
sfTic J U L w a o L B L „ 1 0 8 8 3 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

^J m 
^ 

Invited lecture presented at the Seminar on High Energy 
Nuclear Interactions and Properties of Dense Nuclear 
Matter, Hakone, Japan, July 7-ll, 1980 

PION CONDENSATION AND INSTABILITIES: 
CURRENT THEOR> AND EXPERIMENT 

Miklos Gyulassy 

May 1980 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 

BISTfliaUTIBK OF THIS ODCUMCNT 13 UKUHIIT: 



W t C j A W E R • •• 

Thli book w*pftpvid nanKxiftjniol work aponiorad by rniagmKytji ttw United S u m Government. 
Neither the United Statet GowKnment nor any ajency thereof, nor any ot ihair employee), make* any 
warranty, etnren or implied, oi e w n t t efty 1*0*1 IMrilivf (K resxwsfctt'rtY 'or the. accuracy, 
compltieneu. or uwtulnm ol any information, apperatut. product, or procen diKlotrt. or 
irOHWrti tlwt in uw would not Wring* privately a*«d right*. Reference herein to any apedfk 
commercial product, proem, or mvica by trad* name, trademark, manufacturer, or oiherwiie. doe* 
not nKemrily constitute, or irriply lu tndoratmem, recommendation, or Iworlr^ bv Ihe Uniied 
Slitet Government or arty agency thereof. The *ie«n and opinioni of authors wpreWed herein do not 
necenarity state or reflect ttwm oI the United SIKH Government or any agency thereof. 

FION CONDENSATION AND INSTABILITIES: 
CURRENT THEORY AND EXPERIMENT 

Miklos Gyulassy 

Nuclear Science Division 
Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

ABSTRACT 

In this report we review current calculations of pion condensation 

phenomena in symmetric nuclear matter. The RPA and MFA methods are 
2 compared. Latest results with a relativistic MFA theory constrained 

by bulk nuclear properties are then presented. The differences between 

equilibrium (condensation) and non-equilibrium (dynamic) instabilities 

are furthermore discussed. Finally, two-proton correlation experiments 

aimed at looking for critical scattering phenomena and two-pion correla­

tion experiments aimed at looking for pion field coherence are analyzed. 
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I. INTRODUCTION 

In this report I will first discuss the status of current calculations 
of nuclear matter in the intermediate density range, P 0~4p , where p = 
0.145 fm~ , focusing on the topic of pion condensation. Second, I will 
discuss current and planned experiments using relativistic nuclear 
collisions to search for possible signatures of pion field coherence in 
this nuclear density range. 

Since the mid 1970's, there has been much theoretical work exploring 
the possibilities of new phases of nuclear matter at high densities. This 
work was stimulated in part by the need in astrophysics to know the 
equation of state of dense nuclear matter in calculating supernova 
explosions and properties of neutron stars, and in part by the new 
generation of nuclear accelerators that promised to create dense nuclear 
matter for the first time in the laboratory. Also, the sheer fun of 
speculation has motivated much work In this area. Had we a complete 
solvable theory of hadronic interactions, such speculations would of course 
be superfluous. However, for now we are obliged to speculate and extrapo­
late into the unknown density and temperature (p,T) domains using rather 
simplified approximation schemes. Progress In this field is then measured 

by the extent to which new "realistic" features are possible to Incorporate 
2 Into any given scheme. For example, the recent progress discussed in 

Section II.C concerns our ability to incorporate the constraints imposed 
by the known balk properties of normal nuclear matter in a self-consistent 
and covariant way into the theory of pion condensation. 

In discussing different phases of nuclear matter we could start by 
specifying the expectation values of various nuclear current operators 



j r(x> - <i|»(x)r *(x)> , (i) 
r - {1, Y 5, Yy» YyY s» CTVV } ® U,T } , 

where l|»(x) is the nuclear field operator. (Non-relativistically only 
r = {l,o} ® {l,x} are distinct.) In the normal (symmetric) nuclear 
state, Jp^O only for V • 1,Y0» both of which reduce non-relativistically 
to the nuclear density p. A state with £ U 5 • <ipYuY5

T,l'> ^ ° is, on the 
other hand, abnormal and corresponds to what we call the pion condensed 
phase. Our problem is to determine under what conditions are Jp^O for 
certain T. 

Clearly, we first need to know the interactions in all possible 
spin and isosnin channels. If QCD turns out to be the true theory, then 
these interactions would be described by the exchange of one, two, or more 
quarks between the nucleons as illustrated here. 

This van der Vaals type of Interaction would be non-local and Involve 
the unknown large distance properties of QCD. Such forces are not 
calculable as yet. However, an effective description of these forces 
may be possible by introducing interpolating meson fields to represent 
these multiquark exchange processes in specific spin-isospln channels. 
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This is the historical approach to nucleon-nucleon interactions that we 
follow here. Thus, an array of meson fields o(J • 0 ,1-0) , 

TT(0",1), a^d',0), P y(r,l), 
Yukawa coupling 

1B introduced with standard 

4 f W 3 U - *Y yY 5TiJ) + (2) 

It is clear that Eq. (2) can only be expected to provide a 
reasonable description of nuclear forces when the intrinsic quark structure 
of the hadrons can be neglected. The relevant quantity here is the bag 
radius K. of a nadron that leads to a critical density p c/p 0 - >«•„'»$ (r„/R B)V 

3 beyond which Eq. (2) Is likely to break down. High energy theorists 
insist that'R-JP 1 f«, so tlat Eq. (2) may, at besti barely hold at normal 
nuclear density (p - 0.145 fm~>, r o - 1.18 fm). Low-energy nuclear 
theorists have argued that R- * 0.3 fm so that Eq. (2) may hold up to 
very high densities of -50 p . Not surprisingly, intermediate energy 
(ir-nucleus) theorists have argued that iL * 0.72 fm, implying that 
Eq. (2) has some limited domain of applicability, perhaps up to ~4p Q. 
Needless to say, none of the above estimates is convincing. My prejudice 
leans toward the last estimate and thus toward the applicability of some 
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effective meson field theory in the intermediate 'density range, p^ lS~4p . 
Having committed ourselves to a Lagrangian involving the interpolat­

ing meson fields, we are then confronted with the task of solving the 
following prototype coupled field equations 

(19 - m * g sa - gjt - g p£ • T/2 + f̂ YsJiir • T)\|I - 0 , (3a) 

(0+m*)o - gjM - 3U/3a , (3b) 

(•+mj)ir - " V y ^ Y ^ , (3c) 

a a iV " *V?\ + *&UV " 8 O J % * » < 3 d > 

D2u. ~ V * 2u + m p £y " «p { * * V * + * * 3 u H } • ( 3 e ) 

in standard Bjorken and Drell notation. Although Eq. (3) is as yet 
intractable, it shows clearly that 

<W»> * 0 

< * Y U * > * 0 

.<*Y wx*> * 0 

Therefore, instead of specifying the expectation value of the currents in 
Eq. (1), we can specify a given phase by the expectation values of the 
various meson field operators. These expectation values reflect the 
meson field configuration for a given nuclear state. In the normal 
symmetric nuclear Btate, <o> i* 0, <«> 0

> + 0, ,. and all: other field) 

«•* <a> + 0 

<uy> i 0 

<£w. > • • * ° 

'•'*• <1T> 4 0 

(4) 



expectations vanish. The point of displaying Eq. (3) is to emphasize the 
highly,non-linear structure of these equations. Thus, it is quite possible 
that Eq. (3) can be satisfied by several distinct field configurations: 

^°i,'ffi'u>l»pi^* 
The study of pion condensation Involves finding the conditions 

under which <TT(X)> j* 0 as a solution to Eq. (3). What differentiates 
the calculations in the literature is the nature of the approximation 
scheme used to solve Eq. (3) and the choice of couplings within that scheme. 
Two main schemes have been used: (1) Random Phase Approximation (RPA) 
and (2) Mean Field Approximation (MFA), although more sophisticated 

6 
variational methods have also been used. In the next section, methods 

2 (1) and (2) are reviewed and then our new results with MFA are discussed. 

II. THEORY OF PION CONDENSATION 

A. RPA Method 

This method, proposed by Migdal and refined by Weise and coworkers 
and many others, searches for the pion condensation point by looking for 
Goidstone modes in the spin-isospin (0~,1) channel. A new phase involves 
the structural change of the ground state .wavefunction breaking some 
symmetry such as parity or isospln. The Goidstone theorem asserts that 
when * symmetry is broken, then there must exist, in particular, a collective 
mode' of the system with zero excitation energy. To calculate the collec­
tive modes in a particular (J ,1) channel, we need, according to the 
Lehmann representation, only calculate the propagator A(u,k) of the 
meson field with the same quantum numbers. In terms of the proper 
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self energy or polarizatiofibperktorVnXu.ic)', of that meson with'mass V 

A(u>,k) = [u 2 - k 2 - V 2 - HCM.k)]" 1 . (5) 

The spectrum o»(k) of collective modes, is then read off from the singular­
ities of A(u,k) via 

A"l(oi(k)fk) = 0 . (6) 

Recalling that the propagator iA(x,y) = <T($(x)$(y))> measures the 
amplitude for field fluctuations, we see that when there exists a 
Goldstone mode u(k) « 0 for some k, then this means that i.t costs no 
energy to Induce a field fluctuation of wavenumber k in the medium. 
Since the meson field is always coupled Co some current T̂ifi as in 
Eq. (2) with the same quantum numbers, these spontaneous meson field 
fluctuations lead to spontaneous current fluctuations. Beyond the phase 
transition point, when Eq. (6) has solutions for complex io(k) • w.iiYg, 
then as shown for example in Ref.1 7, these fluctuations grow exponentially 
in time, e ° , until certain non-vanishing values of •£$>4 6 and 
<^Ftp>¥ 0 are reached/ Of course, the1 caicuiat^hbF the final <$> 
is beyond the RPA method-and requires at least the MFA method. 

To calculate the critical density of the phase transition, we must 
search for a value of the density that solves 

k ? + y 2 + n<6,k)" - ' 0 . (7) 

In actual calculations of pion condensation, II is approximated by 
the pion self energy due to the strong p-wave uNN and irNA vertices, 
together with an'effective short range interaction g' between particle-hole 



pairs. .This leads to the following structure of fl in symmetric 
nuclear matter. 

n - 2_£ ( 8 ) 

where R^ i s the nucleon particle-hole propagator (Lindhand function) 

i y o . k ) * -f£k ZF^(k) 2m*PF/TT2 (9) 

with f * l/m_f m* Is the effective nucleon mass, p_ is the Fermi momentum, 
and FjQj is the itNN form factor. The A particle-nucleon hole propagator 
II. is given by 

'3 
nA(o,k) - - f * k 2 F ^ ( k ) ^ | L . (io) 

2 2 

where u^ » 2.4 m^, f^ • 5/m^, and F . is the UNA form factor. 
Estimation for the value of g' varies between 0.5 ±0,2 and is the subject 
of considerable theoretical controversy. 

The functional forms of IL, and 11̂  are easily understood as follows: 
Both. IIJJ and^H^,describe,the amplitude,for,the pion to create a virtual 
particle and hole excitation, in the medium. Therefore, the structure of 
both self ..energies .is the familiar,perturbation form 

__ v l<ir|Wlntlph>|2 

\tm,k) - > i2£ , ( 1 1 ) 

q 0) + 0>h(q) - o»p(q + W 

where %(.q) is the energy of the initial nucleon (hole) of momentum q 
that absorbs the plon with form momentum (b),k) and (•) (q + k) is the energy 

...-;, : M - r * v t*f.: b a n ni- ••:••• V ^ K ; • • • ' - ; ' •-•••• P ~ ~ ' • • ' -
of the intermediate particle with momentum q + k. For n„ the intermediate 

c-f~*»J 'j + l~iM! ttb-r.,<l&a '• r o ; . - . • . •- , • .7 l i -v. - • . - « - • <J" ' • " ;•• 
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particle is a nucleon so that i&.-\& -= -q • k/m*. For II. the intermediate 
particle is ? A „ reBonance, so that Burifc * »» * 2.4 I L , almost 
independent of k and q. Thus, the energy denominators for &>• 0 are 
very different for H-, and H.. 

Because both irNN and irNA interactions are p-wave, the numerator 
|<3t^ >| . « k . However, for nuclear Intermediate states, Pauli principle 

o 

blocks occupied states and |<ir|3£. |NN>| « k 2n(q)(l-n(k+q)), while no 
Pauli blocking occurs for A and |<T|5f JAN>| « k 2 n(q.). Here n(q) Is 
the Fermi distribution of occupied states. Because IL does not involve 
Fauli blocking and the energy denominator is Insensitive to q, we can 
simply sum over q giving II. * k2p/uj. as in Eq. (10). On the other hand, 
Pauli blocking severely limits the sum over q for IL,. As k + 0 only those 
momenta q inside the Fermi sphere that lie within a half: shell of radius 
p_ and thicknesa k and oriented such that q • k > 0 Batisfy 
n(q)(l-n(q + k)) j* 0. The number of states in that shell is «p_k. 
The particle-hole energy denominator is then *p Fk/m*, so finally we 
obtain H^ « k 2m*p_ as in Eq. (9). Even for k ~ p_, this form for IL. 
holds because then u> -6V. K P«/m*f while the sum over q gives pi in 
the numerator. Therefore, we see that the forms of II„ and II. in Eqs. (9) 
and (10) are easily understood. 

With H given by Eq, (8), a typical Feynman many-body diagram that 
has been summed via Dyson's equation in Eq. (5) is 
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From such graphical analysis'; It is cle^rJ'that (u*0, k^im^) "pion" 
modes-are basically coherent many-particle, many-hole excitations of the 
ground state wavefunction. Tnese pions have very little to do with the 
familiar laboratory vlona w - v k 2 + m 2 . Although this point is obvious 
to most workers in the field, there is often much confusion about 
expectations of copious pioh production associated 'Hth pion condensation. 
Pion condensation simply reflects a long-range correlation between the 
spln-lsospln components of the nuclear wavef unction. It certainly does 
not;imply that there are hundreds of real'pions In the nucleus. 

To get a feeling for the magnitude of the self energies involved 
in Eqs. (8-10), consider 11̂ , H^ and II for 0-p Q, p ? ** 1-8 m^, g'-0.5, 
m* • Ja»» and for pion momentum k * 20^. Setting F L . » F . » 1, we find 
. 1^(0,20^)-f —10 n^ and 11̂  * -Zm^- Thus; the numerator of Eq. (8) is 
* -12 m^, whi^j the denominator is «2.5, so that 11(0,2m_) * -5 HL. Thus, 

4 2 9 

we see that all is large and cancels the kinetic energy k +m_ • 5 m. at 
about normal densities. J 

j 

/ Now consider the effect of f i n i t e form factors. Conventionally, 

F^(kT *'*-$(& ' ( A ^ m ^ / f A ^ k 2 ) * 1 - ( k ^ + ^ / A 2 i s described by a 

'mondpdle form factor with A*"iGeT. Note, however, that this large value 

of A does not require an assumption that the quark bags are small. In 

to&WytteS^fi&ot'fa the Intermediate quark bag of radius 

Rg - 0.72 fm was computed' as ^ ( k ) - \tSk) " ^ l ( k B B ) / k R B * 1 - A 5 * * * 2 / 1 0 -

For k - 2m , th i s in fact yields the same result as the monopole form factor 
with the large A. - VU.S/.Hg - 970 MeV, giving F „ - F^. « 0V9. The net 

effect i s to reduce IL. +11^ 'Dy)j£about 20t to a valued* -10 m,2 at normal 

density. For m*<ffl_, this value i s further reduced by a factor m*/nL,. 
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We can conveniently summarize the combined influence of II., g', and 
F_N on the self energy, II, in Eq. (8) by defining an effective TTNN coupling 
constant via 

n • ( ~ * r ) h ° "*** k 2 2 m * v * 2 • < i 3 ) 

Comparing it with Gqs. (8-10), this effective coupling constant is 
given by 

feff< k«V - K ; ., " r " rf ** 

(14) 

Although the form of this "constant" certainly does not look constant 
2 

as a function of p , Table 1 shows that f -- is actually very insensitive 
to m* and p - 2p_/3ir2. The remarkable property of Eq. (14) is that in 
the density range p to 3p , where we expect m* to vary between -

10%. (1.0 - 0.7)0^, f * f f varies only by ""'• 

TABLE 1. Effective TIHN coupling f f i f f in units of fm for k « 2IIL, g'-0.5, 
|F N ( k ) | -0.81 incorporating correlations, A production and 
form factors as a function of m* and density from Eq. (14). 
Compare f eff to fff » 1.41 fm in free space. 

• * / ^ P " Po 2Po 3Po 

1.0 f e f f - 0.93 0.89 0.86 

0.75 1.01 0.98 0.96 

0.50 1.14 1.12 1.11 
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We note that the idea of using an effective coupling to incorporate 

A and correlation effects was first pointed out in Ref. (8) in connection 

with neutron matter. Similarly, we will exploit the near density 

independent of f ,. for symmetric matter to simplify mean field 

calculations in Section II.C. 

A last point we wish to stress in connection with the pion self 

energy is the near proportionality of n to the effective nucleon mass, 

m*(p_). This means that the driving force for condensation depends 

sensitively on the deta_ .s of the single particle-hole excitation spectrum 

and hence on nuclear structure physics. Therefore, pion condensation 

calculations should only be carried out with models consistent with known 

nuclear properties. An example of a model not consistent with nuclear 
13 properties is the usual chiral model where m* = mjj. Since m*<iiL., 

the.chiral model can be expected to overestimate <ir(x)>. 

Thus far, we have discussed the pion self energy in cold (T - 0) 

nuclear matter at high densities. Since we are interested in whether ir 

condensation can occur in relativistic nuclear collisions, we need to 

know also the effect finite T ~ 50-100 MeV has on the condensation. 
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In Section III we will consider non-equilibrium effects on condensation 
SB well. 

At finite T, the pion self energy still bus the same structure as 
Eq. (11), but now the sum over occupied states involves the Permi-Dirac 
distribution rather than a step function up to p_. Since H(x,y) measures 

Jr 

the correlation function for spin-isospin density fluctuations between 
points x and y, it is physically clear that at high T such correlations 
must wash out. Hence, finite T suppresses the pion self energy. We can 
define a critical temperature, T c(p), analogous to the Curie temperature 
In ferromagnets, such that <ir(x)> ^ 0 only for T < T (p). In Fig. 1 
we reproduce a figure prepared by Gudima and Toneev comparing two 

10 12 calculations' * of T (p). In addition, Fig. 1 shows the dynamical 
trajectory of T vs. P calculated via the intranuclear cascade code 
of Ref. 11. 

The difference between calculations RGG and 6 lies in the choice 
of form factors and g' and reflects typical theoretical uncertainties in 
the calculation of T (P). The other curves in Fig. 1 show the calculated 
path of temperatures and densities followed in the reaction Ar+Ca at 
0.5 GeV/A and Ne + U at 2.1 GeV/A. These curves illustrate that high 
enough densities together with low enough temperatures can be obtained 
for pion condensation to occur via relativistic nuclear collisions. 
However, the time spent in the ir condensation region is only t*~(3-16) fm/c 
depending on the particle T c(p) curve. As shown in Fig. 7 of Ref. 7, the 
time required to create one ir ir~ or irir condensate (tu«0) pair with momenta 
k and -k is t ~ 3 fm/c. Therefore, we cannot expect a fully developed ir 
condensate to form in such nuclear collisions. However, we can expect 
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the spin-isospin fluctuations associated with ir condensation to Increase 
significantly (see Eq. (56)) during the interaction time. As we 
discuss in Section III it may be possible to search for evidence of these 
increased fluctuations by looking for critical scattering phenomenon. 

Although it is unlikely that the plon field reaches its final 
expectation value <ir(x)> in a nuclear collision, it is Interesting to 
compute what the maximum amplitude of the pion field <ir> would be. In 
the next section we review the mean field theory methods for calculating 
<TJ> 

B. MFA Method 

For the problem of ir condensation, this method was first used by 
Sawyer, Scalapina, Baym, Campbell, Dashen, Manassah, and others. 
For symmetric nuclear matter, MFA was used recently in Ref. 13. In 

2 Section II.C the most recent application of MFA for symmetric nuclear 
matter will be described. 

MFA is completely equivalent to the Hartree approximation. The 
ground state wavefunction |A > is assumed to be a single Slater determinant 
composed of quasl-particle wavefunctions satisfying Eq. (3a) with all 
meson field operators replaced by their expectation values: 
{a,V„,v, ...Y+ {<a>, <V >, <ir>, ... }. These expectation values are 
computed in turn from Eqs. (3b- . . . ) , by replacing the current operators 
on the right-hand side by their expectation values as determined by |$Q>. 
Since | A > is a function of the mean fields itself, the <4>0 | 4>r<)>|4i0> 
are functions of {«J>, <V U>, ... >. Therefore, Eqs (3b-...) reduce 
to a transcendental set of equations for determining the self-consistent 
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field configurations. 
In MFA, two-, three-, etc. particle correlations are neglected. Why 

can we hope to get away with such a crude approximation? Correlations 
lead to a finite probability e for finding a given nucleon In a state 
other than single-particle orbitals occupied in |<j> >. This leads to 
Bethe's iamiliar observation that the overlap of |$ > with the true ground 

i A -£A 
state wavef unction in <•> is <<|> \fy> ~ ( 1 - E ) ~ e « 1 for many-
body systems. Therefore, |<J> > is always a very very crude approximation 
to !<!»->• Nevertheless, if we are interested only in the expectation 
values of few-body operators, then |<J> > may be adequate. For example, 
consider a one-body operator, A - Ia4*>tb.. Since <T|'0|bTb. |i|; > "» 
eCEp-u^d-Ej) + 6(a» 1-E F)e 1, while <* 0 |bjb t |* 0> - U^~m±), 

< * 0 | A | ^ 0 > * (l-<e>)<(Ji0|A|<j»0> +0(6). Similarly the error made in 
evaluating m-body operators using |<f>0> is 0(me). This probability, e, 
for exciting a particle out of a given orbital, is roughly e * V P, where V is the correlation volume In which the interactions are so corr 
strong that excitations out of the Fermi sea are possible. Typically, 
v « « ~ * 4 w t ^ , ' 3 "ne™ r - « w ~ 0.5-0.7 fm. Since p * (4ir r ' / 3 ) " 1 , corr corr corr o 
r * 1.18 fin, we estimate e ~ 0.1-0.2. The Pauli principle helps keep o 
V so small. This is, of course, why the naive shell model of nuclear 
structure has been so successful for the past 40 years, and why Hartree-
Fock and time-dependent Hartree-Fock methods have been able to provide 
much useful insight into nuclear structure and reactions. 

We can see though that HFA becomes less reliable as the density 
increases. By 4p Q, the MFA results are thus subject to considerable 
uncertainties. In using HFA to extrapolate to the intermediate density 
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region, this Increasing uncertainty must always be kept In mind. 
To help overcome part of the, deficiency In this method, the coupling 

constants can be replaced by effective ones to simulate the effect of 
correlation and other higher order effects. For example, we saw in Eq. 
Eq. (8) that correlations via the g' parameter result in significant 
, (-50%) quenching of spin-isospin density fluctuations. However, this 
quenching could be taken into account by a nearly density-Independent 
renormalization of t'te irNN coupling constant via Eqs. (13) and (14), 
Therefore, if we replace the free space irNN coupling f » 1/ m

l r
 i n Eq. (2) 

by f .- given by Eq. (14), then the main effect of correlation as well 
as A production and form factors can be taken into account. This is the 
procedure we will adopt in Section II.C. 

It is Important to emphasize that all parameters in the Lagrangian 
Eq. (2) when used in the mean field approximation are then effective 

coupling constants. Most of these effective coupling constants can be 
determined from the bulk properties of nuclear matter. This is how g . 
g , and g are determine in Walecka's^ mean field calculation and how 
Skyrme force parameters are determined in usual HF and TDHF calculations. 
Having determined the g. .̂ thls way, it makes no. sense to sum higher order 
diagrams since their contributions are implicitly built into the values 
of g.. As shown by Chin, while the g. which lead to consistent bulk 
.nuclear properties are sensitive functions of the particular class of 
diagrams incorporated into the effective theory, the density dependence 
of the equation of state, E/A(p), is not. The reason for this is that the 
higher order diagrams are only slowly varying-functions of the density. 
Thus the density dependence of the equation of, state is mostly determined 
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by the mean field diagrams although the absolute scale Is sensitive to 
all diagrams. 

This situation should be contrasted to the traditional nuclear 
physics approach, where the parameters of the Lagrangian are chosen to 
reproduce the free space HN cross sections. In that case, correlations 
are incorporated by including new classes of diagrams via Breuckner or e s 

theory. Except for the questionable non-relatlvistic approximation made, 
these approaches are then more fundamental than the MFA. However, they 
are rather unwieldy and complicated, especially when asked to calculate 
high (p,T) properties. It is here that the MFA has a clear edge in 
providing essentially analytical insight into the physics of high (p,T) 
nuclear matter. 

Up to now, the discussion of MFA was in the context of an approxi­
mation scheme capable of calculating the equation of state, E/A(p,T), 
as a function of p and T. In the context of normal nuclear matter, this 

14 15 approach has been actively pursued by Walecka and coworkers. ' 
In:the. context of pion condensed matter, only recently has this approach 
been carried out in a complete form. Thepe results are discussed in 
Section II.C. The large body of previous work on MFA for IT condensation 
involves a hybrid version of the MFA upon which we now elaborate. 

In these hybrid MFA, no attempt is made to provide a consistent 
treatment of both normal and abnormal nuclear matter. Bather, the normal 
nuclear equation of state is assumed to be given. The effective Lagrangian 
is then not constrained by the bulk properties of nuclear matter but rather 
by certain fundamental properties of hadronic Interactions. In connection 
with pion interactions, the most fundamental property is assumed to be 
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PCAC. to Incorporate PCAC, the chiral (a,IT) model of the Lagrangian 

*^chiral i s t n e n u s e d a s t n e starting point. With Xhh± •, the mean field 

approximation is made replacing the (a,Tp chiral pair fields by their 

expectation values (5(x),jr(x)). These expectation values are, however, 
13 constrained such that 

m* 2 - g 2{|5(x)| 2 + |;(x)|2} = mj2 , (14a) 

|ir(0)| 
tan9 c h 

(14b) 
|a(0)I 

so that 

ga(x) = mjj cose c h 

gir^x) - ""jjSin^h 
±ikx 

_e 
(15) 

Here 6 c h is the chiral angle. In the normal state 9.«0. In a ir condensed 

state, 6 c h > 0. The mean field equations are then solved in the non-

relativistic approximation, obtaining finally the equation of state: 

E/A(p,9cn),- However, as shown by Kerman and Miller,, E/A(p,0) has no 

resemblance to the normal nuclear equation of state and does not even 

saturate. This is not surprising since there was no attempt to fix «£. 

from bulk nuclear properties and 0&K-iTni does not.provide a complete 

description of nuclear forces. To remedy this inherent difficulty, the 

following procedure is adopted to compute a condensation energy 

( E / A ) C Q n d - E/A(p,6ch) - E/A(p,0) . (16) 

It is hoped that the inherent Inaccuracies associated with the normal 

nuclear state are thereby cancelled In the difference. 
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For symmetric nuclear matter we saw that the "driving force" toward 

condensation was II(a)=0,k) « m* and is therefore sensitive to the 

particle-hole specturm. Thus, the hope that Eq. (16) cancels the inaccu­

rate treatment of the nuclear structure effects is not well founded when 

m* is constrained to be «_. Therefore, the driving force in this approach 
2 is (nL,/m*) larger than in an approach where n* is calculated dynamically. 

Typically, m* -* 0.9-0.7 in self-consistent treatments. We can therefore 

expect this hybrid MFA approach to over-estimate both the condensation 

energy and <ir>. As we shall see below, this does indeed turn out to 

be the case. 

2 C. ir Condensation Consistent with Bulk Nuclear Properties 

To incorporate the constraints due to bulk nuclear properties in a 
14 self-consistent way, our starting point is the Walecka model. We also 

incorporate non-linear scalar field interactions as did Boguta and 

Bodmer. . For the coupling of pions to nucleus we use the pseudo-vector 

coupling to avoid the unphysical S-wave interaction of the pseudo-scalar 

(Y5) coupling. Our effective Lagrangian density is then 

£eff = • (« " V ' <% " 9 s o ) " M . A ' V ) * 
+ Kv 8 V° - s 1 0 O + Kv*^ - < **) 

i W V + 7 < V y " U ( 0 ) ' (17) 
where the scalar potential density i s 

(18) 
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Here BL, is the nucleon mass. The mean field equations are then? 

m s V « g s<#.)-<£> . (19a) 

n\Jvy - g v < ^ > . (19b) 

(D+•* )<*(")> - 9i<i(x)UT*(x)) , (19c) 

j i* - 3V*--<"V(- gs5) — g ^ Y V ^ E M > ) * ( * ) = o . (i9d) 

where a • <o> and V u = < V > are independent of x for homogeneous 
nuclear matter. 

The field configuration corresponding to the normal phase of 
symmetric nuclear matter is {<?•* 0* Vy.» fiu0V0» <j> - 0, p « 0}. 

14 15 This is the field configuration considered by Walecka et al. ' 
Since Eqs. (19a-d) form a, nonlinear system of equations for the mean 
field, we can seek other.(abnormal) field configurations which also 
solve Eq. (19). In particular, we investigate under what conditions a 
pion condensed solution exists of the form ••• . -

<]T(x)>"'U» ,'-/Tr(u coskx + vx'usinkx) ••'", (20) 

where u and v are two Orthohotmal isospin vectors. The case 
u » (1,0,0), v - (0,0,1) corresponds to the charged running wave case: 
/— - ±ikx V 2 <TT ±> • IT e , <ir > = 0. In symmetric nuclear matter, the actual 

orientation of u and v in isospin space plays no role in the self 
consistency equations, since there* is no preferred direction in isospin 
space. Thus, if Eq. (20) is a self--consistent field for some particular 
u and v, then it is a self solution with the same if but with arbitrary 
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u and v subject to u • v • 0. 
The key trick to solving the space-time-dependent Dirac equation 

in Eq. (19d) for a ir condensed field, Eq. (20), is that this space-time 
dependence of <ir(x)> can be transformed away with a local isospin gauge 
transformation: 

T« 3v<iir(x)> - ifk^ R v(kx) x « y x u R*(kx) , (21) 

where 
- -rdtx) f v 

0 - e Z " " . (22) 

Defining the transformed Dirac field ij> by 

t|»(x) - R^kx) i|)v(x) , (23) 

Eq. (19d) reduces to a space-time independent Dirac equation for t|i , 

(ii» - g v i - ( m N - g 8 5 ) + KT« (^-v+ g j riY 5(yxu))Jt|) v(x) - o 
(24) 

Therefore, the transformed quasiparticle wavefunctions are simple plane 
waves times complicated splnors u . Fortunately, we never need to 
compute these splnors, since we only need to compute expectation values 
of currents, <ij>ri|/>. These expectation values can be computed using 
standard propagator techniques as follows: 

<iKx)riKx)> - £j 5v* R*(kx)r Rv(kx) u^ 
t^<E F 

" ]C ttK(kx)r V ^ K i 5v)} 
v% 

" jLj Tr{R*(kx)rR v (kx) Res S v ( p o , p ± ) I (25) 
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where S (p ,p) is the transformed quasiparticle propagator. With some 
algebra, we can compute the transformed propagator as 

V V ? > - { ^ - m ' + t x . (-=- HKB^VY.VXU)} 

• ntpT K* " e 2 " ( p ' k ) r Y " 2gir *£ ( p' k ) + ***htl*Vz\ 

x {tf'+m* + U- [ J v - g^UYj vxu]} , (26) 

where 
Pji Py "" 8y V y 

m* - "h-g.5 

E 2-- |p'|2+m*2- (i+g^^Xkk) , (27) 

and 
D(P„,P) - (P 0

2-e 2) " (P'k) - 4gJ if2((p'kf -m* 2(kk)). 
, .U-: ::- -.- (28) 

The quasiparticle spectrum u>(p) follows from the singularities of S(p ,p), 
i.e.'," from 

D<w(p),p) - 0 . (29) 

— — 2 2 \ 

For ir •+ 0, w(p) • a V +((p±k/2) + m* ) , and the Fermi surface is 
composed of two Fermi spheres which are displaced by ±k/2 from the origin. 
This displacement is, however, only an artifact of the gauge transfonnation 
Eq. (22) and (23), and leads to no physical baryon or isospln currents. 
When if / 0 is a self-consistent solution of the mean field equations, 
Eq. (19), there appears a gap in the quasiparticle spectrum at p - 0 and 
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the Fermi surface acquires a more complex peanut shape. 
Having found S v(p ,p) and the quaslparticle spectrum, u(p), we can 

now use Eq. (25) to calculate all the necessary source currents appearing 
on the right-hand side of Eqs. (19a-c). These source currents are 
functions of the unknown fields {5 p V . irl, and thus Eq. (19a-c) poses 
a self-consistency problem. Fortunately, for a fixed Fermi energy E p, 
only the 5 and n equations are coupled to each other. The numerical 
procedure is thus to fix E_, find 0(E„) and i(E„) from Eq. (19a,c), then 
use those values in computing V (E_) from Eq. (19b), and finally to 

O c 

calculate the baryon density PB(E_) and the energy density fi(E ) . 
The final binding energy per baryon E/A = &(E F)/p B(E_) depends 

on the five parameters 

gs / n ,s ' *v/mv ' b ' c • «ir * 

The first four parameters are chosen to reproduce the known bulk properties 
of nuclear matter: (1) E/A= -15.96 MeV at p Q - 0.145 fm"*3, (2) 3(E/A)/3p= 0 
at P 0, and (3) the incompressibility K - 9p*32(E/A)/3p2 - 200-300 MeV at 
p . The fourth constraint that we introduce to fix the first four 
coupling constants 1 B to require that B/A * 0 at some density between 
2p.-3p . This last constraint is a statement of our guess about the 
softness of the equation of state at higher densities. For g_ we take 
an effective value motivated by our analysis of the pion self energy 
via Eqs. (13) and (14). 

In order to clarify the relationship between MFA and the SPA method 
discussed previously, we show in Appendix A that the relativistic mean 
field equations reduce to the relativistic RFA equations as the field 
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strength vanishes. In particular, in the <ir(x)> •*• 0 limit, Eq. (19c) 
reduces to .',..--

(^k2 + mj + H r e l(k))S - 0 , (30) 

where II r e l is the relativistic Llndhard function [Eq. (A. 13) of Appendix A ] , 

nrel< k ) " "2igf f - i £rTr(jtY 5S(p) *Y 5 S(p + k)) , (31) 
rej. "if, j ( 2 l r ) 4 

with S(p) - (p ,-g v?-m*+ie 8(Ep-p ) ) _ 1 . When p p « m*. H r e l reduces 
to the non-relativistic Lindhard function as In Eq. (9) (with F_„ - 1). 
However, recoil and relativistic kinematics in Eq. (31) lead to correction 
of order (p„/m*) , (k/m*) ~ 10-20Z to that non-relativistic self energy. 
Therefore, the e used in Eq. (19c) may differ by ~10% from f - - in Table 1. 
A detailed study comparing Eq. (31) to the non-relativistic Lindhard 
function is currently in progress. 

In Figs. 2 and 3, we illustrate the equation of state for two sets 
of parameters (g_, g_,b,c) that yield reasonable equations of state in the 
normal phase, <ir> « 0. For sufficiently large g_, self-consistent pion 
condensate solutions, Eq. (20), are also found that lower the ground state 
energy. As we lower g_ from the free space value, f =1.41 fm, to simulate 
correlations, A production, and form factors as in Eq. (14), we find that 
the critical density increases and the condensate energy lowers. 

The difference between the equations of state in Figs. 2 and 3 is 
due mainly to the difference between effective mass, m*(p), for each case. 
Recall from Section II that the driving force II " m*(p). In Fig. 4 we 
shew m*(p) corresponding to each case. 
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In our Lagrangian, Eq. (17), the m*(p) Is controlled Indirectly 

by the nonlinear a interactions In Eq. (18). For b=c = 0, corresponding 

to the tfalecka model, m*(p) is strongly density dependent and has a 

rather small value, ~0.6 HL.. Associated with this small m* is a rather 

high incompressibility, K ~ 500 MeV, which follows from the large values 

g s/m 8 and gy/iBy needed to reproduce the binding and saturation density. 

By introducing the nonlinear interactions of Eq. (18) , which are equivalent 

to three and four body forces, we can lower gB/"»_ and g-/™.,. Since gy/ffl™ 

controls the magnitude of m* while gB/m controls the density dependence 

of m*, by lowering g8/n>s and g^My we Increase the magnitude of m* and 

reduce its density dependence. This is what we find in Fig. 4. The larger 

the values of b and c, the smaller are the values of g /m and g. /m 
"B B ^f V 

needed to reproduce the stauration properties, and consequently m*(p) is 

larger and less density dependent. Also, by lowering g_/m_ a n d gy/iU, 

we see frca Figs. 2 and 3 that the equation of state becomes softer. 

Therefore, there is a correlation between larger three and four body forces, 

larger and less density dependent m*(p), a softer equation of state, a 

lower critical density, and greater condensation energy. 

Another important difference between the parameter sets in Figs. 

2 and 3 is the minimum value of g_ for which no condensate solution exists. 

For Fig. 2 with the smaller b,c, no condensate solutions were found for 

g^ < 1.18 fm. For the larger b,c In Fig. 3, the critical density simply 

gets shifted toward higher densities as g_ is lowered. Comparing to Table 1 

for the expected renormalization of g_ due to correlations, A production 

and form factors, we can say that in the first case ir condensation is 

very unlikely to occur at all, while in the second case a condensate 
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can develop at higher densities >(2-3)pQ. 

"We conclude that pion condensation in symmetric nuclear matter can 

be made consistent with the bulk properties of nuclear if the effective 

mass is large (m* > 0.9), which in our model occurs when sufficiently 

large three and four body forces exist. To gauge how large these forces 

are in the case of Fig. 3, we can compute from Eq. (18) the net contribution 

of these many body forces to the energy per nucleon at normal density. 

For these parameters of Fig. 3 this is 

(4) = m. . _ 4 6 M e V , (32) 
V A /3,4body p0 

which is quite large. However, slight variations of b,c yielding nearly iden­
tical results to Fig. 3 can result in a factor of 10 smaller value of Eq. (32). 

Next, we contrast our results to calculations using the chiral 
13 model where m* is fixed to be IL. In Fig. 5 we compare the condensation 

energy, Eq. (16), calculated in Ref. 13 to those obtained from Figs. 2 and 

3 for g chosen to give approximately the same critical density. As 

expected, the chiral model with the much larger driving force tends to 

give a much higher condensation energy that increases rapidly with density. 

We conclude that self-consistency and compatibility with the bulk nuclear 

properties are very strong constraints on the existence and persistence 

of the condensate phase. 

Finally, we wanted to know the expected magnitude of the pion field 

for various g_. Typically, ir in Eq. (20) turns out to be on the order of 

0.1 m_. In order to get a feeling for this number, we should compare the 

amplitude of spin-isostin oscillations to the normal baryon density. 

From Eq. (19c), we can convert v into a magnitude of <$YKY.(T*U)1|» > 

for k D 2x0^ e as 
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<*Y,Y s (T-u)i( .> - * TT , (33) 

For ir • 0.1 m , g_ •> 1/nu, the right-hand side i s 0.25 m which i s 
3 

about one-half the normal baryon density, p * 0.5 m_. Thus, sizeable 
oscillations of the spin-isospin density are possible. It is Important 
to note, however, that unlike the neutral condensate, the class of 
condensate solutions considered in Eq. (20) do not lead to density 
oscillations. The baryon density is uniform; only the spin-isospin 
density oscillates. In Fig. 6 we plot the ratio of the spin-isospin 
density <i|>Y, Y, tj> to the baryon density <ij'Y-i|»> for a case with 
g^ * 1 fm in Fig. 3. Note that non-relativistically <ipY5 Y 3 t3ij/> * 
p(p+) + p(n+) - p(p+) - p(n+) is the spin-isospin density, where p(p+) 
is the density of protons with spin pointed along the z axis, etc. 
On the other hand, p • <^»Y0'I'> * P(p+) + P(n+) + P(p+) + p(n+) is 
independent of x. The ratio R-. - <ipY Y, t •>/<$Y 0'l' > in Fig. 6a 
measures the magnitude of the spin-isospin density oscillations in the 
condensed state. We see that for p > 2p that R „ * 0 . 5 . The corresponding 
oscillations of the densities p(p+)+p(n+) and p(pf)+p(n+) are 
illustrated in Fig. 6b. 

It is remarkable to note in Fig. 6a that although the condensate 
energy is very small, < 3 MeV, the spin-isospin oscillations are about 
as large as they can possibly get. In fact, R., only increases to 0.85 
when g * 1 . 4 1 , even though condensate energy is about 10 times larger. 
This has important consequences when considering dynamical effects of 
pionic instabilities. Clearly, the very slight softening of the equation 
of state, E/A(p), due to condensation would have very little effect in 
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hydrodynamic calculations1. However, the large spin-isospln fluctuations 
can lead to critical scattering phenomena as discussed below, which we 
could hope to observe. In the next section we study the dynamical 
consequences associated with pionic instabilities. 

III. DYNAMICAL EFFECTS IN NUCLEAR COLLISIONS 

A. Pionic Instabilities vs. Pion Condensation 

Having reviewed the underlying theory of pion condensation, we 
now turn to what experimental signatures such pion field coherence 
phenomena could lead to in relativistic nuclear collisions. For possible 
consequences in neutron star cooling rates, see Baym. 

In discussing dynamical effects it is important to make a distinction 
between pion condensation, which is an equilibrium phenomena, and what I 
.call pionic instabilities, associated with non-equilibrium states of 
nuclear matter. The former is analogous to the anti-ferromagnetic phase 
of certain materials, while the latter is analogous to plasma instabilities 
in colliding plasmas. As emphasized in Kef. 7, pionic instabilities may 
occur even if pion condensation does not. For example, a finite tempera-
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ture plasma may be stable with respect to spontaneous growth of charge 
density waves, yet a two stream plasma may be unstable in these types of 
excitations. The difference in the two cases lies entirely in the form 
of the dielectric function (or equivalently, the photon self energy in 
the plasma). The same difference can occur for pion fields in nuclear 
matter. 

To compare II(k) for equilibrium and non-equilibrium systems, 
consider the nucleon-hole polarization energy, H«(k), given by Eq. (11), 
with Uu-u • -(p*k + k /2)/m*. For T-0 the sum over q is restricted 
to the occupied states distributed as n Q(p) • 6(p«-p). Let IL,(k) 
denote the self energy in this case, Eq. (9). Mow consider two inter­
penetrating nuclear beams as in nuclear collisions, where the initial 
distribution of occupied states Is given by 

n(p) - V P - P C B ) + n o ( E + Ecm) * ( 3 4 ) 

Equation (34) describes two displaced Fermi spheres. The net baryon 
density of the system is p • 2p . For high enough center-of-maas momentum 
p , Pauli blocking can be ignored between the two Fermi spheres. Then 
by simply changing variables, q' - 3 ± P c m > in Eq. (11) with n(p) given 
by Eq. (34) we obtain 

(35) 

For o)-0 and k 1 p , we see therefore that 
— ..cm 

Il^O.k) - 2IlJ(0,k) . (36) 

This should be contrasted to the case of equilibrium nuclear matter at 
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the same density, 2p:i ifor whichsJLj*±s only*2 /* larger -than'IlS as'-'.-. 

seen from Eq; (9)« Therefore, the non-eguilibrium aspect of the streaming 

nuclear matter.described via Eq. (31) has lead to a 60% enhancement of 

the driving force via Eq. (33) for k 1 p relative to the-equilibrium 

case. As shown in Ref. 7, for k not perpendicular to p__, this 

enhancement is reduced. Translated into an effective ITNN coupling, g_, 

non-equilibrium effects thus lead to -~30% enhancement . A s seen in figs. 

2 and 3, such an enhancement of g_i can make it much more favorable for 

pionic instabilities to occur. Thus in this sense it may be advantageous 

to study non-equilibrium nuclear systems,such as those arising in nuclear 

collisions, to look for signatures of pion field coherence. 

As to what signatures we should look for, we first review the basic 

dynamical consequences of pionic instabilities. Collective instabilities 

effect the dynamics in two essential ways: (1) through the growth of 

collective fields, <ir(x,t)>, and (2) through the modification of two-

body scattering rates. These two aspects of collective instabilities 

are intimately interrelated through the nature of the pion spectrum in 

the medium. There are, in general, several branches of the pion spectrum 

v in nuclear systems. ' First there is a particle-hole branch with pion 

energies in the range 0 < to < p-k/m. These correspond to collective 

excitations with pion quantum numbers that decay primarily to particle-

hole pairs. At high densities there may also be a condensate branch 

with u)"0 which represents .unstable collective modes involving coherent 

many particle-many hole excitations. There is also a quasifree branch 

corresponding to almost on-shell pions with 0) * m_ and a A,.-N hole 

branch with•'•& * 2;4 "m_. All these difference branches, to.(k)i just 
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correspond to different s ingularit ies of the pion propagator,, 

A" ( a i ^ . k ) = 0, for fixed k. 

If we consider the decay of the system in terms of "ir ir " pair 
production, then because there are many branches of the ir spectrum in 
nuclear matter, several dynamical processes can be described at once on 
the same footing. The formalism for such a calculation was derived in 
Ref. 7. The basic result is that the total decay rate per unit volume, 
r/V, of a system can be computed from the imaginary part of the correlation 
energy with the result that 

T D f 3d"k , , , . -=- = Re I r- log e(u,k) 
J (210* 

(37) 
(2ir) 

where the "dimeslc" function is given by 

e«u,k) - 1- j F + -
[«o -k -m. | ̂2 ] [V*>»*> + V U*>] 

(38) 

It is easy to see that e((i),k) " 0 whenever A~ (u,k) «0, and hence all 
7 19 branches of the pion spectrin are incorporated in e. Detailed study ' 

of Eq. (37) shows that T can be decomposed into a sum of partial widths 
into different channels as 

" ^ F " F o + r e l + rinel + V < 3 9> 

where T_ is the rate of condensate pion pair creation, T_, and r . . are 
the two-body elastic and inelastic scattering rates, and T , is the rate 
of quasffree pion production. ° 
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A mddel calculation of the magnitude of T| Was reported iii Ref. 19. 

We reproduce here for illustration typical results corresponding to 

nuclear collisions with beam energy E = 380 and 1040 MeV/riucleon. 

TABLE 2. Partial decay rates per unit volume (from Ref. 19). 

A r/v v v 
r e l / V . r i n e l / V rw./v 

(MeV/A) 
- ^ : 

( < ) < * ( < ) K> 
380 0.72 0.11 0.37 0.24 0.10 

1040 1.14 0.12 0.27 0.72 0.13 

For comparison note that if the decay of n(p) in Eq.(34) were purely 

due to two-body scatterings with cross section 0"̂ . « 40. mb, then 

r/V = p 2 0 N N v r e l = 0.063(0.079) fm~* =0.25(0.31) m|J for F^ = 380(1040) 

MeV/A, respectively. Thus, there is a factor ~3 enhancement of the 

decay rate due to pionic instabilities. This enhancement is due to the 

combined effects, of the growth of collective fields via I\, + r , and the 

enhancement of, the scattering rate r_,+T. .,. due to critical scattering 

phenomena. -;, ,̂.. ;-

The question is how could we search for evidence of these enhance­

ments via nuclear collisions? The main problem is that higher r means 

faster equilibration time. Once the momenta distributions are thermalized 

then the memory of the possibly interesting dynamical path is lost. As 

we shall see, it is not easy to uncover clean signatures of pionic 

instabilities. The two experiments described below are our best hope 

at the present to look for such phenomena. First, we describe the 

Tanihata, et al's large-angle proton correlation experiment to search 
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for critical scattering phenomena. Second, we describe Crowe et al's 
small-angle pion correlation experiment to search for evidence of the 
coherent pion fields produced via T ,. 

B. Critical Scattering Phenomena 

The enhancement of T . + r . . in Table 2 is due to the interaction 
of the exchanged pions with the medium. Thus, instead of the free pion 
propagator A0(a),k), the medium-modified propagator A(tt,k) enters into 
the amplitude for scattering, as illustrated below for the effective 
differential cross section 

j< 
a) ! b) 0 b o 

< < : 

The scattering rates in the medium get enhanced because the pion can 
propagate further for certain critical momenta k, hopping from one 
nucleon to the next — the "skipping stone" effect. This larger propaga­
tion amplitude leads to an enhanced effective two-body cross section, 
d o r

ecf. that differs from the free space cross section, d o . by a 
7 19 multiplicative polarization factor, ' P(u),k), as 

IK eff ( N<Pi> + N<P 2> •* Mpj+lO+lKpj-k)) - P(Au,k) ̂  (HN-^AB) 
d k (40) 

where Au> is Athe. energy transfer and k is the momentum transfer in the 
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:'.}<*£ : S.f|-J« 

scattering of the two nucleons, N, of momenta Pj and p 2 to states A and 
B. Here A,B can be either nucleons or A „ resonances. 

The expression for ?(u,k) involves the dimesic function, Eq. (38), 
and the differential scattering rate Yo0»>,k), that measures the number 
of binary collisions with energy-momentum transfer (u>,k) in the absence 

of the polarization effect: 

1 I Y0(to,k) ) 
W»'k} { e(a),k)zj 

It can be proven that 0 < Y 0/le| < 1. Furthermore, for yQ+ 0, 

*© ° |e(a>,k)|2 

which is the Balescu-Lenard result for the effective cross section in plasmas. 
Thus, if the collision rate using free space cross sections is low 
(Y0(o),k) + 0 ) , then Eq. (41) reduces to Eq. (42). The differential 
scattering rate, Y0(<">,k)» has the following physically intuitive form 
in terms of the free space d 0 Q/dk (NN-s-AB) differential cross section: 

9nV' . S o : ; 1 grtii'-'tio."' , ••; ---.. ••.•mot? . - • • . ' ; ' . . s l ' '-

% ^ ^*M^^ I —±-^—| {n(Pl)n(p2) 
0 3 * - * J (2TT)3 (2TT)3 * 

x 6(u+^(p^ - e A ( P i + k ) ) x 6 ( u + e N(p 2) - e ^ - k ) ) 

. 3 
0 I 

x
: -^r(N(p 1)+N(p 2) -̂  A(Pl+k)+B(p2-k))J. . (43) 

(Pauli blocking terms have been suppressed here.) The total scattering 
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rate per unit volume with free space cross,sections i s then 

r s c a t / V " P 2 < * o W - 1 / ^ 7 Y o ^ > ' <"> 

The sum over A,B in Eq. (43) is over final nucleon and A states. In the 
BFA ring approximation used in deriving Eq. (41), d 0 Q/dk 3 in Eq. (43) 
is proportional to the free pion propagator, |AQ(u),k)| . If there exists 
a condensate mode k c such that |6(0,k c)| - 0, then P(0,kc) + l o g » . 
Furthermore, if the momentum .ransfer k is kinematically allowed, then 
the effective differential cross section will diverge at that critical 
momentum transfer. This is called critical scattering phenomena. 

For completeness we show in Fig. 7, a calculated example for 
P(0,k) • da ff/dO. The main feature is the large enhancement for 
k c ~ 2m_ ± m_. The actual magnitude of the enhancement depends sensitively 
on the momenta p x and p 2 of the nucleons, but the enhancement is always 
largest f or k ~ 2mu and U)=0. 

..The first place we would look for such critical scattering phenomena 
is the single proton inclusive cross section in the kinematic region of 
quasi-elastic scattering. However, several factors tend to camouflage 
or obscure any peak structure resulting from critical scattering: 

(1) The background due to multiple collision components of 
the inclusive yield; 

(2) The background due to direct, knock-out collisions from 
the nuclear surface; 

(3) The background due to projectile and target fragmentation; 
(4) The coincidence of k * p_ and Ak * p_ and the additional 

broadening of Ak due to Fermi motion. 
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To understand the first two sources of background, we write, as in 
Ref. 20, the inclusive cross section E d c/dp as a multiple cluster 
series . A 

*p»aj 
E o7 ' X °(M'N) WE> ' (45) 

M.Nfl 

where o~(M,N) is the weight associated with multiple collision of M 
projectile P nucleons with N target T nucleons, and F._.(p) is the 
momentum distribution (normalized to M + N ) associated with this multi-

20 nucleon cluster scattering. For M + N > 4, F„., rapidly approaches the Mr! 
thermal limit relatively independent of the forms of the two-body cross 
section. Thus, only the (M,N) • (1,1) and possibly the (1,2) and ' M ) 
contributions to Eq. (45) are likely to carry the signature of critical 

20 scattering phenomena. However, recent calculations of Knoll indicate 
that the percentage of (1,1) contribution to total integrated yield for 
Ar + AT is only 6% for Impact parameter averaged cross sections and 4% 
for central triggered reactions. Of course, the relative importance of 
the (ljl) contribution for a particular point in phase space (p«,p,) 
depends on how close (p..,p.) is to the quasi-elastic kinematic region. 
Nevertheless, the single collision component tends to remain a small 
fraction of the single inclusive yield. For the lightest systems, C+C, 
the knock-out fraction may reach 50% in the quasi-elastic region due to 
the large diffuse surface. However, then the second source of background 
becomes important. Most of the knock-out contribution occurs then from 
the surface regions of the nuclei. In Ref. 21, it was estimated that 
most of the knock-out yield comes in fact from regions of the nuclear 
surface with density p < 0.2 p . This means that the bulk of the knock-
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out cross section occurs outside the high density region, so that 
polarization effects are likely to be small, P(d),k) * 1-
Calculations are currently in progress to find out what fraction of 
knock-out comes from the high density region. We expect this fraction 
to be quite small. Therefore, we see that the background due to 
multiple collisions and nuclear surface knock-out nucleons will diminish 
greatly the chance to observe the critical scattering peak in E d a/dp . 
In fact, points (3) and (4) lead to further suppresion of the peak. 

To increase the (1,1) component and remove at least pari of the 
multiple scattering background, we turn now to the pp correlation experi-

22 23 
ment of Nagamiya et al and Tanihata et al. The basic idea here is 
to require a coincidence between two protons in the kinematic region of 
the knock-out. In Fig. 8, the quasi-elastic kinematic region is Indicated 
by the dashed circle going through the projectile and target momenta in 
the CM frame. A knock-out scattering will result in placing two nucleons 
on this circle such that the line joining them goes through the CM point. 
Indicated by the dashed region is the acceptance of a tag counter R that 
records one proton with cm angle 8--* 90* and azimuthal angle 4>*180o. 
The spectrometer is then set up to record all protons with azimuthal 
angle $-0 that occur in coincidence with the tag counter. In addition, 
there is tag counter U set up to record protons with (9^_ * 90°, i))«90o), 
out of the plane defined by tag R and the spectrometer. Coincidence between 
the spectrometer and tag U can only occur because of the background due 
to multiple scattering. An in-to-out of plane correlation function is 
then defined as 
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— , V e cm^cm» 6 ^^' . y i 8 0 ? ) . 

^U^cm'Pcm^U-900' *U = 9 0 ^ 

where Y, (8 , p , 6_, <p_) i s the coincidence rate between a proton 
i"r:l Cm Culr :'--L-- L ' f 

measured with tag I set at CM angles (6 ,$..) and the spectrometer proton 

measured at cm angle 0 , ((> = 0 and momentum p . The contours in Fig. 8 

display this measured correlation function. We can see clearly the 

quasi-elastic peak at Qe--90"t <fr = 0. As expected, going from C to Ar 

increases the multiple scattering background and, hence, decreases the 

quasi-elastic peak. Also note that the width of this peak is closely 

related to the Fermi momentum p„ * 250 MeV/c. To appreciate, Fig. 8, 
20 22 recall ' that the single inclusive cross section for 8 _ =90° protons 

is smooth and structureless, with no evidence of the knock-out peak. 

The coincidence experiment, on the other hand, produced a clear signature 

of the knock-out contribution. The peak height of C in excess of 1 in 
23 Fig. 8 can ,be used to estimate the knock-out component giving *50Z in 

this .configuration. 

... The next generation of correlation experiments proposed by Tanihata 

et al will study this knock-out component at different cm angles by moving 

the.tag.counters R and D to 8„ « 6.. < 90°(cm). The hope is that 

max(C-l).« f(8_), will reveal the dependence of the effective differential 

elastic nucleon-nucleon cross section with cm angle 8„. If this turns out 

to be the case (a theoretical problem currently under investigation by 

Knoll and Randrup), then this experiment can be used to look for signatures 

of critical scattering phenomena. The main problem will be to untangle 

the large background remaining from knock-out collisions in the low 
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density surface region, for which P(b>,k) ** 1. At present though, this 

experiment offers the best hope in the search fee evidence of critical 

scattering phenomena in nuclear collisions. 

24 C. Pion Field Coherence and Pion Interferometry 

We now discuss an alternate way to search for evidence of coherent 

pion phenomena via small angle identical pion correlation experiments. 

The study of such correlations is called pion interferometry, and is 

analogous to the well known Hanbury Brown-Tiss interferometry technique 

in quantum optics. There are two aspects of pion interferometry: 

(1) The deduction of the space-time history of the pion source; 

(2) The deduction of the degree of coherence of the pion field. 

I will concentrate here on the second aspect. 

The source of possible coherent pion fields in nuclear collisions 

is the time-dependent, collective spin-isospin current, Jsu/fc) " 

<$Y.YuTt|»> that could arise if pionic instabilities occur. As we 

saw in Eq. (3c), the source of the pion field is actually 

j(x) - 8 i r a y J 5 u « • (47) 

In equilibrium, j(x,t) • j(x) is independent of time (in symmetric 

nuclear matter) and no on-shell (u = (k 2+mf) ) pions can be radiated. 

(In a condensate state, <ir(x)> f 0, but there are no real pions in the 

system.) However, in non-equilibrium configurations as described, for 

example, by Eq. (34), pionic instabilities can lead to a time-dependent 

j(x,t), and hence on-shell pions can be produced. As we noted in Eq. (39), 
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both a condensate (u=0) instability (TQJ'O) and a quasi-free pion (w « m^) 

instability (r , ̂  0) can occur in non-equilibrium systems. Both instabil­

ities grow at a charactersitic rate, Y. that is determined from the I\. 

In particular, as shown in Ref. 7, we can write 

f = p^c<Yc> • — - B ^ V ' ( 4 8 ) 

where p_ is the density of unstable condensate modes k corresponding 

to a static u) = 0 Instability, and p , is the density of unstable quasi-

free plon modes with finite frequency (0 * m . Typical results of model 
7 -19 3 

calculations ' indicate that p^ « p^, * m^ and <Y C> « < Y i r i > * 

(0.1-0.2)11^. 

Of course, in addition to this source of pions, the most Important 

source is the usual NN + NA mechanism included in Eq. (39) via T. . . 

The pions produced by incoherent inelastic scatterings will, however, be 

described by a chaotic field. The source current describing this 

incoherent, chaotic process can be written as 
N ., E i+i 

e J A ( x - x ± ) , (48) 
1-1 

where <f». are random phases, x. are N random inelastic scattering centers, 

distributed according to a density distribution p(x,t), and j.(x,t) 

describes the pion source current in one inelastic collision. If no 

pionic instabilities occur and the total current is given by Eq. (48), 

then as shown in Ref. 24, the single and double inclusive (negative) 

pion distributions are simply given by 
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p / k , ) = N | j A ( k , 0 ) k ) | 2 

P 2(^,fe 2) - N2 I j ^ k , , ^ ) ! 2 | j A (k 2 , a i 2 ) | 2 J l+lpCki-kj) ! 2 ! , (49) 

2 2 *5 
where ui. = (k + m ) and 

/

iUj^t - i k - x 

d"x - S s-TT j A ( x , t ) . (50) 
(20^(2^)°) 

Defining the two identical pion correlation functions as 

P2(kj.kj) 
^h'ty ° p^k/fp^) (51) 

n 
we see that R = l+|p(kj-k 2)| measures the Fourier transform of the 
space-tine distribution of inelastic scatterings. This is the well 

26 known Hanbury Brown-Twiss result for chaotic boson fields. 

However, if pionic instabilities occur that give rise to an 

additional source current ja(x) due to the growing collective spln-isospin 

waves, then a coherent component of the pion wavefunction will develop. 

In particular, if the only source of the pion field is j (x), then the 
24 final pion state will be a (Glauber) coherent state: 

|jQ> = e exp|ijd 3k j£)(k,uk) a1"^)} |0> , (52) 

where 

»o = / d 3 f e IVb.Vl 2 ( 5 3 ) 

is the average number of pions radiated by j (x). Observe that it is 
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crucial that j (x,t) depend on time because only those frequency components 
of j(x,t) with w>m_ can produce on-shell pions. Also we note that for 
charged pions the coherent state also involves the nuclear charges in 
order to form eigenstates of charge. See Ref. 25 for a specific 
dynamic model producing charge-constrained coherent states. The remarkable 
property of coherent states is the absence of correlations between pions. 
Thus, if j„(x) were the only source of pions, then R = l for all kj,k2 

in contrast to the results for chaotic fields. 

For the general case when the source current involves both coherent 
and chaotic mechanisms, j(x) = J 0(x) + j .(x) , the pion field as 

24 only partially coherent. The correlation function is then given by 

R(k x,k 2) «= 1 + (l-D(k,))(l-D(k 2)) | p ( k r k 2 ) | 2 

+ 2[D(k,)D(k2) (1-D(k 1))(l-D(k 2))] ! i p(k,-k2) , 
(54) 

where D(k) i s the degree of coherence of the pion f ie ld in mode k, 

D(k) - 2_x_JS . (55) 
I j ^ k . ^ r + H|jA(k,(a k)| J 

D(k) is simply the fraction of pions at k produced by the coherent 
source, j Q(x). Equation (54) is illustrated in Fig. 9 for the partially 
coherent and chaotic (D • 0) cases. 

The important point to note is that the degree of coherence can be 
determined by looking at the kj - k 2 intercept point: D(k) •= (l-R(k.k)) . 
Coulomb final state interactions modify these results, but before 
dicussing these we will construct a simple model of j (x) to illustrate 
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the basic physics. 
Consider a finite frequency (0 Instability in mode k that grows 

at a rate Y- Then for small times j (x,t) ~ Yt exp[-iw t + ik «x]. 
To Include finite size effects we modulate this form with exp(-x 2/2R 2). 
To take into account finite collision time T • 1/T_, we modulate j by 
exp[-r»t]. We also assume that the maximum possible amplitude of the 
spin-isospin oscillation is the baryon density p. We will therefore 
study the simple model, 

-i(w ct-k cx) -x 2/2R 2 -r Tt -Yt 
j0(x,t) " gjj k cp e e e (1-e ) 6(t) . 

(56) 

If A is the total baryon number, then p is related to R in this model as 
as p - A/(2irR2)3'2. Note that g^k comes from Eq. (47) . With Eq. (56) 
we find 

n .Jk 2 -(k-kc>2R2 2 14 ,u \\2 .Z *ff Kc e Y 
IV^VI A T 5—i 2 r » 

(57) 
and the average number of coherent pions per baryon from Eq. (53) is 

2 f c 2 

-c ^ »IT K c ^ i r 
n - h<K 
A ^ \ c P ^ c - o » c ) 2 + r T ( V u c > 2 + <Y+r T ) 2 

(58) 
2 

That j produces pions coherently can be seen from Eq. (57) via the A 
dependence of the single inclusive distribution. The coherent contribution 

2 + 2/3 8/3 to the single inclusive cross section therefore goes as A • A 
Furthermore, the momentum distribution of coherent pions is centered on 
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the instabi l i ty wavenumber k with a width ~1/R. 

As a numerical example, consider g_ « 1 / m

1 I « k

c " 2 m

1 r > "V " 2.24 m ,̂ 

p - 2pQ «= m^3, T T - 0.2 m .̂ Then 

- ^ * 0.01 £ j - \ - T . (59) 
A VV -d-o.45(»c/v)4 

For the condensate instability with 0J =0, y*0.2 m , 5 /A * 4* 10~ . 

For the quasi-free plon instability, U>c * m^, Y * °- 2 »%•> *V^ A te 4 x 1 0 " • 
27 -

These numbers should be compared to the observed average number of IT 
in Ar + Ar for lab kinetic energy EL per nucleon, where (5/A) « 

— 2 

4 * 10 (EL/GeV). Thus, the chance of seeing coherent pion fields is 

best at energies <300 MeV/nucleon, i.e., in the sub-threshold region. 

Furthermore, the plon condensate instability with (0=0 would lead to 

far too few pions to be observable. Only the finite frequency quasi-

free pion instabilities have some chance of being detectable. 
The momenta, k , corresponding to quasi-free pion instabilities ~c 

have been studied In Ref. 19. In contrast to the condensate instability 

which always occurs for k * 2-3m_ and 8 * 70°-90°, the finite frequency 

instabilities occur for k * (2-3)m_ but in an angular region that varies 

with energy (Ql,B2) <* (0,25), (0,50), (30,60), (50,70) for EL̂  - 167, 375, 

670, 1040 MeV/A. In this respect pions from the quasi-free pion instability 

are analogous to Cherenkov radiation. 

He now discuss the current experiments on pion interferometry. 

Since the pioneering experiment of Ref. 28, a new high statistics 
29 experiment has been performed for Ar + KCl at 1.8 GeV/nucleon. The 

very preliminary results are shown in Fig. 10. 
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First , we note that only the plons emerging at center of mass 

angles ~90° with momenta (k) > 100 HeV/c were measured in this experi-
cm 

ment. Thus, this experiment concentrates on the pion modes, k, that are 

perpendicular to the beam axis. In accordance with our previous discussion, 

any coherence in these modes would be due to a condensate instability. 

For momentum differences (in the projectile frame) |q| > 25 MeV/c, 

R(q) has a shape similar to what we would expect for a completely chaotic 

field from a source distribution, p(q), with radius ~5 fm. The solid 

curve R(q) corresponds to a shell of radius r » 5 fm. For |q| < 25 MeV/c 

we see, however, an anti-correlation effect. This hole Is, however, due 

mostly to final state Coulomb interactions between the IT TV pair. This 
24 Coulomb interaction leads to a modulation of R(q) by a (Gamow) penetration 

factor, G(q) = 2irn(exp(2im) - 1? » 1 = am/q- There is qualitative agree­

ment between the dashed curve including this G(q) and the hole in the 

data. However, because of the very preliminary nature of the data, no 

conclusion can be drawn at this time from the possible excess suppression 

at low |q|. What Fig. 10 is supposed to convey is that high precision 

pion interferometry experiments are possible and that it will be possible 

to place upper bounds on the degree of coherence for these perpendicular 

modes in the near future. 

We close this discussion by pointing out again that to search for 

coherence associated with possible finite frequency, quasi-free pion modes, 

future experiments should concentrate on pion modes In the forward and 

mid 8 directions as well. As we saw in Eq. (59), many more pions would 

be produced from finite frequency instabilities than the condensate 

instability. Furthermore, these coherent components would be more easily 
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seen at lower energies, 100-300 MeV/nucleon, below the threshold for 

the chaotic component. 

IV. OUTLOOK 

In Section II, we showed first how correlations, A production, and 

form factors can be included in a mean field theory by a nearly density 

independent renormalization of the irNN coupling. Second, we showed how 

the constraints of bulk nuclear properties can be incorporated in a 

relativistic mean theory developed in Eef. 2. These constraints greatly 

restrict the condensate energy as we saw in Fig. 3. Nevertheless, the 

sizable spin-isospin oscillations (Fig. 6) are rather insensitive to 

model details. In Section III, we explored how these growing collective 

spin-isospin waves could affect the dynamics in nuclear collisions. 

First critical scattering was discussed, then the complications of 

searching for direct evidence for this phenomena via large-angle proton 

correlations were discussed. Second, the use of pion interferometry to 

look for coherent pion field was discussed. A simple calculation of the 

number of coherent pions was presented from which we concluded that rather 

few pions could be created coherently. Finally, we emphasized that 

coherence in the finite frequency modes is more likely to be observable 

than in the condensate mode. Unfortunately, even these modes lead 

to only a small number of pions. It 

remains to be seen whether future experiments can develop the sophistica­

tion necessary to look for such subtle coherent pion phenomena amidst the 

complex background due to incoherent intranuclear cascading. 
Although not discussed in this report, we also note the search 

for precritical pion phenomena via (e,e*) and (p.p') reactions (see.Ref.30). 
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APPENDIX A: <1T> -*• 0 Limit of MFA 

Here we want to derive the connection between the propagator and 

MFA approaches. Such a connection was discussed by Baym in his 

Les Houch lectures. He present an alternate and more explicit 

derivation here. 

He start from the pion mean field equation, Eq. (19c), 

( D + m 2 ) <;(x)> - Jw(x) (A.l) 

where 

^ ( x ) = g^ 3W<iji(x)Y 5Y vTiKx)> , (A. 2) 

which depends impl ic i t ly on <ir(x) > . In terms of the f u l l propagator 

S_(x,y), which s a t i s f i e s Eq. (19d) with 6 l f(x-y) replacing 0 on the 

right-hand s i d e , we can wri te as in Eq. (25), 

J„(x) •= - ig^ 3 y T r ^ Y J y T S ^ x . x * ) } (A.3) 

where x - ( x , t + 0 ) . He now expand ^ ( x ) to f i r s t order 

In <ir(y)> 

•Avf-as*. 
J l 6<u(y)> 

Jir< x> " J o ( x > + / d ' y I " I <ir(y)> + 0(<ir>2) . 
~* J l 6 < u ( y ) > J 

< i r > " ° (A.4) 

Defining 

cir(y)>-»-0 ( 6<ir.(y)> ) 
n^Cx.y) - - lim { = } , (A.5) 

1 J <ir( 

and noting tha t the divergence of the ax ia l current i s zero when 
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<TT> - 0 ( £ o " 0 ) » we-can rewrite Eq. (A.l) to f irst , order in <lt(x)> as 

(D+mJ) <TT 1(X)> = -^d*y n i ; J (x ,y) <» (y>> . (A.6) 

In symmetric homogeneous nuclear matter II..(x,y) - 6 . . IKx-y), and 

(D+mJ) <Tr±(x)> - - j^dV n(x-y) <ir i(y)> . (A.7) 

Expanding <TT.(X)> in Courier components, we get finally 

(-k2 + m*) lyk) - . -n(k) Tr±(k) . (A.8) 

Taking, however, the Fourier transform of Eq. (A.l) shows that the 

right-hand side i s just J^(k) . Therefore, 

{ J , ( k ) 
n(k) - - lim { * \ . (A.9) 

Tt±0a) + 0 l V * ' 

In order to compute H..(x,y) or It(k) explicitly from Eq. (A.5), 
we can start from the integral equation for S^x.y): 

S1T(x.y) « S (x.y) + f d"z SQ(x,z) g^ y ^ -i- <TT (z) > ^ ( z . y ) 
3z 

(A.10) 

where S (x,y) is the nucleon propagator when<u>»0. First integrate 
by parts to transfer the 3/3z^ away from the v field. Then recall that 

6 <w. (x)> 
1 - 6.. 6 (x-y) . (A.ll) « <wj(y) > l j 

Thus, 
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1 ^ __» , __<L {s o(x,y) gffY5YyT,S <y,z)} . 

Using Eqs. (A.3) and (A.5), we obtain f ina l ly , 

n i j ( x , y ) - -IgJ J L - L - T r C y / x . S ^ x ^ Y / x j S ^ y . x ) ) , 

(A.13) 

and therefore In synmetrlc homogeneous nuclear matter, 

H(k) - -21g^ l - i - E j - Tr ( Y s l t S o ( p ) Y 5 KS o (p + k)) . (A. 14) 
J (2TT) 

In the non-relativistic limit (p_ « m*), 

So(p) + (2m*r 1(p o-g vV o-p 2/2m* + ie e<p F-p)) _ 1, Trace - -8|k|2 and 

II(k) reduces to the familiar Llndhard function (see, e.g., Ref. 7). 
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FIGURE CAPTIONS 

Fig. 1. Phase diagram for pion condensation prepared by Gudima and 
Toneev. Curves R66 (Ref. 10) and B (Ref. 12) are calculated 
critical temperatures illustrating sensitivity of T (p) to 
model assumptions. The dynamical paths via nuclear cascade 
calculations for two nuclear collisions are also indicated 
along with the time in 10~ 2 3 sec. 

Fig. 2. Binding energy per nucleon in MFA of Ref. 2. Parameters are 
g s/m s « 15/mjj, gy/my = 11/mjj, b«0.004, c = 0.008, nijj = A.77 
fm"1, |k| = 1.5 fm~ . The ir c=0 solution is the non-condensed 
equation of state. Self-consistent condensate solutions exist 
for g_ > 1.18 fm. Two examples are shown. 

Fig. 3. Same as Fig. 2 but g B/m B = ^ " H * By/*^, = *- 7^ mj)» b * - 0 - 7 3 4 > 
c-6.86 giving larger m*/m„. In contrast to Fig. 2, condensate 
solutions exist also for g ^ s 1 fn (see Table 1). 

Fig. 4. The effective mass 2 for Fig. 2 (stiffer) and Fig. 3 (softer) 
14 compared to Walecka's model. 

Fig. 5. The condensation energy from Fig. (3), g_ = 1 fm, compared to 
13 chiral model result. Dashed curve illustrates unrenormalized 

g^ - 1.41 fm case in Fig. 3. 

Fig. 6. (a) The amplitude R_ of the spin-isospin oscillation measured 
in units of the baryon density for g_ •= 1 fm case of Fig. 3. 
Also indicated are the values of the pion condensate field if 
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in units of m . The condensation energy is also reproduced 

from Fig. 5. 

(b) Illustration of the magnitude of oscillation of the proton, 

spin up (P+) , neutron spin down (N+), etc., densities for R.. = 0.5 

as a function of the coordinate parallel to the condensate 

momentum. 

Fig. 7. Example of critical scattering associated with pionic instabil­

ities from Ref. 7. Dashed curve is model of free space elastic 

cross section and da £ f is the result of polarization effects, 

Eq. (40). In (b) the polarization factor F(0,k) is plotted vs. 

the momentum transfer k. 

Fig. 8. Two proton correlation data of Refs. 22,23. Contours are the 

in-to-out-of plane correlation function, Eq. (46). Shaded area 

is acceptance of one tag counter. The peak is associated with 

quasi-elastic scattering component. 

Fig. 9. Ideal pion interferometry correlation function, Eq. (54), for 

partially coherent fields. D(k)=0 case is the usual chaotic 

field result. Coulomb distortions are not Included. 

29 Fig. 10. Preliminary data for R(k+q/2, k-q/2) = R(q) for pion modes 

k perpendicular to the beam axis in the center of mass, plotted 

as a function of the momentum difference |q| (in the projectile 

frame). Solid curve is expected R for chaotic fields from an 

R=5 fm source. Dashed curve includes Gamov Coulomb correction 

factor. 
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27 52 
firestreak and cascade models. However, the predicted slopes are 
larger than those observed. For a given Q, it is found that the square of 
the dispersion is equal to the mean number of negative pions. This is shown 

48 12 in Fig. 35(c). This result has also been reported by Bartke for C 
central collisions studied at Dubna. These dispersions for the negative pion 
multiplicities are dominated by fluctuations in pion production and absorp­
tion rather than the dispersion associated with elementary N-N pion production 
processes at these energies. 

Figure 36 shows the energy dependence for central collisions of the 
average negative pion multipi city in the c m . frame. A linear dependence of 
<n -> is observed above 150 MeV/nucleon with a slope of 0.02ir~/(MeV/nucleon). 
The low energy point falls off this trend, presumably due to effects of Fermi 
motion which are very important near threshold. Thermal models are not able 
to reproduce this result, and consistently overestimate pion yields by a 

53 factor of 2 or more. A Fermi gas model which assumes thermal but no 
chemical equilibrium between N's, A'S, IT'S, P'S; is able to reproduce this 
trend (except near the upper end). To do this, it assumes zero impact 
parameter and uses the isobar model pion ratios to predict the numbers of 
negative pions. Absorption effects, including the process, A + N > NN, are 
known to reduce the pion yields by as much as 30-50 percent at these 
energies. Another way of looking at the trend with energy is shown in 
Fig. 37, where the multiplicity distributions for negative pions for a 

40 
central trigger are shown for each of the Ar energies. Once the bom­
barding energy is well above the pion threshold, these distributions are 
approximately Gaussian in shape. 
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