.gso,) ,(9,0)3:, . (as8)
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Cepmoaiaiann IV INWEME 7T

" Bere L ig the nucleon mass. jlfhe,mgﬁp field equations are gl;gg%z,. o

ni - gs<w>-<"“> - . e
miVy = oy o) e » T Qo)
@+m? ) <w(x)> = a“ w(x) ¥, v 1 w(x)> P 9¢)

- {15 - g ¥=Amy = gsa) g, YT -3 (X)>}w(x) . (19d)

where O = <g> and ﬁu = <Vu> are independent of x for homogenedus
nuclear matter.

The field configiiration coffespdﬁding-to"tﬁé niormal -phase of
symetric puclesr matter is “fodo, V - 6 oy ST>=0, Bu=0}.
Thig is the field configuration considered by Walecka et 31.14’15
Since Egs. (19a-d) form a nonlinear system of equations for the meéan
field, we can seek other. (abnormal)- field configurations: which also
BolveEq(19) .. In particular, we investigate under what conditions a

pPlon condensed solution e;gj,q;qs -of  the: form

<m(x)> 15 (3 cobkx + vxu slnkx) -, (20)

where u and v are two ai‘tlioﬁémlg i’sés%»in vectprﬁ. The case

u=- (1,0,0), v = (0,0,1) corresponds to the charged running wave case:
vZ ~'<1l't> -7 eﬂkx, <1t°>=0. In symmétr:lt.:. nuclear matter, the actual
or:lentétion of u and v in isospin space plays no role in:the self
consistency equations, since there' is no preferred direction in isospin
space Thus, if Eq. (20) is a sel%;éohéié‘tént field for soime particular

u.and v, then it 1s a self solution with the same T but with arbitrary
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u and v subject to uev =0,
The keéy trick to solving the 'space-i:ine-depenﬁent'Dir;ac-'equation
in Eq. (19d) for a T condensed field, Eq. (20), is that this space-time

dependence of <1J_(x)> can be transformed away with a local isospin gauge

transformation:
= +
'E . 3u<1r(x)> = 'rrku Rv(kx) T zx u Rv(lcx) ’ (21)
where 1
- i (kx) E-v
l\'(kx) = e - . (22)

Defining the transformed Dirac field tpv by
V&) = R (kx) Y, (x) , (23)

Eq. (194) reduces to a gpace-time independent Dirac equation for wv’

{ﬂ - g ¥~ (g - 0) + ¥r- (Fv+ g,,ivSng))]wv(x) =0 .
(24)
Therefore, the transformed quasiparticle ﬁavefunct:lons are simple plane
waves times cmmprl,:icavt:ed aﬁp;lng:zsx G: . _Fox":mt;g;l.y, We never negd to
compute these spinors, since we only need to compute expectation values
of currents, <YI'Y>. These expectation values can be computed using

standard propagator technicues as follows:

<PE)TP(x)> = E Gj By (k)T R (kx) uvi
W <Ep

- 2 e {& 0T R, (k) '(u,,i'i’n‘vi)}’
mi.<EF : ‘ :

- 2 e { &5 0e0T B () Res 5 (p,,p,) b oew
Wy <Ep Po™0y
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where Sv(po,g) is the transformed quasiparticle propagator. With some

algebtja, we can compute the.trags_fogmed propagator as
. . -1
' Yo omk o [ ==
Sv(po.g) {8' - o*+¥1 ( +g Y,V xu)}

- 5y () - - 0Ty - 28, TGt + ety Ty

x {#'+o*+ k1. [-;'-g-g“?rysgxgl} , (26)
vhere

P, = my-g T, .

ot = Ty - gaa :

e = et - (24 VMO, 27)
and

2 -
D(p.p) = (oo -eh? - (p? - 4k T (' -u* (k).
- e R T . i . (28)
The quasipatticle spectrim m(p) follows from the singularities of S(p ,p),

i.e., from

“D(uGp)sp) = 0 . (29)

For @ + 0, w(p) = gvﬁo+((g:|:l:/2)2 + m"‘z)!fl , and the Fermi surface is
composed of two Fermi spheres which are displaced by 115/ 2 from the origin.
This displacement is, however, only an artifact of the gauge transformation
Eq. (22) and (23), and leads to no physical baryon or isospin currents.
When T4#0 18 a self-conaistent solution of the mean field equations,

Eq. (19), there appears a gap in the quasiparticle spectrum at g-o and

- ooTL s a et L .y
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the Permi surface acquires a more complex pednut shape. '

Having found Sv(po,g) and the quasiparticle spectrum, m(g)~‘, we can
now use Eq. (25) to calculate all the necessary source currents appearing
on the right~hand side of Eqs. (19a-c). These source currents are
functions of the unknown fields {Ev’ \.To, 7}, and thus Eq. (19a-c) ooses
a self-consistency problem. Fortunately, for a fixed l?ermi energy EF’
only the O and T equations are coupled to each :;'other. The numerical
procedure is thus to fix EF’ find E(EF) and i(EF) from Eq. (19a,c), then
use those yalues in computing VO(EF) from Eq. (19b), and finally to
calculate the baryon density pB(EF) and the energy density B(EF).

The final binding energy per baryon E/A = &(EF)/pB(ﬁF) depends

on the five parameters
g/o, » g,/m, » b, c, g -

The first four parameters are chosen to reproduce the known hulk nroperties
"of nuclear nstterz Q) /A= 15. ’és‘néii' at p,= 0.145 fu™’, (2) 3(E/A)/2p=0
at p ,b and [€)) the incompressibility K = 99 az(E/A)/ap = 200—300 MeV at
‘p . The fourth constraint that ve introduce to fix the first' four
coupling constsnts is to require thst B/A- 0 at’ some density between
' VM - 39 - This lsst constraint is a statement of our guess about the
softness of the equation of state at higher densities. For g“ ve take
an effective value motivated by our analysis ‘of the plon self energy
via Eqs. (13) and (14). o )

In order to clsrify the relationship between MFA snd the RPA method
discussed previously, we show in Appendix A that the relativistic mean

field equations reduce to the relat;vzstir_‘ RPA equations as the field
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strength vanishes. In particular, in the. <w(x)> +~ 0 1limit, Eq.. (19c)

.. reduces. to .

=

(et + m,, +1_ 1<k))rr - , (30)

where .Hrel is the relativistic Lindhard function [Eq (A 13) of Appendix A],

Trer(® = -215,, f Tr(uvss(p) by, se+w) (31)

mw::lth S(p) - _(p-gvv-m*+ ie O(EF-p ))_1. When p, << n*, I_,; reduces

to the non-relativistic Lindhard function as in Eq. (9) (with F = 1).
Hovever, recoll and relativistic kinemstics in Eq. (31) lead to correction
of order (pF/m*) ’ (k/m*) ~ 10-20Z to that non-relativistic self energy.
Therefore, the &y used in Eq. (19¢c) may differ by ~10% from feff in Table 1.
A detailed study comparing Eq. (31) to the non-relativistic Lindhard -

function is currently in progress.

B i

In Figs. 2 and 3, we illustrate the equation of state for two sets

1y PASIE

of parameters (gs. sv-b c) that yield reasonable equations of state in the
normal phase, <‘n'> = 0. For sufficiently large gn, self—consistent pion
i .

condensate solutions, Eq. (20), are also found that lower the ground state
AEE

-

energy. As we 1ower g" from the free space value, 21,41 fm, to simulate

correlations, A production, and form factors as in Eq. (14), ve find that

ERES )

the critical density increasea and the condensate energy lowers.

B!

The differce between the equations of state in Figs. 2 and 3 is

due mainly to the difference between effective mass, m (p) for each case.

Bl : [

X0l

L AV

Recall from Section 11 that the driving force I = u*(p). In Fig. 4 we

show o (p) corresponding to each case.
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In our Lagrangian, Eq. (17), the m*(p) is controlled indirectly
by the nonlinear ¢ interactions in Eq. (18). For b=c =0, corresnonding
to the Walecka model, m*(p) is strongly density dependent and has a
rather small value, ~0.6 L8 Associated with this small m* is a rather
high incompressibility, K ~ 500 MeV, which follows from the large values
gs/mB and gv/mv needed to reproduce the binding and saturation density.
By introducing the nonlinear interactions of Eq. (18), which are equivalent
to three #nd four body forces, we can lower gslm8 and gv/mv. Since gv/mv
controls the magnitude of m* while gB/ma controls the density dependence
of m*, by lowering gslms and gv/mv we increase the magnitude of m* and
reduce its density dependence. This is what we find in Fig. 4. The larger
the values of b and e, the smaller are the values of gs/ms and gvltn.v
needed to raproduce the stauration properties,and consequently m*(p) is
larger and less density dependent. Also, by lowering gsltn.s and gv/mv.
we see froa Figs.'Z and 3 that the equation of state becomes softer.
Therefore, there is a correlation between largef three and four body fecrces,
larger and less density dependent m*(p), a soféer equation of state, a
lower critical demsity, and greater condensation energy.

Another important difference between the parameter sets in Figs.
2 Qﬁd 3 is fﬁe miﬁiﬁum'valﬁe of By Eoriﬁhich no:condéneaté solution exists.
For Fig. 2 with the smaller b,c, no condensate solutions were found for
g < 1.18 fm. For the larger b,c in Fig. 3, the critical demsity simply
gets shifted ﬁ&ward higher densities as B is lowered. Comparing to Table 1
for the expected renormalization of A due to correlatibns, A production
and form factors, we can say that in the first case T condénsation is

very unlikely to occur at all, while in the second case a condensate
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can develop at higher densitiés“E:(ZLB)po.“’

“*We conclude that pion condensation in’ symmetric nuclear matter can
be made cbﬁaisteht~with‘the‘bu1k properties of nuclear if the effective
mass is large (n* 2 0.9), which in our model ‘occurs when sufficiently
large three-and four body forces exist. To gauge how large these forces
are in the case of Fig. 3, ‘we can compute from Eq. (18) the net contribution
of  these many body forces to the emergy per nucleon at normal density.

For these parameters of Fig. 3 this is

(_E_ = U9 | 4 mev (32)
3,4 body Po

which is quii.e large. However, slight variations of b,c yielding nearly iden-

tical results to Fig.3 can result in a factor of 10 smaller value of Eg. (32).

Next, we contrast our results to calculations using the chiral

mode113 where m* is fixed to be “ﬁq In Fig. 5 we compare the condensation

energx,;l_ﬁq._ (16), calculated in Ref. 13 to those obtained from Figs. 2 and
3 f‘?;g.“ cl;oée‘t; to givg :appr..'o:_clmatellyAthe same critical demsity. As
gxbeqteq; A“t‘:'he“cihirgl mpd‘giLwith l;he much }gr‘:ger driv:ljng‘for;ce tencis_ to
give %1 much lv'ni’gl'.u.avryc‘ontjlgns(at:vioﬁ‘;nergy that increases ’rapicAllir with dgnsity.
e c:°“c:1'{‘,1;9thva‘,':' gglf—cél;éis;:enqy _aqc_l;c;ompatibility with the bulk nuclear
ééopgrtliés:;are‘ very Vstrong constraj.:;t; Aon the'éxistence and persistence
of the condensate phase. ‘ :

l;i;xally, we wanted to knou the expected magnitude of the pion field
for various g," 'l'ypically, T :I.n Eq. (20) turns out to be on the order of
0.1 m,. In order to get a feeling for this number, we _lsﬂhould compare the
angpli:;};de aqf spin—iaog;in oscil_lations to the normal baryon density.

From Eq. _(‘I|_.9c),.ve can convert T into a magnitude of <'T’Ysya.(1'“)w >

for k = 2m_ 8,
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- : (k* +nl) o
<P, ¥, (-E-E)qp = _E_nk—— b » (33)
For ™ = 0.1 W, &; = l/m , the right-hand side is 0.25 m; which is
about ome-half the normal bsryon demsity, p, ~ 0.5 m;. Thus, sizéable
oscillations of the spin-isospin density are possible. It is important
to note, however, that unlike the neutral condensate, the class of
condensate solutions considered in Eq. (20) do not lead to density
osclllations. The baryon density is uniform; only the spin~isospin
density oscillates. In Fig. 6 we plot the ratio of the spin-isospin
density <$Y5 Y, T,§> to the baryon demsity <$ Yo|b> for a case with
8y 1 fm in Fig. 3. Note that non-relativistically PY Y, T, ¥> =
p(pt) + p(nt) - p(pt) - p(nt) 1is the spin-isospin density, where p(pt)
is the density of protons with spin pointed along the z axis, etc.
On the other hand, p = <y, ¥>=p(pt) + p(n¥) + p(p¥) + p(nt) 1is
independent of x. The ratio Rgy = <PY,Y, TS¢>I<$Yow> in Fig. 6a
measures the magnitude of the spin-isospin density oscillations in -the
-condensed state. We see that for p > 2p, that R53==0.5. The corresponding
oscillations of the densities p(pt)+p(nt) and p(p¥) +p(nt) are
illustrated in Fig. 6b.

It is remarkable to note in Fig. 6a that although the condensate
energy is very small, < 3 MeV, the spin-isospin oscillations are about
as large as they can possibly get. In fact, R53 only increases to 0.85
when g“-=1.41, even though condensate energy is about 10 times larger.
This has important consequences when considering dynamical effects of
plonic instabilities. Clearly, the very slight softening of the:equation

of state, E/A(p), due to condensation would have very little effect in



T

__ hydrodynamic calcula;idnél} waever,,the.Lgfgg spin-isospin fluctuations
can lead to critical scattéring phenomena as discussed below, which we
could hqu_tovobaervg. In the aext section we study the dynamical

consequences assoclated with pionic instabilities.

III. DYNAMICAL EFFECTS IN NUCLEAR COLLISIONS

A. Pionic Instabilities vs. Pion Condensation

Having reviewed the underlying theory of pion condensation, we
now -turn to .what ‘experimental signatures such pion field coherence
.phenomena..¢ould lead to in relativistic nuclear collisions. For possible

consequences - in ‘neutron:star cooling rates, see Baym.l

In discussing dynamical effects it is important to make a distimction
bafveethion’coﬂdenaation;:uhich ige an’ equilibrium phenomena, and what I
rcall pionicninstabilitiés,7~associated with non-equilibrium states of
‘nuclear matter. The former 1s analogous to the anti-ferromagnetic phase
of certain materials, while the latter is analogous to plasma instabilities
in colliding plasmas. As emphasized'in Ref. 7, pionic instabllities may

" ocecur -eveh:1f: plon condensation does not. For example, a finite tempera-

Sy e
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ture plasma may be stable with respect to spontaneous growth of charge
density waves, yet a two stream plasma may:be unstable in these types of
excitations. The difference in the two cases lies ‘entirely in. the form
of the dielectric function (or equivalently, the photon self emergy in
the plasma). ‘The same difference can occur for pion fields in nuclear
matter.

To compare (k) for equilibrium and non-equilibrium systems,
consider the nucleon-hole polarization energy, Iln(k), given by Eq. (11),
with W, -w, = ~(p°k + k*/2)/mk. For T=0 the sum over q is restricted
to the occupied states distributed as n,(p) = 6(pg~p). Let ﬂ;(k)
denote the self energy in this case, Eq. (9). Now consider two inter-
penetrating nuclear beams as in nuclear collisions, where the initial

distribution of occupied states is given by
np) = ng(R-pey) +ngRtey) - (34)

Equation (34) describes two displaced Ferml spheres. The net baryon
density of the system is p = Zpo., For high enough center-of-mass momentum

Pog? Pauli -blocking can be ignored between the two Fermi spheres. Then

by simply changing varisbles, g 'm qtp -, in Eq. (11) with n(p) given

by Eq. (34) we obtain
ek ok

e - o255 k) oy (o255

(35)

For w=0 and ki pm. we see therefore that
Me(0,k) = 2ML(0,k) . (36)

This should be contrasted to the case of equilibrium nuclear matter at
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-:<-the:,:sameefdens:l.ty-,-aZpé;niqr wh:lchs.l!ﬁ':wis ionly:’:-’z!.l’: ?~=1afger-t-than-$ﬂ% as -

-seen from:Eq: (9)..:Therdfore, the non<eguilibrium:aspect of thé- streaming

nuclear ‘matter.described via Eq. (31)-has leadito:-a=60% enhancement-of

the driving -force via Eq. (33) foi:'vlf.l. Pem rélative -to the-equilibrium

. case. -As shown in Ref. 7,:for k -not perpendicular té pé&;c‘::this

enhancement is reduced. Translated into an effective TRN coupling, By

non<equilibrium effects thus lead to ~30% enhdncement. As seen in Figs.

-2 and 3y such an-enhancement of *.zgfﬂr::ca'nrmake it .much-more favorable for

- iin fnuclear systems .’ !

pionic -:ms_g:abilities to .occur, Thus in‘:this-sense it may be advantageous
to study non-equilibrium nuclearssystems,such as those arising in nuclear
collisions; to -look £for signatures -of pion field coherence.

As to what signatures we should look for, we first review the basic
dynamical consequences of-pionic:‘inatabilities.71 Collective instabilities
effect the dynamics 1n two essential ways. (1) through the growth of
collective f:lelds, <1r(x £)>, and (2) through the modification of two-

body ‘scatterifig rates.; :These ‘two aspects of collective instabilities

~are {ntimately “interrelated through.the nature of the pion spectrum in

- the medium: ‘Thefe are, in general,:several branches. of (the pion spectrum

1,7 Firat tl't'ere’i_s a‘particle-hole:branch with pion

energies in the range 0 < m < p k/m. These correspsnd to collective

excitations “with p:l.on quantum numbera that decay primarily to particle-

.-hole pairs. At high densities there may also be a condemsate branch

with w=0 which represents, unstable collective modes involving coherent

many particle-many hole excitations. There is also a quasifree branch
#0000 .
corresponding to almost on-shell pions with w = L and a A33-N hole

- ' ‘branch with ‘@ = 2‘.’4'?"111". A1l ‘these “difference branches, “’1(15)‘ just
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correspond to different singularities of the pion propagator,
A (m (),k) = 0, for fixed k,

If we consider the decay of the system in terms of r"1r+1r_“ pair
production, then because there are many branches of the 7 spectrum in
nuclesr matter , several dynamical processes "éafn Be 'descrﬁed at once on
the same footing. The formalism for such a caléulation was derived in
Ref, 7. The basic result is that the total. decayr rate per unit volume,
T'/V, of a system can be computed from the imaginary part of the correlation

energy with the result that

v - Ref 3dk log e(w,k) , (37)
(2m* -

where the "dimesic" function 1is given by

Y
k
(38)

It 1s easy to ‘See that €(w,k) =0 whenever A ' (w,k) =0, and hence all
branclies of ‘the pion spectrun are incorporated in €. Detailed s’tudy-7 19
of Eq. (37) shows that T can be decomposed into a sum of partial widths

4nto differert channels as

PR S
CREER TS S By

I = l'o + rel + rinel + I',n,. (39)

where I'o' 18 the rate of condensate pion pair creation, T el and I ine1 2T€
the two-body elastic and ‘inelastic scattering rates, and I‘“. is the rate

of ‘quasifrée plon production. - o C EF
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A-6dél calculition 6f ‘the magnitide of T; Was'feported ii Ref. 19.
We reproduce here for iilustration typical results cbrfeéﬁoﬁ&ing‘-" to’

nucledr collisions with beam enetgy E, =380 and 1040 MeV/niicleon.

TABLE 2. Partial decay rates per unit volume (from Ref. 19). .

P EL : I' /V . I‘ Q:/Vv 1-.ellv . I‘:l.nellv r‘n"/ v
(eviay :(q;;) L @ (m) (@) (m,)
380 © - - 0.72-  0.11 0.37 -0.24 0.10
1040 1.14 0.12 0.27 0.72 0.13

For comparison note that if the decay of n(p) in Eq. (34) were purely
due to two-body scatterings with cross section UNN = 40 mb, then

* ='0.25(0.31) m, for E, = 380(1040)

2 -
I'/v=p Oun Vel = 0.06?(0.079) fm
MeV/A, respectively. Thus, there is a factor ~3 enhancement of the

'decay rate due to pilonic instabilities. This enhancement is due to the
combined effects, of the growth of collective fields via I‘°+I‘_n. and the

. due to critical scattering

'+ enhancement of, the scattering rate ', +T, ..

...phenomena. .. ;. .
The question is how could we search for evidence of these enhance-
ments via nuclear cq;]:isions? The main problem is that higher I means
faster equilibratidﬁl t:l.me>.‘ ' Once the momenta distributions are thermalized
thgq the memory of the possibly interesting dynamical path is lost. As
; ,wé..s‘l'na_lil see, it is .not -easy to uncover clean signatures of pionic
instabilities. The two experiments descrited below are our best. hope

at the present to look for such phenomena. First, we describe the

Tanihata, et al's large-angle proton correlation experiment to search
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for critical scattering phenomena. Second, we describe Crowe et al'
' small-angle pion correlation experiment to aearch for evidence of the

coherent pion fields produced via F",.

B.  Critical Scattering Phenofiena

The enhancement of T, + Tiney 1 Tabie 2 is due to the interaction
of the exchanged pions with the medium. Thus, instead of the free pion
propagator AOQnﬁg),‘the medium;modifiedcpropagator,A(m,k) enters into
the amplitude for séettering,‘as 1llustrated below for the effective

diffcrential croes aection

a) b)

AA
Q.o"'o__A

.- .. . 'l‘

Rk SR CS RN S : '
The scattering rates in the medium get enhanced because the pion can

propagate further for certain criticel momenta k, hopping from one
nucleon to the‘negt :nthe skipping stone" effect. “This larger propaga-
tion amplitude leads to:an enhanced effective two-body cross section,
daeff’ that differs from the free space cross section, doo, by a

multiplicative polarization factor,7’19 P(w,k), as

d’o ters N T . . - 30
L eff (N(5)+N(1:?) * Alp,+ ) +B(p, - ©) = p(w k) 4% m+an)
(40)

where Aw-is ithe energy ‘transfer and "k 1s-the momentim transfer in the'’
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acattering of the two nucleons, N, of momenta p1 and p2 to etates A and

FRARNE

B.> Here A, B can be either nucleous or A33 Teponances. .

oo ey

The expression for P(w, k) involves the dimesic function, Eq. (38),

and the differential scattering rate ‘y (m k) that measures the number

of binary collisions with energy—momentum transfer ((u k) in the absence
N ".! f
'of “the polarization effect

P(w,k) - & - i U1 {1 Jo™®9, et } (41)
. m’ .y '~ = __—_,ei»o'g R .
- @R T e

It can be proven’ that 0 < y‘__,llr:|2 < 1. Furthermore, for Y * 0,

1

P(w,k) ‘
%0 e,k

. (42)

which is the Balescu-Lenard result for the effective cross section in plasmas.
Thus, if the collision rate using free space cross s'ections is low

(Yo(m,k) +0), thenwEo." (41) reduces to Eq. (42). The differential
scattering rate, Yc(m k), has the following physically intuitive form

in térms of the free Bpace d 0 /dk (NN+AB) differential cross section.

Gt GG

4d P, 4d P,
S, (WK) - = *—-—2-(2" z: [ 2 :‘{”ri(p,)'n(pz)’

' (21r) (m?
DL m e ey whsde A‘B-N D

dso

=3 (N(p!)+N(p2) > A(pl+ k)+B(p2- k))} (43)

AR

(Pauli blocking terms.have been suppressed here.) - The: total -Bcattering
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rate per unit volume with. free space cross.gections is vvyt‘ngn

eV = ot = 3 [ vwn o

The sum over A,B in Eq. (43) is ove'r_» final nucleon and A states. In the
RPA ring approximation used in deriving Eq. (41), d’0,/dk’ in Eq. (43)
1s proportional to the free pion propagator, |4,(w,k) |’2. 1f there exists
a condensate mode k, such that -lE(anc)Iz =0, then P(0,k) +.loge.
Furthermore, if the momentur .cansfer Ec is kinematically allowed, then
the éffec_t:lve different:l‘al‘ cross section will diverge at that critical
momentun transfer. This is called critical scattering phenomena.

For completeness we show in Fig. 7, a calculated example7 for
P(0,k) = doeff/doo. The main feature 13 the large enhancement for
k,~ 2m tm,. The actual magnitude of the enhancement depends sensitively
on the momenta p, and P, of the nucleons,7 but the enhancement 1s always
largest for k ~ 2m_ and w=0.

The fi:.:st ,prla_cg,ygi,goqldr look .-for such ecritical scattering phenomena
is t,he,: 'sb:}ggl_ue' fp;otpg;;Pg_lmiye cross section in the kinematic region of
q‘*‘;?»i;;ﬁ,l;astic-é??,ﬁte_fe#!lz:; However, .several factors tend to.camouflage
or ob_ggq‘;-é'h_gyi;ggiak structure resulting from critical scattering:

(1) The background: due to multiple collision components of
the inclusive yield;

(2) The background due to direct, knock-out collisions from
the nuclear surface;

(3) The background due to projectile and target :fbr‘_agmenj:a_tipn;

(4) The coincidence of k, ™ pp and Akc = pp and the additional

~ broadening. of Ak o due to Fermi wotiom.
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To understand the firat two sources ‘of background, we write, as in

Ref. 20, the inclusive cross section E daﬂ‘/d]:os ~ as a multiple cluster

seriles
by oy
dlo 2 :
E :ip_’ = - o(M,N) FHN(E) ’ (45)
M,Ns1

where 6(M,N) is the welght associated with multiple collision of M
projectile P nucleons with N target T nucleons, and FHN(?.) is the
momentum distribution (normalized to M+N) associated with this multi-
nucleon cluster scattering. For M+N > 4, Py rapidly approacheszo the
thermal 1limit relatively independent of the forms of the two-body cross
section. Thus, only the (M,N)=(1,1) and possibly the (1,2) and “2.1)
contributions to Eq. (45) are likely to carry the signature of critical
scattering phenomena. However, recent calculations of l(.\'loll20 indicate
that the percentage of (1,1) contribution to total integrated yield for
Ar+Ar is only 6% for impact parameter averaged cross sections and 4%

» “for ‘central ‘triggered Teactions. Of course, the relative :l'mpor.tance of
the “(1,1)° contribution for a particular point in phase space '(p“ p))
depends-6ii-how close 3:-’('1)“7,{.615) 1g ‘to ‘the ‘quasi-elastic kinematic regionm.
Nevertheless, the sirigle collision component terds to remain a small
fraction’ of ‘the single inclusive yield. For the lightest systems, C+C,
the knock-out fraction may reach 50% in the quasi-elastic region due to
the lairge diffuse surface. However, then the second source of background
becomes important. Most of the knock-out contribution occurs then from
the surface regions of the nuclei. In Ref. 21, it was estimated that
most: of the knock-out yield comes in fact from regions of the nuclear

surface with demsity p <°0.2 p,. This means that the bulk of the kmock-
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out cross section occurs outside the high density region, so that
polarization e'f»fects are likely to be small, P(w,k) ~ 1.

Calculations are currently in progress to find out what fraction of
knock-out comes from the high deirs':l.‘ty region. We 'e’xﬁe‘ct this fraction
to be quite small. Therefore, we see that the background due to
multiple collisions and nuclear surface knock-out nucleons will diminish
greatly the chance to obsetve the eritical scattering peak in E daa/dps.
In fact, points (3) and (4) lead to further suppresion of the peak.

To increase the (1,1) component and remove at least par: »f the
multiple scattering background, we turn now to the pp correlation experi-
ment of Nagamiya et 8122 and Tanihata et 31;23 The basic idea here is
to require a coincidence between two protons in the kinematic reglon of
the knock-out. In Fig. 8, the quasi-elastic kinematic region is indicated
by the dashed circle going through the projectile and ”target momenta in
the CM frame. A knock-out scattering will result in placing two nucleons
on this circle sﬁch ‘that the line joining them g'oesf"tf:hfdu‘gh ‘the m{poiht.
Indicated by the dashed region is the acceptance of a tag cointer R that
records one proton with cm angle i’B"’:“"'H 90° and azimithal angle ¢=180°.
“The spectfometer is then set ip to record all protons with azimuthal
angle ¢ =0 that occur in cdiﬁéidence with the tag counter. In éddit:i.on,
there is°tag counter U set up to record protons with (8 im ™ 90°, ¢=90°),
out of the plane defined by tag R and the spectrometer. Coincidénce between
the spectrometer and i:’ag U can only occur because of the b‘acligr'ou‘nd due
‘to multiplé scattering. An in-to-out of plane correlation “finction 1s

then ‘defined as ' ’ s oo

.vrij . RN
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"é(‘eﬁ p S YR8 Py B =90%, b =1808): - @
cm’“cm - - = 00° i ’ .
YU(ecm’pcﬂl’eU 90 . ¢U 90 3) o

where Y (8 ., P o 81, ®p) is the coincidence. rate between a proton
measured with tag I_‘:se:t,:a!:: .CM apgles (OI,¢I) and the spectrometer proton
m§889§9§i a; cm:gggle <] pg $=0 a;xd momentum p . '1‘1§e contours in Fig. 8
displax :thig, measured correlat;pn fungt;l.pp.i We can see clearly the
quasi—elﬁgtic:peak at © cm=90°, $=0. As expected, going from C to Ar
increases the multiple scattering background and, hence, decreases the
quag;:eg.ggtic peak. _»A]V,,s,o note that the width of this peak is closely
relatgd to the Fermi momentum P, % 250 MeV/c. To appreciate Fig. 8,
20,22

recall

.that the g;lng],e inclusive cross section for 0 cm™ 90° protons
is syooth‘and.structggelg.gs, with no evidence of the knock-out peak.

Thg co;gq;l:gegcg_,:ggpglfimen;, on the other hand, prqduced a clear signature
g{f;:;gg‘:l%g%kggégiﬂtj:gn:gfibl_nsiqq.ii'@‘l‘ﬁl‘e'}pgal;:‘he_ight of C in excess of .1 in
B48. 8 can e used fo_estipate the kmock-out. conponent?? giving =507 1n

this configuration.

“ s T!‘% g’ael:t%generation gf cog;elatign experiments proposed by Tanihata
et a]‘.will.‘studytn:l.sknock-out .co}ngg;ﬁent _‘;a,t different cm angles by moving
thetagrr:ounters Ra‘nd U to :BR = GU < 9Q° (cm). The hope is that
max(C-1) = £(8;) . will reveal the dependence of the effective differential

. elastic nqg].gppfquclgon::jgygss_fseqpion with cm angle GR, If this turns out
to be the case (g :thgorgt:lcal problem clgrre_ntly ugﬂet investigatim»upby
Knoll anq'l;in_’g_qdrl:_gp),, then this experiment can be use‘:ij to look for signatures

of critical scattering phenomena. The main problem will be to untangle

the large background remaining from knock-out collisions in the low
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density surface region, for which P(w,k) = 1. At present though, this
experiment offers the best hope in the search fur evidence of critical
scattering phén&mena in nuclear collisioms.

C. Pion Field Coherence and Pion Interferometgyz4

We now discuss an alternate way to search for evidence of coherent
pion phenomena via small angle identical pion correlation experiments.
The study of such correlations 1s called pion interferometry, and is
analogous to the well known Hanbury Brown-Tiss interferometry technique
in quantum optics. There are two aspects of pion interferometry:

(1) The deduction of the space-time history of the pion source;

(2) The deduction of the degree of coherence of the pion field.
I will concentrate here on the second aspect.

The source of poaaib;e,coherent pion fields in nuclear collisions
is the time-dependent, collective spin-isospin curreat, ' QSM(x) a
<IIJY5 Yuzlb> that could arise if pionic instabilities occur. As we

saw in Eq. (3c), the source of the plon field is actually
. g .
j(x) g“.a 25u(x) . @n

In equiliﬁrium, jix,t) = j(x) 4is independent of time (in symmetric
nuclear matter) and no on-shell (w = (kzi-m;)%) pions can be radiated.
(In a condensate state, <ﬂ(§)> # 0, but therc are no real pions in the
system.) Howeiei, in non-equilibrium cdnfigurations as described, for
example, byﬁEq. (34), ﬁidnid instabilities can iéad to a time-dependent

j(f,t), and hence on-shell pions can be prodﬁéed. As we noted in Eq. (39),
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both a condensate (u=0) instability (T, #0) and a quasi-free pion (w = m")
instability (I, # 0) can occur in non-equilibrium systems. Both instabil-
ities grow at a charactersitic rate, y, that is determined from the I‘i.

In particular, as shown in Ref. 7, we can write

I‘0 I‘,n,
e T . T G
where 'p_"c‘" is the density of unstable condensate modes k corresponding
to a static w=0 instability, and Pyv 18 the density of unstable quasi-
free pion modes with finite frequency w & m . Typical results of model
calculations 1Y indicate that Prc = Pyr ™ m.; and <Y > = <yp,> =
(0.1-0.2)n_.

of ébdfse, in addition to this source of pions, the most important
source is the usual NN + NA mechanism included in Eq. (39) via T inel®
The bpio‘n‘s produced by incoherent inelastic scatterings will, however, be
descril;é&";ﬁy,'é- chaotic fie1d.2* The source current describing this
incoherent, chaotic procéss can be written as

N g
Ia® = De  x-x) (48)
{=1

whelfg ¢ 4. are :quqq phases, x; are N random inelastic scattering centers,
distribug:ed according to a denmsity distribution p(:_f.t). and j A(’.f’t)
describes the pion source current in one inelastic collision. If no
pilonic instabilities occur and the total current is given by Eq. (48),
then as shown in Ref. 24, the single and double inclusive (negative)

pion distributions are simply given by
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p, () = N|i,Cku)]?
2 2 2 2
P (kpsk,) = N 3,0k ,00) |7 (3,0 ,0,)] {1+|o(k,-k2)| } (49)

where oy = (k2 + tn‘:,)li and

gt - e
e
(20, (2m)*

1,8 . (50)

. = fa"
Defining the two identical pion correlation functions as

P, (k, k)

R, KD p, (k) p, (k) ’ <L

we see that R = 1+ Ip(k,—llcz)l2 measures the Fourier transform of the
space-~time distribution of inelastic scatterings. This 1s the well
known Hanbury Brown-Twiss 1:esu1t26 for chaotic boson fields.

Hoﬁévér; if pionic inséabilities occur that give rise to an
additional source current j a(x) due to the growing collective spin-isospin

[

ﬁaves, then a coherent component of the plon wavefunction .will develop.
In particular, if the only source of the pion field is jo(x), then the
final pion state will be a (Glauber) coherent state:2?

—f,/2

3 = e e {ifer s Gu atw} o> (52)

where

n, = /d’k ljoqc,mk)l2 (53)

is the average number of pions radiated by jo(x) . Observe that it is
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crucial that jo(x,t) depend on time because only those frequency'_components
of j(x,t) with w>m  can produce on-shell pions. Also we note that for
charged pions the coherent state alsc involves the nuclear charges in
order to form eigenstates of charge. See Ref. 25 for a specific
dynamic model producing charge-comstrained coherent states. 1The remarkable
property of coherent states is the absence of correlations between pions.
Thus, if jo(x) were the only source of pions, then R=1 for all k, ,k,
in contrast to the results for chaotic fields.

For the general case when the source current involves both coherent
and chaotic mechanisms, j(x) = j (x) + jch(x) , the pion field as

only partially coherent. The correlation function is then given by24

R(k,,k,) = 1+ (1-D@k))(1-Dlky)) |pCk,~k,) |2

~ A~

+ 2[D0eID,) (1-D0ky))(1-Dk))T* pliy-ky)
(54)

where D(!j) is the degree of coherence of the pion field in mode I_E,

11, 12
3 G + 11, |2

D(k) = . (55)
D(E) is simply the fraction of pions at k produced by the coherent
source, J 0(x). Equation (54) is illustrated in Fig. 9 for the partially
coherent and chaotic (D=0) cases.

The important point to note is that the degree of coherence can be
determined by looking at the k; =k, intercept point: D(k) = (1—R(§,5))".
Coulomb final state interactions modify these results, but before

dicussing these we will conmstruct a simple model of jo(x) to 1llustrate
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the basic physics.

Consider a finite frequency w, ingtability in mode ‘fc that grows
at a rate Y. Then for small times jo(x,t) ~ Tt exp[—:luct + iEc'fl'
To include finite size effects we modulate this form with exp(-le ZRZ).
To take into account finite collision time T=1/ I‘T, we modulate j_ by
exp[-I‘Tt]. VWe also assume that the maximum possible amplitude of the
spin-isospin oscillation is the baryon density p. We will therefore
study the simple model,

-1(wet-kox) -x?/28® -Tqt -t
1,(t) = g kpe e e (1-e ) 6(t) .

(56)

If A is the total baryon number, then p is related to R in this model as

as p= A/(2"R2)3/2_ Note that g,"kc comes from Eq. (47) . With Eq. (56)

we find

2.2 ~(k - ko)*R*
|j°(Eiuk)|2 - AZ 8I\'k(: e Y!

zmk(z'lr)3 (uk - m‘__)2 + I‘.l.2 (mk-mc)2 + (y+ I'.r)2
57

and the average number of coherent pions per baryon from Eq. (53) is

2 2
Br % . 1 v

V2 B (. - mc)2 + r'rz (e - lll’c)2 +r+Tp

_As' ~ 2
(58)

That jo produces pions coherently can be seen from Eq. (57) via the A?

dependence of the single inclusive distribution. The coherent contribution

2+2/3 8/3

to the single inclusive cross section therefore goes as A = AT,

Furthermore, the momentum distribution of coherent pions is centered on
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the instability wavenumber kc with a width ~1/R. .
As a numerical example, comsider g = I/mn. k., = 2m, W= 2.24 w,,
p=20, =m), Tp=0.2m. Then

n 2 ‘ :
£ = .01 X 1 : ) (59)
A ") (1-0.45(, /m))

For the condensate instability with mc=0, y=0.2 m, EO/A = 4%x10 ",
For the quasi-free pion instability, w o Tn, Y= 0.2 m o, Eﬂ,/A s 4 x 10-3.
These numbers should be compared to the observed27 average number of T
in Ar+Ar for lab kinetic ‘energy E, per nucleon, where (t_l/A)exp &
4%102 (EL/GeV). Thus, the chance of seeing coherent pion fields is
best. at energies <300 MeV/nucleon, i.e., in the sub-threshold region.
‘Furthermore, the pion condensate instability with w=0 would lead to
far too few plons to be observable. Only the finite frequency quasi~
free pion instabilities have some chance of being detectable.

- .. The moﬁienta, lfc‘ corresponding to quasi-free pion imstabilities
have beén:‘éfudied in Ref. 19. In contrast to the condensate instability
which alwvays occurs for k, = 2-3m and ec & 70°-90°, the finite frequency
i:nst;f:ilities‘ accur for kc” = (2-3)111lr but in> an angular region that varies
with energy (6,,0,) =~ (0,25), (0,50), (30,60), (50,70) for EL = 167, 375,
670, 1050 l.leV/Av. In this respect plons from the quasi-free pion instability
are analogous to Cherenkov radiation.

We now discuss the current experiments on pion interferometry.

Since the pioneering experiment of Ref. 28, a new high statistics
experiment29 has been performed for Ar+KCl at 1.8 GeV/nucleon. The

very preliminary results are shown in Fig. 10.
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First, we note that only the pions emerging at center of mass
angles ~90° with momenta (k) 2 100 MeV/c were measured in this experi-
ment. Thus, this experiment concentrates on the pion modes, k, that are
perpendicular to the beam axis. In accordance with our previous discussion,
any coherence in these modes would be due to a condensate instability.

For momentum differences (in the projectile frame) Iﬂl 2 25 MeV/c,
R(q) has a shape similar to whaﬁ we would expect for a completely chaotic
field from a source distribution, p(q), with radius ~5 fm. The solid
curve R(g) corresponds to a shell of radius r = 5 fm. For |q| <25 MeV/c
we see, however, an anti-correlation effect, This hole 1is, howevef, due
mostly to final state Coulomb interactions between the ® W pair. This

Coulomb interaction leads to a modulationza

of R(q) by a (Gamow) penetration
factor, G(q) = Znn(exp(Znn)-lyl, n =am /q. There is qualitative agree-
ment between the dashed curve including this G(q) and the hole in the

data. However, because of the very preliminary nature of the data, no
conclusioﬁ can be Arawn at this time from the possible excess suppression
at low lgl. What Fig. 10 is supposed to convey is that high precision

pion interferometry experiments are possible and that it will be possible

to place upper‘boﬁnds on the degree of coherence for theée perpendicular
modes in the near future.

We close this discussion by pointing out again that to search for
coherence associated with possible finite frequency, quasi-free pion modes,
future experiments shouid concentrate on pion modes in the forward and
mid ecm directions as well. As we saw in Eq. (59), many more pions would

be produced from finite frequency instabilities than the condensate

instability. Furthermore, these coherent components would be more easily
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seen at lower energies, 100-300 MeV/nucleon, below the threshold: for

the chaotic component.

IV. OUTLOOK

In Section II, we showed first how correlatiomns, A production, and
fo;mvfactors can be included in a mean field theory by a nearly density
independent renormalization of the nNN coupling. Second, we showed how
the constraints of bulk nuclear propertieé can be incorporated in a
relativistic mean theory developed in Ref. 2. These constraints greatly
restrict the condensate energy as we saw in Fig. 3. Nevertheless, the
sizable spin-isospin oscillations (Fig. 6) are rather insensitive to
model details. In Section III, we explored how these growing collective
spin-isospin waves could affect the dynamics in nuclear collisions.

First Qritical scattering was discussed, then the complications of
seapching fqr direct eyidence for thig phenomena via large-angle proton
cor;?;ations were discﬁssed. Second, the ﬁse of pion interferometry to
. 1ook for_céhg:ent plon field was discussed. A simple calculation of the
number of cohe;gptApions was presented from which we concluded that rather
few pions could be created coherently. Finally, we emphasized that
coherence in the finite frequency modes is more likely to be observable
than in the condensate mode. Unfortunately, even these modes lead

to only a small number of pions. It
remains to be seen whether future experiments can develop the sophistica-
tion necessary to look for such subtle coherent pion phenomena amidst the

complex background due to incoherent intranuclear cascading.
Although not discussed in this report, we also note the search

for precritical pion phenomena via (e,e') and (p,p') reactions (see,Ref.30).
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APPENDIX A: <7> -+ 0 Limit of MFA

Heére Wé want to dérive the conmection between the pfdpagét;r and
' MFA ‘approaches. Such a connection was discussed by Baym in his

Lés Houch lectires.l We present an altérnate and more expiicit
derivation here.

'We start from the pion mean field equation, Eq. (19¢c),

(O +n®) <m(x)> = J (x) (A.1)
where

3 = g F<F@Y Y TIV@> (A.2)

which depends implicitly on <W(x)> . In terms of the full propagator
S"(x,y), which satisfies Eq. (19d) with 6"(x-y) replacing 0 on the

right-hand side, we can write as in Eq. (25),
I (x) = -ig_ ¥ tri{y.y TS (x.x)} (A.3)
I By Y Y, T Spx.x .

where x+ = (f’t+°)' We now expand J,(x) to first order

in <7 (y)>:

6, (x) 2
I (x) = 3 (x) +fd y < (y)> + 0(<m>7) .

6<Tr(y)>
<r>>0 (A.4)
Defiﬁing
GJ“(x)
ﬂij(x-}') = - lim D — , (A.5)
<‘l.|"(y)>+0 6<-nj(y)>

and noting that the divergence of the axial current is zero when
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<1> =0 (§_°=O) , we .can rewrite Eq. (A.1) to first order in <m(x)> as

] B A

(O+m) m@> = - [y e ey . @

In symretric homogeneous nuclear matter H:I.j (x,y) = § 1 (x-y), and

3

(o h\,’,) <ﬂi(x)>' = -4/d"y N(x-y) <, (y)> . @AD
Expanding < i(x)> in Fourier components, we get finally
& 4w ) =T T (k) (a.8)

Taking, however, the Fourier transform of Eq. (A.l) shows that the

right-hand side is just Ji(k) . Therefore,

3, (k) '

In order to compute “11 (x,y) or T(k) explicitly from Eq. (A.5),

we can start from the integral equation for Sﬂ(x.y):

S,n(x,y) = So(x,y) +jd"z So(x,z) g“'ys'yu -5%]- <'ni(z)> 'ris."(z,y) .
(A.10)

where So(x,y) is the nucleon propagator when <w>=(. First integrate

by parts to transfer the 3/3z" away from the 7 field. Then recall that

) <1ri(x) > "
—_— = Gi § (x-y) . (A.11)
8 <m(y)> 3

Thus,
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T A B GS“(XﬂZ) PR LR I 5 R “’ oA
T ] 13
1lim — = - — {5, (x,y) & Y.Y T,S (v,2)} .
<ny(y)>+0 6<7r1(y)> 3y" { ° &", N }

[

(A.12)

Using Eqs. (A.3) and (A.5), we obtain finally,

nij (x’y) = -18-: ._a_ __a—-

| v
PRTRRY Tr(YsY Ty So(x.y_) Y Yy So(y,x)) .

(A.13)

and therefore in symmetric homogenecus nuclear matter,

[
(k) = -ugﬁ f (:ﬂ‘)" Tr (v K S,(®) v, ¥ So(p+k)) . (A.14)

In the non-relativistic limit (pF << m¥),
-1 2 -1 2
So(p) + (2m*) (po-gvvo-p /20* + ie e(pF-p)) , Trace + -8|lj! and

(k) reduces to the familiar Lindhard function (see, e.g., Ref. 7).
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FIGURE CAPTIONS

Phase diagram for pion condensation prepared by Gudima and
Toneev.11 Curves RGG (Ref. 10) and B (Ref. 12) are calculated
critical temperatures illustrating sensitivity of Tc(p) to
model assumptions. The dynamical paths via nuclear cascade
calculationsll for two nuclear collisions are alsoindicated

along with the time in 10~2% sec.

Binding energy per nucleon in MFA of Ref. 2. Parameters are

gs/mg = 15/my, g,/m, = 11/my, b=0.004, c=0.008, m, = 4.77
fm ', [k = 1.5 fm '. The T.=0 solution is the non-condensed
equation of state. Self-consistent condensate solutioas exist

for - > 1.18 fm. Two examples are shown.

Same as Fig. 2 but g /m_ = 6/m“, gy/n, = 4.7/mN, b = -0.734,
c=6.86 giving larger m*/mN. In contrast to Fig. 2, condensate

solutions exist also for By = 1 fm (see Table 1).

The effective mass? for Fig. 2 (stiffer) and Fig. 3 (softer)

compared to Walecka's model.14

The condensation energy from Fig. (3), gr = 1 fm, compared to
chiral model result.13 Dashed curve illustrates unrenormalized

g = 1.41 fm case in Fig. 3.

(a) The amplitude R53 of the spin-isospin oscillation measured
in units of the baryon demsity for By = 1 fm case of Fig. 3.

Also indicated are the values of the pion condensate field T
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in units of m.. The condensation energy is also reproduced
from Fig. 5.
(b) Illustration of the magnitude of oscillation of the protonm,

spin up (P4), neutron spin down (N¥), etc., demsities for R

53=0.5

as a function of the coordinate parallel to the condensate

momentum.

Fig. 7. Example of critical scattering associated with pionic instabil-
ities from Ref. 7. Dashed curve is model of free space elastic
cross section and daeff is the result of polarization effects,
Eq. (40). In (b) the polarization factor P(0,k) is plotted vs.

the momentum transfer k.

Fig. 8. Two proton correlation data of Refs. 22,23, Contours are the
in-to-out-of plane correlation function, Eq. (46). Shaded area
is acceptance of one tag counter. The peak is associated with

quasi-elastic scattering component.

Fig. 9. 1Ideal pion interferometry correlation function, Eq. (54), for

24

partially coherent fields. D(k) =0 case is the usual chaotic

field result. Coulomb distortions are not included.

Fig. 10. Preliminary dal:az9

for R(k+q/2, k-q/2) = R(q) for pion modes
k perpendicular to the beam axis in the center of mass, plotted
as a function of the momentum difference [q| (in the projectile

frame). Solid curve is expected R for chaotic fields from an

R=5 fm source. Dashed curve includes Gamow Coulomb correction

factor.



T
MeV

100

50

-55-

Ne+U(21GeV/N)
t=3 RGG

no -cond

1 2 3 ",

XBL 805-9738

Fig. 1



o I
g,=128fm
_5 - -
g,= 1.41 fm
>-10} -
2
<
m
51 BA=1596 MeV |
R = 0.145f?
0k K= 280 MeV |
(" Mgy, =077
o | 2 3
fio
XBL 7912-5246

Fig. 2



B/A (MeV)

-57=

[ T 1
B/A=1596 MeV = g, = l.fm
p,=0.145fm> €
-5 K=280 MeV ol l3fm_J
\ (m/m)sm.=o.9|
-10 ]
gr = 1{.28fm
-15 .
-20 ~
Qy= 114l fm
o5 1 L 1.
2 | 2 3
P/R
XBL 805-837

Fig. 3



-58-

7 —]

Softer ( at high density)

/Sﬁffer

P/ Py

xBL 805-835

Fig. 4



-(E /A)cond (MeV)

-59-

30 .
20}
_ -

Op=l4l ~
1o} T_<

-

_ P
~  chiral

0,0 2.0

Fig. 5

" XBL 805-9728



-60-

R53=| < $757373¢'> l/<¢7¢¢'>-————q

0.6} (a)
0.5
el 40z
 oaf 3.02
021 2.0
o _:|_o
1.0
: 1(b)
P T P= P+ Py M+ pp 04 Py (X) ]
i PpiX)4pyy (X) Rs3=0.5
P2}
C . -~
i Pt +py ]
0.0 1.0 2.0 3.0 4.0
z (fm)

XBL 805-9726

Fig. 6



XBL 772-7475

Fig. 7



30

firestreak27 and cascade52 models. However, the predicted slopes are

larger than those observed. For a given Q, it is found that the square of
the dispersion is equal to the mean number of negative pions. This is shown
in Fig. 35(c). This result has also been reported by Bartke48 for 126

central collisions studied at Dubna. These dispersions for the negative pion
multiplicities are dominated by fluctuations in pion production and absorp-
tion rather than the dispersion associated with elementary N-N pion production
processes at these energies.

Figure 36 shows the energy dependence for central collisions of the
average negative pion multipl city in the c.m. frame. A linear dependence of
(n“-) is observed above 150 MeV/nucleon with a slopa of 0.02x /(MeV/nucleon).
The low energy point falls off this trend, presumably due to effects of Fermi
motion which are very important near threshold. Thermal models are not able
to reproduce this result, and consistently overestimate pion yields by a
factor of 2 or more. A Fermi gas mode]53 which assumes thermal but no
chemical equilibrium between N's, a's, n's, p's; is able to reproduce this
trend (except near the upper end). To do this, it assumes zero impact
parameter and uses the isobar model pion ratios to predict the numbers of
negative pions. Absorption effects, including the process, 4 + N » NN, are
known to reduce the pion yields by as much as 30-50 percent at these
energies. Another way of looking at the trend with energy is shown in
Fig. 37, where the multiplicity distributions for negative pions for a

4oAr energies. Once the bom-

central trigger are shown for each of the
barding energy is well above the pion threshold, these distributions are

approximately Gaussian in shape.
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